线段,射线,直线与线段的比较练习题

合集下载

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。

①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。

这个游戏规则不公平。

①如果被除数末尾有2个0,那么商的末尾至少有1个0。

①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。

A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。

5.下面的图形中哪些是线段?在其下面的()里画“○”。

()()()()()()()()6.下图中有______条线段。

7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。

( )9.放风筝时的风筝线可以看成是一条直线。

( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。

( )12.两个直角就是一个平角。

()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。

根据这一原理人们制作了度量角的工具——量角器。

( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。

( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。

画一条比1分米短1厘米的线段。

18.画一条比3厘米长15毫米的线段,并标出长度。

直线 射线 线段练习题

直线 射线 线段练习题

直线射线线段练习题直线、射线、线段练习题直线、射线和线段是几何学中常见的基本概念。

它们在解题时需要被准确理解和运用。

在接下来的练习题中,我们将通过多种情境和图形来练习这些概念的应用。

1. 问题一:在一个平面上,画一条AB直线和一条OC射线,使得AB与OC不相交,且AB过OC的起点O。

请说明这两者之间的关系。

解答一:直线和射线都是直线型的,它们是无限延伸的。

与直线不同的是,射线有一个起点,该起点为O。

所以在该情况下,OC射线起点O在AB直线上,且AB直线延伸至OC射线右侧。

2. 问题二:如果一条射线上的两个点B和C可以构成BC线段,则BC线段如何与这条射线相关?解答二:射线OC上的两个点B和C可以构成线段BC。

我们将射线OC延长一段,使其与BC线段相交,交点记为D。

那么OD射线与BC线段只有一个交点B。

即OD射线上的点B是OC射线上的点,但BC线段上的点B不属于OC射线。

3. 问题三:已知直线AB与直线CD相交于点O,BC是射线BD的一部分,且OC射线延长至外部使得OC=CD。

请问线段BC与BD之间的关系是什么?解答三:OC射线在BC上延长至外部得到点E,连接DE两点。

根据欧几里得几何公理,通过点O可以绘制一条且只有一条平行于直线BC的直线。

假设这条直线为EF,其中F点位于OD射线上。

于是,我们可以得出结论:线段BC与BD是平行线段,且共线部分为BD。

4. 问题四:AB线段与CD线段相交于点E,F是从点A开始的射线。

如果EF与CD相交于点G,那么BC线段与FD线段之间的关系是什么?解答四:EF射线从A点开始,经过E点延伸至外部。

我们将EF射线延长,使其与BC线段相交于点H。

那么根据划分线段的传递性,我们可以得出结论: BC线段与FD线段相交于点H。

直线 射线 线段的练习题

直线 射线 线段的练习题

直线射线线段的练习题直线、射线和线段是解析几何中的基本概念,它们广泛应用于数学和物理领域。

本文将为您提供一系列与直线、射线和线段相关的练习题,以帮助您更好地理解和运用这些概念。

1. 练习题一已知直线AB的斜率为1/2,经过点C(-1, 3),求直线AB的方程。

解析:由直线的斜率与过一点的关系,可以得到直线AB过点C(-1, 3)的方程为:y - 3 = 1/2(x + 1)。

2. 练习题二已知射线OA和射线OB的夹角为60°,OA的长度为2,求射线OB的长度。

解析:根据三角函数的定义,可以得到三角形OAB的边长比关系为:OB = OA * tan(60°) = 2 * tan(60°)。

3. 练习题三已知线段PQ的长度为5,线段PQ的中点为M,求线段PM的长度。

解析:线段PQ的中点M即为线段PQ的中垂线的交点,根据中垂线的性质,可以得到线段PM的长度为PQ的一半,即2.5。

4. 练习题四已知直线L1过点A(2, 4),斜率为2,直线L2过点B(-1, 3),斜率为-1/2,求直线L1和L2的交点坐标。

解析:由两条直线的方程可得:y - 4 = 2(x - 2) 和 y - 3 = -1/2(x + 1),解方程组得到交点坐标为(1, 2)。

5. 练习题五已知直线L与x轴交于点A(-3, 0),L与y轴交于点B(0, 4),求直线L的方程。

解析:由直线与坐标轴的交点可以直接得到直线的截距,进而得到直线L的方程为y = -4/3x + 4。

通过以上的练习题,希望能够加深您对直线、射线和线段的理解,并且对解析几何的运用有更好的掌握。

在解题过程中,注意合理运用直线和点的性质,灵活应用相关的计算公式和几何知识。

在实际应用中,这些基本概念和方法将为您提供有力的工具和思路。

祝您在解析几何学习中取得优异的成绩!。

直线、射线、线段练习题(含答案)

直线、射线、线段练习题(含答案)

1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。

射线直线线段的练习题

射线直线线段的练习题

射线直线线段的练习题射线、直线和线段,这是几何中非常基础的概念,对于我们理解空间几何关系有着重要意义。

在学习这些概念时,经常会遇到一些练习题,这些题目能够帮助我们巩固所学知识,提高解题能力。

下面,我们来尝试解析一些与射线、直线和线段相关的练习题。

1. 已知直线l和射线m,l⊥m,在不引入新的概念的前提下,如何判断这两者的关系?我们可以利用垂直关系的性质来判断直线和射线的关系。

垂直是指两个线段或直线互相交于90度的情况。

根据给定,直线l和射线m是互相垂直的,即直角关系。

因此,我们可以得出结论,直线l和射线m 是相互垂直的。

2. 一条直线上有四个点,依次为A、B、C、D,其中BC=CD,已知BD=3 cm,则BC的长度是多少?根据题目给定,BD=3 cm。

同时,题目中已经告诉我们BC=CD。

可以根据题目中的信息得出,BD是线段BC和CD的公共部分。

根据数学上的线段相等性原理,即若两条线段的包含点数相同,且对应线段相等,那么这两个线段相等。

由此可推知,BC=BD=3 cm。

3. 如何用尺直接测量一条边长为5 cm的线段?尺的定理是我们在实际测量中常用到的一个原则。

根据尺的定理,我们可以在一张平面上将尺直立,将线段的一端紧贴着尺的一条刻度线,然后观察线段的另一端与尺的刻度线相交的位置。

在测量线段长度时,我们可以将一端的位置对齐0刻度线,另一端与刻度线相交的位置对齐5刻度线,就可以得出线段的长度为5 cm。

4. 在一个平面坐标系中,给定直线l的方程为y=2x-3,如何判断点P(-1, -5)是否在直线l上?判断一个点是否在直线上,可以将该点的坐标代入直线的方程中,看方程是否成立。

对于给定的直线l,它的方程是y=2x-3。

将点P(-1, -5)的坐标代入该方程中,得到-5=2*(-1)-3,简化后得到-5=-5。

由此可知,方程成立,故点P(-1, -5)在直线l上。

通过一些与射线、直线和线段相关的练习题,我们可以进一步巩固对这些几何概念的理解,提高解题能力。

4-2 直线、射线、线段(基础训练)(解析版)

4-2 直线、射线、线段(基础训练)(解析版)

