【精校】2020年河北省保定市定兴县中考一模数学

合集下载

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省初中毕业生升学文化课模拟考试(一)数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷1I为非选择题.本试卷满分120分,考试时间为120分钟.卷I(选择题,共42分)注意事项:1.答卷I前.考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑答在试卷上无效.一、选择题(本大题共16个小题,共42分,1~I 0小题各3分;11~16小题各2分.在每小题给出的四个选项中只有项是符合题目要求的)1.下列各数中,比-2大2的数是()A.0 B.-4 C.2 D.42.把一个三角板按下图所示位置放置,∠1=40°,∠2=()A.40°B.45°C.50°D.60°3.下图中几何体的主视图是()A.B.C.D.4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.如图,直线a∥b∥c,45AB BC=,若DF=9,则EF的长度为()A .9B .5C .4D .3 6.下列变形正确的是( ) A .-2(a+2)=a -2 B .()121212a a --=-+ C .-a+1=-(a -1) D .1-a=-(a+1) 7.关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( ) A .a >0 B .a >-1 C .a <1 D .a <1且a ≠08.在新型冠状病毒防控期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片上:,把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知P (一次抽到36)=25,这5张卡片上数据的方差为( ) A .35.9 B .0.22 C .0.044 D .09.如图,五边形ABCDE 中,AE ∥BC ,BE 交于点O ,四边形OCDE 是平行四边形,若△ABE 的面积是5,四边形OCDE 的面积是6,则△AOE 的面积是( )A .2B .2.5C .3D .410.如图,点A (0,4),B (3,4),以原点O 为位似中心,把线段AB 缩短为原来的一半,得到线段CD ,其中点C 与点A 对应,点D 与点B 对应,则点D 的横坐标...为( )A .2B .2或-2C .32 D .32或32- 11.如图,在△ABC 中,AB <BC ,在BC 上取一点P ,使得PC=BC -PA .根据圆规作图的痕迹,可以用直尺成功找到点P 的是( )A.B.C.D.12.如图,四边形ABCD中,AD∥BC,AD=12BC,CD=BC,点E,F分别是BD,CD的中点,连接AE,EF,AF,若BC=2,AF=85,则BD=()A.35B.95C.125D.313.关于x方程2311x mx-=-的解是正数,m的值可能是()A.23B.12C.0 D.-114.如图,在6×6的正方形网格中,经过格点A,B,C,⊙O点P是ACB上任意一点,连接AP,BP,则tan∠APB的值为()A .12B C D 15.点(a ,b )是反比例函数2y x=-的图象上一点,若a <2,则b 的值不可能...是( ) A .-2 B .13- C .2 D .316.如图,在等边△ABC 中,AB=D 在△ABC 内或其边上,AD=2,以AD 为边向右作等边△ADE ,连接CD ,CE ,设CE 的最小值为m ;当ED 的延长线经过点B 时,∠DEC=n °,则m ,n 的值分别为( )A B C .2,55 D .2,60卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.若单项式212xyx 与n x y -是同类项,则n 的值为 . 18.定义新运算:对于任意实数a ,b ,都有a ⊕b=a (b+1)-b ,等式右边是通常的加法、减法及乘法运算,比如:3⊕2=3(2+1)-2=9-2=7. (1)2⊕(-3)= ;(2)若(-2)⊕x 的值等于-5,则x= .19.如图,ABCD 中,AB=7,BC=5,CH ⊥AB 于点H ,CH=4,点P 从点D 出发,以每秒1个单位长度的速度沿DC —CH 向点H 运动,到点H 停止,设点P 的运动时间为t .(1)AH= ;(2)若△PBC 是等腰三角形,则t 的值为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别为a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b -2c)的值.21.(本小题满分9分)发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352.例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(-11)=.探究:一个两位数,十位上的数字是m,个位上的数字为n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出....计算结果中十位上的数字.22.(本小题满分9分)自2020年初的新型冠状病毒疫情爆发以来,疫悄时时刻刻都在牵动全国人民的心.小明在做好自我防控的同时,也从数据分析的角度去看待疫情动态,他从2月10日起,连续7天记录了全国每天新增确诊病例人数,并绘制了如图所示的折线统计图.(注:本题所考查的人数均保留整数)(1)①小明关注这7天每天新增确诊病例人数的最高值、最低值和中位数,井计算了平均数.其中中位数是人,平均数是人;②上述哪个统计量能反映这7天新增确诊病例人数的一般水平?(2)小明又接着记录了连续5天的全国新增确诊病例人数,如下表:①请在图中补画出这5天每天新增确诊病例人数的折线统计图;②求2月10日至2月21日每天新增确诊病例人数的中位数.(3)请你分别通过对上述两个中位数的比较和全部折线图来说明每天新增确诊病例人数的升降趋势.23.(本小题满分9分)如图,Rt△ABC中,∠C=90°,AC=BC=4,P是BC上一点(不与B,C重合),连接AP,将AP绕点A逆时针旋转90°得到AQ,连接BQ,分别交AC,AP于点D,E,作QF⊥AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan∠ADQ的值;(3)若△AEQ的内心在QF上,直接写出....BP的长.24.(本小题满分10分)学校计划拿出一笔钱给一些班级配置篮球和排球.若给每班1个篮球和2个排球,花完这笔钱刚好配置30个班;若给每班2个篮球和1个排球,花完这笔钱刚好配置20个班.设每个篮球a元,每个排球b元.(1)用含b的代数式表示a;(2)现在给每班x个篮球和y个排球,花完这笔钱刚好配置10个班.①求y与x的函数解析式;②怎样的配置方案,可以使每班配置的排球最少?25.(本小题满分10分)如图,正方形ABCD中,AB=3,P使BC边上一点(不包括B,C),连接AP,点E,B关于直线AP对称,连接DE并延长交AP的延长线于点F,以点B为圆心,BF长为半径作圆,与BE交于点G.(1)当∠PAB=26°时,∠AED=°;(2)求证:直线DF时⊙B的切线;(3)当时,求GF的长;(4)若DE=4,直接写出....EF的长.26.(本小题满分12分)如图,抛物线y=ax2+bx+3经过点A(-3,0),B(1,0),顶点为点M,与y轴交于点C,点P是抛物线上一点,PH⊥y轴于点H,射线PH交抛物线的对称轴于点D.(1)求抛物线的解析式及顶点M的坐标;(2)若点P在第四象限,OH=5,求PD的长;(3)m>0,点E(m,y1),F(-1-m,y2)均在抛物线上,比较y1,y2的大小,并说明理由;(4)若点P在第二象限,连接PA,PC,AC,直接写出....△PAC面积的最大值.。

2020年河北省保定市中考数学一模试卷含答案

2020年河北省保定市中考数学一模试卷含答案

中考数学一模试卷题号一二三总分得分一、选择题(本大题共16小题,共42.0分)1.-2019的绝对值为( )A. B. - C. 2019 D. -20192.下列运算中,不正确的是( )A. 3-2=B. (-1)2019=-1C. (2a)3=8a3D. (a2)3=a53.如图所示的几何体是由五个小正方体组合而成的,则这个几何体的俯视图是( )A.B.C.D.4.下列方程中,没有实数根的是( )A. x2-6x+9=0B. x2-2x+3=0C. x2-x=0D. (x+2)(x-1)=05.如图,数轴上点A表示的数最可能是( )A.-x B. - C. - D. -6.如图,已知AB∥CD,∠A=110°,∠D=30°,则∠CED的度数为( )A. 70°B. 75°C. 80°D. 85°7.如图,数轴上A、B、C三点所表示的数分别为a、b、c,AB=BC,若|b|<|a|<|c|,则关于原点O的位置,下列结论正确的是( )A. 在A、B之间更接近BB. 在A、B之间更接近AC. 在B、C之间更接近BD. 在B、C之间更接近C8.如果a-b=2,那么代数式(-b)•的值为( )A. B.2 C.3 D. 49.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=8,则OB的长为( )A.4 B.5 C.6 D.10.某书店分别用2000元和3000元两次购进《流浪地球》小说,两次进价相同,第二次数量比第一次多50套,该书店第一次购进x套,下列方程正确的是( )A. =B. =C. =D. =11.如图,将边长为3的正方形铁丝框ABCD(面积记为S1)变形为以点B为圆心,BC为半径的扇形(面积记为S2),则S1与S2的关系为( )A. S1>S2B. S1=S2C. S1<S2D. 无法确定12.嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用(-1,1)表示,右下角的圆形棋子用(0,0)表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置可能是( )A. (-1,2)B. (-1,-1)C. (0,2)D. (1,3)13.如图,将△ABC沿BC边上的高线AD平移到△A′B′C′的位置,已知△ABC的面积为18,阴影部分三角形的面积为2,若AA′=4,则AD的长度为( )A. 2B. 6C. 4D. 814.对于函数y=,下列说法正确的是( )A. y是x的反比例函数B. 它的图象过原点C. 它的图象不经过第三象限D. y随x的增大而减小15.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 716.如图,等边△ABC的边长为2,点O是△ABC的内心,D、E在线段AB、BC上且∠DOE=120°,连接DE,下列四个结论正确的个数为( )①OD=OE;②S四边形ODBE=S△ABC;③△BDE周长最小值为3;④S△DOE=S△DBEA. 1个B. 2个C. 3个D. 4个二、填空题(本大题共3小题,共10.0分)17.计算:÷=______.18.用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=______,b=______,c=______.19.已知平面直角坐标系中,点A(4,1),若直线y1=x+b与双曲线y2=(x>0)交于点B,与y轴交于点C.探究:由双曲线y2=(x>0)与线段OA、OC、BC围成的区域M内(不含边界)整点的个数.(点的横、纵坐标都是整数的点称为整点)①当b=-1时,如图,区域M内的整点的个数为______个;②若区域M内恰好有4个整点,则b的取值范围是.三、解答题(本大题共7小题,共68.0分)20.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如下,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉琪发现丙减甲可以使实验成功,请求出丙的代数式.21.某学校为了解学生的体能情况,组织了体育测试,测试项目有A“立定跳远”、B“掷实心球”、C“耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A 、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7①这组成绩的中位数是______,平均数是______;②该班女生丙因病错过了测试,补测抽到了C“耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比①中的平均数大,则丙同学“耐久跑”的成绩为______;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩项目A立定跳远B掷实心球C耐久跑D快速跑测试人数(人)50502030单项平均成绩(分)987822.问题:如图1,五环图案内写有5个正整数a、b、c、d、e,请对5个整数作规律探索,找出同时满足以下3个条件的数:①a、b、c是三个连续偶数(a<b<c);②d、e是两个连续奇数(d<e);③满足a+b+c=d+e.尝试:取b=4,如图2,2+4+6=5+7,5个正整数满足要求.(1)取b=8,能写出满足条件的5个正整数吗?如果能,写出d、e的值;如果不能,说明理由.(2)取b=10,能写出满足条件的5个正整数吗?如果能,写出d、e的值;如果不能,说明理由.猜想:若5个正整数能满足上述三个要求,偶数b具备怎样的条件?概括:现有5个正整数a、b、c、d、e能满足“问题”中的三个条件,请用含k的代数式表示e.(设k为正整数)23.请先阅读作图方法,再完成证明:(1)如图1,嘉嘉用尺规作∠MON的角平分线,作法如下:①以O为圆心,任意长度为半径作孤,交OM、ON于A、B两点;②分别以A、B为圆心,大于AB长为半径作弧,两弧文于C点;③作射线OC.OC即为∠MON的角平分线,连接AC、BC,请证明OC为∠MON的角平分线.(2)如图2,在完成第(1)问作图的基础上,嘉嘉继续如下作图:以A为圆心,AO长为半径作弧交射线OC于点D,连接BD,请判断四边形OADB 的形状并证明.24.甲、乙两人沿同一路线同时同地出发,同向匀速行走,乙行走2分钟后,因故体息2分钟,之后继续按照原速行走,8分钟后两人同时到达终点.两人所走路程S甲(米),S乙(米)与行走时间t(分钟)均满足一次函数关系式,测得部分数据如下表:时间(分钟)路程(米)12345…S甲120300S乙160160160240(1)甲每分钟走______米,乙每分钟走______米;(2)求乙从休息完成之后,直到终点的阶段所走路程S乙与t的关系式,并确定t 的取值范围;(3)当甲、乙两人所走路程和为680米时,求t的值.25.已知抛物线y=-x2+nx+n(n为正整数),对称轴是直线x=1,顶点为B,(1)求n的值及顶点B的坐标;(2)已知A(2,2),点M在对称轴上,且位于顶点上方,设点M的纵坐标为m,连接AM,求tan∠AMB(用含m的代数式表示);(3)将抛物线上下平移,使得新抛物线的顶点C在x轴上,原抛物线上一点P平移后对应点为点Q,若OP=OQ,求点Q的坐标.26.四边形ABCD是正方形,BC=3,点E在BC上且BE=1,以EF为直径作半圆O,点G是半圆弧的中点探究一:设定EF=4,(1)如图1,当F在BC延长线上时,DG的长______;(2)将图1中的半圆O绕点E逆时针方向旋转,旋转角为a,(0°≤α≤180°)①如图2,当EF经过点D时,求A到EF的距离.②如图3,圆心O落在AB边上,求从图1到图3的旋转过程中G点的运动路径长度;③如图4,半圆O与正方形ABCD的边AD相切,切点为P,求AP的长并直接写出在旋转过程中,半圆O与正方形其它各边相切时,点A到切点的距离.探究二:设定EF=2如图5,图6,将半圆O的直径EF沿线段EC和CD滑动,E、F在EC、CD上对应的点为E′、F′,点E滑动到点C停止,请判断线段CG的取值范围.(直接写出结果)答案和解析1.【答案】C【解析】解:-2019的绝对值是:2019.故选:C.直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】D【解析】解:A、正确;B、正确;C、正确;D、(a2)3=a6,故错误,故选:D.利用幂的有关运算性质运算后即可确定正确的选项.本题考查了幂的有关运算性质,属于基础运算,比较简单.3.【答案】B【解析】解:此几何体的俯视图如图:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】B【解析】解:A、△=(-6)2-4×9=0,所以方程有两个相等的实数解,所以A选项错误;B、△=(-2)2-4×3<0,所以方程没有实数解,所以B选项正确;C、△=(-1)2-4×0>0,所以方程有两个不相等的实数解,所以C选项错误;D、方程两个的实数解为x1=-2,x2=1,所以D选项错误.故选:B.分别进行判别式的值,再利用判别式的意义对A、B、C进行判断;利用因式分解法解方程可对D进行判断.本题考查了根的判别式:利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.5.【答案】C【解析】解:由数轴可得:点A表示的数大于-3且小于-2,∵<<,∴2<<3,∴-3<-<-2,故选:C.根据数轴上的点表示数的方法得到点A表示的数大于-3且小于-2,然后分别进行判断即可.本题考查了数轴和故算无理数的大小,解决本题的关键是估算无理数的大小.6.【答案】C【解析】解:∵AB∥CD,∴∠A+∠C=180°,∵∠A=110°,∴∠C=70°,∵∠D=30°,∴∠CED=180°-30°-70°=80°.故选:C.直接利用平行线的性质结合三角形内角和定理得出答案.此题主要考查了平行线的性质,正确得出∠C的度数是解题关键.7.【答案】A【解析】解:∵|c|>|a|>|b|,∴点C到原点的距离最大,点a其次,点b最小,又∵AB=BC,∴原点O的位置是在点A与B之间,靠近点B.故选:A.根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.本题考查了实数与数轴,理解绝对值的定义是解题的关键.8.【答案】A【解析】解:原式=•=•=,当a-b=2时,原式=,故选:A.原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.9.【答案】B【解析】解:∵四边形ABCD是矩形∴AB∥CD,AD=BC=8,∵OM∥AB∴OM∥CD∴,且AO=AC,OM=3∴CD=6,在Rt△ADC中,AC==10∵点O是斜边AC上的中点,∴BO=AC=5故选:B.由平行线分线段成比例可得CD=6,由勾股定理可得AC=10,由直角三角形的性质可得OB的长.本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.10.【答案】A【解析】解:该书店第一次购进x套,则第二次购进(x+50)套,依题意得:.故选:A.该书店第一次购进x套,则第二次购进(x+50)套,根据两次进价相同列出方程.考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.11.【答案】B【解析】解:S1=3×3=9,∵l扇形=,n=,∴S2===9,∴S1=S2.故选:B.分别计算正方形与扇形面积,扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=.本题考查了扇形面积,熟练运用扇形面积计算公式是解题的关键.12.【答案】A【解析】解:故选:A.根据题意构建平面直角坐标系即可解决问题.本题考查坐标与图形变化的性质,坐标确定位置等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.【答案】B【解析】解:设AD=x,则A′D=x-4,根据平移性质可知△ABC与阴影部分三角形相似,则,解得x=6.故选:B.由平移性质可知△ABC与阴影部分三角形相似,根据相似三角形的面积比等于相似比的平方求解.本题主要考查了根据相似三角形的面积比等于相似比的平方,解题的关键是找到相似比,熟知相似三角形的性质.14.【答案】C【解析】解:对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选:C.直接利用反比例函数的性质结合图象分布得出答案.此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.15.【答案】D【解析】解:∵五边形的内角和为(5-2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:D.先根据多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.16.【答案】C【解析】解:①连接OB、OC,如图1所示:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是等边△ABC的内心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,∵∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,,∴△BOD≌△COE(ASA),∴BD=CE,OD=OE,①正确;②∵△BOD≌△COE∴S△BOD=S△COE,∴S四边形ODBE=S△OBC=S△ABC,②正确;③作OH⊥DE,则DH=EH,如图2所示:∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=2+DE=2+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=BC•tan30°=×2×=,∴△BDE周长的最小值=2+×=3,③正确;④S△ODE=OH•DE=×OE•OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE≠S△BDE;④错误;故选:C.①连接OB、OC,证明△BOD≌△COE得出BD=CE,OD=OE,①正确;②由全等三角形的性质得出S△BOD=S△COE,得出S四边形ODBE=S△OBC=S△ABC,②正确;③作OH⊥DE,则DH=EH,求出DE=OE,得出△BDE的周长=BD+BE+DE=2+OE,当OE⊥BC时,OE最小,△BDE的周长最小,求出OE=,得出△BDE周长的最小值=3,③正确;④求出S△ODE=OH•DE=OE2,即S△ODE随OE的变化而变化,得出S△ODE≠S△BDE;④错误;即可得出结论.本题考查了三角形的内心、等边三角形的性质、全等三角形的判定与性质、直角三角形的性质、三角形面积公式等知识;本题综合性强,有一定难度.17.【答案】3【解析】解:÷==3.故答案为:3.直接利用二次根式的除法运算法则得出即可.此题主要考查了二次根式的除法运算,根据二次根式的运算法则得出是解题关键.18.【答案】1;2;-1【解析】解:当a=1,b=2,c=-2时,1<2,而1×(-1)>2×(-1),∴命题“若a<b,则ac<bc”是错误的.故答案为:1;2;-1.根据题意选择a、b、c的值即可.本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.19.【答案】3【解析】解:∵A(4,1),∴直线OA为y=x,∵直线y1=x+b∴直线y1与OA平行,①当b=-1时,直线解析式为y1=x-1,解方程=x-1得x1=2-2(舍去),x2=2+2,则B(2+2,),而C(0,-1),∴区域M内的整点有(1,0),(2,0),(3,0),有3个,故答案为3;②直线y1在OA的下方时,当直线y1=x+b过(1,-1)时,b=-,且经过(5,0),∴区域M内恰有4个整点,b的取值范围是-≤b<-1.直线l在OA的上方时,∵点(2,2)在函数y2=(x>0)的图象上,当直线y1=x+b过(1,2)时,b=,当直线y1=x+b过(1,3)时,b=,∴区域M内恰有4个整点,b的取值范围是<b≤.综上所述,区域M内恰有4个整点,b的取值范围是-≤b<-1或<b≤,故答案为-≤b<-1或<b≤.直线OA的解析式为:y=x,可知直线y1与OA平行,①将b=-1时代入可得:直线解析式为y1=x-1,画图可得整点的个数;②分两种情况:直线y1在OA的下方和上方,画图计算边界时点b的值,可得b的取值.本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.20.【答案】解:(1)根据题意得:(2x2-3x-1)-(x2-2x+3)=2x2-3x-1-x2+2x-3=x2-5x-4,则甲减乙不能使实验成功;(2)根据题意得:丙表示的代数式为2x2-3x-1+x2-2x+3=3x2-5x+2.【解析】(1)根据题意列出关系式,去括号合并后即可作出判断;(2)根据题意列出关系式,去括号合并即可确定出丙.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.【答案】7.5 7.5 8【解析】解:(1)画树状图如图所示,由图中可知抽取结果共有4种,其中甲、乙两同学测试的项目完全相同的结果有2种,则P(三个项目完全相同的概率)==;(2)①根据题意得:中位数是=7.5,平均数==7.5;故答案为:7.5,7.5;②设丙同学“耐久跑”的成绩为x,则这组成绩为:5,6,7,7,x,8,8,9,10,∵这组成绩的众数与中位数相等,∴x为7或8,∵平均数比①中的平均数大,即x>7.5,∴x=8,故答案为:8;(3)×(9+8+)=8.3,答:此次体能测试的平均成绩为8.3.(1)找出抽取结果共有种数,以及其中抽到项目完全相同结果的种数,即可求出所求概率;(2)①根据题意确定出这组数据的平均数与中位数即可;②根据众数、中位数、平均数的定义即可得到结论;(3)根据平均数的定义求解即可.此题考查了列表法与树状图法,用样本估计总体,中位数,以及众数,概率=所求情况数与总情况数之比.22.【答案】解:∵a、b、c是三个连续偶数,∴a+b+c=3b,∵d、e是两个连续奇数,∴d=e-2,∴d+e=2e-2,(1)当b=8时,3×8=2e-2,∴e=13,∴d=11;(2)当b=10时,3×10=2e-2,∴e=16,不符合题意;若5个正整数能满足上述三个要求,偶数b是4的倍数;∵3b=2e-2,令b=4k(k为正整数),∴e=6k+1;【解析】(1)由已知可得3b=2e-2;(1)当b=8时,3×8=2e-2,即可求b与e;(2)当b=10时,3×10=2e-2,求得e=16,不符合题意;通过计算和观察可知b是4的倍数,进而求出e=6k+1;本题考查探索规律,代数式求值;能够通过计算探索b的规律,再利用b的规律表达出e即可;23.【答案】(1)证明:由作法得OA=OB,AD=BD,而OC=OC,∴△AOC≌△BOC(SSS),∴∠AOC=∠BOC,∴OC为∠MON的角平分线;(2)解:四边形OADB为菱形.理由如下:由作法得OA=OB=AD,∵∠AOD=∠BOD,而OD=OD,∴△AOD≌△BOD,∴AD=BD,∴OA=AD=BD=OB,∴四边形OADB为菱形.【解析】(1)利用作法得OA=OB,AD=BD,然后根据“SSS”可证明△AOC≌△BOC,从而得到∠AOC=∠BOC;(2)利用作法得OA=OB=AD,则可证明△AOD≌△BOD得到AD=BD,然后根据菱形的判定方法得到四边形OADB为菱形.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.24.【答案】60 80【解析】解:(1)由表格数据得:甲每分钟走:120÷2=60(米),乙每分钟走:160÷2=80(米);故答案为:60,80;(2)∵乙每分钟走80米,且乙行走2分钟后继续按照原速行走,∴乙从休息完成之后,直到终点的阶段所走路程S乙=160+80(t-4)=80t-160,此时t的范围为:4<t≤8;(3)∵甲每分钟走60米∴S甲=60t当t=4时S甲=240米,S乙=160米此时甲、乙两人所走路程和为240+160=400米<680米∴当甲、乙两人所走路程和为680米时,t≥4∴令60t+(80t-160)=680解得:t=6答:当甲、乙两人所走路程和为680米时t为6.(1)由表格数据列式即可求解;(2)由S乙(米)与行走时间t(分钟)均满足一次函数关系式且乙行走2分钟后继续按照原速行走,即可列出函数解析式,并得出t的范围;(3)当t=4时可得甲、乙两人所走路程和为240+160=400米<680米,进而可得关于x 的一元一次方程60t+(80t-160)=680,解出t值即可.此题主要考查了一次函数应用以及一元一次方程的应用,根据已知得出两人所走路程S (米),S乙(米)与行走时间t(分钟)的关系式是解题关键.甲25.【答案】解:(1)函数对称轴为:x==1,解得:n=2,故点B(1,3),函数的表达式为:y=-x2+2x+2;(2)如图所示,设抛物线与y轴交于点C′,则点C′、A关于函数对称轴对称,设A、C′交对称轴与点H,则tan∠AMB==;(3)将抛物线上下平移,使得新抛物线的顶点C在x轴上,则图象向下平移了3个单位,平移后函数的表达式为:y=-x2+2x-1;即:PQ=3,而OP=OQ,则PQ被x轴垂直平分,则点Q的纵坐标为-,即:y=-x2+2x-1=-,解得:x=1,故点Q的坐标为(1+,-)或(1-,-).【解析】(1)函数对称轴为:x==1,解得:n=2,即可求解;(2)则tan∠AMB=即可求解;(3)PQ=3,而OP=OQ,则PQ被x轴垂直平分,则点Q的纵坐标为-,即可求解.本题为二次函数综合运用题,涉及到图象的平移、解直角三角形等知识,其中(3),确定点P、Q的位置是解题的关键,本题难度适中.26.【答案】1【解析】解:探究一:(1)如图1中,∵BC=3,BE=1,∴EC=2,∵EF=4,∴EC=CF=2,∴点O与点C重合,∵DC⊥EF,∴=,∴CG=CE=2,∴DG=CD-CG=3-2=1.故答案为1.(2)①如图2中,连接AE,作AH⊥EF于H,EM⊥AD于M,则四边形DCEM是矩形.∴EM=CD=3,在Rt△CDE中,DE===,∵•AD•EM=•DE•AH,∴AH==.②如图3中,在Rt△OBE中,cos∠OEB==,∴∠OEB=60°,∵∠OEG=45°,∴∠EG′=15°,∵CE=CG=2,∴∠GEC=45°,EG=2,∴∠GEG′=180°-15°-45°=120°,∴从图1到图3的旋转过程中G点的运动路径长度==π.③如图4中,当⊙O与AD相切于点P时,延长PO交BBC于M.在Rt△EOM中,OE=2,OM=1,∴EM==,∴AP=BM=1+.如图4-1中,当⊙O与AB相切于点P时,作OM⊥BC于M.∵四边形OMBP是矩形,∴OP=BM=2,∵BE=1,∴EM=1,∴OM==,∴PB=OM=,∴PA=3-.如图4-2中,当⊙O与BC相切于点E时,PA==,综上所述,满足条件的PA的值为1+或3-或.探究二:如图6中,连接OG,OC,CG.∵∠ECF=90°,EF=2,OE=OF,∴OC=EF=1,∵OG=OE=OF=EF=1,∴当OG,OC共线时,CG的值最大,最大值为2,当点E与点C重合时,GC的值最小,最小值为,∴≤CG≤2.探究一:(1)证明点G在线段CD上即可解决问题.(2)①如图2中,连接AE,作AH⊥EF于H,EM⊥AD于M,则四边形DCEM是矩形.利用面积法求解即可.②利用弧长公式即可解决问题.③分三种情形画出图形分别求解即可.探究二:求出CG的最大值以及最小值即可.本题属于圆综合题,考查了直线与圆的位置关系,解直角三角形,正方形的性质,矩形的判定和性质,弧长公式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.。

