MSA测量系统分析基础知识
MSA
25
n
GR&R
• 一致性评价指标: – 评估者本身: • 评价自己每次测量的结果是否一致(重复性)。当 多过一次的评估时,才会有此表。 – 每个评估者相对于标准 • 评估者和专家(标准值)评价相符的程度。当指定 已知标准时,才会有此表。 – 评估者之间的有效评分: • 检验员之间的一致性(再现性)。当多过一人评估 时,才会有此表。 – 所有评估者相对于标准: • 综合评价全部检验员和专家(标准值)的一致性。 当指定已知标准时,才会有此表。
数据: MSA training data-->“GR&R” Minitab:统计->质量工具->量具研究->量具R&R研究(交叉)
18
n
GR&R
数据: MSA training data-->“GR&R” Minitab:统计->质量工具->量具研究->量具R&R研究(交叉)
19
n
GR&R
1
3 3
31
n
计数型测量系统分析
32
n
计数型测量系统分析
编号为6、7、12、14、21、22、 26、30、34、36、43共11个部件 一致性差,需要进一步研究。 C与AB的一致性看起来有差异
33
n
计数型测量系统分析
整体一致性<80%,测量系统 不合格,需要改进。 C与AB有差异
C与标准值的差异最大
2
20
n
GR&R
P/TV%
P/T%
NDC
21
n
GR&R
• 改善建议
• 若主要变异来自重复性,则需替换,修理或调整设备或夹 具; • 若主要变异来自操作员(再现性),则需做如下处理: – 定义标准化操作程序 – 识别操作员之间的不同,加强培训 • 若主要变异来自操作员-部件的交互,则需检查测量方法 和操作员的操作方式和技巧。 • 若NDC可区分组数不够,需要在排除上述误差,进行重新 测试。若还是不够,则表明需要换更加精密的测试仪器。
五大手册-MSA测量系统分析
-2.575
+2.575
99%
5.15
5.15 标准误差包含了正态分布的99%。
在分子中使用2.575 gage (即5.15/2 = 2.575)
公差= USL – 平均值 或 平均值 - LSL
总是使用历史 平均值
2021/6/3
Minitab要求数据排成3列...
Part # 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 1 1 2 2
•
- 评价人的选择应从日常操作该仪器的人
中挑选
2021/6/3
4、测量系统研究的准备
• 样品的选择
•
- 能否获得代表生产过程的样品, 样品必须是选自于过
程
• 并且代表整个的生产的范围
• 编号
•
- 必须对一个零件编号以便于识别
• 分辨力
•
- 仪器的分辨力至少直接读取特性的预期过程变的十分
之 一, 例如,如果特性的变为0.001, 仪器应能读取0.0001
- 偏离(Bias) - 直线性(Linearity) - 稳定性(Stability)
宽度或散布
- 再现性(Repeatability) - 重复性(Reproducibility)
2021/6/3
测量系统误差
偏离(Bais)
意味着观测测量平均和基准值间的偏差。 偏离又叫正确性。
基准值 Reference value
输出之一。 • SPC手册指出MSA是控制图必需的准备工作。
2021/6/3
2、为什么要进行测量系统分析 2.2客观需要
变差
变差
所得結果
MSA测量系统分析的基本内容
MSA测量系统分析的基本内容MSA(Measurement System Analysis,测量系统分析)是一种对测量系统进行评估和改进的方法,它能够确定测量过程中的变异性,并对于这种变异性的源头进行量化。
测量系统在制造和质量控制中的重要性不言而喻,因为如果测量系统存在问题,那么生产过程中的数据将不准确,从而可能导致产品质量问题。
因此,进行MSA是确保生产过程中准确测量的关键步骤之一MSA的基本内容包括以下几个方面:1.定义有效的度量指标:在进行MSA之前,需要明确测量系统要测量的特定指标。
这些指标可以是尺寸、重量、力量等等。
在定义这些指标时需要保证它们是可重复且可再现的。
2.评估测量系统的准确度:准确度是测量系统评估的一个重要指标。
在这一步骤中,通过与一个已知准确值进行比较,来评估测量系统的准确度。
常用的方法包括直接对比、回归分析和方差分析等。
3.评估测量系统的重复性:重复性是指相同测量系统对于同一个样本重复测量所得结果的一致性程度。
在进行重复性评估时,通过多次测量同一样本来比较结果,并计算其变异性。
常用的方法有均值和范围法、方差分析法等。
4.评估测量系统的再现性:再现性是指在不同测量系统下,同一样本被测量得到的结果的一致性程度。
在这一步骤中,需要对同一样本在不同测量系统下进行测量,并计算其变异性。
常用的方法包括计算相关系数、方差分析等。
5.评估测量系统的稳定性:稳定性是指测量系统在一定时间内表现出来的性能的一致性。
通过对测量系统的历史数据进行统计分析,可以评估测量系统的稳定性。
6.制定改进措施:根据对测量系统的评估结果,确定需要改进的方面,并制定相应的改进措施。
这些改进措施可以包括标定、维护、培训等。
除了这些基本内容外,MSA还可以包括以下一些扩展内容:1.考虑测量系统的类型:不同类型的测量系统(如传感器、仪表、检验设备等)在进行MSA时可能需要采用不同的方法。
2.考虑测量系统的应用范围:不同的测量系统可能应用于不同的产品或过程,因此在进行MSA时需要考虑这一点。
超详细MSA测量系统分析讲解
2.线性的分析方法和接受准则
●回顾:
1.什么是线性?