4.2 直线、射线、线段 【基础训练】 一、单选题1.如图,4,7CB cm DB cm ==,点D 为AC 的中点,则AB 的长为( )A .9cmB .10cmC .11cmD .12cm【答案】B 【分析】由图形可知,AB 等于各线段的和,即分别求出AD ,DC .然后相加即可得出AB 的长度. 【详解】解:由题意知,CB =4cm ,DB =7cm ,所以DC =3cm ,又点D 为AC 的中点,所以AD =DC =3cm ,故AB =AD +DB =10cm .故选:B . 【点睛】 本题主要考查学生灵活运用线段的和、差、倍、分转化线段之间的数量关系的能力.2.在开会前,工作人员进行会场布置在主席台上由两人拉着一条绳子然后以“准绳”为基准摆放茶杯这样做的理由是( )A.两点之间线段最短B.两点确定一条直线C.两点之间,直线最短D.过一点可以作无数条直线【答案】B【分析】根据直线的性质:两点确定一条直线可得答案.【详解】解:由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线,故选:B.【点睛】此题主要考查了直线的性质,关键是掌握两点确定一条直线.3.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【分析】根据两点间的距离定义即可求解.【详解】解:A,B两点间的距离是指连接A,B两点间的线段的长度,故选:D.【点睛】本题考查了两点间的距离的定义.4.日常生活中,手电筒发射出来的光线,类似于几何中的()A.折线B.直线C.射线D.线段【答案】C【分析】根据直线,射线和线段的区别即可得出答案.【详解】手电筒可近似看成一个点,所以手电筒发射出来的光线相当于一个从一个端点出发的一条射线,故选:C.【点睛】本题主要考查射线,掌握直线,射线和线段的区别是关键.5.下列说法中,错误的是()A.射线AB和射线BA是同一条射段B.经过两点只能作一条直线C.经过一点可以作无数条直线D.两点之间,线段最短【答案】A【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:A、射线AB和射线BA不是同一条射线,故此选项错误,符合题意;B、经过两点只能作一条直线,正确,不合题意;C、经过一点可以作无数条直线,正确,不合题意;D、两点之间,线段最短,正确,不合题意;故选:A.【点睛】此题主要考查了线段的性质以及直线的性质,正确把握相关性质是解题关键.6.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点之间直线最短C.两点确定一条直线D.以上说法都不对【答案】C【分析】根据题意可知应用的是两点确定一条直线,从而可得出答案.【详解】把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是两点确定一条直线,故选:C.【点睛】本题主要考查数学知识的实际应用,掌握基本的数学事实是解题的关键.7.如图,AB=CD,那么AC与BD的大小关系是()A.AC<BD B.AC=BD C.AC>BD D.不能确定【答案】B【分析】由题意可知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【详解】根据题意和图示可知AB=CD,而BC为AB和CD共有线段,故AC=BD,故选:B.【点睛】注意根据等式的性质进行变形,读懂题意是解题的关键.8.如图,从A地到B地有四条路线,由上到下依次记为路线①、①、①、①,则从A地到B地的最短路线是路线().A.①B.①C.①D.①【答案】C【分析】结合题意,根据两点之间线段最短的性质分析,即可得到答案.【详解】根据题意得,从A地到B地的最短路线是路线①故选:C.【点睛】本题考查了最短路径的知识;解题的关键是熟练掌握两点之间线段最短的性质,从而完成求解.9.下列说法错误的是()A.0既不是正数也不是负数B.经过两点有一条直线,并且只有一条直线C.两点之间,线段最短D.射线AB与射线BA是同一条射线【答案】D【分析】据有理数的知识和基本图形的相关知识逐一分析,先出符合题意的选项.【详解】对于A,0既不是正数也不是负数,说法正确,不符合题意;对于B,经过两点有一条直线,并且只有一条直线,说法正确,不符合题意;对于C,两点之间,线段最短,说法正确,不符合题意;对于D,射线AB与射线BA的端点不同,延伸方向不同,故“射线AB与射线BA是同一条射线”这一说法错误,符合题意.故选:D.【点睛】此题考查有理数的分类和基本几何图形的相关知识,理解相关知识点是关键.10.下列四个生活,生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设;①把弯曲的公路改直,就能缩短路程;①用两个钉子就可以把木条固定在墙上;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可用公理“两点之间,线段最短”来解释的现象是()A.①①B.①①C.①①D.①①【答案】A【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.【详解】①从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确;①把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”.故错误;故选:A.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.11.下列说法正确的是()A.直线AB与直线BA不是同一条直线B.射线AB与射线BA是同一条射线C.延长线段AB和延长线段BA的含义一样D.经过两点有一条直线,并且只有一条直线【答案】D【分析】根据直线、射线、线段的意义和表示方法进行判断即可.【详解】解:A.直线AB与直线BA是同一条直线,因此A不正确,故A不符合题意;B.射线AB与射线BA不是同一条射线,因此B不正确,故B不符合题意;C.延长线段AB和延长线段BA的含义不一样,因此C不正确,故C不符合题意;D.经过两点有一条直线,并且只有一条直线是正确的,故D符合题意;故选:D.【点睛】本题考查直线、射线、线段的意义,理解直线、射线、线段的意义是正确判断的前提,掌握直线的性质是正确判断的关键.12.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点【答案】B【分析】根据直线的性质:两点确定一条直线进行解答即可.【详解】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,A C D不符合题意,B符合题意,故,,故选:.B【点睛】本题考查的是直线的性质,掌握两点确定一条直线的实际应用是解题的关键.13.如图,某同学用剪刀治直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这现象的数学知识是()A.两点之间,直线最短B.两点之间,线段最短C.两点确定一条直线D.经过一点有无数条直线【答案】B【分析】根据线段的性质,可得答案.【详解】解:由于两点之间线段最短,所以剩下树叶的周长比原树叶的周长小.故选:B.【点睛】本题考查的是线段的性质,利用线段的性质是解题关键.14.下列语句正确的有()(1)线段AB就是A、B两点间的距离;AB=;(2)画射线10cm(3)A,B两点之间的所有连线中,线段AB最短;=,那么B是AC的中点.(4)如果AB BCA.1个B.2个C.3个D.4个【答案】A【分析】根据两点间的距离,射线的定义与性质,线段的中点的定义,对各小题分析判断即可得解.【详解】解:因为线段AB的长度是A、B两点间的距离,所以(1)错误;因为射线没有长度,所以(2)错误;因为两点之间,线段最短.即A,B两点之间的所有连线中,最短的是A,B两点间的距离,所以(3)正确;因为点A、B、C不一定共线,所以(4)错误.综上所述,正确的有1个.故选:A.【点睛】本题考查的是线段、射线的定义与性质,线段的中点,两点间的距离,要求学生准确把握概念与性质是解决本题的关键.15.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【分析】根据直线的表示方法可判定A ,利用射线的表示方法可判定B ,C ,利用线段表示方法可判定D . 【详解】解:A . 根据直线MN 与直线NM 表示方法是同一条直线,故选项A 正确;B . 射线PM 与射线MN 是端点不同,不是同一条射线,故选项B 说法不正确;C . 射线PM 与射线PN 是同一条射线,端点相同,方向相同,故选项C 正确;D . 根据线段MN 与线段NM 表示方法是同一条线段,故选项D 正确.故选择:B . 【点睛】 本题考查直线,射线,线段的定义与表示方法,掌握直线,射线,线段的表示方法是解题关键. 16.下列说法正确的是( )A .两点之间直线最短B .平面内的三点可以在一条直线上C .延长射线AB 到点C ,使得BC AB =D .作直线5OB =厘米【答案】B 【分析】 根据线段的性质和直线的性质,以及射线的定义分别判定可得. 【详解】A. 两点之间线段最短,错误,故A 不合题意;B. 平面内的三点可以在一条直线上,表述正确,故B 符合题意;C. 延长线段AB 到点C ,使得BC =AB ,表述错误,故C 不符合题意;D. 作直线OB =5厘米,错误,直线没有长度,故D 不符合题意.故选:B .【点睛】考查了线段的性质,直线的性质,以及射线的定义,熟记概念内容,理解题意是解题的关键.17.