河北省保定市2019-2020学年中考一诊数学试题含解析

河北省保定市2019-2020学年中考一诊数学试题含解析

河北省保定市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限2.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°3.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°4.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°5.将不等式组2(23)3532x xx x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A.B.C.D.6.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再A.4 B.6 C.8 D.107.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-38.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1079.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-10.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°11.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.212.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简11x-÷211x-=_____.14.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.15.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.16.如图,在△ABC中,AB=3+3,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.17.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.18.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.20.(6分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活多少?21.(6分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.6m ,木竿PQ 落在地面上的影子PM =1.8m ,落在墙上的影子MN =1.1m ,求木竿PQ 的长度.24.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 25.(108﹣4cos45°+(12)﹣1+|﹣2|.AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.27.(12分)已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB 的面积;观察图象,直接写出不等式kx+b ﹣mx>0的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入ky x=得,k=b (﹣1﹣n 2),即 241b n=--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【详解】解:把(2,2)代入k y x=,把(b ,﹣1﹣n 2)代入ky x=得: k=b (﹣1﹣n 2),即241b n =--,∵k=4>0,241b n =--<0,∴一次函数y=kx+b 的图象经过第一、三、四象限, 故选C . 【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键. 2.D 【解析】 试题分析:如图,连接OC , ∵AO ∥DC ,∴∠ODC=∠AOD=70°, ∵OD=OC ,∴∠ODC=∠OCD=70°, ∴∠COD=40°, ∴∠AOC=110°, ∴∠B=∠AOC=55°.故选D .考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质 3.B 【解析】试题分析:如图,翻折△ACD ,点A 落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.4.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键5.B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11xx≤⎧⎨>-⎩,即11x-<≤.∴在数轴上可表示为.故选B.“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=12 CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BC∥DE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以△CEF的面积=12CF•CE=8;故选:C.点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.7.A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.8.D【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数9.B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.【解析】分析:依据AB ∥EF ,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°. 详解:∵AB ∥EF , ∴∠BDE=∠E=45°, 又∵∠A=30°, ∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°, 故选C .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等. 11.C 【解析】 【分析】由方程有两个相等的实数根,得到根的判别式等于0,求出m 的值,经检验即可得到满足题意m 的值. 【详解】∵一元二次方程mx 1+mx ﹣12=0有两个相等实数根, ∴△=m 1﹣4m×(﹣12)=m 1+1m =0, 解得:m =0或m =﹣1, 经检验m =0不合题意, 则m =﹣1. 故选C . 【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 12.D 【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2, 所以﹣2ba=﹣1,可得b=2a , 当x=﹣3时,y <0, 即9a ﹣3b+c <0, 9a ﹣6a+c <0,∵a<0,∴4a+c<0,所以①选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;④由图象得:当x>﹣1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=11x-÷1(1)(1)x x+-=11x-•(x+1)(x﹣1)=x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.14.2 3【解析】【分析】根据概率的概念直接求得. 【详解】解:4÷6=2 3 .故答案为:2 3 .【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.15.13518020 x x=+【解析】【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.【详解】∵甲平均每分钟打x个字,∴乙平均每分钟打(x+20)个字,根据题意得:13518020x x=+,故答案为13518020x x=+.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16【解析】【分析】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.【详解】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四边形ADEF是菱形,∴F,D关于直线AE对称,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是线段BD的长,∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=12x,3,∵∠EGB=45°,EG⊥BG,∴EG=BG=12x,∴3123,∴x=2,∴DH=1,BH=3,∴221310,∴PF+PB10,10.【点睛】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.17.∠BAD=90°(不唯一)【解析】【分析】根据正方形的判定定理添加条件即可.【详解】解:∵平行四边形ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴四边形ABCD是菱形,当∠BAD=90°时,四边形ABCD为正方形.故答案为:∠BAD=90°.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.18.100(1+x)2=121【解析】【分析】根据题意给出的等量关系即可求出答案.【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2).【解析】【分析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB 是直径 ∴∠ACB=90° ∴∠ACO+∠OCB=90° ∵OC ⊥PC∴∠BCP+∠OCB=90° ∴∠BCP=∠ACO ∵OA=OC ∴∠A=∠ACO ∴∠A=∠BCP在△PBC 和△PCA 中: ∠BCP=∠A ,∠P=∠P ∴△PBC ∽△PCA , ∴∴tan ∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.20.(1)50(2)36%(3)160 【解析】 【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数. 【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%. (3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.21.(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t ≤1时,设s=mt+n,由题意得:200 303000 m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.22.(1),;(2)点的坐标为;(3)点的坐标为和【解析】【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.木竿PQ的长度为3.35米.【解析】【分析】过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN 为矩形,∴DN =PM =1.8m ,DP =MN =1.1m ,∴AB QDBC DN=, ∴QD =AB DNBC⋅=2.25,∴PQ =QD +DP = 2.25+1.1=3.35(m ). 答:木竿PQ 的长度为3.35米. 【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.24.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94. 25.4 【解析】 分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=4224+=. 点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1pp a a-=(0a p ≠,为正整数)”是正确解答本题的关键.26.(1)证明见试题解析;(2)1. 【解析】 【详解】试题分析:(1)由AE=DF ,∠A=∠D ,AB=DC ,易证得△AEC ≌△DFB ,即可得BF=EC ,∠ACE=∠DBF ,且EC ∥BF ,即可判定四边形BFCE 是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中{AC DB A D AE DF=∠=∠=,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴当BE=1时,四边形BFCE是菱形,故答案为1.【考点】平行四边形的判定;菱形的判定.27.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.。

