全国高中数学竞赛讲义-不等式的证明(练习题)

合集下载

竞赛讲座之 12-1不等式的证明方法 (比较法)

竞赛讲座之 12-1不等式的证明方法 (比较法)

证明不等式的基本方法现实世界中的量,相等是相对的、局部的,而不等的绝对的、普遍的。

不等式的本质是研究“数量关系”中的“不等关系”。

对于两个量,我们常要比较它们之间的大小,或者证明一个量大于另一个,这就是不等式的证明。

不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如柯西不等式、平均值不等式等等,其中还需要用一些技巧性高的代数变形。

在这一部分我们主要来学习一些证明不等式的基本方法。

不等式是数学竞赛的热点之一。

由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。

而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。

证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。

但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。

【知识概要】证明不等式的常用方法有:⒈比较法:依据实数的运算性质及大小顺序之间的关系,通过两个实数的差或商的符号(范围)确定两个数的大小关系的方法。

基本解题步骤是:作差(商)—变形—判号(范围)—定论。

证题时常用到配方、因式分解、换元、乘方、恒等式、重要不等式、优化假设、放缩等变形技巧。

⒉分析综合法:所谓“综合”指由“因”导“果”,从已知条件出发,依据不等式的性质、函数的性质、重要不等式等逐步推进,证得所要证的不等式。

所谓“分析”指的是执“果”索“因”,从欲证不等式出发,层层推求使之成立的充分条件,直至已知事实为止。

一般先用分析法分析证题思路,再用综合法书写证明过程。

⒊重要不等式法:主要有均值不等式、柯西不等式、排序不等式等。

⒋换元法:适当引入新变量,通过代换简化原有结构,实现某种变通,给证明的成功带来新的转机。

具体地讲,就是化超越式为代数式,化无理式为有理式,化分式为整式,化高次式为低次式等等。

全国数学联赛金牌教练-高中奥数辅导:第五讲-不等式的证明

全国数学联赛金牌教练-高中奥数辅导:第五讲-不等式的证明

全国高中数学联赛 金牌教练员讲座兰州一中数学组 第五讲 不等式的证明知识、方法、技能不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型.证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a <⇔>(对称性)(2)c b c a b a +>+⇔>(加法保序性)(3).0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>>(4)*).(,0N n b a b a b a nn nn ∈>>⇒>>对两个以上不等式进行运算的性质.(1)c a c b b a >⇒>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+⇒>> (3).,d b c a d c b a ->-⇒<> (4).,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:(1).)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤(2).)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或(3)||||||||||||b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.赛题精讲例1:,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 【略解】abc a c ca c b bc b a ab 6)()()(-+++++【评述】(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明ca bc ab c b a ++≥++222时,可将22b a +)(ca bc ab ++-配方为])()()[(21222a c c b b a -+-+-,亦可利用,222ab b a ≥+ca a c bc c b 2,22222≥+≥+,3式相加证明.(2)本题亦可连用两次基本不等式获证.例2:0,,>c b a ,求证:.)(3c b a cbaabc c b a ++≥【思路分析】显然不等式两边为正,且是指数式,故尝试用商较法.【略解】不等式关于c b a ,,对称,不妨+∈---≥≥R c a c b b a c b a ,,,则,且cb b a ,, ca都大于等于1.【评述】(1)证明对称不等式时,不妨假定n 个字母的大小顺序,可方便解题.(2)本题可作如下推广:若≥=>na naai a a a n i a 2121),,,2,1(0则(3)本题还可用其他方法得证。

高中数学竞赛《不等式的证明》专题练习

高中数学竞赛《不等式的证明》专题练习

不等式的证明一 能用单调性证明的不等式 二 利用最值证明三 利用中值定理(拉格朗日、柯西、泰勒公式)证明 四 利用凹凸性证明一 能用单调性证明的不等式(1)对不等式()()f x g x ≥,x I ∈,构造函数()()()F x f x g x =-若()F x 的导数()F x '在I 上的符号,若()F x '恒正(或恒负),则可以考虑用单调性证明.(若导数符号不一致,则可能考虑最值方法证明了)(2)若不等式含有两个参数,并且能分离两个参数分别在不等式两边,且结构一样,那么可以用单调性证明(也可用拉格朗日定理证明)。

例(1) 含一个参数的例 1 (1) 设0x <<+∞,证明不等式()11114xx x x ⎛⎫++≤ ⎪⎝⎭,且等号仅在1x =处成立。

(2)证明:当0x >时,()()221ln 1x x x -≥- (1)证明 注意到当1x ≤<+∞时101x<≤,故只需要当证明01x <≤时成立即可 令函数()11ln 1ln(1)ln 4f x x x x x⎛⎫=+++- ⎪⎝⎭,其中01x <≤,则()()21111ln 1ln(1)11f x x x x xx x ⎛⎫'=+--++⎪++⎝⎭,且()10f '= 另外()322(21)ln(1)(1)x x f x x x x ⎡⎤+''=+-⎢⎥+⎣⎦令()2(21)ln(1)(1)x x g x x x +=+-+,其中01x <≤,则()3(1)0(1)x x g x x -'=<+ 故在01x <≤有()()00g x g <=,从而在01x <≤有()0f x ''<,这表明()f x '在01x <≤严格单调减,故在01x <<时()()10f x f ''>=这说明()f x 在01x <≤严格单调增,即()11114xx x x ⎛⎫++≤ ⎪⎝⎭,且等号仅在1x =处成立。