把一条弯曲的道路改成直道,可以减少路程,其理由是()A.过两点有且只有一条直线B.两点之间线段最短C.垂线段最短D.两点间线段的长度叫两点间的距离【答案】B【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短.【详解】解:把一条弯曲的道路改成直道,可以减少路程,其理由是两点之间线段最短故选B.【点睛】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.18.下列说法正确的是()A.两点之间的所有连线中,直线最短B.一个角的余角一定比这个角大C.同角(或等角)的补角相等D.经过两点有无数条直线【答案】C【分析】根据“两点之间,线段最短“;互余的两个角的和为90°;补角的性质以及两点确定一条直线逐一判断即可.【详解】A、两点之间的所有连线中,线段最短,故原说法错误,故本选项不合题意;B、一个角的余角不一定比这个角大,如60°角的余角是30°,故原说法错误,故本选项不合题意;C、同角(或等角)的补角相等,说法正确,故本选项符合题意;D、经过两点有且只有一条直线,故原说法错误,故本选项不合题意;故选:C.【点睛】本题主要考查了“两点之间,线段最短“,两点确定一条直线以及补角的定义与性质,熟记相关定义是解答本题的关键.19.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【分析】根据射线,直线的性质以及线段的性质解答.【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.【点睛】 本题考查直线、射线的性质,是基础考点,难度较易,掌握相关知识是解题关键.20.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =( )cm .A .4B .3C .2D .1【答案】C 【分析】由10AB =cm ,4BC =cm .于是得到14AC AB BC =+=cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD AD AM =-,于是得到结论. 【详解】解:①10AB =cm ,4BC =cm ,14AC AB BC ∴=+=cm , D 是AC 的中点, 172AD AC ∴==cm ; M 是AB 的中点,152AM AB ∴==cm , 2D M AD AM ∴=-=cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.21.如图所示,下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线;①图中有两条射线;①直线AB 和直线BA 是同一条直线;①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .1【答案】C 【分析】 根据射线、直线、线段的表示方法判断即可. 【详解】解:①射线AB 和射线BA 不是同一条射线,端点不同,故①错误;①图中有四条射线,故①错误;①直线AB 和直线BA 是同一条直线,故①正确;①线段AB 和线段BA 是同一条线段,故①正确;故选:C . 【点睛】 本题考查了射线、直线、线段的表示方法,解题关键是注意它们的联系和区别.22.下列说法,其中正确的个数有( )(1)绝对值越小的数离原点越近;(2)多项式2235x x -+是二次三项式;(3)连接两点之间的线段是两点之间的距离;(4)三条直线两两相交有3个交点.A .4个B .3个C .2个D .1个 【答案】C【分析】 根据绝对值的定义、多项式、两点间的距离、相交线的定义即可得出结论. 【详解】解:(1)绝对值越小的数离原点越近,此说法正确;(2)多项式2235x x -+是二次三项式,此说法正确;(3)连接两点之间的线段的长度是两点之间的距离,此说法错误;(4)三条直线两两相交有1个或3个交点,此说法错误.故选C . 【点睛】 本题考查了两点间的距离、绝对值、多项式、相交线的定义,熟练掌握各定义是解题的关键.23.下列说法正确的是( )A .延长直线AB 到点CB .射线是直线的一部分C .画一条长2cm 的射线D .比较射线、线段、直线的长短,直线最长【答案】B 【分析】利用直线定义可判断A ,利用射线定义判断B ,利用射线的性质判断C ,利用直线与射线性质判断D 即可. 【详解】解:A. 延长直线AB 到点C ,直线向两方无限延伸,不能延长,故A 选项不正确;B. 射线是直线的一部分,故B 选项正确;C. 画一条长2cm 的射线,射线向一方无限延伸,射线不能度量,故C 选项不正确 ;D. 比较射线、线段、直线的长短,直线最长,射线向一方无限延伸,直线向两方无限延伸不能比较长短,故D选项不正确.故选择:B.【点睛】本题考查直线的定义与性质,射线的定义与性质,线段定义,掌握直线的定义与性质,射线的定义与性质,线段定义是解题关键.24.观察图形,下列说法正确的个数是()①直线BA和直线AB是同一条直线;①射线AC和射线AD是同一条射线;①线段AC和线段CA是同一条线段;①三条直线两两相交时,一定有三个交点.A.1B.2C.3D.4【答案】C【分析】根据直线的表示方法对①进行判断;根据射线的表示方法对①进行判断;根据线段的性质对①进行判断;通过分类讨论对①进行判断.【详解】解:①直线没有方向,直线BA和直线AB是同一条直线,故①说法正确;①射线AC和射线AD是同一条射线,故①说法正确;①线段AC 和线段CA 是同一条线段,故①说法正确;①三条直线两两相交时,一定有三个交点,还可能有一个,故①说法不正确.共3个说法正确.故选:C . 【点睛】 本题考查了直线、射线、线段的含义,解题的关键在于结合图形进行分析.25.如图,已知C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A .4B .6或8C .6D .8【答案】B 【分析】由于E 在直线AD 上位置不明定,可分E 在线段DA 的延长线和线段AD 上两种情况求解. 【详解】解:若E 在线段DA 的延长线,如图1,①EA =1,AD =9,①ED =EA +AD =1+9=10,①BD =2,①BE =ED -BD =10-2=8;若E 线段AD 上,如图2,EA =1,AD =9,①ED =AD -EA =9-1=8,①BD =2,①BE =ED -BD =8-2=6,综上所述,BE 的长为8或6.故选:B . 【点睛】 本题考查的是线段的中点、线段的和差计算,对题目进行分类讨论是解题的关键.26.已知点P 是CD 中点,则下列等式中:①PC PD =;①12PC CD =;①2CD PD =;①PC PD CD +=;正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【分析】根据线段中点的性质进行判断即可.【详解】解:①P 是CD 中点,①12PC PD CD ==,2CD PD =,PC PD CD +=, 因此①①①①都正确,故选:D.【点睛】本题考查了与线段中点有关的各线段之间的熟练关系,熟悉线段中点的含义是解题的关键.27.已知点C为线段AB上一点,AC=2BC,若线段AB的长为6cm,则线段AC的长为()A.6cm B.4cm C.3cm D.2cm【答案】B【分析】根据AC=2BC,可知AC=23AB,代入求值即可.【详解】解:①点C为线段AB上一点,AB=6cm,AC=2BC,①AC=23AB=4cm;故选:B.【点睛】本题考查了线段的计算,解题关键是准确理解题意,熟练的进行计算.28.2019年11月1日,隆生大桥正式通车,缓解了东江大桥与中信大桥的交通压力,其特点是“直”,明显缩短了江北与水口的距离,其主要依据是()A.两点确定一条直线B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两点之间,线段最短【答案】D【分析】直接利用线段的性质分析得出答案.【详解】解:隆生大桥正式通车,最大的特点是“直”,明显缩短了江北与水口的距离,其主要依据是:两点之间,线段最短.故选:D.【点睛】此题主要考查了线段的性质,正确理解题意是解题关键.29.下列叙述正确的是()A.线段AB可表示为线段BA B.直线可以比较长短C.射线AB可表示为射线BA D.直线a,b相交于点m【答案】A【分析】分别根据直线、射线以及线段的定义判断得出即可.【详解】解:A、线段AB可表示为线段BA,此选项正确;B、直线不可以比较长短,此选项错误;C、射线AB的端点是A,射线BA的端点是B,故不是同一射线,此选项错误;D、点用大写字母表示的,此选项错误,故选:A【点睛】此题主要考查了直线、射线以及线段的定义,正确区分它们的定义是解题关键.30.已知线段AB长为5,点C为线段AB上一点,点D为线段AB延长线上一点,若12BC BD AC==,则线段AC的长为()A.53B.103C.153D.203【答案】B【分析】利用线段的和差和等量关系用AC表示AB,根据5AB=即可得出AC.【详解】解:如图所示:①12BC BD AC==,①1322AB AC BC AC AC AC =+=+=,①5 AB=,①22105333 AC AB==⨯=,故选:B.【点睛】本题考查线段的和差.能结合题意正确构造出线段图是解题关键. 二、填空题31.如图,已知点B 在线段AC 上,9AB =,6BC =,P 、Q 分别为线段AB 、BC 上两点,13BP AB =,13CQ BC =,则线段PQ 的长为_______.【答案】7【分析】根据已知条件算出BP 和CQ ,从而算出BQ ,再利用P A =BP +BQ 得到结果.