2020年河北省保定市中考数学一模试卷

2020年河北省保定市中考数学一模试卷

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共20.0分)1.如图,坐标平面上二次函数y=x2+1的图象经过A、B两点,且坐标分别为A(a,10)、B(b、10),则AB的长度为()A. 3B. 5C. 6D. 72.在下列各图中,不添加任何辅助线,若每个图所给出的两个三角形都是相似的,则位似图形的个数是()A. 1B. 2C. 3D. 43.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A. B.C. D.4.在如图所示的几何体的周围添加一个正方体,添加前后主视图不变化的是()A. B.C. D.5.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P的度数可以为()A. 20°B. 50°C. 110°D. 80°6.点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,则下列说法正确的是()A. a>0B. a<0C. 6a+b=0D. a+6b=07.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A. 当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B. 当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C. 当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D. 当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形8.如图,在4×4的网格图中,A、B、C是三个格点,其中每个小正方形的边长为1,△ABC的外心可能是()A. M点B. N点C. P点D. Q点9.如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为()A. 27-9B. 54-18C. 18D. 5410.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A. 2B. 3C.D. 3二、填空题(本大题共5小题,共20.0分)11.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=13米,则旗杆BC的高度为______米.12.用如图的两个自由转动的转盘做“配紫色”游戏分别转动两个转盘若其中一个转出红色,另一个转出蓝色即可配出紫色,则配成紫色的概率是______.13.小帅家的新房子刚装修完,便遇到罕见的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图1所示的是他了解的一款雨罩.它的侧面如图2所示,其中顶部圆弧AB 的圆心O在整直边缘D上,另一条圆弧BC的圆心O.在水平边缘DC的廷长线上,其圆心角为90°,BE⊥AD于点E,则根据所标示的尺寸(单位:c)可求出弧AB所在圆的半径AO的长度为______cm.14.如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为______.15.如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;…;则对于图①来说,BD 可以看作是正______边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是______边形的边长.三、解答题(本大题共8小题,共80.0分)16.如图,BD、AC相交于点P,连接AB、BC、CD、DA,∠1=∠2(1)求证:△ADP∽△BCP;(2)若AB=8,CD=4,DP=3,求AP的长.17.如图,在一居民楼AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为38°.从距离楼底B点2米的P处经过树顶E点恰好看到塔的顶部C点,且仰角β为28°.已知树高EF=8米,求塔CD的高度.(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)18.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某种苹果到了收获季节,投入市场销售时,调查市场行情,发现该苹果的销售不会亏本,且该产品的日销售量y(千克)与销售单价x(元)之间满足一次函数关系关于销售单价、日销售量、日销售利润的几组对应值如表:销售单价x10152328(元)日销售量y20015070m (千克)日销售利40010501050400润w(元)(注:日销售利润=日销售量×(销售单价-成本单价))(1)求y关于x的函数解析式(要写出x的取值范围)及m的值;(2)根据以上信息,填空:产品的成本单价是______元,当销售单价x=______元时,日销售利润w最大,最大值是______元;(3)某农户今年共采摘苹果4800千克,该品种苹果的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批苹果?请说明理由19.课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'C和AD相交于点E,如图1所示.探素发现(1)在图1中,①请猜想并证明AE和EC的数量关系;②连接B'D,请猜想并证明B'D和AC的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时(AB≠BC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用(4)在图3中,若∠B=30°,AB=2,请您直接写出:当BC的长度为多少时,△AB'D 恰好为直角三角形.20.如图,在平面直角坐标系的第一象限中,有一点A(1,2),AB∥x轴且AB=6,点C在线段AB的垂直平分线上,且AC=5,将抛物线y=ax2(a>0)的对称轴右侧的图象记作G.(1)若G经过C点,求抛物线的解析式;(2)若G与△ABC有交点.①求a的取值范围;②当0<y≤8时,双曲线y=经过G上一点,求k的最大值.21.如图1,在矩形ABCD中,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部,将半圆O绕点A顺时针旋转a度(0°≤a≤180°).(1)在旋转过程中,B′C的最小值是______,如图2,当半圆O的直径落在对角线AC上时,设半圆O与AB的交点为M,则AM的长为______.(2)如图3,当半圆O与直线CD相切时,切点为N,与线段AD的交点为P,求劣弧AP的长;(3)在旋转过程中,当半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,请直接写出d的取值范围.22.在△ABC中,AB=AC=5,BC=8,点M是△ABC的中线AD上一点,以M为圆心作⊙M.设半径为r(1)如图,当点M与点A重合时,分别过点B,C作⊙M的切线,切点为E,F.求证:BE=CF;(2)如图2,若点M与点D重合,且半圆M恰好落在△ABC的内部,求r的取值范围;(3)当M为△ABC的内心时,求AM的长.23.如图,直线y=-x+4分别交x轴、y轴于A、C两点,抛物线y=-x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点C作CD∥x轴交抛物线于点D(1)求抛物线的函数表达式;(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.答案和解析1.【答案】C【解析】【分析】此题考查了二次函数图象上点的坐标特征,熟练掌握二次函数性质是解本题的关键.把y=10代入二次函数解析式求出x的值,确定出A与B的横坐标,即可求出AB的长.【解答】解:把y=10代入二次函数解析式得:x2+1=10,解得:x=3或x=-3,即A(3,10),B(-3,10),则AB的长度为6.故选C.2.【答案】C【解析】解:根据位似图形的定义可知,第1、2、4个图形是位似图形,而第3个图形对应点的连线不能交于一点,故位似图形有3个.故选:C.根据位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.本题考查了位似图形的定义,解题的关键是牢记位似图形的性质:位似图形一定相似,对应点的连线交于一点,对应边互相平行.3.【答案】A【解析】【分析】本题考查了点与圆的位置关系,解题的关键是根据数据判断出点到直线的距离和圆的半径的大小关系,难度不大.根据点到直线的距离和圆的半径的大小关系判断点与圆的位置关系即可.【解答】解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选A.4.【答案】D【解析】解:选项A的图形的主视图均为:选项B、C的图形的主视图均为:原图和选项D的图形的主视图均为:故选:D.根据从正面观察得到的图形是主视图即可解答.本题考查了简单组合体的三视图的知识,从正面看所得到的图形是主视图.5.【答案】D【解析】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△PAB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB>50°,于是得到结论.本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.6.【答案】C【解析】【分析】根据题意可以得到a、b的关系式,然后根据二次函数的性质即可判断各个选项中的结论是否成立.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.【解答】解:∵点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,∴,解得:6a+b=0,故选项C正确,选项D错误,由题目中的条件无法判断a的正负情况,故选项A、B错误.故选:C.7.【答案】D【解析】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.8.【答案】D【解析】解:由图可知,△ABC是锐角三角形,∴△ABC的外心只能在其内部,由此排除A选项和B选项,由勾股定理得,BP=CP=≠PA,∴排除C选项,故选:D.由图可知,△ABC是锐角三角形,于是得到△ABC的外心只能在其内部,根据勾股定理得到BP=CP=≠PA,于是得到结论.本题考查了三角形的外接圆与外心,勾股定理,熟练掌握三角形的外心的性质是解题的关键.9.【答案】B【解析】解:设EF交AH于M、交HD于N,连接OF、OE、MN,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=6×=3,MN=2(6-3)=12-6,∴FM=(6-12+6)=3-3,∴阴影部分的面积=4S△AFM=4×(3-3)×3=54-18;故选:B.设EF交AH于M、交HD于N,连接OF、OE、MN,根据题意得到△EFO是等边三角形,△HMN是等腰直角三角形,由三角函数求出△EFO的高,由三角形面积公式即可得出阴影部分的面积.本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.10.【答案】A【解析】解:过点O作OE⊥AB于E,如图:∵O为圆心,∴AE=BE,∴OE=BC,∵OE≤OP,∴BC≤2OP,∴当E、P重合时,即OP垂直AB时,BC取最大值,最大值为2OP=2.故选:A.过点O作OE⊥AB于E,由垂径定理易知E是AB中点,从而OE是△ABC中位线,即BC=20E,而OE≤OP,故BC≤2OP.本题主要考查了垂径定理的基本应用、三角形三边关系,难度适中;过圆心作弦的垂线是运用垂径定理的常用技巧和手段,要熟练掌握.11.【答案】9.5【解析】解:设CD=2x米,∵斜面AC的坡度为1:2,∴AD=2x,由勾股定理得,CD2+AD2=AC2,即x2+(2x)2=()2,解得,x=,则CD=,AD=5,在Rt△ABD中,BD2=AB2-AD2=144,解得,BD=12,则BC=12-2.5=9.5,故答案为:9.5.设CD=2x米,根据坡度的概念用x表示出AD,根据勾股定理求出x,根据勾股定理求出BD,结合图形计算即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键.12.【答案】【解析】解:用列表法将所有可能出现的结果表示如下:红(红,红)(蓝,红)(蓝,红)蓝(红,蓝)(蓝,蓝)(蓝,蓝)黄(红,黄)(蓝,黄)(蓝,黄)黄(红,黄)(蓝,黄)(蓝,黄)红蓝蓝上面等可能出现的12种结果中,有3种情况可以得到紫色,所以可配成紫色的概率是:,故答案为:.根据题意,用列表法将所有可能出现的结果,分析可能得到紫色的概率,得到结论.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.13.【答案】61【解析】解:连接BO1,易知BE=60cm,AE=50cm.设弧AB的半径为Rcm,则O1B=Rcm,O1E=(R-50)cm.在Rt△O1BE中,由勾股定理得:O1B2=BE2+O1E2,即R2=602+(R-50)2,解得:R=61.故答案为:61连接BO1,设弧AB的半径为Rcm,在直角三角形BO1E中,则O1B=Rcm,O1E=(R-50)cm,BE=60cm,根据勾股定理列出关于R的方程,解方程求出半径R的值即可.本题主要考查了勾股定理,垂径定理,难度适中,关键是求出弧AB所在圆的半径.14.【答案】5【解析】解:如图所示:过点E作EM⊥BC,EN⊥AB,分别交BC、AB于M、N两点,且EF与BC相交于点H.∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,∴∠CEH=∠FBH=90°,又∵∠EHC=∠BHF,∴△ECH∽△BFH(AA),∴∠ECH=∠BFH,∵EM⊥BC,EN⊥AB,四边形ABCD是正方形,∴四边形ENBM是正方形,∴EM=EN,∠EMC=∠ENF=90°,在△EMC和△ENF中∴△EMC≌△ENF(AAS)∴CM=FN,∵EM∥DC,∴△BEM∽△BDC,∴.又∵DE=4BE,∴=,同理可得:,设BN=a,则AB=5a,CM=AN=NF=4a,∵AF=8,AF=AN+FN,∴8a=8解得:a=1,∴AB=5.故答案为:5.由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,从而得到∠ECH=∠BFH;作辅助线可证明四边形ENBM是正方形,根据正方形的性质得EM=EN,由角角边可证明△EMC≌△ENF,得CM=FN;因DE=4BE,△BEM∽△BDC,△BEN∽△BDA和线段的和差可求出正方形ABCD的边长.本题考查了正方形的判定与性质,两个三角形全等的判定与性质,两个似三角形的判定与性质,线段的和差等综合知识,重点是掌握两个三角形相似和全等的判定的方法,难点是作辅助线构建两个三角形全等.15.【答案】十二正n(n+1)【解析】解:如图①,连接OA、OB、OD,∵正三角形ADC和正方形ABCD接于同一个⊙O,∴∠AOD==120°,∠AOB==90°,∴∠BOD=∠AOD-∠AOB=30°,∵=12,∴BD可以看作是正十二边形的边长;若正n边形和正(n+1)边形内接于同一个圆,同理可得∠AOD=,∠AOB=,∴∠BOD=∠AOD-∠AOB=-=,∵=n(n+1),∴BD可以看作是正n(n+1)边形的边长.故答案为十二;正n(n+1).如图①,连接OA、OB、OD,先计算出∠AOD=120°,∠AOB=90°,则∠BOD=30°,然后计算可判断BD是正十二边形的边长;对于正n边形和正(n+1)边形内接于同一个圆,同样计算出∠BOD=∠AOD-∠AOB=,利用=n(n+1)可判断BD可以看作是正n(n+1)边形的边长.本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形每一边所对的圆心角叫做正多边形的中心角.16.【答案】解:(1)证明:∵∠1=∠2,∠DPA=∠CPB∴△ADP∽△BCP(2)∵△ADP∽△BCP,∴=,∵∠APB=∠DPC∴△APB∽△DPC∴==,∴AP=6【解析】(1)由∠1=∠2,∠DPA=∠CPB(对顶角相等),即可得证△ADP∽△BCP(2)由△ADP∽△BCP,可得=,而∠APB与∠DPC为对顶角,则可证△APB∽△DPC,从而得==,即可求AP此题主要考查相似三角形的判定,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.17.【答案】解:由题意知,∠EDF=α=38°,∴FD=≈=10(米).EH=8-2=6(米)在Rt△PEH中,∵tanβ==.∴≈0.5.∴BF=12(米)PG=BD=BF+FD=12+10=22(米).在直角△PCG中,∵tanβ=.∴CG=PG•tanβ≈22×0.5=11(米).∴CD=11+2=13(米).【解析】根据题意求出∠EDF=38°,通过解直角△EFD求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.本题考查了解直角三角形的应用-仰角俯角问题,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.18.【答案】(1)设y与x的函数关系式为y=kx+b,解:将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=-10x+300(8≤x≤30);(2)8,19,1210;(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y=-10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4800,∴不能销售完这批苹果.【解析】解:(1)见答案;(2)设每天销售获得的利润为w,则w=(x-8)y=(x-8)(-10x+300)=-10(x-19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;故答案为:8,19,1210;(3)见答案.(1)利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析式,并配方成顶点式即可得出最大值;(3)求出在(2)中情况下,即x=19时的销售量,据此求得40天的总销售量,比较即可得出答案.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系,据此列出二次函数的解析式,并熟练掌握二次函数的性质.19.【答案】解:(1)如图1中,①结论:EA=EC.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.②连接DB′.结论:DB′∥AC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(2)如图2中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.(3)如图3中,当四边形ABCD是平行四边形时,仍然有EA=EC,DB′∥AC.理由:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(4)①如图3-1中,当∠AB′C=90°时,易证∠BAC=90°,BC==.②如图3-2中,当∠ADB′=90°时,易证∠ACB=90°,BC=AB•cos30°=.③如图3-3中,当∠DAB′=90°时,易证∠B=∠ACB=30°,BC=2•AB•cos30°=2.④如图3-4中,当∠DAB′=90°时,易证:∠B=∠CAB=30°,BC==,综上所述,满足条件的BC的长为或或2或【解析】(1)①想办法证明∠EAC=∠ECA即可判断AE=EC.②想办法证明∠ADB′=∠DAC即可证明.(2)①当AB:AD=1:1时,符合题意.②当AD:AB=时,也符合题意,(3)结论仍然成立,证明方法类似(1).(4)先证得四边形ACB′D是等腰梯形,分四种情形分别讨论求解即可解决问题;本题属于四边形综合题,考查了翻折变换,矩形的性质,平行四边形的性质,直角三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20.【答案】解:(1)如图1中,作CH⊥AB于H.∵CA=CB=5,CH⊥AB,∴AH=HB=3,在Rt△ACH中,CH==4,∴C(4,6),∵抛物线y=ax2(a>0)经过C点,∴6=16a,∴a=,∴抛物线的解析式为y=x2.(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=,∵若G与△ABC有交点,∴≤a≤2.②由题意当a=时,y=x2,当y=8时,8=x2,∴x>0,∴x=14,∴当反比例函数y=经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112.【解析】(1)如图1中,作CH⊥AB于H.求出点C坐标即可解决问题;(2)①当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,可得a=,由此即可解决问题;②由题意当a=时,y=x2,当y=8时,8=x2,因为x>0,推出x=14,由题意当反比例函数y=经过点(14,8)时k的值最大;本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.21.【答案】(1)1 ,;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G.∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=1.在Rt△AGO中,∠AGO=90°,AO=2,AG=1,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴劣弧AP的长==π;(3)由(2)可知:△AOP为等边三角形,∴DN=GO=OA=,∴CN=CD+DN=4+,当点B′在直线CD上时,如图4所示.在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴B′D==,∴CB′=4-,∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.【解析】解:(1)∵在矩形ABCD中,AB=4,BC=3,∴AC=5,在旋转过程中,当点B′落在对角线AC上时,B′C的值最小,最小值为1;在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=5.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;故答案为:1,;(2)见答案;(3)见答案.【分析】(1)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=1可得出∠OAG=60°,进而可得出△AOP 为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(1)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.22.【答案】解:(1)如图1,连接AE,AF,∵BE和CF分别是⊙O的切线,∴∠BEA=∠CFA=90°,∵AB=AC,AE=AF,∴Rt△BAE≌Rt△ACF(HL),∴BE=CF;(2)如图2,过点D作DG⊥AB于点G,∵AB=AC=5,AD是中线,∴AD⊥BC,∴AD==3,∴BD×AD=AB×DG,∴DG=,∴当0<r<时,半圆M恰好落在△ABC内部;(3)当M为△ABC的内心时,如图3,过M作MH⊥AB于H,作MP⊥AC于P,则有MH=MP=MD,连接BM、CM,∴AB•MH+BC•MD+AC•MP=AD•BC,∴r===,∴AM=AD-DM=.【解析】(1)连接AE,AF,利用“HL”证Rt△BAE≌Rt△ACF即可得;(2)作DG⊥AB,由AB=AC=5,AD是中线知AD⊥BC且AD==3,依据BD×AD=AB×DG可得DG=,从而得出答案;(3)作MH⊥AB,MP⊥AC,有MH=MP=MD,连接BM、CM,根据AB•MH+BC•MD+AC•MP=AD•BC求出圆M的半径,从而得出答案.本题是圆的综合问题,解题的关键是掌握等腰三角形的判定与性质、全等三角形的判定与性质、圆的切线的判定与性质等知识点.23.【答案】解:(1)y=-x+4,令x=0,则y=4,令y=0,则x=4,则点A、C的坐标分别为(4,0)、(0,4),将点A的坐标代入抛物线的表达式并解得:m=3,故抛物线的表达式为:y=-x2+3x+4…①,令y=0,则x=-1或4,故点B(-1,0);(2)①当点E在CD上方时,tan∠BCO==,则直线CE的表达式为:y=x+4…②,联立①②并解得:x=0或(舍去0),则点E(,);②当点E在CD下方时,同理可得:点E′(,);故点E的坐标为E(,)或(,);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,-x2+3x+4),则PM=PQ=x,C、M、N、P为顶点的四边形是菱形,则PM=PN,即:x=-x2+3x+4,解得:x=0或4-(舍去0),故菱形边长为x=4-2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为2;故:菱形边长为4-2或.【解析】(1)利用直线方程求得点A、C的坐标,根据点A、C坐标求得抛物线解析式;(2)分点E在CD上方、点E在CD下方两种情况,分别求解即可;(3)分CM为菱形的一条边、CM为菱形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、菱形基本性质等,要注意分类求解、避免遗漏.。

河北省保定市定兴县2020年九年级第一次模拟考试数学试题

河北省保定市定兴县2020年九年级第一次模拟考试数学试题

河北省保定市定兴县2020年九年级第一次模拟考试数 学 试 题本试卷满分为120分,考试时间为120分钟.一、选择题(本大题共16个小题,共42分。

1—10小题各3分;11—16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图1,一个三角形只剩下一个角,这个三角形为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上都有可能2.如图2,某排球队检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数.下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是( )A .B .C .D .3.如图3,AB ∥CD ,∠C =48°,∠1=( )A .42°B .48°C .132°D .138°4.如图4,在由边长相同的7个正六边形组成的网格中,点A ,B 在格点上.再选择一个格点C ,使△ABC 是以AB 为腰的等腰三角形,符合点C 条件的格点个数是( ) A .1 B .2 C .3 D .4 5.下列调查:①机场对乘客进行安检; ②对北京世园会游客满意度的调查;③对全省中学生视力情况的调查; ④九年级一班要选出1人参加学校的100米比赛. 其中适合全面调查的是( ) A .②③B .①④C .②④D .①③图 1图 4图 2图36.把0.00205写成a ×10n (1≤a <10,n 为整数)的形式,则n 为 ( )A. -2B. -3C. -4D. -5 7.计算:1252-50×125+252=( )A. 100B. 150C. 10000D. 225008.已知二元一次方程组⎩⎪⎨⎪⎧5x +4y =20①4x -5y =8 ②,如果用加减消元法消去y ,则下列方法可行的是( )A. ①×4+②×5B. ①×5+②×4C. ①×5-②×4D. ①×4-②×5 9.关于x 的方程x 2+2x -a =0没有实数根,则a 的值可能是( )A .-2B .-1C .0D .210.已知:∠MON ,如图5,小静进行了以下作图:①在∠MON 的两边上分别截取OA ,OB ,使OA =OB ; ②分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ; ③连接AC ,BC ,AB ,OC .若OC =2,S 四边形OACB =4,则AB 的长为( ) A .5B .4C .3D .211.要制作一个密封的长方体铁盒,嘉嘉设计出了它的三视图,如图6,按图中尺寸(单位:cm )判断,要制作这个长方体铁盒,如果只考虑面积因素,采用下列哪种面积的铁板最合理( ) A .1000cm 2 B .1030cm 2 C .1100cm 2D .1200cm 2 12.如图7,函数xky =(k ≠0,x <0)的图像L 经过点A (-4,2),直线AB 与x 轴交于点B (-5,0),经过点C (0,4)作y 轴的垂线,分别交L 和直线AB 于点M ,N ,则MN =( ) A .1 B .-5 C .-1图5图6D .513.如图8,在平整的桌面上面一条直线l ,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC 与边l 对齐,此时△ABC 的内心是点P ;将纸片绕点C 顺时针旋转,使点B 落在l 上的点B '处,点A 落在A '处,得到△A 'B 'C '的内心点P '.下列结论正确的是( )A .PP '与l 平行,PC 与P 'B '平行 B .PP '与l 平行,PC 与P 'B '不平行 C .PP '与l 不平行,PC 与P 'B '平行D .PP '与l 不平行,PC 与P 'B '不平行14.如图,一艘货船在A 处,巡逻艇C 在其南偏西60°的方向上,此时一艘客船在B 处,巡逻艇C 在其南偏西20°的方向上,则此时从巡逻艇上看这两艘船的视角∠ACB 的度数是( ) A. 80° B. 60° C. 40° D. 30°15.如图10,数轴上有两点A ,B ,表示的数分别是m ,n .已知m ,n 是两个连续的整数,且m +n =-1,则分式122--m m m ÷mm -12的值为( )A .-1B .1C .3D .-316.如图11,∠ACB =90°,AC =BC ,CD 平分∠ACB ,点D ,E 关于CB 对称,连接EB并延长,与AD 的延长线交于点F ,连接DE ,CE . 对于以下结论: ①DE 垂直平分CB ; ②AD =BE ;③∠F 不一定是直角; ④EF 2+DF 2=2CD 2. 其中正确的是( )图8图11图10A .①④B .②③C .①③D .②④二、填空题(本大题共3个小题,17小题3分;18—19小题各有2个空,每空2分.共11分.请把答案填在题中横线上) 17.12020)(12020(-+)= .18.根据如下程序,解决下列问题:(1)当m =-1时,n = ; (2)若n =6,则m = . 19.如图12,下列正多边形都满足BA 1=CB 1,在正三角形中,我们可推得:∠AOB 1=60°;在正方形中,可推得:∠AOB 1=90°;在正五边形中,可推得:∠AOB 1=108°,依此类推在正八边形中,AOB 1= °,在正n (n ≥3)边形中,∠AOB 1= °.三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)对于四个数“-6,-2,1,4”及四种运算“+,-,×,÷”,列算式..解答: (1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得:①“□-□”的结果最小;②“□×□”的结果最大.(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.21.(本小题满分9分)如图13-1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图13-2;第2次画线分割成7个互不重叠的正方形,得到图13-3……以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成个互不重叠的正方形;第4次画线后,分割成 个互不重叠的正方形.发现:第n 次画线后,分割成 个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.22.(本小题满分9分)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于-2的数,已知其中3个乒乓球上标的数分别是-2,2,4,所标的4个数的中位数是0. (1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.图13-1 图13-2 图13-3 先摸 后摸23.(本小题满分9分)如图14-1和14-2,矩形ABCD 中,E 是AD 的中点,P 是BC 上一点,AF ∥PD ,∠FPE =∠DPE .(1)作射线PE 交直线AF 于点G ,如图14-1.①求证:AG =DP ;②若点F 在AD 下方,AF =2,PF =7,求DP 的长.(2)若点F 在AD 上方,如图14-2,直接写出PD ,AF ,PF 的等量关系. 24.(本小题满分10分)甲、乙二人均从A 地出发,甲以60米/分的速度向东匀速行进,10分钟后,乙以(60+m )米/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t 分钟. (1)当m =6时,解答:①设甲与A 地的距离为甲s ,分别求甲向东行进及返回过程中,甲s 与t 的函数关系式(不写t 的取值范围);②当甲、乙二人在途中相遇时,求甲行进的总时间. (2)若乙在出发9分钟内与甲相遇,求m 的最小值.图14-1 图14-2如图15,△ABC中,∠ACB=90°,AC=3,BC=4,延长BC到点D,使BD=BA,P是BC边上一点.点Q在射线BA上,PQ=BP,以点P为圆心,PD长为半径作⊙P,交AC于点E,连接PQ,设PC=x.(1)AB=,CD=,当点Q在⊙P上时,求x的值;(2)x为何值时,⊙P与AB相切?(3)当PC=CD时,求阴影部分的面积;(4)若⊙P与△ABC的三边有两个公共点,直接写出x的取值范围.图15 备用图如图16,函数y =-x 2+21x +c (-2020≤x ≤1)的图象记为L 1,最大值为M 1;函数 y =-x 2+2cx +1(1≤x ≤2020) 的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L . (1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数;(3)若M 1,M 2的差为1647,直接写出c 的值.图16。

河北省保定市定兴县2020年九年级第一次模拟考试数学答案

河北省保定市定兴县2020年九年级第一次模拟考试数学答案

河北省保定市定兴县2020年九年级第一次模拟考试数学参考答案说明:1.各校在阅卷过程中,如考生还有其它正确解法,可参照评分标准酌情给分.2.解答右端所注分数,表示正确做到这一步应得的累加分数,只给整数分数.一、选择题(本大题共16个小题,共42分。

1—10小题各3分;11—16小题各2分。

) 1—5:BACBB 6—10:BCBAB 11—16:CABCDD二、填空题(本大题共3个小题,共11分。

17小题3分;18—19小题各2个空,每空2分)17.2019 18.(1)4 (2)5或-3 19.135;(n -2)·180n. 三、解答题(本大题共7个小题,共67分)20.解:(1)-6-2+1+4=-8+5=-3-----------------------------2分(2)①(―6)―4=―10--------------------4分②(―6)×(-2)=12--------------6分(3)答案不唯一,符合要求即可。

如:―2―1×4=―6;―6+4÷1=-2;4―(―6)÷(-2)=1;(-2)×1―(―6)=4-----------8分21.尝试:10 13---------------------------4分发现:(3n +1)------------------------6分当n =2020时,3n +1=6061,即第2020次画线后得到互不重叠的正方形的个数是6061-------------7分探究:不能。

----------------------------------------8分设每次画线后得到互不重叠的正方形的个数为m ,则m =3n +1。

若m =1001,则1001=3n +1。

解得31333=n 。

这个数不是整数,所以不能。

-----------------------------9分22.解:(1)设另一个球面上标的数是x . 由题意,得022=+x ,x =-2。

2020年保定一模——数学答案

2020年保定一模——数学答案

2020年保定一模数学参考答案一、选择题(本大题共16个小题,共42分。

1—10小题各3分;11—16小题各2分。

)1—5:BCCBB 6—10:CBBAB 11—16:CABCDD二、填空题(本大题共3个小题,共11分。

17小题3分;18—19小题各2个空,每空2分)17.201918.(1)4(2)5或-319.135;(n -2)·180n.三、解答题(本大题共7个小题,共67分)20.解:(1)-6-2+1+4=-8+5=-3-----------------------------2分(2)①(―6)―4=―10--------------------4分②(―6)×(-2)=12--------------6分(3)答案不唯一,符合要求即可。

如:―2―1×4=―6;―6+4÷1=-2;4―(―6)÷(-2)=1;(-2)×1―(―6)=4-----------8分21.尝试:1013---------------------------4分发现:(3n +1)------------------------6分当n =2020时,3n +1=6061,即第2020次画线后得到互不重叠的正方形的个数是6061-------------7分探究:不能。