专题06 不等式 真题专项训练(全国竞赛+强基计划专用)原卷版

专题06 不等式 真题专项训练(全国竞赛+强基计划专用)原卷版

【高中数学竞赛真题•强基计划真题考前适应性训练】专题06不等式真题专项训练(全国竞赛+强基计划专用)一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w z x y+的最小值等于()A .34B .78C .1D .前三个答案都不对2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111ab c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A.417+B.417-C .417D .以上答案都不对3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.8.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]ni i i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦10.(2023·全国·高三专题练习)设0()nii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos22x x a a +≥.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nnk k k kx x x x λ==≥+++∑∑ .16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹,证明2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c abλ+-的最大值.21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk k ni i i kD C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111nn k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n ni i i i a a ==+=-∏∏,求1ni i a =∑的最小值.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.。

高中数学竞赛教案讲义(9)不等式

高中数学竞赛教案讲义(9)不等式

第九章 不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd;(7)a>b>0, n ∈N +⇒a n>b n; (8)a>b>0, n ∈N +⇒nn b a >;(9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a, b ∈R ,则(a-b)2≥0⇔a 2+b 2≥2ab;(12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ≥ 前五条是显然的,以下从第六条开始给出证明。

(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若nn b a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b 矛盾,所以假设不成立,所以n n b a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|,-|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc=(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。

高中数学竞赛 不等式

高中数学竞赛 不等式

高 中 数 学 竞 赛 不等式 有答案1.不等式的概念与性质 【一】知识要点1.理解不等式的概念,掌握不等式的性质,能运用性质正确、迅速地对不等式进行转换。

2.在利用不等式的性质时,应特别注意条件的限制。

【二】解题指导 例1: 若610≤≤a ,122a b a ≤≤,c a b =-,求c 的取值范围。

例2:设c d R ,∈+,且c d a +≤,c d b +≤,证明:ca db ab +≤例3:已知函数f x ax c ()=-2满足-≤≤-411f (),-≤≤125f () 求证:-≤≤1320f ()【三】巩固练习 一、选择题1、下列四个命题:(1)若ax b >,则x b a>;(2)若a x a y 22>,则x y >;(3)若()()a x a y 2211+>+,则x y >; (4)若xa y a 22>,则x y >。

其中正确的命题的个数是(A )1个 (B )2个 (C )3个 (D )4个2、若a b ,是任意实数,且a b >,则(A )a b 22> (B )b a>1 (C )lg()a b ->0 (D )b a )21()21(< 3、若a b >+1,下列各式中正确的是 (A )a b 22> (B )ab>1 (C )lg()a b ->0 (D )lg lg a b > 4、已知a b <-<<010,,则下列不等式成立的是(A )a ab ab >>2 (B )ab ab a 2>> (C )ab a ab >>2 (D )ab ab a >>2 5、若x y z ,,均为大于-1的负数,则一定有 (A )x y z 2220--< (B )xyz >-1(C )x y z ++<-3 (D )()xyz 21> 6、当a b c >>时,下列不等式成立的是(A )ab ac > (B )a c b c ||||> (C )||||ab bc > (D )()||a b c b -->0 二、填空题1、已知a b c R ,,∈,且a c b <<,则c ab 2+ ()a b c +(用不等号连结)。

高中数学-不等式的证明精选练习(详解)

高中数学-不等式的证明精选练习(详解)

高中数学-不等式的证明精选练习(详解)1.设a ,b ,c ∈R +,且a +b +c =1.(1)求证:2ab +bc +ca +c 22≤12; (2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a, 所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab, 得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.3.设a ,b ,c ,d 均为正数,且a +b =c +d ,求证:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d . ②充分性:若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.4.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)证明:由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.5.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8;(2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧ -3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解; 当x ≥12时,由3x +2≥8,解得x ≥2. 所以不等式f (2x )+f (x +4)≥8的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-103或x ≥2. (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.6.(·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x=-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.7.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1. 证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1)=a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1). ∵a +b =2≥2ab ,∴ab ≤1.∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 8.设函数f (x )=x -|x +2|-|x -3|-m ,若∀x ∈R ,1m-4≥f (x )恒成立. (1)求实数m 的取值范围;(2)求证:log (m +1)(m +2)>log (m +2)(m +3).解:(1)∵∀x ∈R ,1m -4≥f (x )恒成立,∴m +1m ≥x -|x +2|-|x -3|+4恒成立.令g (x )=x -|x +2|-|x -3|+4=⎩⎪⎨⎪⎧ 3x +3,x <-2,x -1,-2≤x ≤3,-x +5,x >3.∴函数g (x )在(-∞,3]上是增函数,在(3,+∞)上是减函数, ∴g (x )max =g (3)=2,∴m +1m ≥g (x )max =2,即m +1m -2≥0⇒m 2-2m +1m =(m -1)2m≥0, ∴m >0,综上,实数m 的取值范围是(0,+∞).(2)证明:由m >0,知m +3>m +2>m +1>1,即lg(m +3)>lg(m +2)>lg(m +1)>lg 1=0.∴要证log (m +1)(m +2)>log (m +2)(m +3).只需证lg (m +2)lg (m +1)>lg (m +3)lg (m +2), 即证lg(m +1)·lg(m +3)<lg 2(m +2),又lg(m +1)·lg(m +3)< ⎣⎡⎦⎤lg (m +1)+lg (m +3)2 2 =[lg (m +1)(m +3)]24<[lg (m 2+4m +4)]24=lg 2(m +2), ∴log (m +1)(m +2)>log (m +2)(m +3)成立.。