●线性指南
1.在量具的操作范围内,选择g(子组数)≥5个零件 2.检验每个零件,以确定基准值 3.一个人测量每个零件m(子组容量)≥10次 4.计算每次测量的零件偏倚及零件偏倚的平均值。(偏倚i,j=Xi,j -基准值) 5.在线性图上画出单值偏倚和基准的偏倚值 6.计算并画出最佳拟合线和置信带 7.画出“偏倚=0”线,评审该图指出特殊原因和线性的可接受性 (即“偏倚=0”线必须完全在拟合线置信带以内)
MSA
课前思考
1.什么是MSA ? 2.什么时候做MSA? 3.谁做MSA? 4.哪些测量系统需要做MSA? 5.在哪里做MSA? 6.怎么做MSA?原理是什么?
MSA
第一单元
MSA的基本概念
MSA
二.MSA的基本概念
1.测量的定义
●测量:被定义为“对某具体事物赋予数字(或数值),以表示它们 对于特定特性之间的关系”。这定义由C.Eisenhart(1963)首次提出 。赋予数字的过程被定义为测量过程。而数值的指定被定义为测量值 。
3.MSA与FMEA(潜在失效模式及后果分析)
a. FMEA可以用来识别特殊特性,为SPC和MSA确定控制和分析的 对象
b.可以建立测量系统FMEA,管理测量系统的风险
MSA
一.MSA的概述介绍
(二)MSA 与汽车行业五大质量手册
4.MSA与SPC(统计过程控制)
测量系统对适当的数据分析来说是很关键的,在收集过 程数据之前就应很好地对它加以了解。这些测量系统缺少 统计控制,或它们的变差在过程总变差中占很大比例,就 可能做出不恰当的决定。
Msa测量系统分析基本知识与操作实务
MSA分析方法的分类
计量型
MSA 计数型
破坏型
6
计量型MSA
计量型
位置分析 离散分析
稳定性分析
偏倚分析 线性分析 重复性分析 再现性分析 稳定性分析
7
计数型MSA
计数型
风险分析法 信号分析法 数据解析法
8
破坏性MSA
破坏型
偏倚分析 变异分析 稳定性分析法
9
量规仪器的选择
量规仪器的选择,首先是有关分辨率的要求。
自控制计划中去寻找需要分析的测量 系统,主要的考虑来自:
控制计划中所提及的产品特性 控制计划中所提及的过程特性
输入数据到EXCEL表格中
计算t值,并判定
是否合格,是否要加补正值
保留记录
31
偏倚分析的做法
决定要分析的测量系统 抽取样本,取值参考值 请现场测量人员测量15次 输入数据到EXCEL表格中
观测平均值
12
重复性(Repeatability)
重复性
重复性是由一个评价人,采用 一种测量仪器,多次测量同一 零件的同一特性时获得的测量 值变差。
13
再现性(Reproducibility)
再现性是由不同的评价人,采 用相同的测量仪器,测量同一 零件的同一特性时测量平均值 的变差。
再现性
14
稳定性(Stability)
计算t值,并判定
计算t值,并加以判定 t值的计算法:利用(平均值-标准值) /平均值的标准差。
tα=是指用来判定是否有明显偏差 的基准,其和自由度有关,一般典型
的α=0.05 如果t> tα就代表有明显的偏移。 如果t< tα就代表没有明显的偏移。
是否合格,是否要加补正值
MSA基础知识
MSA基础知识
什么是MSA:
Measure system analysis(测量系统分析):是对一个由人,仪器,测试 方法,所测零件组成系统的测量数据是否有效的评估。
测量系统评价的五个参数:
1、重复性 2、再现性 3、稳定性 4、线 性 5、偏倚性
重复性: 由同一个人,同一台测量设备,同一种方法,同 一个零件多次测试所获得的数值差异
部件 编号
数据 输入
打开Minitab
统计下拉菜单 质量工具
量具分析
创建量具R&R 研究(交叉)
三参数越小表明系统越好,但从图片中可以看出,R&R接近100%, 这个测试系统是失败的
一个部件,三个人总共两侧9次数据表现,数据越离散,测量系统越差
在上下线范围内, 测试值变差越小,测量系统越稳定
箱线图中中心值越大,测量系统越不稳定
数值越接近,表明测量一致性越好
GR&R值≤30% 为OK
GR&R值计算
重复性:EV = R ? K1 K1:常数,根据实验次数而定