----------------------------------------8分设每次画线后得到互不重叠的正方形的个数为m ,则m =3n +1。

若m =1001,则1001=3n +1。

解得31333=n 。

这个数不是整数,所以不能。

-----------------------------9分22.解:(1)设另一个球面上标的数是x .由题意,得022=+x ,x =-2。

∴众数是-2.------------------3分(2)摸出的球面上的数是正数的概率2142==。

河北省保定市2020年中考数学一模试卷C卷

河北省保定市2020年中考数学一模试卷C卷

河北省保定市2020年中考数学一模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·南山模拟) 在实数0,,,中,最小的数是()A . 0B .C .D .2. (2分)(2020·银川模拟) 下列运算正确的是()A .B .C .D .3. (2分)(2020·聊城) 如图所示的几何体的俯视图是()A .B .C .D .4. (2分)下列调查中,适宜采用普查方式的是()A . 调查市场上酸奶的质量情况B . 调查我市中小学生的视力情况C . 调查某品牌圆珠笔芯的使用寿命D . 调查乘坐飞机的旅客是否携带危禁物品5. (2分) (2020八上·温州期中) 如图1所示为长方形纸带,∠DEF = 30°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是()A . 60°B . 90°C . 100°D . 120°6. (2分) (2019九上·桂林期末) 关于x的函数y=k(x+1)和y= (k≠0)在同一坐标系中的图象可能是()A .B .C .D .7. (2分)下列代数式中符合书写要求的是()A . ab4B . 4mC . x÷yD . ﹣ a8. (2分) (2017九上·铁岭期末) 如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则弧BC的长是()A . πB . πC . πD . π9. (2分)(2016·温州) 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A . (0,3)B . (3,0)C . (6,4)D . (1,4)10. (2分)(2016·安徽) 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2017七上·揭西期中) “十二五”期间,我国新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是________.12. (1分)(2019·高台模拟) 把多项式mx2﹣4my2分解因式的结果是________.13. (1分)(2019·郫县模拟) 如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为8,若AA′=1,则A′D的值为________.14. (1分)如图,在⊙O中,,∠DCB=28°,则∠ABC=________度.三、解答题 (共9题;共81分)15. (10分) (2015·舟山) 计算下列各题.(1)计算:|﹣5|+ ×2﹣1;(2)化简:a(2﹣a)+(a+1)(a﹣1).16. (5分) (2019七下·平舆期末) 解不等式组,并将解集表示在数轴上.17. (5分) (2018八下·南山期末) 如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90∘,再向下平移2格后的图形△A′B′C′.18. (5分)如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.19. (5分) (2019七上·双台子月考) 加工一批零件,甲单独做需要20天完成,乙单独做需要15天完成。

2020年河北省保定市中考数学一模试卷

2020年河北省保定市中考数学一模试卷

中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.下列计算结果为1的是()A. (-1)+(-1)B. (-1)-(-1)C. (-1)÷(-1)D. (-1)32.将数字0.0000208用科学记数法可表示为a×10n(1≤a<10,n为整数)的形式,则n的值为()A. 4B. -4C. 5D. -53.下列图形中,能确定∠1>∠2的是()A. B. C. D.4.一个点从数轴上表示-2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A. 0B. 2C. 1D. -15.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A. 6→3B. 7→16C. 7→8D.6→156.下列说法中正确的个数是()①-1的倒数是1②4的平方根是2③tan45°=1④2a2•3a-1=6a⑤一组数据1,1,1的方差为1A. 1个B. 2个C. 3个D. 4个7.一个正方体的六个面上分别标有-1,-2,-3,-4,-5,-6中的一个数,各个面上所标数字都不相同,如图是这个正方体的三种放置方法,则数字-3对面的数字是()A. -1B. -2C. -5D. -68.已知,则A=()A. B. C. D. x2-19.(-8)2019+(-8)2018能被下列哪个数整除()10.如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A. 5aB. 4aC. 3aD. 2a11.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.12.如图,某边防战士驾驶摩托艇外出巡逻,先从港口A点沿北偏东60°的方向行驶30海里到B点,再从B点沿北偏西30°方向行驶30海里到C点,要想从C点直接回到港口A,行驶的方向应是()向 D. 南偏西45°方向13.一组数据2;3;6;8;x的唯一众数是x,其中x是不等式组的解,则这组数据的中位数是()A. 3B. 4C. 4.5D. 614.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A. 0.5元、0.6元B. 0.4元、0.5元C. 0.3元、0.4元D. 0.6元、0.7元15.如图,点E在边长为10的正方形ABCD内,满足∠AEB=90°,则阴影部分的面积的最小值是()A. 75B. 100-C.D. 2516.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁二、填空题(本大题共3小题,共12.0分)17.比较大小:______3(填“>”、“=”或“<”).18.如图,在△ABC中,∠ABC=2∠C,小明做了如下操作:(Ⅰ)以A为圆心,AB长为半径画弧,交AC于点F;(Ⅱ)以A为圆心,任意长为半径画弧,交AB、AC于M、N两点,分别以M、N为圆心,以大于MN为半径画弧,两弧交于一点P,作射线AP,交BC于点E;(Ⅲ)作直线EF.依据小明尺规作图的方法,若AB=3.3,BE=1.8,则AC的长为______;19.如图,点A1、A2、A3…在直线y=x上,点C1,C2,C3…在直线y=2x上,以它们为顶点依次构造第一个正方形A1C1A2B1,三、计算题(本大题共1小题,共8.0分)20.已知:a+b=4(1)求代数式(a+1)(b+1)-ab值;(2)若代数式a2-2ab+b2+2a+2b的值等于17,求a-b的值.四、解答题(本大题共6小题,共58.0分)21.某学校为了了解九年级学生寒假的阅读情况,随机抽取了该年级的部分学生进行调查,统计了他们每人的阅读本数,设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)分别求出统计表中的x,y的值;(2)求扇形统计图中“优秀”类所在扇形的圆心角的度数;(3)如果随机去掉一个数据,求众数发生变化的概率,并指出众数变化时,去掉的是哪个数据.22.在一次聚会上,规定每两个人见面必须握手,且握手1次.(1)若参加聚会的人数为3,则共握手______次;若参加聚会的人数为5,则共握手______次;(2)若参加聚会的人数为n(n为正整数),则共握手______次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.23.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.(3)在(2)的条件下,要是四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上______(不需说明理由).24.如图1,在直角坐标系中,一次函数的图象l1与y轴交于点A(0,2),与一次函数y=x-3的图象l2交于点E(m,-5).(1)求m的值及l1的表达式;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ 在x轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围.25.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.26.如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作α;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是______;如图2,当α=______°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=______(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是______,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)答案和解析1.【答案】C【解析】解:∵(-1)+(-1)=-2,故选项A不符合题意,∵(-1)-(-1)=0,故选项B不符合题意,∵(-1)÷(-1)=1,故选项C符合题意,∵(-1)3=-1,故选项D不符合题意,故选:C.根据选项中的式子可以计算出正确的结果,从而可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.【答案】D【解析】解:0.0000208=2.08×10-5,故n=-5.故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、若两条直线平行,则∠1=∠2,若所截两条直线不平行,则∠1与∠2无法进行判断,故本选项正确;C、∵∠1是∠2所在三角形的一个外角,∴∠1>∠2,故本选项正确;D、∵已知三角形是直角三角形,∴由直角三角形两锐角互余可判断出∠1=∠2.故选:C.分别根据对顶角相等、平行线的性质、三角形外角的性质对四个选项进行逐一判断即可.本题考查的是对顶角相等、平行线的性质、三角形外角的性质及直角三角形的性质,熟知以上知识是解答此题的关键.4.【答案】C【解析】解:根据题意得:-2+7-4=1,则此时这个点表示的数是1,故选:C.根据平移的路径确定出此时点表示的数即可.此题考查了数轴,列出正确的算式是解本题的关键.5.【答案】D【解析】解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D.直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.6.【答案】B【解析】解:①-1的倒数是-1,②4的平方根是±2,③tan45°=1,④2a2•3a-1=6a⑤一组数据1,1,1的方差为0,正确的个数有2个;故选:B.根据倒数、单项式乘单项式、负整数指数幂、特殊角的三角函数值和方差的意义分别进行解答即可.此题考查了倒数、单项式乘单项式、负整数指数幂、特殊角的三角函数值和方差的意义,解题的关键是正确理解各概念的含义.7.【答案】B【解析】解:由图可知,∵与-2相邻的面的数字有-1、-4、-5、-6,∴-2的对面数字是-3.故选:B.根据与-2相邻的面的数字有-1、-4、-5、-6判断出-2的对面数字是-3,即可求解.本题考查了正方体相对两个面上的文字,根据相邻面上的数字确定出相对面上的数字是解题的关键.8.【答案】B【解析】解:∵,∴A=•(1+)=•=,故选:B.根据已知得出A=•(1+),先算括号内的加法,再算乘法即可.本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键.9.【答案】C【解析】解:(-8)2019+(-8)2018=(-8)2018×(-8+1)=-7×(-8)2018,∴能被7整除;故选:C.将已知式子提取公因数(-8)2018即可求解;本题考查有理数的乘方;能够将较大数提取公因数是解题的关键.10.【答案】B【解析】解:如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积.本题主要考查的是图形的剪拼,将正六边形分割为六个全等的三角形是解题的关键.11.【答案】D【解析】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选:D.根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.12.【答案】A【解析】解:如图,由题可得,∠BAF=60°,∠CBE=30°,AF//BE,∴∠ABC=90°,又∵AB=BC,∴△ABC是等腰直角三角形,∴∠BCA=45°,又∵∠BCD=∠CBE=30°,∴∠ACD=15°,∴从C点直接回到港口A,行驶的方向应是南偏西15°方向,故选:A.依据∠BAF=60°,∠CBE=30°,AF∥BE,可得∠ABC=90°,进而得出△ABC是等腰直角三方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.13.【答案】D【解析】解:由不等式组得,3<x<7,∵一组数据2;3;6;8;x的唯一众数是x,∴x=6,∴这组数据为:2、3、6、6、8,∴这组数据的中位数是6,故选:D.根据不等式组可以求得x的取值范围,然后根据一组数据2;3;6;8;x的唯一众数是x,可以求得x的值,从而可以得到这组数据的中位数.本题考查众数、中位数、解一元一次不等式组,解答本题的关键是明确众数、中位数的定义,会解答一元一次不等式组.14.【答案】A【解析】解:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得,,解得.即:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.故选:A.设第一阶梯电价每度x元,第二阶梯电价每度y元,分别根据9月份和10月份的电费收据,列出方程组,求出x和y值.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.15.【答案】A【解析】【分析】本题考查正方形的性质,三角形的面积,垂线段最短等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.取AB的中点O,连接OE,作EH⊥AB于H.求出△ABE的面积的最大值即可解决问题.【解答】解:取AB的中点O,连接OE,作EH⊥AB于H.∵∠AEB=90°,OA=OB,∴OE=AB=5,∵S△ABE=×AB×EH,EH≤OE,∴当EH与OE重合时,△AEB的面积最大,面积的最大值=×10×5=25,∴阴影部分的面积的最小值=10×10-25=75.故选A.16.【答案】B【解析】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2-2x+4.当x=-1时,y=x2-2x+4=7,∴乙的结论不正确;当x=2时,y=x2-2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b、c值是解题的关键.17.【答案】<【解析】解:∵2=,3=,∴2<3,故答案为:<.求出2=,3=,再比较即可.本题考查了二次根式的性质,实数的大小比较的应用,主要考查学生的比较能力.18.【答案】5.1【解析】解:根据作图的步骤,可知:△ABE≌△AEF(SAS)∴AB=AF,BE=EF,∠ABC=∠EFA=2∠C∴∠CEF=∠C∴FE=FC=BE∵AB=3.3,BE=1.8∴FC=BE=1.8,AF=AB=3.3∴AC=AF+FC=1.8+3.3=5.1根据作图的步骤,可知△ABE与△AEF全等,那么AB=AF,BE=EF,∠ABC=∠EFA,∠ABC=2∠C,从而推出∠CEF=∠C,得出FE=FC,最后把AF与FC相加得出AC的长;这题主要考查:圆规作图,三角形全等的性质与判定,等腰三角形的性质,三角形的外角性质,解题的突破口是:理解该题的圆规作图可以得出三角形全等,利用三角形的全等的性质来求.19.【答案】(4,2)22n-4【解析】解:∵点A1、A2、A3…在直线y=x上,A2的横坐标是1,∴A2(1,1),∵点C1,C2,C3…在直线y=2x上,∴C1(,1),A1(,),∴A1C1=1-=,B1(1,),∴第1个正方形的面积为:()2;∵C2(1,2),∴A2C2=2-1=1,B2(2,1),A3(2,2),∴第2个正方形的面积为:12;∵C3(2,4),∴A3C3=4-2=2,B3(4,2),∴第3个正方形的面积为:22;…,∴第n个正方形的面积为:(2n-2)2=22n-4.故答案为(4,2),22n-4.由A2的横坐标是1,可得A2(1,1),利用两个函数解析式求出点C1、A1的坐标,得出A1C1的长度以及第1个正方形的面积,求出B1的坐标;然后再求出C2的坐标,得出第2个正方形的面积,求出B2的坐标;再求出B3、C3的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律.本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.20.【答案】解:(1)原式=ab+a+b+1-ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2-2ab+b2+2a+2b=(a-b)2+2(a+b),∴(a-b)2+2×4=17,∴(a-b)2=9,则a-b=3或-3.【解析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.21.【答案】解:(1)由表可知被调查学生中“一般”档次的有13人,所占比例是26%,所以共调查的学生数是13÷26%=50,∵12+x+7=50×60%,∴x=11,∵y+1=50-(1+2)-(6+7)-(12+11+7),∴y=3.(2)扇形统计图中“优秀”类所在扇形的圆心角的度数360°×=28.8°.(3)由表格可知,原来的众数是5,只有去掉一个数据5,众数才会变为5和6,所以众数发生变化的概率是=,去掉的数据是5.【解析】(1)首先求得总人数,然后即可求得x和y的值;(2)首先求得样本中的优秀率,然后用样本估计总体即可;(3)根据原来的众数是5,只有去掉一个数据5,众数才会变为5和6,求解可得.本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.22.【答案】解:(1)3;10;(2)n(n-1);(3)依题意,得:n(n-1)=28,整理,得:n2-n-56=0,解得:n1=8,n2=-7(不合题意,舍去).答:参加聚会的人数为8人.(4)∵线段AB上共有m个点(不含端点A,B),∴可当成共有(m+2)个人握手,∴线段总数为(m+2)(m+1).【解析】【分析】(1)由握手总数=参加聚会的人数×(参加聚会的人数-1)÷2,即可求出结论;(2)由参加聚会的人数为n(n为正整数),可知每人需跟(n-1)人握手,同(1)即可求出握手总数;(3)由(1)的结论结合共握手28次,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(4)将线段数当成人握手次数,结合(1)即可得出结论.本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,列出代数式;(3)找准等量关系,正确列出一元二次方程;(4)将线段数当成人握手次数来解决问题.【解答】解:(1)3×(3-1)÷2=3,5×(5-1)÷2=10.故答案为:3;10.(2)∵参加聚会的人数为n(n为正整数),∴每人需跟(n-1)人握手,∴共握手n(n-1)次.故答案为:n(n-1).(3)见答案;(4)见答案.23.【答案】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,证明:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=DC,∴平行四边形ADCF是菱形;(3)AC=AB【解析】(1)见答案(2)见答案(3)解:AC=AB,理由是:∵∠CAB=90°,AC=AB,AD为中线,∴AD⊥BC,∴∠ADC=90°,∵四边形ADCF是菱形,∴四边形ADCF是正方形,故答案为:AC=AB.【分析】(1)连接DF,证三角形AFE和三角形DBE全等,推出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;(3)根据等腰三角形性质求出AD⊥BC,推出∠ADC=90°,根据正方形的判定推出即可.本题考查了平行四边形、菱形、矩形、正方形的判定,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,主要考查学生的推理能力.24.【答案】解:(1)∵点E(m,-5)在一次函数y=x-3图象上,∴m-3=-5,∴m=-2;设直线l1的表达式为y=kx+b,∵直线l1过点A(0,2)和E(-2,-5),∴,解得.∴直线l1的表达式为.(2)由(1)可知:B点坐标为,C点坐标为(0,-3),∴S四边形OBEC=S△OBE+S△OCE=.(3)或3≤a≤6.当矩形MNPQ的顶点Q在l1上时,a的值为,矩形MNPQ向右平移,当点N在l1上时,,解得x=,即点N(,1),∴a的值为+2=,矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x-3=1,解得x=4,即点N(4,1),∴a的值4+2=6,综上所述,当或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【解析】(1)根据点E在一次函数图象上,求出m的值,利用待定系数法即可求出直线l1的函数解析式;(2)由(1)求出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.本题主要考查两条直线相交或平行、图形的平移等知识的综合应用,在解决第(3)小题时,只有求出各临界点时a的值,就可以得到a的取值范围.25.【答案】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x-3)2+5(a≠0),将(8,0)代入y=a(x-3)2+5,得:25a+5=0,解得:a=-,∴水柱所在抛物线(第一象限部分)的函数表达式为y=-(x-3)2+5(0<x<8).(2)当y=1.8时,有-(x-3)2+5=1.8,解得:x1=-1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=-(x-3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=-x2+bx+,∵该函数图象过点(16,0),∴0=-×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=-x2+3x+=-(x-)2+.∴扩建改造后喷水池水柱的最大高度为米.【解析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=-x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.26.【答案】(1)+1 60(2)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.∵O′P=R,∴R=R+1,∴R=4+2.(3)(4)90°<α≤120°如图5所示,当N′落在AB上时,阴影部分面积最大,所以S═-•m•m=-m2.【解析】解:(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE是矩形,EF=AM=1.想办法求出O′E的长即可.在Rt△MFO′中,∵∠MO′F=30°,MO′=2,∴O′F=O′M•cos30°=,O′E=+1,∴点O′到AB的距离为+1.如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF是矩形,∴AE=O′F=2,∵AM=1,∴EM=1,在Rt△O′EM中,cosα==,∴α=60°故答案为+1,60°.(2)见答案.(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.在Rt△O′QM中,O′Q=R•cosα,QP=m,∵O′P=R,∴R•cosα+m=R,∴cosα=.故答案为.(4)如图5中,当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°.故答案为90°<α≤120°;这个变化过程中阴影部分(弓形)面积的最大值(用m表示)求解过程见答案.【分析】(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE是矩形,EF=AM=1.如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF是矩形,在Rt△O′EM中,由sinα==,推出α=60°;(2)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.列出方程即可解决问题;(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.列出方程即可解决问题;(4)当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB 上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°.当N′落在AB上时,阴影部分面积最大,求出此时的面积即可.本题考查圆综合题、旋转变换、切线的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形或特殊四边形解决问题,所以中考压轴题.。