【详解】解:①AB =9,BP =13AB , ①BP =3,①BC =6,CQ =13BC , ①CQ =2,①BQ =BC -CQ =6-2=4,①PQ =BP +BQ =3+4=7,故答案为:7.【点睛】本题考查了两点间距离,线段的和差,熟练掌握线段上两点间距离的求法,灵活运用线段的和差倍分关系解题是关键.32.如图,线段AB =10,BC =6,点D 上线段AC 的中点,则线段AD 的长为 __.【答案】8【分析】根据线段AB=10,BC=6,可以求得线段AC的长,再根据点D是线段AC的中点,从而可以求得线段AD的长.【详解】解:①线段AB=10,BC=6,①AC=AB+BC=16,①点D是线段AC的中点,①AD=12AC=11682⨯=,故答案为:8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.33.如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=_____.【答案】20【分析】由题意易得11,22MC AC CN CB==,进而可得111222MN MC CN AC CB AB=+=+=,进而问题可求解.【详解】解:①M 、N 分别为AC 、BC 的中点, ①11,22MC AC CN CB ==, ①AB =40, ①11120222MN MC CN AC CB AB =+=+==; 故答案为20.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.34.如图,C 是线段AB 上的一点,且13,5AB CB ==,M 、N 分别是AB 、CB 的中点,则线段MN 的长是_____________.【答案】4【分析】根据中点定义可得到AM =BM =12AB ,CN =BN =12CB ,再根据图形可得NM =BM -BN ,即可得到答案. 【详解】解:①M 是AB 的中点,①AM =BM =12AB =6.5, ①N 是CB 的中点,①CN =BN =12CB =2.5, ①MN =BM -BN =6.5-2.5=4.故答案为:4.【点睛】此题主要考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.35.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:①MN=MB+BC+CN,MN=7cm,BC=3cm,①MB+CN=7﹣3=4cm,①M是AB的中点,N是CD的中点,①AB=2MB,CD=2CN,①AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.【点睛】本题考查了两点间的距离;利用中点性质转化线段间的关系是解题关键.三、解答题36.已知:如图,点,C D在线段AB上,点D是AB中点,1,123AC AB AB==.求线段CD长【答案】2 【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论. 【详解】①D 为线段AB 的中点,①AD =12AB =12×12=6, ①AC =13AB , ①AC =13×12=4, ①CD =AD -AC =6-4=2.【点睛】本题考查线段中点相关的计算,理解中点的定义,掌握线段中的计算法则是解题关键.37.如图,已知C 、D 两点将线段AB 分成2①3①4三段,点E 是线段BD 的中点,点F 是线段CD 上一点,且2CF DF =,12cm EF =,求线段AB 的长.【答案】36【分析】设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,根据题意可用x 表示出DF 、DE 的长,再根据12EF =,即可求出x ,最后即可求出AB 的长.【详解】解:根据题意可设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,①2CF DF =, ①133DF x x =⨯=, ①12DE BD =, ①1422DE x x =⨯=. ①EF DF DE =+,①212x x +=,解得:4x =.①24344436AC D DB A C B =⨯+⨯+⨯==++.【点睛】本题考查线段的n 等分点和中点的有关计算.根据题意找出线段之间的数量关系是解答本题的关键. 38.(1)如图,已知线段AB ,请用尺规按下列要求作图:①延长线段AB 到C ,使BC=AB ;①延长线段BA 到D ,使AD=AC .(2)在(1)所作的图中,若点E 是线段BD 的中点,AB=2cm ,求线段AE 的长.【答案】(1)①见解析;①见解析;(2)1cm【分析】(1)①根据题意画出图形即可;①根据题意画出图形即可;(2)首先根据图形求出AC 的长度,进而得出AD 的长度,然后利用中点求出DE 的长度,最后利用AE AD CE =-求解即可. 【详解】(1)①如图,①如图,(2)如图,2cm,AB BC AB ==,4cm AC AB BC ∴=+=,4cm AD AC ∴==,6cm DB AD AB ∴=+=.①点E 是线段BD 的中点, 13cm 2DE DB ∴==, 1cm AE AD CE ∴=-=.【点睛】本题主要考查线段的和与差,掌握线段之间的关系是关键.39.如图,点C 在线段AB 上,AC =6cm ,MB =10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;【答案】(1)7cm ;(2)6.5cm . 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长. 【详解】解:(1)①AC=6cm ,点M 是AC 的中点, ①132MC AC cm ==, ①1037BC M B M C cm . (2)①N 是BC 的中点, ①1 3.52CNBC cm ①3 3.5 6.5M N M C CN cm .【点睛】本题考查了两点间的距离,熟悉相关性质是解题的关键.40.如图,线段6cm AC =,线段15cm BC =,点M 是AC 的中点,在线段CB 上取一点N ,使得:1:2CN NB =,求MN 的长.【答案】8cm【分析】因为点M 是AC 的中点,则有12MC AM AC ==,又因为:1:2CN NB =,则有13CN BC =,故MN MC NC =+可求.【详解】解:M 是AC 的中点,6AC =cm ,132MC AC ∴==cm , 又因为:1:2CN NB =,15BC =,153NC BC ∴==cm . 8MN MC NC ∴=+=cm ,MN ∴的长为8cm .【点睛】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,本题点M 是AC 的中点,则有12MC AM AC ==,还利用了两条线段成比例求解. 41.(1)如图,用没有刻度直尺和圆规画图:①点C 是线段AB 处一点,画射线CB ,画直线AC ;①延长线段AB 到E ,使3AE AB =;(2)在(1)的条件下,如果2AB cm =,O 是线段AE 的中点,求线段OB 的长.【答案】(1)①见解析;①见解析;(2)1cm(1)①根据射线和直线的定义作图即可,①作直线AB ,以AB 为半径作圆,圆与直线AB 交点作圆心,即可得;(2)根据延长线的定义以及线段的和差计算即可得. 【详解】解:(1)①如图所示:①如图所示:(2)由图可知2AB cm =,236AE cm =⨯=, 116322OA AE cm ∴==⨯=, 1OB OA AB cm ∴=-=【点睛】本题考查了无刻度直尺和圆规画图,根据线段中点计算线段的长度;掌握好相关的定义,根据线段中点的特性解题是关键.42.如图,已知线段AB =6,延长AB 至C ,使BC =2AB ,点P 、Q 分别是线段AC 和AB 的中点,求PQ 的长.【答案】PQ 的长为6.结合图形、根据线段中点的定义计算. 【详解】解:①BC =2AB ,AB =6,①BC =2×6=12,①AC =AB +BC =6+12=18,①点P 、Q 分别是线段AC 和AB 的中点,①AP =12AC =12×18=9, AQ =12AB =12×6=3, ①PQ =AP -AQ =9-3=6,故PQ 的长为6.【点睛】本题考查了两点间的距离、线段中点的定义,掌握线段的和差的计算方法、中点的定义是解题的关键. 43.尺规作图,已知:线段(),a b a b >,求作:AB a b =+.(保留作图痕迹,不写作法)【答案】见解析【分析】先在射线AM 上依次截取AC =a ,再截取CB =b ,则线段AB =a +b .【详解】解:如图,线段AB 即为所作.【点睛】本复考查了作图-复杂作图:杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.44.如图,延长线段AB 到点C ,使2BC AB =,取AC 的中点D .已知3cm BD =,求AC 的长.【答案】18 【分析】设cm AB x =,则2cm BC x =,先根据线段的和差可得3cm AC x =,再根据线段的中点的定义可得3cm 2CD x =,然后根据线段的和差可得1cm 2BD x =,结合3cm BD =可求出x 的值,由此即可得出答案. 【详解】设cm AB x =,则2cm BC x =,3cm AC AB BC x ∴=+=,点D 是AC 的中点,13cm 22CD AC x ∴==, 1cm 2BD BC CD x ∴=-=,。