试验次数 K1
2
0.8862
3
0.5908
( ) ( ) 再现性:AV = X DIFF ? K2 2 - EV 2 / nr
再现性与重复性数据获取方式
选定需分析仪器 测试方法SOP化 选择测试产品10pcs 挑选测试人员3名 轮流测试10pc产品
重复三次
注:测试人员不可把同一个产品重复三次的动作一次完成
数据分析
采用Minitabห้องสมุดไป่ตู้件进行分析
打开Minitab
统计下拉菜单 质量工具
量具分析
创建量具R&R 研究工作表
MSA基础知识讲解
目录 Directory
1 MSA简介
➢ 什么是MSA ➢ MSA的重要性 ➢ 什么情况下做MSA
2 误差的来源
➢ 测量值的组成因素 ➢ 低质量数据的因素和影响 ➢ 过程波动的主要来源 ➢ MSA变差的因果分析
3 测量数据五种类型
➢ 偏倚 ➢ 线性 ➢ 稳定性 ➢ 重复性 ➢ 再线性
MSA分析方法----计量型测量系统分析
• 重复性:由特别的极差图进行检测,表中画出了每个操作员测量每个零件的差异。如果 被测零件的最大值和最小值间的差异未超过UCL, 则视度量标准和操作员为可重复的。
操作员的极差图
样 本 范 围
重复性表明在极差图中实际所有极差点在控制极限以下。任何超出极限的点都需要进行研究。
4 MSA分析方法
➢ 计量型MSA ➢ 计数型MSA
2
MSA简介
M: 指Measurement 测量
S: 指System
系统
A: 指 Analysis 分析
什么是MSA?
MSA也就是对量测系统进行分析的方法!
用来获得表示产品或过程特性的数值的系统,称之为测量 系统。测量系统是与测量结果有关的仪器、设备、软件、测 量程序、测量人员、被测物品和环境的集合。
2
>2
例如
Go/No Go
良品/Defect A/Defect B…. 不同缺陷种类)
抽样准则
•尽量保持两类型样本为各 半的比例.(50%/ 50%)
•灰色地带样本50%
•明显好的与不好的约50%
•建议样本数为30-50间.
•如有no go 产品,应将原因 再层别.
•尽量保持50%好的样本,各 缺点类型样本各10%左右
超详细MSA测量系统分析讲解
超详细MSA测量系统分析讲解MSA(Measurement System Analysis)是一种用于评估测量系统准确性和可重复性的方法。
它被广泛应用于各种工业领域,特别是质量管理和过程改进领域。
下面将详细介绍MSA的一些关键概念和测量过程。
首先,MSA的主要目标是确保测量系统能够准确地衡量一个过程或产品的特性。
测量系统可以是任何用于测量的工具、设备或方法,如卡尺、天平、人工测量等。
为了评估测量系统的准确性和可重复性,主要使用以下几个指标:1. 精确度(Accuracy): 指测量结果与真实值之间的接近程度。
通常通过与已知的标准进行比较来评估。
2. 可重复性(Repeatability): 指在重复测量同一样本时,测量系统的结果之间的一致性。
这可通过多次测量同一样本并比较结果来评估。
3. 重现性(Reproducibility): 指在不同的条件下,不同操作员使用相同的测量系统测量同一样本时,测量结果之间的一致性。
现在,我们将介绍MSA的几个主要步骤:1.选择适当的测量系统:首先需要确定要使用的测量系统,这取决于所需测量的特性以及资源和时间的限制。
为了选择合适的测量系统,需要考虑其测量范围、精度和可靠性等因素。
2.收集数据:在进行MSA时,需要收集足够的数据量以便对测量系统进行分析。
数据收集可以通过抽样、重复测量或使用模拟数据等方式进行。
3.分析数据:收集到数据后,需要对其进行统计分析。
常用的分析方法包括直方图、均值-方差图和相关性分析等。
通过这些分析,可以计算出测量系统的准确性和可重复性指标。
5.评估测量系统:通过上述步骤,可以评估测量系统的准确性和可重复性,并确定它是否符合要求。
如果发现测量系统存在问题,可以采取改进措施,如校准、调整或更换测量设备等。
需要注意的是,MSA不仅适用于新的测量系统,也适用于已经在使用的测量系统。