高中数学不等式证明典型例题

高中数学不等式证明典型例题

不等式证明典型例题例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明. 解法1 (1)当1>a 时, 因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---= 0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +-- ax a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a +--=[])1lg()1lg(lg 1x x a +---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-. 例2 设0>>b a ,求证:.ab ba b a b a >证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-ba b a . ∴a b b a b a b a .1> 又∵0>abb a , ∴.ab ba b a b a >.例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号) 证明:∵ 222a b ab +≥(当且仅当22a b =时取等号) 两边同加4444222():2()()a b a b a b ++≥+,即:44222()22a b a b ++≥ (1) 又:∵ 222a b ab +≥(当且仅当a b =时取等号) 两边同加22222():2()()a b a b a b ++≥+∴222()22a b a b ++≥ ∴ 2224()()22a b a b ++≥ (2) 由(1)和(2)可得444()22a b a b ++≥(当且仅当a b =时取等号). 例4 已知a 、b 、c R +∈,1a b c ++=,求证1119.a b c++≥ 证明:∵1a b c ++=∴ 111a b c ++a b c a b c a b c a b c++++++=++ (1)(1)(1)b c a c a b a a b b c c =++++++++3()()()b a c a c ba b a c b c=++++++∵2b a a b +≥=,同理:2c a a c+≥,2c bb c +≥。

全国高中数学竞赛不等式试题

全国高中数学竞赛不等式试题

-全国高中数学竞赛不等式试题全国高中数学联赛试卷(第一试)3、不等式2log 211log 3212++-x x >0的解集是 ( ) A .[2,3] B 。

(2,3) C 。

[2,4] D 。

(2,4)[答案]3、解:原不等式等价于22331log 0222log 10x x ++>⎪-≥⎩2310,220t t t t ⎧-+>⎪=⎨⎪≥⎩则有 解得01t ≤<。

即20log 11,24x x ≤-<∴≤<。

故选C 。

全国高中数学联赛(第一试)7.不等式322430x x x --+<的解集是______________ 9. 已知 {}2430,,A xx x x R =-+<∈ (){}1220,2750,.x B x a x a x x R -=+≤-++≤∈若A B ⊆,则实数a 的取值范围是_____________.13. 设35,2x ≤≤ 证明不等式319.[答案]7. ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---3,215215,3 . 提示: 原不等式可以化为:()()01||3||2<-+-x x x 9. 14-≤≤-a提示:()3,1=A ,令()a x f x+=-12,()()5722++-=x a x x g ,则只需()()x g x f ,在(1,3)上的图象均在x 轴的下方,其充要条件是()()()()⎪⎪⎩⎪⎪⎨⎧≤≤≤≤03010301g g f f ,由此推出14-≤≤-a ;13.证明:由()bd ac da cd bc ab d c b a d c b a +++++++++=+++2)(22222可得,22222d c b a d c b a +++≤+++当且仅当a=b=c=d 时取等号 ……5分则()()()()x x x x x x x 315321123153212-+-++++≤-+-++192142≤+=x ……………………………………………………15分 因为x x x 315,32,1--+不能同时相等,所以1923153212<-+-++x x x ……………………………………全国高中数学联赛试卷4.如果满足∠ABC=60°,AC=12,BC=k 的△ABC 恰有一个,那么k 的取值范围是( ) (A )k=38(B )0<k≤12 (C ) k≥12(D ) 0<k≤12或k=386.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较结果是( )(A ) 2枝玫瑰价格高 (B ) 3枝康乃馨价格高 (C ) 价格相同 (D ) 不确定.10. 不等式232log 121>+x 的解集为 .11.函数232+-+=x x x y 的值域为[答案].4.D 6.A 10.()()∞+⎪⎪⎭⎫ ⎝⎛,42,11,07211. ()∞+⎪⎭⎫⎢⎣⎡,223,1全国高中数学联赛 (第一试)10.已知)(x f 是定义在R 上的函数,1)1(=f 且对任意R x ∈都有5)()5(+≥+x f x f1)()1(+≤+x f x f若x x f x g -+=1)()(,则=)2002(g .11.若1)2(log )2(log 44=-++y x y x ,则||||y x -的最小值是 .12.使不等式x a x a x cos 1cos sin 22+≥++对一切R x ∈恒成立的负数a 的取值范围是 .[答案]10. 解:由x x f x g -+=1)()(,得1)()(-+=x x g x f ,所以5)1()(1)5()5(+-+≥-+++x x g x x g 1)1()(1)1()1(+-+≤-+++x x g x x g即)()5(x g x g ≥+,)()1(x g x g ≤+∴)()1()2()4()5()(x g x g x g x g x g x g ≤+≤+≤+≤+≤ ∴)()1(x g x g =+即)(x g 是周期为1的周期函数,又1)1(=g ,故1)2002(=g11. 解:⎪⎩⎪⎨⎧=-+>->+4)2)(2(0202y x y x y x y x ⇒⎩⎨⎧=-≥>440||222y x y x 由对称性只考虑0≥y ,因为0>x ,所以只须求y x -的最小值. 令u y x =-公代入4422=-y x ,有0)4(2322=-+-u uy y . 这是一个关于y 的二次方程显然有实根,故0)3(162≥-=∆u ,∴3≥u当334=x ,33=y 时,3=u .故||||y x -的最小值为312. 解:原不等式可化为4)1()21(cos 222-+≤--a a a x∵1cos 1≤≤-x ,0<a ,021<-a ∴当1cos =x 时,函数2)21(cos --=a x y 有最大值2)211(--a ,从而有4)1()211(222-+≤--a a a ,整理得022≥-+a a ∴1≥a 或2-≤a ,又0<a ,∴2-≤a1999年全国高中数学联合竞赛三、(满分已知当x ∈[0,1]时,不等式0sin )1()1(cos 22>-+--θθx x x x 恒成立,试求的取值范围.[答案]13. 若对一切x ∈[0,1],恒有f(x)= 0sin )1()1(cos 22>-+--θθx x x x , 则 cosθ=f(1)>0, sinθ=f(0)>0. (1)取x ∈ (0,1),由于 ()()()x x x x x f ---≥1cos sin 12θθ, 所以,()0>x f 恒成立,当且仅当 01cos sin 2>-θθ (2 )先在[0,2π]中解(1)与(2):由cosθ>0,sinθ>0,可得0<θ<2π. 又由(2)得 sin2θ>21 注意到0<2θ<π,故有6π<2θ< 65π,所以,12π<θ<125π .因此,原题中θ的取值范围是2kπ+12π<θ<2kπ+125π ,k ∈Z.或解:若对一切x ∈[0,1],恒有f (x )=x 2c o s θ-x (1-x )+(1-x )2s i n θ>0,则c o s θ=f (1)>0,s i n θ=f (0)>0. (1)取 x 0= ∈(0,1),则.由于+2x (1-x ),所以,0<f (x 0)=2x 0(1-x 0) .故 -+>0 (2)反之,当(1),(2)成立时,f (0)=s i n θ>0,f (1)=c o s θ>0,且x ∈(0,1)时,f (x )≥2x (1-x )>0.先在[0,2π]中解(1)与(2):由c o s θ>0,s i n θ>0,可得0<θ<.又-+>0,>, s i n 2θ>, s i n 2θ>,注意到 0<2θ<π,故有 <2θ<,所以,<θ<.因此,原题中θ的取值范围是 2k π+<θ<2k π+ ,k ∈Z首届中国东南地区数学奥林匹克(7月11日 8:00 — 12:00 温州)63)cos()2sin2364sin cosa aπθθθθ+-+-<++对于0,2πθ⎡⎤∈⎢⎥⎣⎦恒成立,求a的取值范围。