人教版数学 四年级上册 线段、直线、射线 课后练习题

人教版数学 四年级上册 线段、直线、射线 课后练习题

一、选择题
1. 该图一共有()条射线。

A.3 B.4 C.6 D.8
2. 把4厘米长的线段向两端各延长10厘米,得到一条()。

A.直线B.射线C.线段
3. 直线、射线和线段比较()。

A.射线比直线短B.线段比射线短C.无法比较
4. 下图中,表示射线PL的是()。

A.
B.C.
5. 如图所示:A、B两点的连线中,()号最短。

A.①B.②C.③
二、填空题
6. 下面图形中,________是线段,________是直线________是射线.
7. 从一点出发可以画( )条射线.两点可以画( )条射线.
8. 经过一点可以画( )条射线,画( )条直线;经过两点可以画( )条直线。

9. 线段有( )个端点,( )线没有端点。

10. 直线上两点之间的一段叫做( ),它有( )个端点。

三、解答题
11. 量一量,画一画。

第一条:
第一条线段的长度是第二条的4倍。

请画出第二条线段。

12. 先作图,再填空。

(1)画出直线AB、射线CD、线段BD。

(2)仔细观察,所画的图中有________条线段,________条射线,________条直线。

13. 过A、B两点画一条直线,并量出线段AB的长度。

线段AB长()毫米。

14. 小亮星期天想到少年宫游玩,他可以有几种走法?把最近的路线在图上画出来。

他可以有()种走法。

直线射线线段练习题

直线射线线段练习题

直线射线线段练习题一、选择题(每题2分,共20分)1. 下列关于直线、射线、线段的描述,正确的是:A. 直线没有端点B. 射线有一个端点C. 线段有两个端点D. 所有选项都是正确的2. 线段AB的长度为5cm,线段CD的长度为3cm,若线段AB与线段CD 平行,则:A. AB和CD可能相等B. AB一定比CD长C. AB一定比CD短D. AB和CD长度没有关系3. 如果线段MN和线段PQ相交于点O,那么点O是线段MN的:A. 中点B. 端点C. 任意一点D. 无法确定4. 直线l上的点A和点B确定了一条:A. 直线B. 线段C. 射线D. 无法确定5. 射线OA和射线OB的共同点是:A. 点OB. 点AC. 点BD. 没有共同点二、填空题(每题2分,共20分)6. 线段的两个端点分别记作____和____。

7. 如果线段AB和线段CD相交,那么交点可以记作____。

8. 直线可以无限延伸,因此它的长度是____。

9. 射线从一点出发,向一方无限延伸,这个点称为射线的____。

10. 若线段AB的中点为M,则AM的长度等于____。

11. 直线上的任意两点都可以确定一条____。

12. 线段的延长线是一条____。

13. 如果线段AB和线段CD重合,那么它们的长度____。

14. 线段AB和线段CD平行,且线段AB的长度为10cm,则线段CD的长度也是____。

15. 射线OA和射线OB的端点都是____。

三、简答题(每题10分,共30分)16. 描述如何确定一条线段的中点。

17. 解释直线、射线和线段的区别。

18. 如果线段AB和线段CD相交,且交点为E,说明线段AE和线段BE 的关系。

四、计算题(每题15分,共30分)19. 已知线段AB的长度为8cm,线段BC的长度为6cm,线段AC的长度为10cm。

如果线段AB和线段BC在同一直线上,求线段AC的长度。

20. 射线OA和射线OB从同一点O出发,分别向不同方向延伸。

四年级直线,线段,射线的题

四年级直线,线段,射线的题

四年级直线,线段,射线的题以下是关于直线、线段和射线的20道题目:1.画出一个直线AB。

2.用两个不同的点P、Q来表示一条线段。

3.用一个起点O和一个通过点P的箭头来表示一条射线OP。

4.画出两个平行的直线CD和EF。

5.比较线段AB和线段CD的长度,哪个更长?6.如果点P在线段AB的中点,那么线段AP和线段PB的长度相等吗?7.点M在线段NP的中点上,如果点N到点M的距离是5厘米,那么点M到点P 的距离是多少?8.射线OA上有一个点B,如果OB的长度是8厘米,那么OA的长度是多少?9.线段XY的长度是12厘米,如果它被分成三等份,每一份的长度是多少?10.点C在射线AD上,如果AC的长度是4厘米,CD的长度是6厘米,那么AD 的长度是多少?11.直线GH和直线IJ相交于点K,如果角GKI的度数是90度,那么角HKL的度数是多少?12.点E在线段DF的延长线上,如果DE的长度是7厘米,EF的长度是9厘米,那么DF的长度是多少?13.直线LM和直线NO平行,如果角LKP的度数是70度,那么角OKP的度数是多少?14.线段RS的长度是15厘米,如果它被分成五等份,每一份的长度是多少?15.射线UV上有一个点W,如果UW的长度是10厘米,VW的长度是6厘米,那么UV的长度是多少?16.点X在线段YZ的中点上,如果点Z到点X的距离是8厘米,那么点X到点Y的距离是多少?17.线段AB和线段CD的长度相等,如果线段AB的长度是9厘米,那么线段CD 的长度是多少?18.直线EF和直线GH相交于点I,如果角FIJ的度数是120度,那么角GIH的度数是多少?19.点K在线段IJ的延长线上,如果IK的长度是12厘米,JK的长度是5厘米,那么IJ的长度是多少?20.画出一个射线MN,并用字母O表示它的起点。

希望这些题目能够帮助你巩固对直线、线段和射线的理解和应用!。

线段、直线、射线,比较线段的长短

线段、直线、射线,比较线段的长短
三、读句画图:(16分)
如图所示,已知平面上四个点
(1)画直线AB;(2)画线段AC;
(3)画射线AD、DC、CB;
(4)如图,指出图中有 条线段,
有___ 条射线并写出其中能用图中字母表示的线段 .
3.经过一点A可以画 条直线,经过两点A、B可以画 条直线,经过三点A、B、C可以画 条直线。
4.若A、B、C三点在同一条直线上,且AB=9cm,BC=4cm,则AC=__
5.如果点B在线段AC上,那么表达式AB=AC,AB=BC,AC=2AB,AB+BC=AC中,能表示B是线段AC的中点的有( )
四、解答题(4分)
1.在直线AB上,有AB=5 cm,BC=3 cm,求AC的长.
解:(1)当C在线段AB上时,AC=_______.(2)当C在线段AB的延长线上时,AC=_______.
2.两根木条,一根长80cm, 一根长130cm,将它们的一端重合,顺次放在同一条直线上,此时两根木条的中点间的距离是 cm。
线段、直线、射线,比较线段的长短
一、相信自己,你能填得又快又准!(每空4分,共60分)
1.线段有______个端点,射线有______个端点,直线没有端点。
2.如图,直线AB也可以说成直线BA,即用两个字母表示的直线与字母的__________无关。
3.手电筒发出的光束,舞台上的光束,投影仪的光都给人一种__________的形象.
二、你一定能选对!(每小题3分,共18分)
1.下列各直线的表示法中,正确的是( )
A、直线A B、直线AB C、直线ab D、直线Ab
2.下列说法不正确的是( ) .
A、直线AB与直线BA是同一条直线 B、射线AB与射线BA是同一条射线

四年级 直线、线段、射线 带答案

四年级  直线、线段、射线 带答案

1.⼀个三⻆形是由三条( )围成的。

A.直线B.射线C.线段2.图中有( )条线段。

A.条B.条C.条D.条3.经过两点可以画( )条直线。

A.B.C.⽆数条4.经过下⾯三点中的任意两点,⼀共可以画( )条直线。

A.B.C.D.⽆数5.直线、射线和线段三者⽐较⻓度,( )。

A.直线⽐射线⻓B.射线⽐线段⻓C.线段⽐直线⻓D.三者⽆法⽐6.从直线外⼀点到这条直线的距离,是指这⼀点到这条直线的( )的⻓。

456712123C.直线D.垂直线段7.直线上两点间的⼀段叫( )。

A.直线B.射线C.线段8.下列说法正确的是( )。

A.最⼩的⾃然数是B.公顷⼤于平⽅千⽶C.直线⽐射线⻓D.正⽅形相邻的两条边垂直9.下列线中,( )是直线,( )射线,( )是线段。

A.B.C.D.10.琪琪画了⼀条厘⽶的线段,浩浩画了⼀条射线,( )画的线⻓。

A.琪琪B.浩浩C.不能确定11.画⼀条毫⽶的( )。

A.直线1101154512.下⾯的图中有( )条射线。

A.B.C.13.⼀条( )⻓⽶,⻆的两条边都是( )。

A.线段;线段B.射线;直线C.线段;射线14.直线、射线和线段三者⽐较( )A.直线⽐射线⻓B.射线⽐线段⻓C.线段⽐直线⻓D.三者⽆法⽐15.同⼀平⾯内有五个点,经过任意两点画⼀条线段,最多可画( )条不同的线段。

A.B.C.D.16.图中有( )线段。

A.条B.条C.条17.在⼀条射线上截取厘⽶的线段,可以截取( )段。

16830005810156434C.D.⽆数18.在⼀条直线上⼀共有三个不同的点,这些点⼀共可以组成( )条不同的线段。

A.B.C.19.经过平⾯内的两点可以画( )条直线。

A.两B.⼀C.⽆数20.是由两条( )组成的。

A.线段B.射线C.直线D.曲线21.下列语句,表达正确的是( )A.在同⼀个圆内,半径的⻓度是直径的⼀半B.直线⽐射线⻓C.过两个点可以画出⽆数条直线D.⼤于的⻆都是钝⻆22.下⾯说法错误的是( )。