对于已经在使用的测量系统,MSA可以帮助识别潜在的问题并提出相应的改进建议。
MSA详细内容
基准值
基准值
观测平均值 量程
观测平均值
42
线性(Linearity)
观测平均值 有偏倚、有线性
无偏倚、无线性
基准值
43
线性误差的可能原因
仪器需要校准,需减少校 准时间间隔; 仪器、设备或夹紧装置磨 损; 缺乏维护—通风、动力、 液压、腐蚀、清洁; 基准磨损或已损坏; 校准不当或调整基准使用 不当; 仪器质量差;—设计或一 致性不好;
仪器质量差─设计或一致性不 好 仪器设计或方法缺乏稳健性 不同的测量方法─装置、安装、 夹紧、技术 量具或零件变形 环境变化─温度、湿度、振动、 清洁度 违背假定、在应用常量上出错 应用─零件尺寸、位置、操作 者技能、疲劳、观察错误
41
线性(Linearity)
是在量具预期的工作范围内,偏倚值的差值。
一个数据分级
Number of data classification
21
有效分辨力
左图:只能粗略估计制程。 不能用于计量控制。
2~4个数据分级
22
有效分辨力
左图:可用于计量控制图 达到5个以上分级数建议 使用
5个或更多个个数据分级
23
有效分辨力区分(example)
4个分级数 -10 6σ 10个分级数 +10
环境内部:温度、湿度、振动、 亮度、清洁度的短期起伏变化。 违背假定:稳定、正确操作 仪器设计或方法缺乏稳健性, 一致性不好 应用错误的量具 量具或零件变形,硬度不足 应用:零件尺寸、位置、操作 者技能、疲劳、观察误差(易读 性、视差)
36
测量系统分析(MSA)知识科普
测量系统分析(MSA)知识科普一、什么是MSA?测量系统分析,英文Measurement System Analysis,缩写MSA,简单地说测量系统分析就是“对测量系统所作的分析”。
为了理解MSA的含义,我们可以把它分解成两个部分,一个是“测量系统”,一个是“分析”。
01.什么是测量系统?我们知道测量就是一个对被测特性赋值的过程,测量系统其实就是这个赋值过程涉及到的仪器或量具、标准、操作、方法、夹具、软件、人员环境等要素的集合。
系统中各个要素对测量结果的影响可能是独立的,也可能是相互影响的。
02.什么是“分析”?其实,如果要较个真,我们可以说测量系统分析的根本对象不是零件,而是测量系统输出的变差。
“分析”代表了一系列的分析方法。
MSA要回答的问题是:我们测量出来的数据在多大程度上代表了真实的数据?尽管我们永远不能确保测量出绝对准确的数据,但如果采集的数据偏差过大,那么这些数据就没有分析意义,可见MSA是非常关键的。
二、MSA的目的MSA的目的就是通过测量系统输出变差的分析,判断测量系统是不是可接受的,如果不可接受,进而采取相应的对策。
需要注意的是,世界上没有绝对完美的测量系统,因此测量系统误差可以减少但不能绝对消除。
三、MSA方法论MSA涉及多种方法,每一种都跟统计有关。
对大多数人来说,这些方法往往难以被记住,包括我自己。
为了便于理解记忆,我们先对“变差”进行剥丝抽茧,即进行结构,看看那些指标可以用于表征测量系统的测量变差。
弄清楚了这些指标,MSA方法论也就清晰可见了。
第一层:测量观察到的总变差(Observed Variation)=零件间变差(Unit-to-unit variation)+ 测量系统误差(Measurement system Error)其中零件间变差是指不同零件间客观存在的真实差异,由零件本身决定;测量系统误差就是我们MSA的对象,即由测量系统能力决定的测量偏差。
第二层:测量系统误差(Measurement system Error)=精确度(precision) + 准确度(Accuracy)精确度研究的是测量变差的波动范围,没有考虑与真值的差异;准确度研究的是测量变差离真值(或参考值)的差异。
测量系统分析(MSA)
观测平均 Observed Average
偏倚
图2 偏倚变差示意图
三、测量系统变差的种类与定义释
2.精密度(Precision)