数学不等式(竞赛)

数学不等式(竞赛)

潍坊讲义(新高二)(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++- 2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni in i i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a(2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J e n s不等式)若)(x f 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++= 证: 作变换 令i i x a =β,则β1i i x a =则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥ 因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。

高中数学 第二讲 证明不等式的基本方法 2.2 综合法与分析法练习(含解析)新人教A版选修4-5-新

高中数学 第二讲 证明不等式的基本方法 2.2 综合法与分析法练习(含解析)新人教A版选修4-5-新

2.2 综合法与分析法[A 级 基础巩固]一、选择题1.若实数x ,y 满足不等式xy >1,x +y ≥0,则()A .x >0,y >0B .x <0,y <0C .x >0,y <0D .x <0,y >0解析:因为xy >1>0,所以x ,y 同号.又x +y ≥0,故x >0,y >0.答案:A2.设x ,y >0,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤2(2+1)2D .xy ≥2(2+1)解析:因为x ,y >0,且xy -(x +y )=1,所以(x +y )+1=xy ≤⎝⎛⎭⎪⎫x +y 22. 所以(x +y )2-4(x +y )-4≥0,解得x +y ≥2(2+1).答案:A3.对任意的锐角α,β,下列不等关系中正确的是()A .sin(α+β)>sin α+sin βB .sin(α+β)>cos α+cos βC .cos(α+β)>sin α+sin βD .cos(α+β)<cos α+cos β解析:因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β). 答案:D4.设13<⎝ ⎛⎭⎪⎫13b <⎝ ⎛⎭⎪⎫13a<1,则( ) A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a解析:因为13<⎝ ⎛⎭⎪⎫13b <⎝ ⎛⎭⎪⎫13a<1, 所以0<a <b <1,所以a aa b =a a -b >1,所以a b <a a , a a b a =⎝ ⎛⎭⎪⎫a b a .因为0<a b<1,a >0, 所以⎝ ⎛⎭⎪⎫a b a <1,所以a a <b a ,所以a b <a a <b a . 答案:C5.已知a ,b ∈R,则“a +b >2,ab >1”是“a >1,b >1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a >1,b >1时,两式相加得a +b >2,两式相乘得ab >1.反之,当a +b >2,ab >1时,a >1,b >1不一定成立.如:a =12,b =4也满足a +b >2,ab =2>1,但不满足a >1,b >1. 答案:B二、填空题6.若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2. 其中正确的不等式的序号为________.解析:因为1a <1b<0, 所以b <a <0,故②③错.答案:①④7.若a >0,b >0,则下列两式的大小关系为:lg ⎝ ⎛⎭⎪⎫1+a +b 2________12[lg(1+a )+lg(1+b )]. 解析:12[lg(1+a )+lg(1+b )]=12lg[(1+a )(1+b )]=lg[(1+a )(1+b )]12, 又lg ⎝ ⎛⎭⎪⎫1+a +b 2=lg ⎝ ⎛⎭⎪⎫a +b +22, 因为a >0,b >0,所以a +1>0,b +1>0,所以[(a +1)(1+b )]12≤a +1+b +12=a +b +22, 所以lg ⎝ ⎛⎭⎪⎫1+a +b 2≥lg[(1+a )(1+b )]12. 即lg ⎝ ⎛⎭⎪⎫1+a +b 2≥12[lg(1+a )+lg(1+b )].答案:≥8.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的等比中项,1R 是1a ,1b的等差中项,则P ,Q ,R 按从大到小的排列顺序为________.解析:P =a +b 2,Q =ab ,2R =1a +1b , 所以R =2ab a +b ≤Q =ab ≤P =a +b 2, 当且仅当a =b 时取等号.答案:P ≥Q ≥R三、解答题9.已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a .证明:要证c -c 2-ab <a ,只需证明c <a +c 2-ab ,即证b -a <2c 2-ab ,当b -a <0时,显然成立;当b -a ≥0时,只需证明b 2+a 2-2ab <4c 2-4ab ,即证(a +b )2<4c 2,由2c >a +b 知上式成立.所以原不等式成立.10.已知△ABC 的三边长是a ,b ,c ,且m 为正数.求证:aa +m +b b +m >c c +m. 证明:要证a a +m +b b +m >c c +m ,只需证a (b +m )(c +m )+b (a +m )(c +m )-c (a +m )·(b +m )>0,即证abc +abm +acm +am 2+abc +abm +bcm +bm 2-abc -acm -bcm -cm 2>0, 即证abc +2abm +(a +b -c )m 2>0.由于a ,b ,c 是△ABC 的边长,m >0,故有a +b >c ,即(a +b -c )m 2>0.所以abc +2abm +(a +b -c )m 2>0是成立的.因此aa +m +b b +m >c c +m 成立.B 级 能力提升1.已知a ,b ,c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( )A .S ≥2PB .P <S <2PC .S >PD .P ≤S <2P 解析:因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,所以a 2+b 2+c 2≥ab +bc +ca ,即S ≥P .又三角形中|a -b |<c ,所以a 2+b 2-2ab <c 2,同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2,所以a 2+b 2+c 2<2(ab +bc +ca ),即S <2P .答案:D2.若n 为正整数,则2n +1与2n +1n 的大小关系是________.解析:要比较2n +1与2n +1n 的大小,只需比较(2n +1)2与⎝ ⎛⎭⎪⎫2n +1n 2的大小,即4n +4与4n +4+1n 的大小. 因为n 为正整数,所以4n +4+1n>4n +4. 所以2n +1<2n +1n .答案:2n +1<2n +1n3.设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明:(1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd,由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2即a+b+2ab>c+d+2cd,因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2,因此|a-b|<|c-d|,综上所述a+b>c+d是|a-b|<|c-d|的充要条件.。