四年级数学上册《线段、直线、射线》练习题

四年级数学上册《线段、直线、射线》练习题

《线段、直线、射线》
一、填空
1、直线上两点间的一段叫做(),线段有()个端点。

2、()、()都可以无限延长,其中()没有端点,()只有一个端点。

3、从一点引出两条射线所组成的图形叫做()。

这个点叫做它的(),这两条射线叫做它的()。

4、线段是直的,有()个端点;将线段向两个方向无限延长,就形成了()线;从线段的一个端点向一个方向无限延长,就得到一条()线。

5、过一点可以画出()条直线,过两点只能画出()条直线;从一点出发可以画()条射线。

6、手电筒、太阳等射出来的光线,都可以近似地看成是,因为它们都只有端点。

二、请在括号里对的画“√”,错的画“×”。

1、线段是直线上两点之间的部分。

()
2、过一点只能画出一条直线。

()
3、一条射线长6厘米。

()
4、手电筒射出的光线可以被看成是线段。

()
5、过两点只能画一条直线。

()
6、线段比射线短,射线比直线短。

( )
7、经过一点可以画一条直线。

( )
8、一条射线OA,经过度量它的长度是5厘米。

()。

直线、射线、线段 小学数学 习题集

直线、射线、线段 小学数学 习题集

一、选择题
1. 数一数,一共有()条线段。

A.1 B.3 C.4 D.6
2. 如图()是线段。

A.B.
C.
3. 直线、射线、线段三者比较,正确的是()。

A.直线最长B.线段最短C.无法比较
4. 下列线中,()是射线。

A.B.C.5. 一条线段的是2cm,这条线段的长是()
A.4cm B.2cm C.6cm
二、填空题
6. 认一认,归类。

(将序号填入相应的括号里)
射线:( ) 直线:( ) 线段:( ) 角:( ) 7. 下图中有( )条射线,有( )个角。

8. 下图中有______条射线,______条线段。

9. 画一条6厘米长的线段,可以从尺子的( )刻度画起,画到刻度( )的地方。

10. 左图有( )条线段,( )个锐角,( )个直角,( )个钝角.
三、解答题
11. 不用尺,你能画一条8厘米长的线段吗?
12. 先量出线段的长度,再画一条比它长4毫米的线段。

()厘米
13. 中(国)老(挝)铁路是中国与老挝友谊的“连心桥”。

晓娟查阅有关资料了解到中老铁路的磨丁至万象市段的站点,如图所示。

这一段铁路单程需要准备多少种
不同的车票?
14. 填一填,画一画。

(1)数一数,机器人身上共有()条线段。

(2)用彩笔把这些线段描一描。

(3)画一条1厘米长的线段作为机器人的嘴。

直线射线线段练习的题目

直线射线线段练习的题目

直线 射线 线段 角大小比较 角平分线 互余互补一 解答题1. 如图所示,指出图中的直线、射线和线段.A B C D EF2. 往返于甲、乙两地的客车,中途停靠三站,问:(1)要有多少种不同的票价?(2)要准备多少种车票?3. 如图所示,C 是线段AB 的中点,D 是线段CB 的中点,BD =2cm ,求AD 的长.A B C D4. 已知线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,若CD =3cm ,求AB 的长.5. 已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.6. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。

7. 已知A 、B 、C 、D 四点,如图所示,若过其中的任意两点画直线,能画几条?分别用字母表示每条直线.ABCD8. 如图所示,这是某村的平面示意图,阴影部分是该村的道路,A 处是住宅区,B 处是村小学,其他部分都是麦田,每年一到冬季,小学生们就在麦田里走出一条小路AB ,请你用数学原理解释这一现象.二、选择题.1、下面几种表示直线的写法中,错误的是( )A. 直线aB. 直线MaC. 直线MND. 直线MO2、下列作图语句中正确的是( )A. 画直线AB =2cmB. 画射线OC =3cmC. 在射线OC 上,截取射线CD =2cmD. 延长线段AB 到C ,使得BC =AB3、下列说法错误的是( )A. 过一点可以作无数条直线B. 过已知三点可以画一条直线C. 一条直线通过无数个点D. 两点确定一条直线4、如果线段AB =6cm ,BC =4cm ,则线段AC 的长度是( )A. 2cmB. 10cmC. 2cm 或10cmD. 无法确定5、下列四种说法:①因为AM =MB ,所以M 是AB 中点;②在线段AM •的延长线上取一点B ,如果AB =2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM =MB =12AB ;④因为A 、M 、B 在同一条直线上,且AM =BM ,所以M 是AB 的中点.其中正确的是( )A. ①③④B. ④C. ②③④D. ③④6、如图所示,C 是线段AB 的中点,D 是线段BC 的中点,则下列关系式中不正确的是( )A. CD =AC -BDB. CD =AD -BCC. CD =12AB -BDD. CD =13AB A B C D7、线段AB =1996cm ,P 、Q 是线段AB 上的两个点,线段AQ =1200cm ,线段BP =1050cm ,则线段PQ =( )A. 254cmB. 150cmC. 127cmD. 871cm8.下列说法正确的是( )A. 两点之间的连线中,直线最短B.若P 是线段AB 的中点,则AP=BPC. 若AP=BP, 则P 是线段AB 的中点D. 两点之间的线段叫做者两点之间的距离9.如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( )A. 9cmB.1cmC.1cm 或9cmD.以上答案都不对.三、填空题.1、在墙上钉一根木条需__________个钉子,其根据是__________.2、如下图所示,直线__________和直线__________相交于点P ;直线AB 和直线EF •相交于点__________;点R 是直线__________和直线__________的交点.A B CD E FO P R3、如下图所示,图中共有__________条线段,它们是__________;共有__________条射线,它们是__________.A B C D F4、如下图,把河道由弯曲改直,根据__________说明这样做能缩短航道.5、如下图,AC =CD =DE =EB ,图中和线段AD 长度相等的线段是__________,以D •为中点的线段是__________.A B C D E6、画线段AB =50mm ,在线段AB 上取一点C ,使得5AC =2AB ,在AB 的延长线上取一点D ,使得AB =10BD ,那么CD =__________mm .7、探索规律:(1)若直线l 上有2个点,则射线有_____条,线段有______条;(2)若直线l 上有3个点,则射线有_____条,线段有______条;(3)若直线l 上有4个点,则射线有_____条,线段有______条;(4)若直线l 上有n 个点,则射线有_____条,线段有______条.8、先画线段AB =5cm ,延长AB 至C ,使BC =2AB ,反向延长AB 至E ,使AE =AB ,再计算:(1)线段CE 的长;(2)线段AC 是线段CE 的几分之几?(3)线段CE 是线段BC 的几倍?9、已知线段AB =10cm ,直线AB 上有一点C ,且BC =2cm ,点D 是线段AB 的中点,求线段DC 的长.10、已知数轴的原点为O ,如图所示,若点A 表示3,点B 表示-52,问:(1)数轴是什么图形?(2)数轴在原点O 左边的部分(包括原点)是什么图形?怎样表示?(3)射线OB 上的点表示什么数?端点表示什么数?(4)数轴上表示不小于-52,且不大于3的部分是什么图形?怎样表示? 角的比较和运算1.法 1.叠合法:把一个角放到另一个角上,使它们的顶点重合,其中的一边也重合,这两个角的另一边都在这一条边的同侧,可看到:∠CGH ∠AOB,或∠AOB ∠CGH.2.法2. 度量法:可以用量角器分别量出角的度数,然后加以比较.3. 用三角板拼出75°、15°、105°的角, 并描画出来角的和差4. ①∠2在∠1内部时,如右图, ∠ABD是∠1与∠2的差,记作:∠ABD=-;②∠2在∠1外部时,如右图∠DEF是∠1与∠2的和,记作:∠DEF= + .角平分线5. 角平分线: 从角的顶点引出的一条射线,可以把这个角分成两个 , 这条射线叫做这个角的平分线. 若OC平分∠AOB,(如右图)则有(1)∠1 ∠2;(2)∠1=∠2=∠AOB;(3)∠AOB=∠1=∠2.6. 上图中,若OC是角平分线, ∠1 = 35°,则∠AOB =若OC 是∠AOB的角平分线,则_________ = 2∠AOC.7.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A一定大于∠C。