2020年河北省保定市中考数学模拟试卷含解析版

2020年河北省保定市中考数学模拟试卷含解析版

绝密★启用前2020年河北省保定市中考数学模拟试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一、选择题(本大题共10个小题:每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)如图,坐标平面上二次函数y=x2+1的图象经过A、B两点,且坐标分别为A(a,10)、B(b、10),则AB的长度为()A.3B.5C.6D.72.(2分)在下列各图中,不添加任何辅助线,若每个图所给出的两个三角形都是相似的,则位似图形的个数是()A.1B.2C.3D.43.(2分)已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.4.(2分)在如图所示的几何体的周围添加一个正方体,添加前后主视图不变化的是()A.B.C.D.5.(2分)如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P的度数可以为()A.20°B.50°C.110°D.80°6.(2分)点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,则下列说法正确的是()A.a>0B.a<0C.6a+b=0D.a+6b=07.(2分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形8.(2分)如图,在4×4的网格图中,A、B、C是三个格点,其中每个小正方形的边长为1,△ABC的外心可能是()A.M点B.N点C.P点D.Q点9.(2分)如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为()A.27﹣9B.54﹣18C.18D.5410.(2分)如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.2B.3C.D.3三、境空题(本大醒共5个小题,每小题4分,共20分,把答案写在题中横线上)11.(4分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=13米,则旗杆BC的高度为米.12.(4分)用如图的两个自由转动的转盘做“配紫色”游戏分别转动两个转盘若其中一个转出红色,另一个转出蓝色即可配出紫色,则配成紫色的概率是.13.(4分)小帅家的新房子刚装修完,便遇到罕见的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图1所示的是他了解的一款雨罩.它的侧面如图2所示,其中顶部圆弧AB 的圆心O在整直边缘D上,另一条圆弧BC的圆心O.在水平边缘DC的廷长线上,其圆心角为90°,BE⊥AD于点E,则根据所标示的尺寸(单位:c)可求出弧AB所在圆的半径AO的长度为cm.14.(4分)如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为.15.(4分)如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;…;则对于图①来说,BD可以看作是正边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是边形的边长.三、解答题(本大题有8个小题,共80分解答应写出文字说明、证明过程或演算步骤)16.(7分)如图,BD、AC相交于点P,连接AB、BC、CD、DA,∠1=∠2(1)求证:△ADP∽△BCP;(2)若AB=8,CD=4,DP=3,求AP的长.17.(7分)如图,在一居民楼AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为38°.从距离楼底B点2米的P处经过树顶E点恰好看到塔的顶部C点,且仰角β为28°.已知树高EF=8米,求塔CD的高度.(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)18.(9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某种苹果到了收获季节,投入市场销售时,调查市场行情,发现该苹果的销售不会亏本,且该产品的日销售量y(千克)与销售单价x(元)之间满足一次函数关系关于销售单价、日销售量、日销售利润的几组对应值如表:销售单价x(元)10152328日销售量y(千20015070m克)40010501050400日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(要写出x的取值范围)及m的值;(2)根据以上信息,填空:产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)某农户今年共采摘苹果4800千克,该品种苹果的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批苹果?请说明理由19.(10分)课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'C和AD相交于点E,如图1所示.探素发现(1)在图1中,①请猜想并证明AE和EC的数量关系;②连接B'D,请猜想并证明B'D 和AC的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时(AB≠BC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用(4)在图3中,若∠B=30°,AB=2,请您直接写出:当BC的长度为多少时,△AB'D 恰好为直角三角形.20.(10分)如图,在平面直角坐标系的第一象限中,有一点A(1,2),AB∥x轴且AB =6,点C在线段AB的垂直平分线上,且AC=5,将抛物线y=ax2(a>0)的对称轴右侧的图象记作G.(1)若G经过C点,求抛物线的解析式;(2)若G与△ABC有交点.①求a的取值范围;②当0<y≤8时,双曲线y=经过G上一点,求k的最大值.21.(11分)如图1,在矩形ABCD中,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD 的外部,将半圆O绕点A顺时针旋转a度(0°≤a≤180°).(1)在旋转过程中,B′C的最小值是,如图2,当半圆O的直径落在对角线AC上时,设半圆O与AB的交点为M,则AM的长为.(2)如图3,当半圆O与直线CD相切时,切点为N,与线段AD的交点为P,求劣弧AP的长;(3)在旋转过程中,当半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,请直接写出d的取值范围.22.(11分)在△ABC中,AB=AC=5,BC=8,点M是△ABC的中线AD上一点,以M 为圆心作⊙M.设半径为r(1)如图,当点M与点A重合时,分别过点B,C作⊙M的切线,切点为E,F.求证:BE=CF;(2)如图2,若点M与点D重合,且半圆M恰好落在△ABC的内部,求r的取值范围;(3)当M为△ABC的内心时,求AM的长.23.(15分)如图,直线y=﹣x+4分别交x轴、y轴于A、C两点,抛物线y=﹣x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点C作CD∥x轴交抛物线于点D (1)求抛物线的函数表达式;(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.参考答案与试题解析一、选择题(本大题共10个小题:每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】把y=10代入二次函数解析式求出x的值,确定出A与B的坐标,即可求出AB 的长.【解答】解:把y=10代入二次函数解析式得:x2+1=10,解得:x=3或x=﹣3,即A(3,10),B(﹣3,10),则AB的长度为6,故选:C.【点评】此题考查了二次函数图象上点的坐标特征,熟练掌握二次函数性质是解本题的关键.2.【分析】根据位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.【解答】解:根据位似图形的定义可知,第1、2、4个图形是位似图形,而第3个图形对应点的连线不能交于一点,故位似图形有3个.故选:C.【点评】本题考查了位似图形的定义,解题的关键是牢记位似图形的性质:位似图形一定相似,对应点的连线交于一点,对应边互相平行.3.【分析】根据点到直线的距离和圆的半径的大小关系判断点与圆的位置关系即可.【解答】解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选:A.【点评】本题考查了点与圆的位置关系,解题的关键是根据数据判断出点到直线的距离和圆的半径的大小关系,难度不大.4.【分析】根据从正面观察得到的图形是主视图即可解答.【解答】解:选项A的图形的主视图均为:选项B、C的图形的主视图均为:原图和选项D的图形的主视图均为:故选:D.【点评】本题考查了简单组合体的三视图的知识,从正面看所得到的图形是主视图.5.【分析】延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB >50°,于是得到结论.【解答】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△PAB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.【点评】本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.6.【分析】根据题意可以得到a、b的关系式,然后根据二次函数的性质即可判断各个选项中的结论是否成立.【解答】解:∵点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,∴,解得,6a+b=0,故选项C正确,选项D错误,由题目中的条件无法判断a的正负情况,故选项A、B错误,故选:C.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.7.【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【解答】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.【点评】本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.8.【分析】由图可知,△ABC是锐角三角形,于是得到△ABC的外心只能在其内部,根据勾股定理得到BP=CP=≠PA,于是得到结论.【解答】解:由图可知,△ABC是锐角三角形,∴△ABC的外心只能在其内部,由此排除A选项和B选项,由勾股定理得,BP=CP=≠PA,∴排除C选项,故选:D.【点评】本题考查了三角形的外接圆与外心,勾股定理,熟练掌握三角形的外心的性质是解题的关键.9.【分析】设EF交AH于M、交HD于N,连接OF、OE、MN,根据题意得到△EFO是等边三角形,△HMN是等腰直角三角形,由三角函数求出△EFO的高,由三角形面积公式即可得出阴影部分的面积.【解答】解:设EF交AH于M、交HD于N,连接OF、OE、MN,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=6×=3,MN=2(6﹣3)=12﹣6,∴FM=(6﹣12+6)=3﹣3,∴阴影部分的面积=4S=4×(3﹣3)×3=54﹣18;△AFM故选:B.【点评】本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.10.【分析】过点O作OE⊥AB于E,由垂径定理易知E是AB中点,从而OE是△ABC中位线,即BC=20E,而OE≤OP,故BC≤2OP.【解答】解:过点O作OE⊥AB于E,如图:∵O为圆心,∴AE=BE,∴OE=BC,∵OE≤OP,∴BC≤2OP,∴当E、P重合时,即OP垂直AB时,BC取最大值,最大值为2OP=2.故选:A.【点评】本题主要考查了垂径定理的基本应用、三角形三边关系,难度适中;过圆心作弦的垂线是运用垂径定理的常用技巧和手段,要熟练掌握.三、境空题(本大醒共5个小题,每小题4分,共20分,把答案写在题中横线上)11.【分析】设CD=2x米,根据坡度的概念用x表示出AD,根据勾股定理求出x,根据勾股定理求出BD,结合图形计算即可.【解答】解:设CD=2x米,∵斜面AC的坡度为1:2,∴AD=2x,由勾股定理得,CD2+AD2=AC2,即x2+(2x)2=()2,解得,x=,则CD=,AD=5,在Rt△ABD中,BD2=AB2﹣AD2=144,解得,BD=12,则BC=12﹣2.5=9.5,故答案为:9.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念是解题的关键.12.【分析】根据题意,用列表法将所有可能出现的结果,分析可能得到紫色的概率,得到结论.【解答】解:用列表法将所有可能出现的结果表示如下:红(红,红)(蓝,红)(蓝,红)蓝(红,蓝)(蓝,蓝)(蓝,蓝)黄(红,黄)(蓝,黄)(蓝,黄)黄(红,黄)(蓝,黄)(蓝,黄)红蓝蓝上面等可能出现的12种结果中,有3种情况可以得到紫色,所以可配成紫色的概率是:,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.13.【分析】连接BO1,设弧AB的半径为Rcm,在直角三角形BO1E中,则O1B=Rcm,O1E=(R﹣50)cm,BE=60cm,根据勾股定理列出关于R的方程,解方程求出半径R 的值即可.【解答】解:连接BO1,易知BE=60cm,AE=50cm.设弧AB的半径为Rcm,则O1B=Rcm,O1E=(R﹣50)cm.在Rt△O1BE中,由勾股定理得:O1B2=BE2+O1E2,即R2=602+(R﹣50)2,解得:R=61.故答案为:61【点评】本题主要考查了勾股定理,垂径定理,难度适中,关键是求出弧AB所在圆的半径.14.【分析】由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,从而得到∠ECH=∠BFH;作辅助线可证明四边形ENBM是正方形,根据正方形的性质得EM=EN,由角角边可证明△EMC≌△ENF,得CM=FN;因DE=4BE,△BEM∽△BDC,△BEN∽△BDA和线段的和差可求出正方形ABCD的边长.【解答】解:如图所示:过点E作EM⊥BC,EN⊥AB,分别交BC、AB于M、N两点,且EF与BC相交于点H.∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,∴∠CEH=∠FBH=90°,又∵∠EHC=∠BHF,∴△ECH∽△BFH(AA),∴∠ECH=∠BFH,∵EM⊥BC,EN⊥AB,四边形ABCD是正方形,∴四边形ENBM是正方形,∴EM=EN,∠EMC=∠ENF=90°,在△EMC和△ENF中∴△EMC≌△ENF(AAS)∴CM=FN,∵EM∥DC,∴△BEM∽△BDC,∴.又∵DE=4BE,∴=,同理可得:,设BN=a,则AB=5a,CM=AN=NF=4a,∵AF=8,AF=AN+FN,∴8a=8解得:a=1,∴AB=5.故答案为:5.【点评】本题考查了正方形的判定与性质,两个三角形全等的判定与性质,两个似三角形的判定与性质,线段的和差等综合知识,重点是掌握两个三角形相似和全等的判定的方法,难点是作辅助线构建两个三角形全等.15.【分析】如图①,连接OA、OB、OD,先计算出∠AOD=120°,∠AOB=90°,则∠BOD=30°,然后计算可判断BD是正十二边形的边长;对于正n边形和正(n+1)边形内接于同一个圆,同样计算出∠BOD=∠AOD﹣∠AOB=,利用=n(n+1)可判断BD可以看作是正n(n+1)边形的边长.【解答】解:如图①,连接OA、OB、OD,∵正三角形ADC和正方形ABCD接于同一个⊙O,∴∠AOD==120°,∠AOB==90°,∴∠BOD=∠AOD﹣∠AOB=30°,∵=12,∴BD可以看作是正十二边形的边长;若正n边形和正(n+1)边形内接于同一个圆,同理可得∠AOD=,∠AOB=,∴∠BOD=∠AOD﹣∠AOB=﹣=,∵=n(n+1),∴BD可以看作是正n(n+1)边形的边长.故答案为十二;正n(n+1).【点评】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形每一边所对的圆心角叫做正多边形的中心角.三、解答题(本大题有8个小题,共80分解答应写出文字说明、证明过程或演算步骤)16.【分析】(1)由∠1=∠2,∠DPA=∠CPB(对顶角相等),即可得证△ADP∽△BCP (2)由△ADP∽△BCP,可得=,而∠APB与∠DPC为对顶角,则可证△APB∽△DPC,从而得==,即可求AP【解答】解:(1)证明:∵∠1=∠2,∠DPA=∠CPB∴△ADP∽△BCP(2)∵△ADP∽△BCP,∴=,∵∠APB=∠DPC∴△APB∽△DPC∴==,∴AP=6【点评】此题主要考查相似三角形的判定,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.17.【分析】根据题意求出∠EDF=38°,通过解直角△EFD求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG 的长度.【解答】解:由题意知,∠EDF=α=38°,∴FD=≈=10(米).EH=8﹣2=6(米)在Rt△PEH中,∵tanβ==.∴≈0.5.∴BF=12(米)PG=BD=BF+FD=12+10=22(米).在直角△PCG中,∵tanβ=.∴CG=PG•tanβ≈22×0.5=11(米).∴CD=11+2=13(米).【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.18.【分析】(1)利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析式,并配方成顶点式即可得出最大值;(3)求出在(2)中情况下,即x=19时的销售量,据此求得40天的总销售量,比较即可得出答案.【解答】解:(1)设y与x的函数关系式为y=kx+b,将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=﹣10x+300(8≤x≤30);(2)设每天销售获得的利润为w,则w=(x﹣8)y=(x﹣8)(﹣10x+300)=﹣10(x﹣19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;故答案为:8,19,1210;(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y=﹣10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4800,∴不能销售完这批苹果.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系,据此列出二次函数的解析式,并熟练掌握二次函数的性质.19.【分析】(1)①想办法证明∠EAC=∠ECA即可判断AE=EC.②想办法证明∠ADB′=∠DAC即可证明.(2)①当AB:AD=1:1时,符合题意.②当AD:AB=时,也符合题意,(3)结论仍然成立,证明方法类似(1).(4)先证得四边形ACB′D是等腰梯形,分四种情形分别讨论求解即可解决问题;【解答】解:(1)如图1中,①结论:EA=EC.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.②连接DB′.结论:DB′∥AC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(2)如图2中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.(3)如图3中,当四边形ABCD是平行四边形时,仍然有EA=EC,DB′∥AC.理由:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(4)①如图3﹣1中,当∠AB′C=90°时,易证∠BAC=90°,BC==.②如图3﹣2中,当∠ADB′=90°时,易证∠ACB=90°,BC=AB•cos30°=.③如图3﹣3中,当∠DAB′=90°时,易证∠B=∠ACB=30°,BC=2•AB•cos30°=2.④如图3﹣4中,当∠DAB′=90°时,易证:∠B=∠CAB=30°,BC==,综上所述,满足条件的BC的长为或或2或【点评】本题属于四边形综合题,考查了翻折变换,矩形的性质,平行四边形的性质,直角三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20.【分析】(1)如图1中,作CH⊥AB于H.求出点C坐标即可解决问题;(2)①当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,可得a=,由此即可解决问题;②由题意当a=时,y=x2,当y=8时,8=x2,因为x>0,推出x=14,由题意当反比例函数y=经过点(14,8)时k的值最大;【解答】解:(1)如图1中,作CH⊥AB于H.∵CA=CB=5,CH⊥AB,∴AH=HB=3,在Rt△ACH中,CH==4,∴C(4,6),∵抛物线y=ax2(a>0)经过C点,∴6=16a,∴a=,∴抛物线的解析式为y=x2.(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=,∵若G与△ABC有交点,∴≤a≤2.②由题意当a=时,y=x2,当y=8时,8=x2,∴x>0,∴x=14,∴当反比例函数y=经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112.【点评】本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.21.【分析】(1)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=1可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.【解答】解:(1)∵在矩形ABCD中,AB=4,BC=3,∴AC=5,在旋转过程中,当点B′落在对角线AC上时,B′C的值最小,最小值为1;在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=5.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;故答案为:1,;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G.∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD﹣DG=1.在Rt△AGO中,∠AGO=90°,AO=2,AG=1,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴劣弧AP的长==π;(3)由(2)可知:△AOP为等边三角形,∴DN=GO=OA=,∴CN=CD+DN=4+,当点B′在直线CD上时,如图4所示.在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴B′D==,∴CB′=4﹣,∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,4﹣≤d<4或d=4+.【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(1)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.22.【分析】(1)连接AE,AF,利用“HL”证Rt△BAE≌Rt△ACF即可得;(2)作DG⊥AB,由AB=AC=5,AD是中线知AD⊥BC且AD==3,依据BD×AD=AB×DG可得DG=,从而得出答案;(3)作MH⊥AB,MP⊥AC,有MH=MP=MD,连接BM、CM,根据AB•MH+BC •MD+AC•MP=AD•BC求出圆M的半径,从而得出答案.【解答】解:(1)如图1,连接AE,AF,∵BE和CF分别是⊙O的切线,∴∠BEA=∠CFA=90°,∵AB=AC,AE=AF,∴Rt△BAE≌Rt△ACF(HL),∴BE=CF;(2)如图2,过点D作DG⊥AB于点G,∵AB=AC=5,AD是中线,∴AD⊥BC,∴AD==3,∴BD×AD=AB×DG,∴DG=,∴当0<r<时,半圆M恰好落在△ABC内部;(3)当M为△ABC的内心时,如图3,过M作MH⊥AB于H,作MP⊥AC于P,则有MH=MP=MD,连接BM、CM,∴AB•MH+BC•MD+AC•MP=AD•BC,∴r===,∴AM=AD﹣DM=.【点评】本题是圆的综合问题,解题的关键是掌握等腰三角形的判定与性质、全等三角形的判定与性质、圆的切线的判定与性质等知识点.23.【分析】(1)利用直线方程求得点A、C的坐标,根据点A、C坐标求得抛物线解析式;(2)分点E在CD上方、点E在CD下方两种情况,分别求解即可;(3)分CM为菱形的一条边、CM为菱形的对角线两种情况,分别求解即可.【解答】解:(1)y=﹣x+4,令x=0,则y=4,令y=0,则x=4,则点A、C的坐标分别为(4,0)、(0,4),将点A的坐标代入抛物线的表达式并解得:m=3,故抛物线的表达式为:y=﹣x2+3x+4…①,令y=0,则x=﹣1或4,故点B(﹣1,0);(2)①当点E在CD上方时,tan∠BCO==,则直线CE的表达式为:y=x+4…②,联立①②并解得:x=0或(舍去0),则点E(,);②当点E在CD下方时,同理可得:点E′(,);故点E的坐标为E(,)或(,);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,﹣x2+3x+4),则PM=PQ=x,C、M、N、P为顶点的四边形是菱形,则PM=PN,即:x=﹣x2+3x+4,解得:x=0或4﹣(舍去0),故菱形边长为x=4﹣2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为2;故:菱形边长为4﹣2或.【点评】本题考查的是二次函数综合运用,涉及到一次函数、菱形基本性质等,要注意分类求解、避免遗漏.。

2020年河北省保定市定兴县中考数学一模试卷 (解析版)

2020年河北省保定市定兴县中考数学一模试卷 (解析版)