全国数学联赛金牌教练-高中奥数辅导:第五讲-不等式的证明

全国数学联赛金牌教练-高中奥数辅导:第五讲-不等式的证明

全国高中数学联赛 金牌教练员讲座兰州一中数学组第五讲 不等式的证明知识、方法、技能不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下:不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a <⇔>(对称性) (2)c b c a b a +>+⇔>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>>(4)*).(,0N n b a b a b a nn nn ∈>>⇒>>对两个以上不等式进行运算的性质.(1)c a c b b a >⇒>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+⇒>> (3).,d b c a d c b a ->-⇒<> (4).,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:(1).)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤ (2).)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或(3)||||||||||||b a b a b a +≤±≤-(三角不等式).(4).||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.赛题精讲例1:,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 【略解】abc a c ca c b bc b a ab 6)()()(-+++++)()()()2()2()2(222222222≥-+-+-=-++-++-+=b a c a c b c b a ab b a c ac c a b bc c b a.6)()()(a b c a c ca c b bc b a ab ≥+++++∴【评述】(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明ca bc ab c b a ++≥++222时,可将22b a +)(ca bc ab ++-配方为])()()[(21222a c c b b a -+-+-,亦可利用,222ab b a ≥+ca a c bc c b 2,22222≥+≥+,3式相加证明.(2)本题亦可连用两次基本不等式获证.例2:0,,>c b a ,求证:.)(3c b a cb a abc c b a ++≥【思路分析】显然不等式两边为正,且是指数式,故尝试用商较法.【略解】不等式关于c b a ,,对称,不妨+∈---≥≥R c a c b b a c b a ,,,则,且cb b a ,, ca都大于等于1..1)()()()(3333333333232323≥⋅⋅=⋅⋅⋅⋅⋅==---------------++c a c b b a b c a c c b a b c a b a b a c c a b c b a c b a cb a ca cb ba ccbbaacbaabc c b a【评述】(1)证明对称不等式时,不妨假定n 个字母的大小顺序,可方便解题.(2)本题可作如下推广:若≥=>na n aa i a a a n i a 2121),,,2,1(0则.)(2121na a a n na a a +++(3)本题还可用其他方法得证。

不等式的证明-高中数学知识点讲解(含答案)

不等式的证明-高中数学知识点讲解(含答案)