精密度或称变差(Variation),是指利用同一量具,重复 测量相同工件同一质量特性,所得数据之变异性。这里的变 差主要分为两种:一种是重复性变差,另一种是再现性变差。 精密度变差越小越好。
改善的着力点,确定是进行人员培训,还是调整测量方法或调 整仪器。
一、测量系统分析(MSA)
4.MSA评估的仪器和责任人员 ☆测量系统一般由仪校人Βιβλιοθήκη 或品质部的负责人来主导,由参与检测或
试验人员来测量,以提供测量数值。不可以由品质部领导或仪校人 员来测量和提供数值,需要特别注意的是:测量人员不可知道自己 上次测量结果和别人测量结果,要保证盲测。MSA要识别的误差是 测量人员、设备、环境、方法、标准值导致的误差,品质部领导和 仪校人员一般不亲自测量产品,所以分析他们的测量数据基本没有
二、为什么要进行测量系统分析
1.标准要求
☆ IATF16949第7.1.5.1.1条:测量系统分析 应进行统计研究,分析每种测量和测试设备系统的结果中
出现的变差。本要求适用于控制计划中引用的测量系统。分 析方法和验收标准应符合测量系统分析参考手册。如果顾客 认可,其他分析方法和接受标准也可以使用。记录应保持顾 客接受替代方法。
许出现,但超过规范就不能接受。 7.稳定性变差
随着时间的推移,偏倚变差的波动。如下图所示。如果随 着时间推移偏倚值越大,稳定性差不可接受。
稳定性
时间1
图6 稳定性变差示意图
时间2
三、测量系统变差的种类与定义
8.线性变差 线性变差即偏倚值,是用来测量基准值存在的线性关系。
MSA基础
测量系统分析(MSA)基础1、测量是一个过程测量系统为了有效地控制任何过程变差,需要了解:◆过程应该做什么◆什么能导致错误◆过程在做什么规范和工程要求规定过程应该做什么。
测量过程及其SWIPE模型由于SWIPE模型中各种因素的存在,测量过程存在不可避免的变差。
2、测量系统变差对产品决策的影响图中:Ⅰ坏零件永远被称为坏零件Ⅱ可能做出潜在的错误决定Ⅲ好零件永远是好零件对于产品状况,目标是最大限度地做出正确决定,有两种选择:1)改进生产过程:减少过程的变差,没有零件产生在II区域。
2)改进测量系统:减少测量系统误差从而减小II区域的面积,因此生产的所有零件将在III区域,这样就可最小限度地降低做出错误决定的风险。
σ2观= σ2实+ σ2测σ2观= 观测到的过程变差σ2实= 实际的过程变差σ2测= 测量系统的变差3、在评价一个测量系统时必须考虑三个基本问题:(1)测量系统必须显示足够的灵敏性首先,仪器(和标准)具有足够的分辨力吗?分辨力(或等级)在设计时确定,并在选择一个测量系统时作为基本出发点。
“十份制”就是典型的应用示例,它规定了仪器的分辨力应能将公差(或过程变差)分成十份或更多份。
其次,测量系统具有有效的分辨率吗?与分辨力有关,确定测量系统是否对探测产品或过程变差在一定的应用及环境下变化具有灵敏性。
(2)测量系统必须是稳定的在重复性的条件下,测量系统变差只归因于普通原因而不是特殊(不规则的)原因。
测量分析者必须经常考虑到这一点对实际应用和统计的重要性。
(3)统计特性(误差)在预期的范围内一致,并足以满足测量的目的(产品控制或过程控制)。
4、测量问题分析步骤“如果你无法用流程描述你所做的,那么你不知道你在做什么.”“如果理解并遵守技术的极限,则任何技术都可能是有用的。
”——W.E. Deming5、测量系统方法的选择计量型“五性分析”:稳定性、偏倚和线性、重复性和再现性计数型:假设检验法(Kappa+Effectiveness)6、对测量结果进行评价如何确定该测量装置就其预期的应用是否可接受?★接受准则—位置误差位置误差通常是通过分析偏倚和线性来确定。
测量系统分析(MSA)基础知识及操作指导
测量系统分析(MSA)基础知识及操作指导在进行MSA之前,需要明确测量系统的目标,例如测量系统是否要用
于决策、控制过程或产品规范。
这将决定需要评估哪些方面的测量系统性能。
主要的MSA指标包括可重复性、再现性和准确性。
可重复性是指在相
同条件下,同一测量人重复测量同一件物品时,测量结果的一致性。
再现
性是指在相同条件下,不同测量人重复测量同一件物品时,测量结果的一