2020年河北省保定市定兴县中考数学一模试卷一、选择题(共16小题).1.如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.以上都有可能2.某排球队检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数.下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.3.如图,AB∥CD,∠C=48°,∠1=()A.42°B.48°C.132°D.138°4.如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1B.2C.3D.45.下列调查:①机场对乘客进行安检;②对北京世园会游客满意度的调查;③对全省中学生视力情况的调查;④九年级一班要选出1人参加学校的100米比赛.其中适合全面调查的是()A.②③B.①④C.②④D.①③6.把0.00205写成a×10n(1≤a<10,n为整数)的形式,则n为()A.﹣2B.﹣3C.﹣4D.﹣57.计算:1252﹣50×125+252=()A.100B.150C.10000D.225008.已知二元一次方程组,如果用加减法消去n,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×5 9.关于x的方程x2+2x﹣a=0没有实数根,则a的值可能是()A.﹣2B.﹣1C.0D.210.已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.若OC=2,S四边形OACB=4,则AB的长为()A.5B.4C.3D.211.要制作一个密封的长方体铁盒,嘉嘉设计出了它的三视图,如图,按图中尺寸(单位:cm)判断,要制作这个长方体铁盒,如果只考虑面积因素,采用下列哪种面积的铁板最合理()A.1000cm2B.1030cm2C.1100cm2D.1200cm212.如图,函数y=(k≠0,x<0)的图象L经过点A(﹣4,2),直线AB与x轴交于点B(﹣5,0),经过点C(0,4)作y轴的垂线,分别交L和直线AB于点M,N,则MN=()A.1B.﹣5C.﹣1D.513.如图,在平整的桌面上面一条直线l,将三边都不相等的三角形纸片ABC平放在桌面上,使AC与边l对齐,此时△ABC的内心是点P;将纸片绕点C顺时针旋转,使点B 落在l上的点B'处,点A落在A'处,得到△A'B'C'的内心点P'.下列结论正确的是()A.PP'与l平行,PC与P'B'平行B.PP'与l平行,PC与P'B'不平行C.PP'与l不平行,PC与P'B'平行D.PP'与l不平行,PC与P'B'不平行14.如图,一艘货船在A处,巡逻艇C在其南偏西60°的方向上,此时一艘客船在B处,艇C在其南偏西20°的方向上,则此时从巡逻艇上看这两艘船的视角∠ACB的度数是()A.80°B.60°C.40°D.30°15.如图,数轴上有两点A,B,表示的数分别是m,n.已知m,n是两个连续的整数,且m+n=﹣1,则分式÷的值为()A.﹣1B.1C.3D.﹣316.如图,∠ACB=90°,AC=BC,CD平分∠ACB,点D,E关于CB对称,连接EB并延长,与AD的延长线交于点F,连接DE,CE.对于以下结论:①DE垂直平分CB;②AD=BE;③∠F不一定是直角;④EF2+DF2=2CD2.其中正确的是()A.①④B.②③C.①③D.②④二、填空题(本大题共3个小题,17小题3分;18-19小题各有2个空,每空2分.共11分.请把答案填在题中横线上)17.(+1)(﹣1)=.18.根据如下程序,解决下列问题:(1)当m=﹣1时,n=;(2)若n=6,则m=.19.如图所示:下列正多边形都满足BA1=CB1,在正三角形中,我们可推得:∠AOB1=60°;在正方形中,可推得:∠AOB1=90°;在正五边形中,可推得:∠AOB1=108°,依此类推在正八边形中,∠AOB1=°,在正n(n≥3)边形中,∠AOB1=°.三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.对于四个数“﹣6,﹣2,1,4”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得:①“□﹣□”的结果最小;②“□×□”的结果最大.(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.21.如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3……以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成个互不重叠的正方形;第4次画线后,分割成个互不重叠的正方形.发现:第n次画线后,分割成个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.22.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于﹣2的数,已知其中3个乒乓球上标的数分别是﹣2,2,4,所标的4个数的中位数是0.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.后摸先摸23.如图1和图2,矩形ABCD中,E是AD的中点,P是BC上一点,AF∥PD,∠FPE =∠DPE.(1)作射线PE交直线AF于点G,如图1.①求证:AG=DP;②若点F在AD下方,AF=2,PF=7,求DP的长.(2)若点F在AD上方,如图2,直接写出PD,AF,PF的等量关系.24.甲、乙二人均从A地出发,甲以60米/分的速度向东匀速行进,10分钟后,乙以(60+m)米/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t分钟.(1)当m=6时,解答:①设甲与A地的距离为s甲,分别求甲向东行进及返回过程中,s甲与t的函数关系式(不写t的取值范围);②当甲、乙二人在途中相遇时,求甲行进的总时间.(2)若乙在出发9分钟内与甲相遇,求m的最小值.25.如图,△ABC中,∠ACB=90°,AC=3,BC=4,延长BC到点D,使BD=BA,P 是BC边上一点.点Q在射线BA上,PQ=BP,以点P为圆心,PD长为半径作⊙P,交AC于点E,连接PQ,设PC=x.(1)AB=,CD=,当点Q在⊙P上时,求x的值;(2)x为何值时,⊙P与AB相切?(3)当PC=CD时,求阴影部分的面积;(4)若⊙P与△ABC的三边有两个公共点,直接写出x的取值范围.26.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.参考答案一、选择题(本大题共16个小题,共42分.1-10小题各3分;11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.以上都有可能【分析】三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.解:从题中可知,只看到一个角是钝角.所以这个三角形为钝角三角形.故选:B.2.某排球队检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数.下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.【分析】计算各个数的绝对值,绝对值最小的排球最接近标准质量.解:|﹣0.5|=0.5,|﹣1|=1,|0.7|=0.7,|0.9|=0.9,∵0.5<0.7<0.9<1,∴A选项的排球最接近标准质量.故选:A.3.如图,AB∥CD,∠C=48°,∠1=()A.42°B.48°C.132°D.138°【分析】根据平行线的性质和平角的定义即可得到结论.解:∵AB∥CD,∴∠ABC=∠C=48°,∴∠1=132°.故选:C.4.如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1B.2C.3D.4【分析】确定AB的长度后确定点C的位置即可.解:AB的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C,位置如图,故选:B.5.下列调查:①机场对乘客进行安检;②对北京世园会游客满意度的调查;③对全省中学生视力情况的调查;④九年级一班要选出1人参加学校的100米比赛.其中适合全面调查的是()A.②③B.①④C.②④D.①③【分析】利用普查和抽样调查的特点即可作出判断.解:①机场对乘客进行安检,需进行全面调查;②对北京世园会游客满意度的调查,适合抽样调查;③对全省中学生视力情况的调查,适合抽样调查;④九年级一班要选出1人参加学校的100米比赛,适合全面调查;故选:B.6.把0.00205写成a×10n(1≤a<10,n为整数)的形式,则n为()A.﹣2B.﹣3C.﹣4D.﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:∵把0.00205写成a×10n(1≤a<10,n为整数)的形式,∴0.00205=2.05×10﹣3,故n=﹣3.故选:B.7.计算:1252﹣50×125+252=()A.100B.150C.10000D.22500【分析】直接利用完全平方公式分解因式,进而计算得出即可.解:1252﹣50×125+252=(125﹣25)2=10000.故选:C.8.已知二元一次方程组,如果用加减法消去n,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×5【分析】利用加减消元法消去n即可.解:已知二元一次方程组,如果用加减法消去n,则下列方法可行的是①×5+②×4,故选:B.9.关于x的方程x2+2x﹣a=0没有实数根,则a的值可能是()A.﹣2B.﹣1C.0D.2【分析】由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.解:∵关于x的方程x2+2x﹣a=0没有实数根,∴△<0,即22﹣4(﹣a)<0,解得a<﹣1.观察选项,a的值可能是﹣2.故选:A.10.已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.若OC=2,S四边形OACB=4,则AB的长为()A.5B.4C.3D.2【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.解:由作图可得,OA=OB=BC=AC,∴四边形AOBC是菱形,∴S菱形AOBC=OC×AB,即4=,解得AB=4,故选:B.11.要制作一个密封的长方体铁盒,嘉嘉设计出了它的三视图,如图,按图中尺寸(单位:cm)判断,要制作这个长方体铁盒,如果只考虑面积因素,采用下列哪种面积的铁板最合理()A.1000cm2B.1030cm2C.1100cm2D.1200cm2【分析】根据长方体的特征,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.由已知的3个面可以确定这个长方体的长是18cm,宽是12cm,高是10cm,根据长方体的表面积公式:S=ab+(ah+bh)×2,把数据分别代入公式解答.解:(18×12+18×10+12×10)×2=(216+180+120)×2=516×2=1032(cm2),故如果只考虑面积因素,采用面积1100cm2的铁板最合理.故选:C.12.如图,函数y=(k≠0,x<0)的图象L经过点A(﹣4,2),直线AB与x轴交于点B(﹣5,0),经过点C(0,4)作y轴的垂线,分别交L和直线AB于点M,N,则MN=()A.1B.﹣5C.﹣1D.5【分析】根据待定系数法求反比例函数的解析式,直线AB的解析式,把y=4分别代入两个解析式求得M、N的坐标,即可求得MN.解:∵函数y=(k≠0,x<0)的图象L经过点A(﹣4,2),∴k=﹣4×2=﹣8,∴反比例函数为y=﹣,设直线AB的解析式为y=mx+n,把A(﹣4,2),B(﹣5,0)代入得,解得,∴直线AB为y=2x+10,把y=4代入y=﹣,解得x=﹣2,把y=4代入y=2x+10,解得x=﹣3,∴M(﹣2,4),N(﹣3,4),∴MN=﹣2﹣(﹣3)=1,故选:A.13.如图,在平整的桌面上面一条直线l,将三边都不相等的三角形纸片ABC平放在桌面上,使AC与边l对齐,此时△ABC的内心是点P;将纸片绕点C顺时针旋转,使点B 落在l上的点B'处,点A落在A'处,得到△A'B'C'的内心点P'.下列结论正确的是()A.PP'与l平行,PC与P'B'平行B.PP'与l平行,PC与P'B'不平行C.PP'与l不平行,PC与P'B'平行D.PP'与l不平行,PC与P'B'不平行【分析】如图,连接CP、CP′、PP′、P′B′,根据旋转可得三角形PP′C是等腰三角形,可得2∠CPP′+∠PCP′=180°,再根据△ABC的内心是点P,可得2∠ACP+∠PCP′=180°,从而∠CPP′=∠ACP,可以判断PP′∥l;根据∠BCA≠∠A′B′C,可得∠PCA≠∠P′B′C,即可判断PC与P′B′不平行,即可得结论.解:如图,连接CP、CP′、PP′、P′B′,∵三角形纸片ABC绕点C顺时针旋转,∴CP=CP′,∴∠CPP′=∠CP′P,∴2∠CPP′+∠PCP′=180°,∵△ABC的内心是点P,∴∠ACP=ACB,∵∠A′CB′=∠ACB,∠B′CP′=A′CB′,∴2∠ACP+∠PCP′=180°,∴∠CPP′=∠ACP,∴PP′∥l;∵∠BCA≠∠A′B′C,∴∠PCA≠∠P′B′C,∴PC与P′B′不平行.所以PP′与l平行,PC与P′B′不平行.故选:B.14.如图,一艘货船在A处,巡逻艇C在其南偏西60°的方向上,此时一艘客船在B处,艇C在其南偏西20°的方向上,则此时从巡逻艇上看这两艘船的视角∠ACB的度数是()A.80°B.60°C.40°D.30°【分析】将轮船航行的实际问题转化为方向角的问题解答.解:从图中我们可以发现∠ACB=60°﹣20°=40°.故选:C.15.如图,数轴上有两点A,B,表示的数分别是m,n.已知m,n是两个连续的整数,且m+n=﹣1,则分式÷的值为()A.﹣1B.1C.3D.﹣3【分析】先根据分式的混合运算顺序和运算法则化简原式,再由m,n是两个连续的整数,且m+n=﹣1得出m=﹣1,n=0,代入计算可得.解:原式=•=﹣,∵m,n是两个连续的整数,且m+n=﹣1,∴m=﹣1,n=0,则原式=﹣=﹣3,故选:D.16.如图,∠ACB=90°,AC=BC,CD平分∠ACB,点D,E关于CB对称,连接EB并延长,与AD的延长线交于点F,连接DE,CE.对于以下结论:①DE垂直平分CB;②AD=BE;③∠F不一定是直角;④EF2+DF2=2CD2.其中正确的是()A.①④B.②③C.①③D.②④【分析】①根据点D,E关于CB对称,可得CB垂直平分DE,即可判断①错误;②根据CB垂直平分DE,连接BD,可得BD=BE,证明△ACD≌△BCD,可得AD=BD,即可判断②;③结合①②证明△ACD≌△BCD≌△BCE和四边形内角和等于360°,进而证明角F的度数,即可判断③;④在Rt△FDE中,根据勾股定理,得EF2+DF2=DE2,根据∠DCE=90°,CD=CE,即可判断④.解:①∵点D,E关于CB对称,∴CB垂直平分DE,所以①错误;②∵CB垂直平分DE,连接BD,如图,∴BD=BE,∵∠ACB=90°,CD平分∠ACB,∴∠ACD=∠BCD=45°,∵AC=BC,又CD=CD,∴△ACD≌△BCD(SAS),∴AD=BD,∴AD=BE,所以②正确;③∵CB垂直平分DE,∴BD=BE,CD=CE,又BC=BC,∴△BCD≌△BCE(SSS),∴△ACD≌△BCD≌△BCE,∴∠ACD=∠DCB=∠ECB=45°,∴CD=CE,CA=CB,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵∠ADC+∠CDF=180°,∴∠BEC+∠CDF=180°,∵∠DCE=90°,∴∠F=360°﹣180°﹣90°=90°,所以③错误;④在Rt△FDE中,根据勾股定理,得EF2+DF2=DE2,∵∠DCE=90°,CD=CE,∴DE2=CD2+CE2=2CD2,∴EF2+DF2=2CD2,所以④正确.综上所述:正确的是②④.故选:D.二、填空题(本大题共3个小题,17小题3分;18-19小题各有2个空,每空2分.共11分.请把答案填在题中横线上)17.(+1)(﹣1)=2019.【分析】根据平方差公式以及二次根式的运算法则即可求出答案.解:原式=2020﹣1=2019,故答案为:2019.18.根据如下程序,解决下列问题:(1)当m=﹣1时,n=4;(2)若n=6,则m=5或﹣3.【分析】(1)根据题意把m=﹣1代入程序图列式计算即可;(2)根据题意把n=6代入程序图列方程即可得到结论.解:(1)∵m=﹣1<1,∴2+(1+1)=4;(2)当m≥1时,2+(m﹣1)=6,解得:m=5,当m<1时,2+(1﹣m)=6,解得:m=﹣3,∴m=5或﹣3,故答案为:4;5或﹣3.19.如图所示:下列正多边形都满足BA1=CB1,在正三角形中,我们可推得:∠AOB1=60°;在正方形中,可推得:∠AOB1=90°;在正五边形中,可推得:∠AOB1=108°,依此类推在正八边形中,∠AOB1=135°,在正n(n≥3)边形中,∠AOB1=°.【分析】如图4,根据正八边形的性质可以得出AB=BC,∠ABC=∠BCD=135°,就可以得出△ABA1≌△BCB1,就可以得出∠CBB1=∠BAA1,就可以得出∠AOB1=135°,由正三角形中∠AOB1=60°=,正方形中,∠AOB1=90°=;正五边形中,∠AOB1=108°=,…正n(n≥3)边形中,∠AOB1=,就可以得出结论.解:∵多边形ABCDEFGH是正八边形,∴AB=BC,∠ABC=∠BCD=135°.在△ABA1和△BCB1中,,∴△ABA1≌△BCB1(SAS)∴∠CBB1=∠BAA1.∵∠AOB1=∠ABO+∠BAA1.∴∠AOB1=∠ABO+∠CBB1∴∠AOB1=∠ABO+∠CBB1=135°;∵在正三角形中∠AOB1=60°=,在正方形中∠AOB1=90°=;在正五边形中,∠AOB1=108°=;…∴在正n(n≥3)边形中,∠AOB1=,故答案为:135,.三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.对于四个数“﹣6,﹣2,1,4”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得:①“□﹣□”的结果最小;②“□×□”的结果最大.(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.【分析】(1)将题目中的数据相加即可解答本题;(2)①根据题目中的数字,可以写出结果最小的算式;②根据题目中的数字,可以写出结果最大的算式;(3)本题答案不唯一,主要符合题意即可.解:(1)(﹣6)+(﹣2)+1+4=﹣8+1+4=﹣7+4=﹣3;(2)由题目中的数字可得,①(﹣6)﹣4的结果最小;②(﹣6)×(﹣2)的结果最大;(3)答案不唯一,符合要求即可.如:﹣2﹣1×4=﹣6;﹣6+4÷1=﹣2;4﹣(﹣6)÷(﹣2)=1;(﹣2)×1﹣(﹣6)=4.21.如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3……以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成10个互不重叠的正方形;第4次画线后,分割成13个互不重叠的正方形.发现:第n次画线后,分割成(3n+1)个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.【分析】尝试:根据前2次画线分割成的正方形个数即可得到第3、第4次的;发现:结合尝试的过程:10=3×3+1,13=3×4+1,…发现规律可得第n次画线后,分割成的正方形,进而可求第2020次画线后得到互不重叠的正方形的个数;探究:设每次画线后得到互不重叠的正方形的个数为m,则m=3n+1.求当m=1001时n的值,进而可以说明.解:尝试:3×3+1=10,3×4+1=13;故答案为:11,13;发现:通过尝试可知:第n次画线后,分割成的正方形为:3n+1;当n=2020时,3n+1=6061,即第2020次画线后得到互不重叠的正方形的个数是6061;故答案为:(3n+1);探究:不能.设每次画线后得到互不重叠的正方形的个数为m,则m=3n+1.若m=1001,则1001=3n+1.解得.这个数不是整数,所以不能.22.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于﹣2的数,已知其中3个乒乓球上标的数分别是﹣2,2,4,所标的4个数的中位数是0.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.后摸﹣224﹣2先摸﹣2\(2,﹣2)(4,﹣2)(﹣2,﹣2)2(﹣2,2)\(4,2)(﹣2,2)4(﹣2,4)(2,4)\(﹣2,4)﹣2(﹣2,﹣2)(2,﹣2)(4,﹣2)\【分析】(1)设另一个球面上标的数是x,根据中位数是0可得,进而可得x 的值,再根据众数定义可得答案;(2)利用概率公式可得答案;(3)利用列表法列出表格,然后可得所用情况,进而可得两次摸出的球面上的数之和为负数的概率.解:(1)设另一个球面上标的数是x.由题意,得,x=﹣2.∴众数是﹣2,(2)摸出的球面上的数是正数的概率=.(3)后摸﹣2 2 4 ﹣2先摸﹣2 \(2,﹣2)(4,﹣2)(﹣2,﹣2)2 (﹣2,2)\(4,2)(﹣2,2)4 (﹣2,4)(2,4)\(﹣2,4)﹣2 (﹣2,﹣2)(2,﹣2)(4,﹣2)\所有等可能的结果共有12种,两数之和为负数的结果共有2种,∴两次摸出的球面上的数之和为负数的概率=.23.如图1和图2,矩形ABCD中,E是AD的中点,P是BC上一点,AF∥PD,∠FPE =∠DPE.(1)作射线PE交直线AF于点G,如图1.①求证:AG=DP;②若点F在AD下方,AF=2,PF=7,求DP的长.(2)若点F在AD上方,如图2,直接写出PD,AF,PF的等量关系.【分析】(1)①根据平行线的性质得到∠GAE=∠PDE,∠G=∠DPE.根据全等三角形的性质健康得到结论;②等量代换得到∠G=∠FPE.求得GF=PF=7,根据线段的和差即可得到结论;(2)如图2,根据平行线的性质得到∠G=∠DPE,等量代换得到∠G=∠FPG,求得PF=FG,根据全等三角形的性质得到AG=PD,根据线段的和差即可得到结论.【解答】(1)①证明:∵AF∥PD,∴∠GAE=∠PDE,∠G=∠DPE.∵E是AD的中点,∴AE=DE.∴△AEG≌△DEP(ASA).∴AG=DP;②解:∵∠FPE=∠DPE,∠G=∠DPE,∴∠G=∠FPE.∴GF=PF=7,∵AF=2,∴AG=5.由①知AG=DP,∴DP=5;(2)解:PD=PF+AF,理由:如图2,∵AF∥PD,∴∠G=∠DPE,∵∠FPE=∠DPE,∴∠G=∠FPG,∴PF=FG,∵∠AEG=∠DEP,AE=DE,∴△AEG≌△DEP(AAS),∴AG=PD,∵AG=AF+FG,∴PD=AF+PF.24.甲、乙二人均从A地出发,甲以60米/分的速度向东匀速行进,10分钟后,乙以(60+m)米/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t分钟.(1)当m=6时,解答:①设甲与A地的距离为s甲,分别求甲向东行进及返回过程中,s甲与t的函数关系式(不写t的取值范围);②当甲、乙二人在途中相遇时,求甲行进的总时间.(2)若乙在出发9分钟内与甲相遇,求m的最小值.【分析】(1)①根据题意可得s甲与t的函数关系式;②求出s乙与t的函数关系式,再结合①的结论列方程解答即可;(2)根据题意列不等式解答即可.解:(1)①甲向东行进过程中,s甲=60(t+10)=60t+600;t=5.5时,s甲=60t+600=930.甲返回过程中,s甲=930﹣60(t﹣5.5)=﹣60t+1260.②乙追甲所走的路程s乙=66t,甲、乙二人在途中相遇时,66t=﹣60t+1260.解得t=10.10+10=20(分).∴甲、乙二人在途中相遇时,甲行进的总时间为20分钟.(2)由题意,得(60+m)×9+60×(9﹣5.5)≥930.解得m≥20.∴m的最小值为20.25.如图,△ABC中,∠ACB=90°,AC=3,BC=4,延长BC到点D,使BD=BA,P 是BC边上一点.点Q在射线BA上,PQ=BP,以点P为圆心,PD长为半径作⊙P,交AC于点E,连接PQ,设PC=x.(1)AB=5,CD=1,当点Q在⊙P上时,求x的值;(2)x为何值时,⊙P与AB相切?(3)当PC=CD时,求阴影部分的面积;(4)若⊙P与△ABC的三边有两个公共点,直接写出x的取值范围.【分析】(1)先由勾股定理求得AB,再由BD=BA,可得BD的长,从而CD的长可求;当点Q在⊙P上时,如图1,根据PQ=PD推得BP=PD,从而列出方程,解得x 的值即可;(2)作PF⊥AB于点F,当PF=PD时,⊙P与AB相切,如图2,由正弦函数得出关于x的方程,解得x的值即可;(3)如图3,连接PE,利用S阴影=S扇形PDE﹣S△PCE即可得出答案;(4)由图1和图2即可得出答案.解:(1)∵△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,∵BD=BA,∴BD=5,∴CD=1.故答案为:5,1;当点Q在⊙P上时,如图1,PQ=PD.∴BP=PD,即4﹣x=x+1.解得x=.(2)作PF⊥AB于点F,当PF=PD时,⊙P与AB相切,如图2,则PF=PD=x+1,sin B==,∴=.解得x=.经检验,x=是分式方程的解,且满足题意.∴x=时,⊙P与AB相切.(3)如图3,连接PE,∵Rt△PEC中,PC=CD=1,PE=PD=1+1=2,∴∠EPC=60°,EC=.∴S阴影=S扇形PDE﹣S△PCE=﹣×1×=﹣.(4)由图2可知,当0≤x<时,⊙P与△ABC的三边有两个公共点;由图1可知,当<x<4时,⊙P与△ABC的三边有两个公共点.∴x的取值范围为:0≤x<或<x<4.26.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.【分析】(1)当c=1时,把函数的解析式化成顶点式即可求得M1,M2的值;(2)由已知可得点A,B重合时,c﹣=2c,c=﹣,L1上有1011个“美点”,L2上有2020个“美点”.则L上“美点”的个数是1011+2020﹣1=3030;(3)当x=时,M1=+c,由于L2的对称轴为x=c,分两种情况求解:当c≥1时,M2=c2+1;当c<1时,M2=2c;再由已知列出等式即可求c的值.解:(1)当c=1时,函数y=﹣x2+x+c=﹣x2+x+1=﹣(x﹣)2+.又﹣2020≤x≤1,∴M1=,y=﹣x2+2cx+1=﹣x2+2x+1=﹣(x﹣1)2+2.又1≤x≤2020,∴M2=2;(2)当x=1时,y=﹣x2+x+c=c﹣;y=﹣x2+2cx+1=2c.若点A,B重合,则c﹣=2c,c=﹣,∴L1:y=﹣x2+x﹣(﹣2020≤x≤1);L2:y=﹣x2﹣x+1(1≤x≤2020).在L1上,x为奇数的点是“美点”,则L1上有1011个“美点”;在L2上,x为整数的点是“美点”,则L2上有2020个“美点”.又点A,B重合,则L上“美点”的个数是1011+2020﹣1=3030.(3)y=﹣x2+x+c(﹣2020≤x≤1)上时,当x=时,M1=+c,y=﹣x2+2cx+1(1≤x≤2020),对称轴为x=c,当c≥1时,M2=c2+1,∴|+c﹣c2﹣1|=,∴c=0(舍去)或c=2;当c<1时,M2=2c,∴|2c﹣﹣c|=,∴c=3(舍去)或c=﹣;∴c=﹣或2.。