不等式的证明(北京习题集)(教师版)一.解答题(共7 小题)1.(2018•北京)设n 为正整数,集合A { | (t ,t ,t ) ,t {0 ,1},k 1,2,,n},对于集合A 中1 2 n k的任意元素 (x ,x ,,) 和(y ,,y ,记x y) 1 2 n 1 2nM (1,) [(x y | x y |) (x y | x y |) (x y | x y |)]1 1 1 12 2 2 2 n n n n2(Ⅰ)当n 时,若 (1,1, 0) , (0,1,1) ,求M (,) 和M (,) 的值;3(Ⅱ)当 4 时,设是的子集,且满足:对于中的任意元素,,当,相同时,是奇数;当n B A B M (,)M (,) B,不同时,是偶数.求集合中元素个数的最大值;(Ⅲ)给定不小于 2 的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,,M (,) 0 ,写出一个集合B ,使其元素个数最多,并说明理由.2 2 22.(2016 春•北京校级月考)已知,,求证 a b …(a b) (用分析法证明)a b R23 .(2014 •朝阳区二模)已知,x 是函数 f (x ) x 2 mx t 的两个零点,其中常数m ,t Z ,设x1 2nT x x n Nn r r *( )n 1 2r0.(1)用m ,t 表示T ,T ;1 2(2)求证:T mT tT ;5 4 3(3)求证:对任意的n N ,.* T Zn4.(2014•北京校级模拟)(1)求证:7 6 5 2 ;x x 2(2)已知函数f (x ) e ,用反证法证明方程f (x ) 0 没有负数根.x 1b b5.(2019 秋•大兴区期中)①已知0 ,求证:.a b 1a 1 a②已知1,当取什么值时,x 的值最小?最小值是多少?x x 9x 16.(2019 秋•西城区校级期中)已知a ,b 0 ,证明:a3 b3…a2b ab2 .a a a11 12 1na a a7.(2019•东城区二模)若n 行n 列的数表 ( )(n 2) 满足:,,,2,,,21 22 2 … a {0 1}(i j 1 n)nM M Mija a an1 n2 nn第1页(共8页)n nn 0 m n) ( )a m(i 1,2,,,,| a a | 0 (i, j 1, 2,,n,i j) ,记这样的一个数表为A m .对于ik ik jk nk 1 k 1nk 1A m T(n,m) a a ,1 i j n , i, j N*( ) ,记集合…….|T(n,m) | 表示集合T(n,m)中元素的个数. n ij ij ik jk1 1 0(Ⅰ)已知,写出ij i j i j N 的值;A (2) (0 1 1) (1…… 3 , , * )31 0 1(Ⅱ)是否存在数表A (2)满足|T(4, 2) |1?若存在,求出(2),若不存在,说明理由;A4 4n(Ⅲ)对于数表A (m)(0 m n,m N ) ,求证:|T(n,m) |….*n2第2页(共8页)不等式的证明(北京习题集)(教师版)参考答案与试题解析一.解答题(共7 小题)1.(2018•北京)设n 为正整数,集合{ | ( ,t ,t ) ,{0 ,,,2,,,对于集合中A t t 1}k 1 n} A1 2 n k的任意元素,,,和,,,记(x x x ) (y y y )1 2 n 1 2 nM (1,) [(x y | x y |) (x y | x y |) (x y | x y |)]1 1 1 12 2 2 2 n n n n2(Ⅰ)当n 时,若 (1,1, 0) , (0,1,1) ,求M (,) 和M (,) 的值;3(Ⅱ)当 4 时,设是的子集,且满足:对于中的任意元素,,当,相同时,是奇数;当n B A B M (,)M (,) B,不同时,是偶数.求集合中元素个数的最大值;(Ⅲ)给定不小于 2 的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,,M (,) 0 ,写出一个集合,使其元素个数最多,并说明理由.B【分析】(Ⅰ)直接根据定义计算.(Ⅱ)注意到 1 的个数的奇偶性,根据定义反证证明.(Ⅲ)根据抽屉原理即可得证.【解答】解:,.(I ) M (,) 11 0 2 M (,) 0 1 0 1x y | x y |(II) 考虑数对 (x ,y ) 只有四种情况: (0,0) 、 (0,1) 、 (1, 0) 、 (1,1) ,相应的分别为 0、0、0、1,k k k kk k2所以B 中的每个元素应有奇数个 1,所以B 中的元素只可能为(上下对应的两个元素称之为互补元素):(1 ,0,0,0 ) 、 (0 ,1,0, 0) 、 (0 ,0,1, 0) 、 (0 ,0,0,1) ,(0 ,1,1,1) 、 (1 ,0,1,1) 、 (1 ,1,0,1) 、 (1 ,1,1, 0) ,对于任意两个只有 1 个 1 的元素,都满足是偶数,M (,)所以四元集合B {(1 ,0,0, 0) 、 (0 ,1,0, 0) 、 (0 ,0,1, 0) 、 (0 ,0,0,1)}满足题意,假设B 中元素个数大于等于 4,就至少有一对互补元素,除了这对互补元素之外还有至少 1 个含有 3 个 1 的元素,则互补元素中含有 1 个 1 的元素与之满足M (,) 1不合题意,故B 中元素个数的最大值为 4.第3页(共8页)(Ⅲ)B {(0,0,0,0), (1 ,0, 0, 0) , (0 ,1,0,0), (0 ,0,10),(0 ,0,0,,1)},此时中有个元素,下证其为最大.B n 1对于任意两个不同的元素,,满足,则,中相同位置上的数字不能同时为 1,M (,) 0假设存在有多于个元素,由于,0,0,,与任意元素都有,B n 1 (0 0) M (,) 0所以除 (0 ,0,0,, 0) 外至少有n 1 个元素含有 1,根据元素的互异性,至少存在一对,满足,此时不满足题意,x y l M (,) (1)i i故B 中最多有n 1 个元素.【点评】本题主要考查集合的含义与表示、集合的运算以及集合之间的关系.综合性较强,难度较大.2 2 22.(2016 春•北京校级月考)已知a ,b R,求证 a b …(a b) (用分析法证明)22 2 2【分析】分析法证明不等式,寻找使 a b …(a b) 成立的充分条件,直到使不等式成立的条件显然具备为2止.2 2 2【解答】证明:要证 a b …(a b) ,22 2 1 2只要证( ) ,a b … a b2即证明,2(a b )…a 2ab b2 2 2 2也就是证明,(a b) 02此式显然成立,故要证的不等式成立.【点评】本题考查不等式的证明,着重考查分析法的应用,考查推理能力,体现了转化的数学思想,属于中档题.3 .(2014 •朝阳区二模)已知,x 是函数 f (x ) x 2 mx t 的两个零点,其中常数m ,t Z ,设x1 2.nT x x (nN )n r r *Tx x (n N )n 1 2r0(1)用m ,t 表示T ,T ;1 2(2)求证:T mT tT ;5 4 3(3)求证:对任意的,.n N* T Znn【分析】( 1 )依题意,知,,利用( ) ,易知T x x m ,x x m x x t T x n r x r n N*1 2 1 2 n 1 2 1 1 2r0;2T x 2r x r x 2 x x x 2 (x x )2 x x m2 t2 1 2 1 1 2 2 1 2 1 2r0第4页(共8页)k(2)由,可得;x x T x T x mT tTk r r 51 2 5 1 4 2 4 3r0(3)利用数学归纳法证明即可.