致性。
准确性是指测量结果与真实值之间的偏差,通常通过与已知参考值
进行比较来评估。
进行MSA的一种常用方法是通过使用方差分析(ANOVA)来评估测量
系统的偏差和变异。
这涉及到对多个测量人、多个测量仪器和多个样本进
行测量,并使用统计工具来分析数据。
ANOVA可以帮助确定是否存在系统
误差、测量人和仪器之间的差异以及这些差异对测量结果的影响。
进行MSA时,还需要确保测量系统的稳定性。
这意味着测量仪器应该
经过校准和维护,以确保其在测量过程中的稳定性和精确性。
此外,测量
人员也需要受过培训和了解测量程序,以减少人为误差。
基于MSA的结果,可以采取相应措施来改善测量系统的性能。
例如,
如果发现测量仪器存在较大的偏差,则可能需要调整或更换仪器。
如果发
现测量人员之间存在较大的差异,则可能需要对其进行培训或重新分配任务。
总之,测量系统分析(MSA)是一个评估测量系统性能的重要工具,
可用于确保测量结果的准确性和可靠性。
通过对测量系统进行分析和改进,可以提高质量控制和过程改进的效果,进而提高产品或服务的质量。
MSA(测量系统分析)讲义
第三章 测量系统研究程序
1. 准备工作: 4)样品必须从过程中选取并代表其整 个工作范围; 5)仪器的分辨力应允许至少直接读取 特性的预期过程变差的十分之一; 6)确保测量方法(即评价人和仪器) 在按照规定的测量步骤测量特征尺寸。
MSA讲义
第三章 测量系统研究程序
2. 测量顺序: 1) 测量应按照随机顺序; 2) 评价人不应知道正在检查零件的 编号; 3)研究人应知道正在检查零件的编 号,并相应记下数据; 即:评价人A,零件1,第一次试验; 评价人B,零件2,第二次试验等;
MSA讲义
第二章 分析/评定方法
偏 倚: 确定方法: 1) 在工具室或全尺寸检验设备上对一 个基准件进行精密测量; 2) 让一位评价人用正被评价的量具测 量同一零件至少10次; 3) 计算读数的平均值。
MSA讲义
第二章 分析/评定方法
偏 倚: 偏倚原因: 1) 基准的误差; 2) 磨损的零件; 3) 制造的仪器尺寸不对; 4) 仪器测量非代表性的特性; 5) 仪器没有正确校准; 6) 评价人员使用仪器不正确。
MSA讲义
第二章 分析/评定方法
线性例图(二)
观测的平均值 有偏移 无偏移
基准值
MSA讲义
第二章 分析/评定方法
线 性 定义: 在量具预期的工作范围内,偏倚值 的差值。 注: l 在量程范围内,偏倚不是基准值的线 性函数。 l不具备线性的测量系统不是合格的, 需要校正。
MSA讲义
第二章 分析/评定方法
第四章 R&R
零件变差 PV= RP*K3 RP 为零件间极差 K3 为系数
MSA讲义
第四章 R&R
总变差
TV= (R&R2+PV2)
测量系统分析(MSA)
测量系统分析(MSA)一、什么是测量系统分析?测量系统是指由测量仪器(设备)、测量软件、测量操作人员和被测量物所组成的三个整体。
MSA(Measurement System Analysis)是指检测测量系统以便更好地了解影响测量结果的变异来源及其分布的一种方法。
通过测量系统分析可把握当前所用的测量系统有无问题和主要问题出在哪里,以便及时纠正偏差,使测量精度满足要求。
重复性也叫设备变差。
用同一评价者在同一测量设备上多次测量同一部件,可评价测量设备的变差有多大。
再现性也叫人为变差。
用不同的评价者在同一测量设备上多次测量同一部件,可分析人为因素的影响有多大。
二、GRR评价方法(GRR变异等于系统内部和系统之间变异之和)1.首先界定此测量系统用于何处,如产品检验或工序控制2.选出10个可代表覆盖整个工序变化范围的样品3.从测试人员中选择2~3人对每个样品进行2~3次随机测量4.记录测量结果并用重复性和再现性表进行运算5.用判别标准进行判断,确定此系统是否合格6.对不合格之测量系统进行适当处理三、测量系统分析标准1.测量系统的精度(分辨率)需比被测量体要求精度高一个数量级,即如要求测量精度是0.001,测量仪器的精度要求须是0.0001。
2.如果GRR小于所测零件公差的10%,则此系统无问题。