2020年河北省保定市定兴县中考数学一模试卷

2020年河北省保定市定兴县中考数学一模试卷

2020年河北省保定市定兴县中考数学一模试卷一、选择题(本大题共16个小题,共42分.1-10小题各3分;11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.以上都有可能2.(3分)某排球队检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数.下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.3.(3分)如图,//∠=)AB CD,48∠=︒,1(CA.42︒B.48︒C.132︒D.138︒4.(3分)如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使ABC∆是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1B.2C.3D.45.(3分)下列调查:①机场对乘客进行安检;②对北京世园会游客满意度的调查;③对全省中学生视力情况的调查;④九年级一班要选出1人参加学校的100米比赛.其中适合全面调查的是()A .②③B .①④C .②④D .①③6.(3分)把0.00205写成10(110n a a ⨯<,n 为整数)的形式,则n 为( )A .2-B .3-C .4-D .5-7.(3分)计算:221255012525(-⨯+= )A .100B .150C .10000D .225008.(3分)已知二元一次方程组5420458m n m n +=⎧⎨-=⎩①②,如果用加减法消去n ,则下列方法可行的是( )A .①4⨯+②5⨯B .①5⨯+②4⨯C .①5⨯-②4⨯D .①4⨯-②5⨯9.(3分)关于x 的方程220x x a +-=没有实数根,则a 的值可能是( )A .2-B .1-C .0D .210.(3分)已知:MON ∠,如图,小静进行了以下作图:①在MON ∠的两边上分别截取OA ,OB ,使OA OB =;②分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;③连接AC ,BC ,AB ,OC .若2OC =,4OACB S =四边形,则AB 的长为( )A .5B .4C .3D .211.(2分)要制作一个密封的长方体铁盒,嘉嘉设计出了它的三视图,如图,按图中尺寸(单位:)cm 判断,要制作这个长方体铁盒,如果只考虑面积因素,采用下列哪种面积的铁板最合理( )A .21000cmB .21030cmC .21100cmD .21200cm12.(2分)如图,函数(0,0)k y k x x=≠<的图象L 经过点(4,2)A -,直线AB 与x 轴交于点(5,0)B -,经过点(0,4)C 作y 轴的垂线,分别交L 和直线AB 于点M ,N ,则(MN = )A .1B .5-C .1-D .513.(2分)如图,在平整的桌面上面一条直线l ,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC 与边l 对齐,此时ABC ∆的内心是点P ;将纸片绕点C 顺时针旋转,使点B 落在l 上的点B '处,点A 落在A '处,得到△A B C '''的内心点P '.下列结论正确的是( )A .PP '与l 平行,PC 与PB ''平行B .PP '与l 平行,PC 与P B ''不平行C .PP '与l 不平行,PC 与P B ''平行D .PP '与l 不平行,PC 与P B ''不平行14.(2分)如图,一艘货船在A 处,巡逻艇C 在其南偏西60︒的方向上,此时一艘客船在B 处,艇C 在其南偏西20︒的方向上,则此时从巡逻艇上看这两艘船的视角ACB ∠的度数是( )A .80︒B .60︒C .40︒D .30︒15.(2分)如图,数轴上有两点A ,B ,表示的数分别是m ,n .已知m ,n 是两个连续的整数,且1m n +=-,则分式22211m m m m m-÷--的值为( )A .1-B .1C .3D .3-16.(2分)如图,90ACB ∠=︒,AC BC =,CD 平分ACB ∠,点D ,E 关于CB 对称,连接EB 并延长,与AD 的延长线交于点F ,连接DE ,CE .对于以下结论:①DE 垂直平分CB ;②AD BE =;③F ∠不一定是直角;④2222EF DF CD +=.其中正确的是( )A .①④B .②③C .①③D .②④二、填空题(本大题共3个小题,17小题3分;18-19小题各有2个空,每空2分.共11分.请把答案填在题中横线上)17.(3分)(20201)(20201)+-= .18.(4分)根据如下程序,解决下列问题:(1)当1m =-时,n = ;(2)若6n =,则m = .19.(4分)如图所示:下列正多边形都满足11BA CB =,在正三角形中,我们可推得:160AOB ∠=︒;在正方形中,可推得:190AOB ∠=︒;在正五边形中,可推得:1108AOB ∠=︒,依此类推在正八边形中,1AOB ∠= ︒,在正(3)n n 边形中,1AOB ∠= ︒.三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)对于四个数“6-,2-,1,4”及四种运算“+,-,⨯,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得:①“□-□”的结果最小;②“□⨯□”的结果最大.(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.21.(9分)如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3⋯⋯以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成个互不重叠的正方形;第4次画线后,分割成个互不重叠的正方形.发现:第n次画线后,分割成个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.22.(9分)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于2-,2,4,所标的4个数的中位数是-的数,已知其中3个乒乓球上标的数分别是20.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.后摸先摸23.(9分)如图1和图2,矩形ABCD中,E是AD的中点,P是BC上一点,//AF PD,FPE DPE∠=∠.(1)作射线PE交直线AF于点G,如图1.①求证:AG DP=;②若点F在AD下方,2AF=,7PF=,求DP的长.(2)若点F在AD上方,如图2,直接写出PD,AF,PF的等量关系.24.(10分)甲、乙二人均从A地出发,甲以60米/分的速度向东匀速行进,10分钟后,乙以(60)m+米/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t分钟.(1)当6m=时,解答:①设甲与A地的距离为s甲,分别求甲向东行进及返回过程中,s甲与t的函数关系式(不写t 的取值范围);②当甲、乙二人在途中相遇时,求甲行进的总时间.(2)若乙在出发9分钟内与甲相遇,求m的最小值.25.(10分)如图,ABC ∆中,90ACB ∠=︒,3AC =,4BC =,延长BC 到点D ,使BD BA =,P 是BC 边上一点.点Q 在射线BA 上,PQ BP =,以点P 为圆心,PD 长为半径作P ,交AC 于点E ,连接PQ ,设PC x =.(1)AB = ,CD = ,当点Q 在P 上时,求x 的值;(2)x 为何值时,P 与AB 相切?(3)当PC CD =时,求阴影部分的面积;(4)若P 与ABC ∆的三边有两个公共点,直接写出x 的取值范围.26.(12分)如图,函数21(20201)2y x x c x =-++-的图象记为1L ,最大值为1M ;函数221(12020)y x cx x =-++的图象记为2L ,最大值为2M .1L 的右端点为A ,2L 的左端点为B ,1L ,2L 合起来的图形记为L .(1)当1c =时,求1M ,2M 的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数;(3)若1M ,2M 的差为4716,直接写出c 的值.2020年河北省保定市定兴县中考数学一模试卷参考答案与试题解析一、选择题(本大题共16个小题,共42分.1-10小题各3分;11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.以上都有可能【考点】1K:三角形【分析】三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.【解答】解:从题中可知,只看到一个角是钝角.所以这个三角形为钝角三角形.故选:B.【点评】此题考查了三角形的分类的灵活应用.2.(3分)某排球队检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数.下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.【考点】11:正数和负数【分析】计算各个数的绝对值,绝对值最小的排球最接近标准质量.【解答】解:|0.5|0.5=,|0.9|0.9=,-=,|0.7|0.7-=,|1|1<<<,0.50.70.91∴选项的排球最接近标准质量.A故选:A.【点评】考查有理数、绝对值的意义,理解绝对值的意义是正确解答的关键.3.(3分)如图,//AB CD ,48C ∠=︒,1(∠= )A .42︒B .48︒C .132︒D .138︒【考点】JA :平行线的性质【分析】根据平行线的性质和平角的定义即可得到结论.【解答】解://AB CD ,48ABC C ∴∠=∠=︒,1132∴∠=︒.故选:C .【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.4.(3分)如图,在由边长相同的7个正六边形组成的网格中,点A ,B 在格点上.再选择一个格点C ,使ABC ∆是以AB 为腰的等腰三角形,符合点C 条件的格点个数是( )A .1B .2C .3D .4【考点】MM :正多边形和圆;KI :等腰三角形的判定【分析】确定AB 的长度后确定点C 的位置即可.【解答】解:AB 的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C ,位置如图,故选:B .【点评】考查了正多边形和圆及等腰三角形的判定,解题的关键是确定AB 的长,难度不大.5.(3分)下列调查:①机场对乘客进行安检;②对北京世园会游客满意度的调查;③对全省中学生视力情况的调查;④九年级一班要选出1人参加学校的100米比赛.其中适合全面调查的是( )A .②③B .①④C .②④D .①③【考点】2V :全面调查与抽样调查【分析】利用普查和抽样调查的特点即可作出判断.【解答】解:①机场对乘客进行安检,需进行全面调查;②对北京世园会游客满意度的调查,适合抽样调查;③对全省中学生视力情况的调查,适合抽样调查;④九年级一班要选出1人参加学校的100米比赛,适合全面调查;故选:B .【点评】此题主要考查了全面调查与抽样调查,抽样调查只考查总体中的一部分个体,因此它的优点是调查范围小,节省人力物力,财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.6.(3分)把0.00205写成10(110n a a ⨯<,n 为整数)的形式,则n 为( )A .2-B .3-C .4-D .5-【考点】1J :科学记数法-表示较小的数【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:把0.00205写成10(110n a a ⨯<,n 为整数)的形式,30.00205 2.0510-∴=⨯,故3n =-.故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.(3分)计算:221255012525(-⨯+= )A .100B .150C .10000D .22500【考点】54:因式分解-运用公式法【分析】直接利用完全平方公式分解因式,进而计算得出即可.【解答】解:221255012525-⨯+2(12525)=-10000=.故选:C .【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.8.(3分)已知二元一次方程组5420458m n m n +=⎧⎨-=⎩①②,如果用加减法消去n ,则下列方法可行的是( )A .①4⨯+②5⨯B .①5⨯+②4⨯C .①5⨯-②4⨯D .①4⨯-②5⨯【考点】98:解二元一次方程组【分析】利用加减消元法消去n 即可.【解答】解:已知二元一次方程组5420458m n m n +=⎧⎨-=⎩①②,如果用加减法消去n ,则下列方法可行的是①5⨯+②4⨯,故选:B .【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(3分)关于x 的方程220x x a +-=没有实数根,则a 的值可能是( )A .2-B .1-C .0D .2【考点】AA :根的判别式【分析】由方程根的情况,根据根的判别式可求得c 的取值范围,则可求得答案.【解答】解:关于x 的方程220x x a +-=没有实数根,∴△0<,即224()0a --<,解得1a <-.观察选项,a 的值可能是2-.故选:A .【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.10.(3分)已知:MON ∠,如图,小静进行了以下作图:①在MON ∠的两边上分别截取OA ,OB ,使OA OB =;②分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;③连接AC ,BC ,AB ,OC .若2OC =,4OACB S =四边形,则AB 的长为( )A .5B .4C .3D .2【考点】KI :等腰三角形的判定;3N :作图-复杂作图【分析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:由作图可得,OA OB BC AC ===,∴四边形AOBC 是菱形,12AOBC S OC AB ∴=⨯菱形, 即1422AB =⨯⨯, 解得4AB =,故选:B .【点评】本题考查了菱形的判定与性质,解题时注意:菱形的面积等于对角线乘积的一半,判定出四边形OACB 是菱形是解题的关键.11.(2分)要制作一个密封的长方体铁盒,嘉嘉设计出了它的三视图,如图,按图中尺寸(单位:)cm 判断,要制作这个长方体铁盒,如果只考虑面积因素,采用下列哪种面积的铁板最合理( )A .21000cmB .21030cmC .21100cmD .21200cm【考点】4I :几何体的表面积;3U :由三视图判断几何体【分析】根据长方体的特征,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.由已知的3个面可以确定这个长方体的长是18cm ,宽是12cm ,高是10cm ,根据长方体的表面积公式:()2S ab ah bh =++⨯,把数据分别代入公式解答.【解答】解:(181218101210)2⨯+⨯+⨯⨯(216180120)2=++⨯5162=⨯21032()cm =,故如果只考虑面积因素,采用面积21100cm 的铁板最合理.故选:C .【点评】此题考查的目的是掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2分)如图,函数(0,0)k y k x x=≠<的图象L 经过点(4,2)A -,直线AB 与x 轴交于点(5,0)B -,经过点(0,4)C 作y 轴的垂线,分别交L 和直线AB 于点M ,N ,则(MN = )A .1B .5-C .1-D .5【考点】6G :反比例函数图象上点的坐标特征;8F :一次函数图象上点的坐标特征【分析】根据待定系数法求反比例函数的解析式,直线AB 的解析式,把4y =分别代入两个解析式求得M 、N 的坐标,即可求得MN .【解答】解:函数(0,0)k y k x x=≠<的图象L 经过点(4,2)A -, 428k ∴=-⨯=-,∴反比例函数为8y x=-, 设直线AB 的解析式为y mx n =+,把(4,2)A -,(5,0)B -代入得4250m n m n -+=⎧⎨-+=⎩,解得210m n =⎧⎨=⎩, ∴直线AB 为210y x =+,把4y =代入8y x=-,解得2x =-, 把4y =代入210y x =+,解得3x =-,(2,4)M ∴-,(3,4)N -,2(3)1MN ∴=---=,故选:A .【点评】本题考查了待定系数法求反比例函数的解析式,一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,求得M 、N 的坐标是解题的关键.13.(2分)如图,在平整的桌面上面一条直线l ,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC 与边l 对齐,此时ABC ∆的内心是点P ;将纸片绕点C 顺时针旋转,使点B 落在l 上的点B '处,点A 落在A '处,得到△A B C '''的内心点P '.下列结论正确的是( )A .PP '与l 平行,PC 与PB ''平行B .PP '与l 平行,PC 与P B ''不平行C .PP '与l 不平行,PC 与P B ''平行D .PP '与l 不平行,PC 与P B ''不平行【考点】9J :平行线的判定;MI :三角形的内切圆与内心;2R :旋转的性质【分析】如图,连接CP 、CP '、PP '、P B '',根据旋转可得三角形PP C '是等腰三角形,可得2180CPP PCP ∠'+∠'=︒,再根据ABC ∆的内心是点P ,可得2180ACP PCP ∠+∠'=︒,从而CPP ACP ∠'=∠,可以判断//PP l ';根据BCA A B C ∠≠∠'',可得PCA P B C ∠≠∠'',即可判断PC 与P B ''不平行,即可得结论.【解答】解:如图,连接CP 、CP '、PP '、P B '',三角形纸片ABC 绕点C 顺时针旋转,CP CP ∴=',CPP CP P ∴∠'=∠',2180CPP PCP ∴∠'+∠'=︒,ABC ∆的内心是点P , 12ACP ACB ∴∠=∠, ACB ACB ∠''=∠,12B CP A CB ∠''=∠'', 2180ACP PCP ∴∠+∠'=︒,CPP ACP ∴∠'=∠,//PP l ∴';BCA A B C ∠≠∠'',PCA P B C ∴∠≠∠'',PC ∴与P B ''不平行.所以PP '与l 平行,PC 与P B ''不平行.故选:B .【点评】本题考查了三角形的内切圆与内心、平行线的判定、旋转的性质,解决本题的关键是掌握旋转的性质.14.(2分)如图,一艘货船在A 处,巡逻艇C 在其南偏西60︒的方向上,此时一艘客船在B 处,艇C 在其南偏西20︒的方向上,则此时从巡逻艇上看这两艘船的视角ACB ∠的度数是( )A .80︒B .60︒C .40︒D .30︒【考点】IH :方向角【分析】将轮船航行的实际问题转化为方向角的问题解答.【解答】解:从图中我们可以发现602040ACB ∠=︒-︒=︒.故选:C .【点评】本题考查了方位角,解答此类题需要认清方位角,再结合三角形的内角与外角的关系求解.15.(2分)如图,数轴上有两点A ,B ,表示的数分别是m ,n .已知m ,n 是两个连续的整数,且1m n +=-,则分式22211m m m m m-÷--的值为( )A .1-B .1C .3D .3-【考点】6D :分式的化简求值【分析】先根据分式的混合运算顺序和运算法则化简原式,再由m ,n 是两个连续的整数,且1m n +=-得出1m =-,0n =,代入计算可得. 【解答】解:原式2(2)(1)1m m m m m ---=- 2m m -=-, m ,n 是两个连续的整数,且1m n +=-,1m ∴=-,0n =,则原式1231--=-=--, 故选:D .【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.16.(2分)如图,90ACB ∠=︒,AC BC =,CD 平分ACB ∠,点D ,E 关于CB 对称,连接EB 并延长,与AD 的延长线交于点F ,连接DE ,CE .对于以下结论:①DE 垂直平分CB ;②AD BE =;③F ∠不一定是直角;④2222EF DF CD +=.其中正确的是( )A .①④B .②③C .①③D .②④【考点】2P :轴对称的性质;KW :等腰直角三角形;KG :线段垂直平分线的性质【分析】①根据点D ,E 关于CB 对称,可得CB 垂直平分DE ,即可判断①错误; ②根据CB 垂直平分DE ,连接BD ,可得BD BE =,证明ACD BCD ∆≅∆,可得AD BD =,即可判断②;③结合①②证明ACD BCD BCE ∆≅∆≅∆和四边形内角和等于360︒,进而证明角F 的度数,即可判断③;④在Rt FDE ∆中,根据勾股定理,得222EF DF DE +=,根据90DCE ∠=︒,CD CE =,即可判断④.【解答】解:①点D ,E 关于CB 对称,CB ∴垂直平分DE ,所以①错误;②CB 垂直平分DE ,连接BD ,如图,BD BE ∴=,90ACB ∠=︒,CD 平分ACB ∠,45ACD BCD ∴∠=∠=︒,AC BC =,又CD CD =,()ACD BCD SAS ∴∆≅∆,AD BD ∴=,AD BE ∴=,所以②正确;③CB 垂直平分DE ,BD BE ∴=,CD CE =,又BC BC =,()BCD BCE SSS ∴∆≅∆,ACD BCD BCE ∴∆≅∆≅∆,45ACD DCB ECB ∴∠=∠=∠=︒,CD CE ∴=,CA CB =,ACD BCE ∆≅∆,ADC BEC ∴∠=∠,180ADC CDF ∠+∠=︒,180BEC CDF ∴∠+∠=︒,90DCE ∠=︒,3601809090F ∴∠=︒-︒-︒=︒,所以③错误;④在Rt FDE ∆中,根据勾股定理,得222EF DF DE +=,90DCE ∠=︒,CD CE =,22222DE CD CE CD ∴=+=,2222EF DF CD ∴+=,所以④正确.综上所述:正确的是②④.故选:D .【点评】本题考查了轴对称的性质、等腰直角三角形、线段垂直平分线的性质,解决本题的关键是综合运用以上知识.二、填空题(本大题共3个小题,17小题3分;18-19小题各有2个空,每空2分.共11分.请把答案填在题中横线上)17.(3分)1)= 2019 .【考点】4F :平方差公式;79:二次根式的混合运算【分析】根据平方差公式以及二次根式的运算法则即可求出答案.【解答】解:原式202012019=-=,故答案为:2019.【点评】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.(4分)根据如下程序,解决下列问题:(1)当1m =-时,n = 4 ;(2)若6n =,则m = .【考点】33:代数式求值【分析】(1)根据题意把1m =-代入程序图列式计算即可;(2)根据题意把6n =代入程序图列方程即可得到结论.【解答】解:(1)11m =-<,2(11)4∴++=;(2)当1m 时,2(1)6m +-=,解得:5m =,当1m <时,2(1)6m +-=,解得:3m =-,5m ∴=或3-,故答案为:4;5或3-.【点评】本题考查了代数式求值,正确的理解题意是解题的关键.19.(4分)如图所示:下列正多边形都满足11BA CB =,在正三角形中,我们可推得:160AOB ∠=︒;在正方形中,可推得:190AOB ∠=︒;在正五边形中,可推得:1108AOB ∠=︒,依此类推在正八边形中,1AOB ∠= 135 ︒,在正(3)n n 边形中,1AOB ∠= ︒.【考点】KD :全等三角形的判定与性质;3L :多边形内角与外角【分析】如图4,根据正八边形的性质可以得出AB BC =,135ABC BCD ∠=∠=︒,就可以得出11ABA BCB ∆≅∆,就可以得出11CBB BAA ∠=∠,就可以得出1135AOB ∠=︒,由正三角形中1(32)180603AOB -⨯∠=︒=,正方形中,1(42)180904AOB -⨯∠=︒=;正五边形中,1(52)1801085AOB -⨯∠=︒=,⋯正(3)n n 边形中,1(2)180n AOB n-∠=,就可以得出结论. 【解答】解:多边形ABCDEFGH 是正八边形, AB BC ∴=,135ABC BCD ∠=∠=︒.在1ABA ∆和1BCB ∆中,11AB BC ABC BCD BA CB =⎧⎪∠=∠⎨⎪=⎩,11()ABA BCB SAS ∴∆≅∆11CBB BAA ∴∠=∠.11AOB ABO BAA ∠=∠+∠.11AOB ABO CBB ∴∠=∠+∠11135AOB ABO CBB ∴∠=∠+∠=︒; 在正三角形中1(32)180603AOB -⨯∠=︒=, 在正方形中1(42)180904AOB -⨯∠=︒=; 在正五边形中,1(52)1801085AOB -⨯∠=︒=; ⋯∴在正(3)n n 边形中,1(2)180n AOB n-∠=, 故答案为:135,(2)180n n-︒.【点评】本题考查了正多边形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)对于四个数“6-,2-,1,4”及四种运算“+,-,⨯,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得:①“□-□”的结果最小;②“□⨯□”的结果最大.(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.【考点】1G:有理数的混合运算【分析】(1)将题目中的数据相加即可解答本题;(2)①根据题目中的数字,可以写出结果最小的算式;②根据题目中的数字,可以写出结果最大的算式;(3)本题答案不唯一,主要符合题意即可.【解答】解:(1)(6)(2)14-+-++=-++814=-+74=-;3(2)由题目中的数字可得,①(6)4--的结果最小;②(6)(2)-⨯-的结果最大;(3)答案不唯一,符合要求即可.如:2146-+÷=-;--⨯=-;64124(6)(2)1--÷-=;(2)1(6)4-⨯--=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 21.(9分)如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3⋯⋯以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成 10 个互不重叠的正方形; 第4次画线后,分割成 个互不重叠的正方形.发现:第n 次画线后,分割成 个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由. 【考点】38:规律型:图形的变化类【分析】尝试:根据前2次画线分割成的正方形个数即可得到第3、第4次的;发现:结合尝试的过程:10331=⨯+,13341=⨯+,⋯发现规律可得第n 次画线后,分割成的正方形,进而可求第2020次画线后得到互不重叠的正方形的个数;探究:设每次画线后得到互不重叠的正方形的个数为m ,则31m n =+.求当1001m =时n 的值,进而可以说明.【解答】解:尝试:33110⨯+=, 34113⨯+=;故答案为:11,13; 发现:通过尝试可知:第n 次画线后,分割成的正方形为:31n +; 当2020n =时,316061n +=,即第2020次画线后得到互不重叠的正方形的个数是6061; 故答案为:(31)n +; 探究:不能.设每次画线后得到互不重叠的正方形的个数为m ,则31m n =+. 若1001m =,则100131n =+.解得13333n =.这个数不是整数,所以不能.【点评】本题考查了规律型:图形的变化类,根据图形的变化寻找规律、总结规律、运用规律是解题的关键.22.(9分)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于2-的数,已知其中3个乒乓球上标的数分别是2-,2,4,所标的4个数的中位数是0.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.【考点】5W :众数;6X :列表法与树状图法;4X :概率公式;4W :中位数 【分析】(1)设另一个球面上标的数是x ,根据中位数是0可得202x +=,进而可得x 的值,再根据众数定义可得答案; (2)利用概率公式可得答案;(3)利用列表法列出表格,然后可得所用情况,进而可得两次摸出的球面上的数之和为负数的概率.【解答】解:(1)设另一个球面上标的数是x . 由题意,得202x +=, 2x =-.∴众数是2-,(2)摸出的球面上的数是正数的概率21 42==.(3)后摸先摸2- 2 4 2-2-\(2,2)-(4,2)-(2,2)--2 (2,2)-\(4,2)(2,2)-4 (2,4)-(2,4)\(2,4)-2-(2,2)--(2,2)-(4,2)-\所有等可能的结果共有12种,两数之和为负数的结果共有2种,∴两次摸出的球面上的数之和为负数的概率21126==.【点评】此题主要考查了列表法,以及众数,关键是掌握概率公式,正确列出表格.23.(9分)如图1和图2,矩形ABCD中,E是AD的中点,P是BC上一点,//AF PD,FPE DPE∠=∠.(1)作射线PE交直线AF于点G,如图1.①求证:AG DP=;②若点F在AD下方,2AF=,7PF=,求DP的长.(2)若点F在AD上方,如图2,直接写出PD,AF,PF的等量关系.【考点】LO:四边形综合题【分析】(1)①根据平行线的性质得到GAE PDE∠=∠,G DPE∠=∠.根据全等三角形的性质健康得到结论;②等量代换得到G FPE==,根据线段的和差即可得到结论;GF PF∠=∠.求得7(2)如图2,根据平行线的性质得到G DPE∠=∠,求得∠=∠,等量代换得到G FPGPF FG=,根据线段的和差即可得到结论.=,根据全等三角形的性质得到AG PD【解答】(1)①证明://AF PD,∴∠=∠,G DPE∠=∠.GAE PDEE是AD的中点,∴=.AE DE∴∆≅∆.()AEG DEP ASA∴=;AG DP②解:FPE DPE∠=∠,G DPE∠=∠,∴∠=∠.G FPE∴==,GF PF7AF=,2AG∴=.5由①知AG DP=,DP∴=;5(2)解:PD PF AF=+,理由:如图2,AF PD,//G DPE∴∠=∠,∠=∠,FPE DPE∴∠=∠,G FPG∴=,PF FG=,∠=∠,AE DEAEG DEP∴∆≅∆,()AEG DEP AAS∴=,AG PD=+,AG AF FG∴=+.PD AF PF【点评】本题是四边形的综合题,考查了平行线的性质,角平分线的定义,全等三角形的判定和性质,等腰三角形的判定和性质,正确的识别图形是解题的关键.24.(10分)甲、乙二人均从A 地出发,甲以60米/分的速度向东匀速行进,10分钟后,乙以(60)m +米/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t 分钟. (1)当6m =时,解答:①设甲与A 地的距离为s 甲,分别求甲向东行进及返回过程中,s 甲与t 的函数关系式(不写t 的取值范围);②当甲、乙二人在途中相遇时,求甲行进的总时间. (2)若乙在出发9分钟内与甲相遇,求m 的最小值. 【考点】FH :一次函数的应用【分析】(1)①根据题意可得s 甲与t 的函数关系式;②求出s 乙与t 的函数关系式,再结合①的结论列方程解答即可; (2)根据题意列不等式解答即可.【解答】解:(1)①甲向东行进过程中,()601060600s t t =+=+甲; 5.5t =时,60600930s t =+=甲.甲返回过程中,()93060 5.5601260s t t =--=-+甲. ②乙追甲所走的路程66s t =乙,甲、乙二人在途中相遇时,66601260t t =-+. 解得10t =.101020+=(分).∴甲、乙二人在途中相遇时,甲行进的总时间为20分钟.(2)由题意,得(60)960(9 5.5)930m +⨯+⨯-. 解得20m . m ∴的最小值为20.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件. 25.(10分)如图,ABC ∆中,90ACB ∠=︒,3AC =,4BC =,延长BC 到点D ,使BD BA =,P 是BC 边上一点.点Q 在射线BA 上,PQ BP =,以点P 为圆心,PD 长为半径作P ,交AC 于点E ,连接PQ ,设PC x =.(1)AB = 5 ,CD = ,当点Q 在P 上时,求x 的值; (2)x 为何值时,P 与AB 相切? (3)当PC CD =时,求阴影部分的面积;(4)若P 与ABC ∆的三边有两个公共点,直接写出x 的取值范围.【考点】KQ :勾股定理;ME :切线的判定与性质;MB :直线与圆的位置关系;MO :扇形面积的计算【分析】(1)先由勾股定理求得AB ,再由BD BA =,可得BD 的长,从而CD 的长可求;当点Q 在P 上时,如图1,根据PQ PD =推得BP PD =,从而列出方程,解得x 的值即可; (2)作PF AB ⊥于点F ,当PF PD =时,P 与AB 相切,如图2,由正弦函数得出关于x 的方程,解得x 的值即可;(3)如图3,连接PE ,利用PCE PDE S S S ∆=-阴影扇形即可得出答案; (4)由图1和图2即可得出答案.【解答】解:(1)ABC ∆中,90ACB ∠=︒,3AC =,4BC =,。