【解答】解:(1)x x m ,x x t .1 2 1 2n因为( ) ,所以,T x x n N T x x mn r r *n 1 2 1 1 2r0分2T x x x x x x x x x x m t2 r r 2 2 2 2( ) 32 1 2 1 1 2 2 1 2 1 2r0k 5 4(2)由x x ,得T x x x x x x x Tx .k r r 5 r r 4 r r 5 51 2 5 1 2 1 1 2 2 1 4 2r0 r0 r0即.T x T x55 1 4 2所以.x T x x T x 52 4 1 23 2所以 5 1 4 ( 2 4 1 2 3 )( 1 2 ) 4 1 2 3 4 3 8分T x T x T x x T x x T x x T mT tT(3)①当n 1,2 时,由(1)知T 是整数,结论成立.k②假设当 1 ,时结论成立,即T ,T k 都是整数.n k n k(k… 2)k 1k k 1 k由,得T x x x x x x ,T x k r x rk 1r r k r r k 1 k 1 2 k 1 1 2 1 1 2 2r0 r0 r0即,T x T xk 1 k 1 1 k 2所以,,T x T x k x T x x T xk 1k 1 k 1 2 2 k 1 2 k 1 2所以T 1 x1T (x2T x1x2T 1) (x1 x2 )T x1x2T 1 .k k k k k k即.T mT tTk 1 k k 1由T ,T k 都是整数,且m ,t Z 知,T 也是整数,即n k 1时,结论也成立.k 1 k 1由①②可知,对于一切,分n N* T Z13n【点评】本题考查综合法证明不等式,突出考查数学归纳法的应用,考查抽象思维、逻辑思维的综合应用,考查推理证明的能力,属于难题.4.(2014•北京校级模拟)(1)求证:7 6 5 2 ;x x 2(2)已知函数f (x) e ,用反证法证明方程f (x) 0 没有负数根.x 1【分析】(1)采用分析法来证,要证7 6 5 2 ,只需两边平方,整理后得到一恒成立的不等式即可.(2)对于否定性命题的证明,可用反证法,先假设方程f (x) 0 有负数根,经过层层推理,最后推出一个矛盾的结论.第5页(共8页)【解答】证明:(1)要证7 6 5 2只需证( 7 6) ( 5 2)2 2只需证即证13 2 42 9 4 5 2 2 5 42 只需证24 8 5 42只需证即证4 5 9 80 81上式显然成立,命题得证.x x (2)设存在x 0 0(x 0 1) ,使,则e 0f x( ) 0xx 12由于得 0 1,解得x 2 ,0 e x 1 0x 1 20 21与已知矛盾,因此方程没有负数根.x 0 0 f (x ) 0【点评】(1)本题主要考查不等式的证明,证明用到了分析法,分析法是从要证明的结论出发,一步步向前推,得到一个恒成立的不等式,或明显成立的结论即可.(2)本题考查了函数的零点问题与方程的根的问题.方程的根,就是指使方程成立的未知数的值.对于结论是否定形式的命题,往往反证法证明.a b b 1 b5.(2019 秋•大兴区期中)①已知0 ,求证:.a 1 a②已知,当取什么值时,x 的值最小?最小值是多少?x 1x x 91【分析】①作差法证明即可;②利用基本不等式判断即可.b 1 b ab a ab b a b【解答】解:①证明:a b 0 ,0 ,a 1 a (a 1)a a(a 1)b 1 b故;a 1 a②当时,,,x 1 x 1 x 1 x x 1 0 9 1 9 1 2 ( 1)( 9 ) 1 51 y x x (x)当且仅当,即时,取等号,x 1 3 x 2故当 2 时,x 值最小,最小为 5.x 9x 1【点评】考查了作差法和基本不等式法的应用,基础题.6.(2019 秋•西城区校级期中)已知a ,b 0 ,证明:a3 b3…a2b ab2 .【分析】作差,因式分解,即可得到结论.【解答】证明:(a3 b3 ) (a2b ab2 ) a2 (a b) b2 (b a)第6页(共8页)(a b)(a b ) (a b) (a b)2 2 2Q a 0 b 0,,(a b)2 0a b 0 ,,(a b)2 (a b) 0,则有.a3 b3…a2b b2a【点评】本题考查不等式的证明,重点考查作差法的运用,考查学生分析解决问题的能力,属于基础题.a a a11 12 1na a a7.(2019•东城区二模)若行列的数表…满足:a {0 , 1}(i ,j 1,2,,n) ,n n ( )(n 2)21 22 2nM M Mija a an1 n2 nnn nn 0 m n) ( )a m(i 1,2,,,,| a a | 0 (i, j 1, 2,,n,i j) ,记这样的一个数表为Am .对于ik ik jk nk 1 k 1nk 1A (m) ,记集合T n m a a …i j…n i j N* .|T(n,m) | 表示集合T(n,m) 中元素的个数.( , ) ,1 , ,n ij ij ik jk1 1 0(Ⅰ)已知,写出ij i j i j N 的值;A (1…… 3 , , * )(2) (0 1 1)31 0 1(Ⅱ)是否存在数表A (2)满足|T(4, 2) |1?若存在,求出A (2),若不存在,说明理由;4 4n(Ⅲ)对于数表( )(0 , ) ,求证:.A m m n m N* |T(n,m) |…n2【分析】(Ⅰ)根据题意计算、和的值;12 13 23(Ⅱ)不存在数表A (2),使得|T(4, 2) |1,说明理由即可;4(Ⅲ)在数表A (m) 中,将换成,得出,根据题意计算,得出,,,从1 A (n m) |T(n m) ||T(n nm) | n ij ij n ijn而得出.|T |…(n,m)2【解答】解:(Ⅰ)根据题意,计算12 13 23 1;(3 分)(Ⅱ)不存在数表A (2),使得|T(4, 2) |1.理由如下:41 1 0 0a a a a假设存在A (2),使得|T(4, 2) |1.不妨设A (2) ( 21 22 23 24 ) ,的可能值为 0,1.4 4 ija a a a31 32 33 34a a a a41 42 43 44当ij i j 时,经验证这样的A (2)不存在.0 (1……4)4第7页(共8页)a a 121 22当1(1 4) 时,有,这说明此方程组至少有两个方程的解相同,ij …i j… a a 131 32a a 141 421 1 0 0a a 10 1 a a23 24不妨设,所以有 a a1,A (2) ( 23 24 )4 33 340 1 a a33 34a a 143 441 0 a a43 44这也说明此方程组至少有两个方程的解相同,1 1 0 0 1 1 0 00 1 0 1 0 1 0 1这样的A (2)只能为 ( ) 或 ( ) ,40 1 0 1 0 1 1 01 0 1 0 1 0 0 1这两种情况都与矛盾,|T(4, 2) | 1即不存在数表A (2),使得|T(4, 2) |1.(8 分)4(Ⅲ)在数表A m 中,将换成1 ,这将形成,( ) A (nm) n ij ij n由于,ij a i a j a i a j a in a jn1 12 2可得 (1 a )(1 a ) (1 a )(1 a ) (1 a )(1 a ) n m m ,i1 j1 i2 j2 in jn ij从而,,.|T(n m) ||T(n n m) |nn……当m…时,由于| a a | 0(0 i j n,i, j N* ) ,it jt2t 1n所以任两行相同位置的 1 的个数…1.2nn又由于… 0 ,而从 1 到1的整数个数…,ij2 2n从而| ( , ) | ;T n m …2n从而当 0 m n 时,都有|T |….(13 分)(n,m)2【点评】本题考查了不等式的性质与应用问题,也考查了矩阵乘法的性质应用问题,是难题.第8页(共8页)。