3.如果GRR大于所测零件公差的10%而小于20%,那么此测量系统是可以接受的。
4.如果GRR大于所测零件公差的20%而小于30%,则接受的依据是数据测量系统的重要程度和商业成本。
5.如果GRR大于所测零件公差的30%,那么此测量系统不能接受,并且需要进行改善。
四、测量系统的控制测量系统控制需要注意以下几点:1.定期对测量系统进行评估,看GRR是否超出标准范围。
2.定期对仪器设备进行检定使其符合标准要求。
3.对测量系统要有规范的仪器校正标识卡和最后使用期限。
4.要有专人负责和管理仪器软硬件,并定期加以维护,确保其工作在正常状态。
MSA测量系统分析基础(非常详细)
件。
2020/9/11
33
2~4个数据分级
2020/9/11
◼ 控制:Байду номын сангаас有下列条件 才可用于控制
◼ 依据过程分布可用半计量控 制技术
◼ 可产生不敏感的计量控制图
◼ 分析:
◼ 一般来说对过程参数及指数 的估计不可接受。
◼ 只提供粗劣的估计。
2020/9/11
20
◼ 第二阶段的评定
◼ 目的是在验证一个测量系统一旦被认为 是可行的,应持续具有恰当的统计特性。
◼ 常见的就是R&R是其中的一种型式。
2020/9/11
21
评价测量系统的三个基本问题
◼ 测量系统是否有足够的分辨力?(解析能力)
◼ 这种测量系统在一定时间内是否在统计上 保持一致?(重复和再现)
2020/9/11
43
分析时机
◼ 新生产之产品PV有不同时 ◼ 新仪器,EV有不同时 ◼ 新操作人员,AV有不同时
2020/9/11
44
稳定性分析之执行:
◼ 获取一样本并确定其相对于可追溯标准 的基准值。如果不能得到,则选择一个 落在产品测量中程数的产品零件,并指 定它作为标准样本进行稳定性分析。并 追踪测量系统的稳定性不需要一个已知 基准值。可能需要具备测量的最低值、 最高值及中程数的标准样本。建议对各 样本单独测量并做控制图。
◼ 工作标准
◼ 从二级标准传递而来的标准
2020/9/11
19
测量系统的评定
◼ 第一阶段:确定该测量系统是否满足我 们的需要。主要有二个目的
◼ 确定该测量系统是否具有所需要的统计特性, 此项必须在使用前进行。
读完此文,终于懂了MSA(测量系统分析)
读完此文,终于懂了MSA(测量系统分析)1、什么是MSA?MSA是Measure System analyse的第一个字母的缩写。
2、为什么叫测量系统而不是测量工具或测量仪器?因为影响测量结果的因素除了所使用的仪器外,还包括测量的标准、操作人员的使用方法、读数误差、夹具的松紧、环境温度等综合因素。
(人、机、料、法、环)使用的仪器是好的,并不意味着测量出的结果就是准确的,因此称为测量系统。
是对影响测量结果的因素的综合分析.3、为什么要做MSA?是为了对所使用的测量系统做一个科学、系统的分析和评定,保证测量出的结果是真实、有效的(六西格玛中强调用数据说话)。
4、量具经过校验是合格的,是否可以不用做MSA分析?现在要用一把千分尺测量槽的直径。
千分尺长期测量这一款产品,两个接触面上因为磨损出现了一个和产品直径相对应的圆弧(如红线所示)。
校验时测量标准块用的接触面的最高点,因此校验是合格的。
但如果拿来测量产品,就会因为圆弧而有一定的误差。
5、MSA分析的前提A、选择合适的量具:必须保证量具有足够的分辩率力,最少满足1/10原则。
分辩力太低不能探测出过程中的变差。
B、测量系统是稳定而且受控制的,即不能包括特殊变差在内。
如有特殊变差则不能用于控制。
6、哪些情况下需做MSA分析?·购买的新量具;·根据顾客要求或过程要求;·持续改进的过程中,测量数据之前;·按PPAP的要求,所有CP中提到的量具都需要进行分析。
对于用同一个量具测量多个尺寸的情况,则选择KPC尺寸或公差最小的尺寸进行分析。
7、MSA方法的分类· 计量型分析(极差法、均值极差法等)· 计数型分析(交叉法)· 破坏型分析(嵌套法)8、基本术语MSA中的术语很多,主要是分析以下几项,合称MSA的五性(详见下页图示):·偏倚·线性·稳定性·重复性和再现性,合称R&R或GRR偏倚:实际测量值和真值间的差值·通常又被称为”准确度“,但是因为准确度还有其它多种意思,因此不建议用准确度来代替”偏倚“。