直线、射线、线段练习40题

直线、射线、线段练习40题

直线、射线、线段练习1、已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC= .2、在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,这是因为.3、往返于A、B两地的客车,中途停靠四个站,共有种不同的票价,要准备种车票.4、如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为___________cm.5、平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定条直线.6、已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC= cm.7、点A、B、C在同一条直线上,AB=6,BC=10,D、E分别是AB、BC的中点,DE的长8、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是cm.9、如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.10、如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD= cm.11、如图所示,点A,B,C,D在同一条直线上,则这条直线上共有线段条.12、两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.13、点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= .14、如图,平面内有公共端点的四条射线OA,OB,OC,OD,从射线OA开始按逆时针方向依次在射线上写出数字2,﹣4,6,﹣8,10,﹣12,….则第16个数应是;“﹣2016”在射线上.15、已知线段AB=6cm,AB所在直线上有一点C, 若AC=2BC,则线段AC的长为cm.16、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .17、如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3 cm,则BC=18、已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.19、如图,已知线段AB=4,延长线段AB到C,使BC =2AB,点D是AC的中点,则DC的长等于 .20、如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。

射线直线线段练习题

射线直线线段练习题

射线直线线段练习题一、选择题1. 在平面几何中,下列哪一项不是线段的特点?A. 有两个端点B. 长度有限C. 可以无限延伸D. 可以度量长度2. 如果线段AB的长度为5厘米,线段CD的长度为10厘米,线段AB 与线段CD的关系是:A. 相等B. 平行C. 垂直D. 长度不同3. 射线具有以下哪个特点?A. 有一个端点B. 有两个端点C. 长度有限D. 可以度量长度4. 直线与射线的区别在于:A. 直线是直的,射线不是B. 直线有两个端点,射线有一个端点C. 直线可以无限延伸,射线不能D. 直线和射线都是直的5. 在几何学中,下列哪一项是线段AB的中点?A. 点AB. 点BC. 点CD. 点D二、填空题6. 线段AB的长度是线段CD长度的两倍,若线段CD的长度为3厘米,则线段AB的长度是________厘米。

7. 如果线段AB与线段CD平行,且线段AB的长度为6厘米,线段CD的长度为4厘米,则线段AB与线段CD之间的距离是________厘米。

8. 射线OA是从点O出发,沿着A方向无限延伸的线,若点A与点O的距离为8厘米,则射线OA的长度是________厘米。

9. 直线AB是一条无限延伸的线,它没有端点,因此直线AB的长度是________厘米。

10. 若线段MN与线段PQ相交于点R,且线段MN的长度为7厘米,线段PQ的长度为9厘米,则点R是线段MN的________。

三、简答题11. 解释什么是直线,并给出直线的三个特点。

12. 描述射线与线段在几何学中的主要区别。

13. 如果线段XY与线段ZW相交,并且线段XY的长度是线段ZW长度的一半,线段ZW的长度是15厘米,求线段XY的长度。

14. 给出一个实际生活中线段、射线和直线的例子,并解释它们在该情境中的作用。

15. 如果两条直线相交于一点,这个点被称为什么?请解释为什么这个点在几何学中很重要。

四、计算题16. 已知线段EF的长度为12厘米,线段GH的长度为18厘米,如果线段EF与线段GH相交于点I,求点I到线段EF和线段GH的两个端点的距离之和。

中考数学专题复习《直线、射线、线段》测试卷(附带答案)

中考数学专题复习《直线、射线、线段》测试卷(附带答案)

中考数学专题复习《直线射线线段》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________知识点1. 定义与性质:线段:线段是由两个端点及其之间的所有点组成的。

它有一个固定的长度并且可以在数轴上表示一个区间。

例如线段AB表示从点A到点B的所有点的集合。

射线:射线有一个起点(称为端点)并从该点沿一个方向无限延伸。

射线有一个端点和一个方向但没有固定的长度。

例如射线AB表示从点A出发沿AB方向无限延伸的线的集合。

直线:直线由无数个点组成没有端点并且向两端无限延伸。

直线没有固定的长度并且可以通过任意两个不重合的点来确定。

例如通过点A和点B可以确定一条直线。

2. 表示方法:线段:通常使用两个端点的字母来表示如线段AB。

在数轴上也可以使用一个区间来表示如[A, B]。

射线:使用起点和另一个点的字母来表示并指明方向如射线AB(从A出发经过B)。

直线:可以通过两点来表示如直线AB。

在数轴上直线可以用一个小写字母或两个不等的点来表示。

3. 几何特性:线段:是有限长的可以度量其长度。

线段是构成其他几何图形(如三角形四边形等)的基本元素。

射线:有一个端点和一个方向因此是无限长的不能度量其长度。

射线在几何学和物理学中有应用如光线和雷达波的传播。

直线:没有端点因此是无限长的也不能度量其长度。

直线是构成平面图形和立体图形的基本元素如平行四边形圆等。

4. 轴对称性:线段:线段是轴对称图形其对称轴是垂直于线段并通过其中点的直线。

射线:射线也是轴对称图形其对称轴是包含其端点的直线。

直线:直线是轴对称图形有无数条垂直于它的直线可以作为对称轴。

专项练一单选题1.下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行2.我们知道若线段上取一个点(不与两个端点重合以下同)则图中线段的条数为++=条若线段上取三个点123+=条若线段上取两个点则图中线段的条数为1236+++=条……请用你找到的规律解决下列实际问题:杭甬铁路则图中线段的条数为123410(即杭州—宁波)上有萧山绍兴上虞余姚4个中途站则车站需要印的不同种类的火车票为( )A .6种B .15种C .20种D .30种3.下列命题中 是假命题的是( )A .三个角对应相等的两个三角形全等B .﹣3a 3b 的系数是﹣3C .两点之间 线段最短D .若|a |=|b | 则a =±b4.在下列说法①联接两点的线中 线段最短 ①相等的角是对顶角 ①过直线外一点有且只有一条直线与已知直线平行 ①两点间的线段是这两点的距离 ①20.196精确到百分位得20.2中 正确的是( )A .①①B .①①C .①①D .①①5.已知线段AB 长2cm .现延长AB 到点C 使3BC AB =.取线段AB 的中点D 线段CD 的长为( )A .5cmB .3cmC .7cmD .1cm6.如图 以A B C D E 为端点 图中共有线段( )A .7条B .8条C .9条D .10条7.如图所示 下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线 ①图中有两条射线 ①直线AB 和直线BA 是同一条直线 ①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .18.如图 在菱形ABCD 中 60ABC ∠=︒ E 是边BC 的中点 P 是对角线BD 上的一个动点 连接AE AM 若12AP BP +的最小值恰好等于图中某条线段的长 则这条线段是( )A .AB B .AEC .BD D .BE9.如图 点C 是线段AB 的中点 点D 是线段CB 上任意一点 则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12ABD .AD =12(CD +AB ) 10.若将点A (-1 3)向右平移2个单位 再向下平移4个单位得到点B 则点B 在第( )象限A .一B .二C .三D .四二 填空题11.绷紧的琴弦 人行横道都可以近似地看做 它有 个端点 手电筒 探照灯所射出的光线可以近似地看做 它有 个端点 笔直的铁轨可以近似地看做 它有 端点.12.A B C 三点在同一条直线上 若BC=2AB 且AB=m 则AC= . 13.如图 已知线段12AB = 延长线段AB 至点C 使得12BC AB =点D 是线段AC 的中点 则线段BD 的长是 .14.如图 等边ABC 的边长为4 AD 是BC 边上的中线 F 是AD 边上的动点 E 是AC 边上一点 若2AE = 当EF CF +取得最小值时 则ECF ∠= .15.若O 的半径为33 圆心O 为坐标系的原点 点P 的坐标是()3,5 点P 在O .16.已知线段AB=18cm P Q 是线段AB 上的两个点 线段AQ=12cm 线段BP=14cm 则线段PQ= .17.如图 直线243y x =+与x 轴 y 轴分别交于点A 和点B 点C D 分别为线段AB OB 的中点 点P 为OA 上一动点 PC PD +最小值是 .18.菱形OBCD 在平面直角坐标系中的位置如图所示 顶点B (2 0) ①DOB =60° 点P是对角线OC 上一个动点 E (0 则EP +BP 的最小值为 .19.如图 C 为线段AD 上一点 点B 为CD 的中点 且8cm AD = 2cm BD =.若点E 在AD 上 且EA=3cm BE 的长为 .20.如图 AD 为等边ABC 的高 E F 分别为线段AD AC 上的动点 且AE CF = 当BF CE +取得最小值时 AFB ∠的度数为 .三 解答题21.线段和角是我们初中数学常见的平面几何图形 它们的表示方法 和差计算以及线段的中点 角的平分线的概念等有很多相似之处 所以研究线段或角的问题时可以运用类比的方法.(1)特例感知:如图1 已知10cm AB = 点D 是线段AC 的中点 点E 是线段BC 的中点.若6cm BC 则线段DE =________cm .(2)数学思考:如图1 已知10cm AB = 若C 是线段AB 上的一个动点 点D 是线段AC 的中点 点E 是线段BC 的中点 线段DE 的长会发生变化吗?说明理由.(3)知识迁移:如图2 OB 是AOC ∠内部的一条射线 把三角尺中60︒角的顶点放在点O 处 转动三角尺 当三角尺的边OD 平分AOB ∠时 在角尺的另一边OE 也正好平分BOC ∠ 求AOC ∠的度数.22.如图 C 为线段AB 的中点 点D 在线段CB 上.(1)图中共有_________条线段(2)图中AD AC CD =+ BC AB AC =- 类似地 请你再写出两个有关线段的和与差的关系式:①_________ ①_________(3)若8AB = 1.5DB = 求线段CD 的长.23.补全解题过程已知:如图 点C 是线段AB 的中点 2CD =cm 8BD =cm 求AD 的长.解:①2CD=cm 8BD=cm①CB CD=+______=______cm①点C是线段AB的中点①AC CB==______cm①AD AC=+_______=_______cm24.(1)已知线段8AB=点C在线段AB的延长线上M N分别是线段AC与线段BC 的中点求线段MN的长(2)已知线段8cmAB=点C在线段AB的反向延长线上M N分别是线段AC与线段BC的中点则线段MN的长为cm.25.如图线段1134BD AB CD==点M N分别是线段AB CD的中点且20cmMN=求AC的长.参考答案:1.D2.D3.A4.A5.C6.D7.C8.B9.D10.D11.线段两射线 1 直线0个. 12.m或3m13.314.30︒15.外16.8cm17.5183119.3或9cm20.105︒/105度21.(1)5(2)不会(3)120︒22.(1)6 (2)(2)①BC=CD+DB ①AD=AB−DB (答案不唯一)(3)CD=2.5.23.BD10 10 CD12.24.(1)4 (2)425.48cm。