2020届高三理数一轮讲义:13.2.2-不等式的证明(含答案)

2020届高三理数一轮讲义:13.2.2-不等式的证明(含答案)

最新考纲通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.
知识梳理
1.基本不等式
定理1:如果a,b∈R,那么a2+b2≥2ab,当且仅当a=b时,等号成立.
定理2:如果a,b>0,那么 ≥ ,当且仅当a=b时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.
定理3:如果a,b,c∈R+,那么 ≥ ,当且仅当a=b=c时,等号成立.
解(1)f(x)=|x|+|x-3|=
f(x)-5≥x,即 或
或 解得x≤- 或x∈∅或x≥8.
所以不等式的解集为 ∪[8,+∞).
(2)由(1)易知f(x)≥3,所以m≥3,n≥3.
由于2(m+n)-(mn+4)=2m-mn+2n-4=(m-2)(2-n).
且m≥3,n≥3,所以m-2>0,2-n<0,
当且仅当a=b=c= 时等号成立.
答案9
4.(2019·聊城模拟)下列四个不等式:①logx10+lgx≥2(x>1);②|a-b|<|a|+|b|;③ ≥2(ab≠0);④|x-1|+|x-2|≥1,其中恒成立的个数是()
A.1B.2C.3D.4
解析logx10+lgx= +lgx≥2(x>1),①正确;
在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.
基础巩固题组
(建议用时:60分钟)
1.设a,b>0且a+b=1,求证: + ≥ .
证明因为(12+12) ≥ = = ≥25 .
所以 + ≥ .
2.设a>0,b>0,a+b=1,求证 + + ≥8.
(2)a+b≤2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§14不等式的证明
课后练习
1.选择题
(1)方程x2-y2=105的正整数解有( ).
(A)一组(B)二组(C)三组(D)四组
(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有(). (A)3个(B)4个(C)5个(D)6个
2.填空题
(1)的个位数分别为_________及_________.
(2)满足不等式104≢A≢105的整数A的个数是x×104+1,则x的值
________.
(3)已知整数y被7除余数为5,那么y3被7除时余数为________.
(4)求出任何一组满足方程x2-51y2=1的自然数解x和y_________.
3.求三个正整数x、y、z满足
.
4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?
5.求的整数解.
6.求证可被37整除.
7.求满足条件的整数x,y的所有可能的值.
8.已知直角三角形的两直角边长分别为l 厘米、m 厘米,斜边长为n 厘米,且l ,m ,n 均为正整数,l 为质数.证明:2(l+m+n )是完全平方数.
9.如果p 、q 、、都是整数,并且p >1,q >1,试求p+q 的值. 课后练习答案
1.D.C.
2.(1)9及1.
(2)9.
(3)4.
(4)原方程可变形为x 2=(7y+1)2
+2y(y-7),令y=7可得x=50. 3.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z 无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z 都不能是整数.
4.可仿例2解.
5. 分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法.
略解:ca a c bc c b ab b a 2,2,22
23222≥+≥+≥+同理;三式相加再除以2即得证.
评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧. 如n n x x x x x x x x x +++≥+++ 2112322221,可在不等式两边同时加上.132x x x x n ++++
再如证)0,,(256)())(1)(1(3
2233>≥++++c b a c b a c b c a b a 时,可连续使用基本不等式.
(2)基本不等式有各种变式 如2
)2(2
22b a b a +≤+等.但其本质特征不等式两边的次
数及系数是相等的.如上式左右两边次数均为2,系数和为1.
6.8888≡8(mod37),∴88882222≡82(mod37).
7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而
82+73=407,37|407,∴37|N.
7.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).
8.∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方数.
9.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.。

相关文档
最新文档