MSA量测系统分析基础知识详解(doc 60页)
MSA量测系统分析基础知识详解(doc 60页)量测系统分析(MSA)目录第1章量测系统介绍1.1 概述、目的、术语 11.2 量测系统之统计特性 21.3 量测系统的标准 31.4 量测系统的通则 31.5 选择/制定检定方法 3 第2章量测系统之评价2.1概述 52.1.1鉴别力 52.1.2量测系统变异的类型72.2量测系统分析82.2.1再现性82.2.2再生性92.2.3零性间变异102.2.4偏性102.2.5稳定性112.2.6线性132.2.7范例说明152.3量测系统研究之准备202.4计量值量测系统之研究212.4.1稳定性之准则212.4.2偏性之准则212.4.2.1独立取样法212.4.2.2图表法222.4.2.3分析232.4.3再现性与再生性之准则23●追溯标准●作业定义●管制●维修及再验证1.1.2目的本篇的目的在于说明评价量测系统品质之准则,虽然也可以运用在其它量测系统上,但主要还是以使用在工业界制程的量测系统为主,且特性数据可重复读取。
1.1.3术语量测(Measurement):对某具体事物赋予数据,以表示他们对于特定特性之间的关系。
赋予数据的过程称为量测过程,而数据称为量测值。
量具(Gage):任一可用以量测之设备,通常是用以特别称呼使用在生产现场者,包括GO/NO-GO设备。
量测系统(Measurement System):操作、准则、量具和其它设备、软件及指定之一群待量测之集合,经由完整程序而取得量测值。
1.2量测系统之统计特性理想之量测系统是一个具有零偏差、零变异的统计特性,但很不幸的是,这种理想的量测系统几乎很少见的,因此,我们必须存在一个观念,就是当在决策时,必须考虑到所依据的是一个非理想统计特性之量测系统。
所以设备管理之责任是确认当每一量测系统被使用时都具有适当的统计特性。
虽然每一量测系统可能需具备一些各别的统计特性,但下列举出五项所有量测系统必备的统计特性:(1)量测系统须在统计管制下,亦即量测纟统之变异仅根源于共同原因,而非特殊原因。
MSA基础知识
MSA在企业中的应用
市场的需要推动了MSA在企业质量管理中的应用。随 着越来越多的跨国公司进入中国市场投资建厂,为了降 低成本,它们都在加速采购本地化的进程。在选择和评 估供应商时,这些企业都非常重视供应商的质量保证体 系,并把SPC(统计过程控制)和MSA(测量系统分 析)的应用状况作为衡量供应商提供稳定的符合要求的 产品的能力的重要参考指标。同时,这些成功企业的自 身实践也证明SPC和MSA的成功运用是保证企业的质 量保证体系稳定有效运作,提升企业竞争力的关键。为 了在未来的市场竞争中获胜,许多市场意识超前的企业 已经在企业质量管理中实施MSA,并加大SPC的应用
至多为一年。
计量型具之测量系统分析
重复性/再现性 稳定性 偏倚性 线性
重复性/再现性分析
分析方法:结合产品类型及规模,主要运用均值极 差法来分析评估测量系统的重复性/再现性。
1、将作业者分为A、B、C三者,零件10个,但作 业者无法看到零件编号。
2、再现性测量:作业者A依随机原则测10个零件, 并由另一个观测者填入量测数据。
修或调整,维修及调整完后须再做校正以及稳定 性之分析 。
偏倚性分析
分析方法: 使用产品样本时,这些产品样本先经精密测
量10以上,再予以平均,此值当作是真值或 基准值,若无更精密仪器量测时,由MSA负 责人或其指定人员测量20次,取其平均值, 为被测特性的基准值。 计算操作员所得之测量平均值。 计算偏倚及相关评估值。
标准书需明确订定或修定; 可能需要某些夹具协助操作员, 使其更具一致
性的使用量具 . 量具与夹治具校验频率于入厂及送修纠正后
须再做测量系统分析, 并作记录 .
重复性/再现性分析
分析结果判定: 当再现性(EV)变差值大于重复性(AV)时 : 量具之结构需在设计增强; 量具之夹紧或零件定位的方式(检验点)需加