直线 射线 线段的练习题

直线 射线 线段的练习题

直线射线线段的练习题直线、射线和线段是几何学中常见的概念,它们在解题过程中经常被用到。

本文将通过一系列练习题来帮助读者更好地理解和应用这些概念。

1. 在一张平面上,画一条直线AB,再从A点向B点延长出一条射线AC,如下图所示。

请问,直线AB和射线AC有何异同之处?答案:直线AB和射线AC都是无限延伸的,没有起点和终点。

但不同的是,射线AC有一个起点A,表示从A点出发,向B点延伸。

2. 给定一条射线AC和一条线段BC,如下图所示。

请问,射线AC和线段BC 有何异同之处?答案:射线AC和线段BC都有一个起点A,但不同的是,射线AC无限延伸,没有终点;而线段BC有一个终点C,表示从A点出发,到达C点为止。

3. 现在考虑以下情况:直线AB与射线AC相交,如下图所示。

请问,直线AB 和射线AC的交点记作D,那么线段CD的长度是多少?答案:由于直线AB和射线AC相交于点D,所以线段CD的长度就是从点C到点D的距离。

但由于直线AB和射线AC无限延伸,所以线段CD的长度是无限的。

4. 继续考虑以下情况:直线AB与射线AC相交,如下图所示。

请问,直线AB 和射线AC的交点记作D,那么线段AD的长度是多少?答案:由于直线AB和射线AC相交于点D,所以线段AD的长度就是从点A到点D的距离。

由于射线AC是从A点出发的,所以线段AD的长度是有限的。

5. 最后,考虑以下情况:直线AB与线段CD相交,如下图所示。

请问,直线AB和线段CD的交点记作E,那么线段CE的长度是多少?答案:由于直线AB和线段CD相交于点E,所以线段CE的长度就是从点C到点E的距离。

由于直线AB无限延伸,所以线段CE的长度是无限的。

通过以上练习题,我们可以看到直线、射线和线段之间的异同。

直线是无限延伸的,没有起点和终点;射线有一个起点,无限延伸;线段有一个起点和终点,有限长度。

在解决几何问题时,我们需要根据题目给出的条件来确定直线、射线和线段的性质,从而得出正确的答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题与填空题
1.手电筒发射出去的光可看作是一条( )
A .线段
B .射线
C .直线
D .折线
2.如图所示,A 、B 、C 是同一直线上的三点,下面说法正确的是( )
A .射线A
B 与射线BA 是同一条射线 B .射线AB 与射线B
C 是同一条射线 C .射线AB 与射线AC 是同一条射线
D .射线BA 与射线BC 是同一条射线 3.如图,点A 、B 、C 是直线l 上的三个点,图中共有线段的条数是( )
A .1
B .2
C .3
D .4
4.延长线段AB 到C ,则下列说法正确的是( ) A .点C 在线段AB 上 B .点C 在直线AB 上
C .点C 不在直线AB 上
D .点C 在线段BA 的延长线上 5.如图,图中的直线可以表示为_________或__________ .
6.射线BC 和射线_________是同一条射线.
7.下图中有____ 条直线,____ 条射线,____ 条线段.
8.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明________________________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明________________.
9.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是________________.
10.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )
11.如图,下列语句错误的是( )
A .直线AC 和BD 是不同的直线
B .AD =AB +B
C +CD
C .射线DC 和DB 是同一条射线
D .射线BA 和BD 不是同一条射线 12.下列关于作图的语句中,正确的是( )
A .画直线A
B =10厘米 B .延长线段AB 到
C ,使AC =1
2
AB
C .画射线OB =10厘米
D .过A 、B 两点画一条直线 13.下列说法正确的是( )
A .两点之间直线最短
B .画出A 、B 两点间的距离
14.把弯曲的河道改直,能够缩短航程,这样做的道理是( )
A.两点之间,射线最短B.两点确定一条直线C.两点之间,线段最短D.两点之间,直线最短
15.如图,小华的家在A处,书店在B处,星期日小华到书店去买书,他想尽快赶到书店,请你帮助他选择一条最近的路线( )
A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B
16.如图,AB=CD,则AC与BD的大小关系是( )
A.AC>BD B.AC<BD C.AC=BD D.不能确定
17.已知线段AB=1 cm,BC=3 cm,则点A到点C的距离为()
A.4 cm B.2 cm C.2 cm或4 cm D.无法确定
18.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,BC=2 cm,则MC的长是( )
A.2 cm B.3 cm C.4 cm D.6 cm
二.作图题
1.已知不在同一直线上的三点A、B、C,请按下面的要求画图.
(1)作直线AB;
(2)作射线AC;
(3)作线段BC.
2.如图,已知平面上四点A、B、C、D.
(1)画直线AB,射线CD;
(2)画射线AD,连接BC;
(3)直线AB与射线CD相交于E;
(4)连接AC、BD相交于点F.
3.如图,已知线段a、b(a>b),用尺规作一条线段,使其等于2a-b(不写作法,保留作图痕迹).
三.解答题
1.已知点O为线段AB的中点,点C为OA的中点,并且A B=40 cm,求AC的长.
2.在直线L上顺次取A、B、C三点,使得AB = 4cm,BC = 3cm。

如果O是线段AC的中点,则线段OB的长度是多少?
3.如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到C,使BC=2AB,取AC的中点D;(2)在(1)的条件下,如果AB=4,求线段BD的长.
4、如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.
5.如图所示,已知C为AB上一点,AC=12 cm,CB=2
3
AC,D,E分别为AC,AB的中点,求DE的长.
6.如图,已知线段AB,
①尺规作图:反向延长AB到点C,使AC=AB;
②若点M是AC中点,点N是BM中点,MN=3cm,求AB的长.
7.已知点C在直线AB上,线段AC=15,BC=5,点M,N分别是AC,BC的中点.求MN的长度.。

相关文档
最新文档