河北省保定市2020年中考一模数学试卷

河北省保定市2020年中考一模数学试卷

河北省保定市2020年中考一模数学试卷一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16各2分.)1.4的平方根是【】A.-2B.2C.±2D.162.下列算式中,结果等于a6的是【】A. a2•a3B.a2+ a2+ a2C. a4+ a2D. a2• a2• a23.将9250000用科学计数法表示为【】A.0.925×107B.9.25×107C.9.25×106D.92.5×1054.下列图形中,既是轴対称图形又是中心对称图形的是【】5.下列列图形中,能肯定∠2<∠1的是【】6.如图是用八块相同的小正方体搭建的几何体,它的左视图是【】7.下列各因式分解正确的是【】A.(x-1)2=x2+2x+1B.x2+2x-1=(x-1)2C.x3-9x=x(x+3)(x-3)D.-x2+(-2)2=(x-2)(x+2)8,反比例函数y=kx的图象如图所示,点A是该函数图象上一点,AB垂直于X轴垂足是点B,如果 S△AOB=1,则k的值为【】A. 1 B. -1 C,2 D.-29.直角三角板和直尺如图放置,若∠1=40°,则∠2的度数为【】A.30°B.20°C.40°D.50°10.如图,从边长为m的大正方形中剪掉一个边长为n的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是【】A (m-n)2=m2-2mn+n2 B.m2-n2=(m+n)(m-n)C.(m-n)2= m2-n2 D.m(m-n)= m2-mn11.如图,△A’B’C’是△ABC在以点O为位似中心经过位似变换得到的,若△ABC的面积与△A’B’C’的面积比是6:9,则OA:OA’为【】A.4:3B.3:4C.9:16D.16;912.如图,在□ABD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别别以P、Q为圆心,以大于12PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD 于点E,则则CE的长为【】A.3 B .5 C.2 D.6.513.已知m≠0,函数y=-mx2十n与y=mnx在同一直角坐标系中的大致图像可能【】14.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调査发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为【】A.11元B.12元C.13元D.14元15.如图,矩形ABCD 中,AB=8,BC=6,点E 、F 、G 、H 分别在矩形ABCD 各边上,且 AE=CG,BF=DH,则四边形EFCH 周长的最小值为【 】 3716.二次函数y=ax 2+bx+c(a ≠0)的部分图象如图,图象过点(-2,0),对称轴为直线x=1,下列结论:①abc<0;②2a-b=0③b 2-4ac>0:;④无论m 为何值时,总有am 2+bm ≤a+b: ⑤9a+c>3b 。

保定市2020年数学中考一模试卷(II)卷

保定市2020年数学中考一模试卷(II)卷

保定市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)绝对值最小的有理数是()A . -1B . 0C . 1D . 不存在2. (2分) (2017九上·深圳月考) 如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是()A .B .C .D .3. (2分) (2020七下·潍坊期中) 一款智能手机的磁卡芯片直径为米,这个数据用科学记数法表示为()A .B .C .D .4. (2分)(2018·曲靖模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分)(2016·无锡) 函数y= 中自变量x的取值范围是()A . x>2B . x≥2C . x≤2D . x≠26. (2分) (2018九上·泉州期中) 下列各组线段(单位:cm)中,成比例的是().A . 1,2,3,4B . 6,5,10,15C . 3,2,6,4D . 15,3,4,107. (2分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A .B .C .D . x(x﹣1)=218. (2分)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y= 上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A . 3B . 2C .D .9. (2分)在△ABC中,∠C=90°,sinA= ,则cosB的值为()A . 1B .C .D .10. (2分)已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A . a>0,b>0,c>0B . a>0,b>0,c=0C . a>0,b>0,c<0D . a>0,b<0,c=0二、填空题 (共8题;共8分)11. (1分)(2018·遵义模拟) 分解因式:ab2-4ab+4a=________.12. (1分)一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是________.13. (1分)(2017·百色) 分式方程的解是________.14. (1分) (2018八上·浦东期中) 方程(x﹣3)(x+2)=0的根是________.15. (1分)如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是________.16. (1分) (2019八下·苍南期末) 若一元二次方程x2-3x+c=0有两个相等的实数根,则c的值是________。

2020年河北省保定市定兴县中考数学一模试卷 (含答案解析)

2020年河北省保定市定兴县中考数学一模试卷 (含答案解析)

2020年河北省保定市定兴县中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A. 1B. 2C. 3D. 02.如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是()A. 甲,B. 乙 ,C. 丙 ,D. 丁3.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 59°B. 35°C. 24°D. 11°4.如图在3×3网格中,已知点A、B是两格点,若点C也是格点,且使△ABC为等腰三角形,则点C个数是()A. 6B. 7C. 8D. 95.下列调查适合全面调查的是()A. 调查中学生的课外阅读情况B. 审核书稿中的错别字C. 调查某市七年级男生身高情况D. 调查某种型号灯泡的使用寿命6.把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A. 1B. −2C. 0.813D. 8.137. 把(a +b)2+4(a +b)+4分解因式得( )A. (a +b +1)2B. (a +b −1)2C. (a +b +2)2D. (a +b −2)2 8. 用加减法解方程组{6x −5y =−1 ②4x+3y=7 ①时,若要求消去y ,则应( ) A. ①×3+②×2 B. ①×3−②×2 C. ①×5+②×3 D. ①×5−②×39. 若关于x 的方程x 2+8x −m =0有两个相等的实数根,则m 的值为( )A. 8B. −16C. 16D. −32 10. 如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A. AB 平分∠CADB. CD 平分∠ACBC. AB ⊥CDD. AB =CD11. 一个几何体的三视图如图所示,则这个几何体的表面积是( )A. 5cm 2B. 8cm 2C. 9cm 2D. 10cm 212. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴交直线y =x 于点A ,若OB 2−AB 2=12,则k =( ) A. √6B. 2√3C. 6D. 1213. 如图,有一三角形ABC 的顶点B 、C 皆在直线L 上,且其内心为I.今固定C 点,将此三角形依顺时针方向旋转,使得新三角形A′B′C 的顶点A′落在L 上,且其内心为I′.若∠A <∠B <∠C ,则下列叙述何者正确?( )#JYA. IC和I′A′平行,II′和L平行B. IC和I′A′平行,II′和L不平行C. IC和I′A′不平行,II′和L平行D. IC和I′A′不平行,II′和L不平行14.下列图形中,表示南偏西60°的射线是()A. B.C. D.15.如果a−b=1,那么代数式(1−b2a2)⋅2a2a+b的值是()A. 2B. −2C. 1D. −116.如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A. AB//DFB. ∠B=∠EC. AB=DED. AD的连线被MN垂直平分二、填空题(本大题共3小题,共11.0分)17.计算:(3√2+2√3)(3√2−2√3)=___________________.18.按如图所示的程序计算,若开始输入的n的值为−2,则最后输出的结果是______.19.如图所示,下列正多边形都满足BA1=CB1,在等边三角形中,我们可推得:∠AOB1=60°;在正方形中,可推得:∠AOB1=90°;在正五边形中,可推得:∠AOB1=108°……依此类推,在正八边形中,∠AOB1=_________;在正n(n≥3)边形中,∠AOB1=_________.三、计算题(本大题共1小题,共8.0分)20.对于任意有理数a,b,定义运算:a⊙b=a(a+b)−1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)−1=13;(−3)⊙(−5)=−3×(−3−5)−1=23.(1)求(−2)⊙31的值;2(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=______(用含m,n的式子表示).四、解答题(本大题共6小题,共59.0分)21.将正方形ABCD(如图1)作如下划分:第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH再作划分,得图3,则图3中共有9个正方形;(1)若每次都把左上角的正方形一次划分下去,则第100次划分后,图中共有______个正方形;(2)继续划分下去,第几次划分后能有805个正方形?写出计算过程.(3)能否将正方形ABCD划分成有2018个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.(4)如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把数量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,试着探究求出下面表达式的结果吧.计算34(1+14+142+143+⋯+14n).(直接写出答案即可)22.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数−1,2,−3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为____;(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.23.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH//BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF⋅GF=28时,求CE的长.24.周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园,两人同时从学校出发,以a米/分的速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙,甲追上乙后,两人以相同的速度前往净月潭,乙骑自行车的速度始终不变,设甲,乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a,b的值;(2)求甲追上乙时,距学校的路程;(3)当两人相距500米时,求t的值.25.如图,Rt△ABC中,∠C=90°,AC=√5,BC=2AC,半径为2的⊙C,分别交AC、BC于点D、E,得到DE⏜.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.26.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A、B,交y轴于点C,A、B两点横坐标为−1和3,C点纵坐标为−4.(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求D点坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,求出点Q的坐标,不存在说明理由.-------- 答案与解析 --------1.答案:B解析:解:(1)等边三角形是一特殊的等腰三角形,正确;(2)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(3)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论2个.故选:B.根据三角形的分类、三角形的三边关系进行判断.本题考查了三角形.注意:等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.2.答案:B解析:本题考查的是正负数和绝对值的意义,求出四个球的绝对值是解题的关键.只要求出表格中数据的绝对值,根据绝对值小的则最接近标准,即可选出答案.解:通过求四个排球的绝对值得:|−1.5|=1.5;|−0.5|=0.5;|−0.6|=0.6;|0.7|=0.7,−0.5的绝对值最小,所以乙球最接近标准的球,故选B.3.答案:A解析:解:如图,过A作AF//BC,∵BC//DE,∴AF//BC//DE,∴∠E=∠EAF,∠C=∠CAF,∵∠EAC=35°,∠C=24°,∴∠EAF=∠EAC+∠CAF=∠EAC+∠C=35°+24°=59°,∴∠E=59°;故选:A.先由AF//BC得到AF//BC//DE,再根据平行线的性质得到各角的关系,进而求出∠E的度数.本题考查的是平行线的性质,熟练掌握平行线的性质是解题关键.4.答案:C解析:解:如图:①以AB为等腰△ABC底边时,符合条件的C点有4个:分别为:C1,C2,C3,C4;②以AB为等腰△ABC其中的一条腰时,符合条件的C点有4个:分别为:C5,C6,C7,C8.故选:C.根据题意,结合图形,分两种情况讨论:①以AB为等腰△ABC底边;②以AB为等腰△ABC其中的一条腰.本题考查了等腰三角形的判定.解答本题关键是根据题意,画出符合实际条件的图形,注意掌握数形结合思想的应用.5.答案:B解析:解:A、调查中学生的课外阅读情况,适合抽样调查,故A错误;B、审核书稿中的错别字,必须全面调查,故B正确;C、调查某市七年级男生身高情况,适合抽样调查,故C错误;D、调查某种型号灯泡的使用寿命,适合抽样调查,故D错误;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.答案:D解析:解:把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为8.13,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.答案:C解析:先将(a+b)看成一个整体,然后直接利用完全平方公式分解因式即可.解:(a+b)2+4(a+b)+4=(a+b)2+2×2(a+b)+22=(a+b+2)2故选C.【点评】此题主要考查了公式法分解因式.正确应用完全平方公式分解因式是解题关键.8.答案:C解析:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.利用加减消元法消去y即可.解:用加减法解方程组{4x+3y=7①6x−5y=−1②时,若要求消去y,则应①×5+②×3,故选C.9.答案:B解析:本题主要考查根的判别式,掌握方程根的个数与根的判别式的关系是解题的关键.由方程有两个相等的实数根,根据根的判别式可得到关于m的方程,则可求得m的值.解:∵方程x2+8x−m=0有两个相等的实数根,∴△=0,即82−4(−m)=0,解得m=−16,故选:B.10.答案:D解析:解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.本题主要考查作图−基本作图,解题的关键是掌握菱形的判定与性质.11.答案:D解析:【试题解析】解:由题意推知几何体是长方体,长、宽、高分别1cm、1cm、2cm,所以其面积为:2×(1×1+1×2+1×2)=10(cm2).故选:D.由题意推知几何体是长方体,长、宽、高分别为1cm、1cm、2cm,可求其表面积.本题考查由三视图判断几何体、长方体的表面积.培养同学们的空间想象能力和基本的运算能力.12.答案:C解析:本题主要考查待定系数法求反比例函数解析式,一次函数图象上点的坐标特征,勾股定理,延长AB 交x轴于点C,设点C的横坐标为a,再根据AB//y轴表示出BC与AB的长度,在Rt△BOC中,利用勾股定理表示出OB2,再代入已知条件整理即可消掉a并求出k值.解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为ka,点A的纵坐标为a,所以,AB=a−ka,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+(ka)2,∵OB2−AB2=12,∴a2+(ka )2−(a−ka)2=12,整理得,2k=12,解得k=6.故选C.13.答案:C解析:解:作ID⊥BA′于D,IE⊥AC于E,I′F⊥BA′于F,如图所示:则ID//I′F,∵△ABC的内心为I,△A′B′C的内心为I′,∴ID=IE=IF,∠ICD−12∠ACB,∠I′A′C=12∠B′A′C,∴四边形IDFI′是矩形,∴II′//L,∵∠A<∠B<∠C,∴∠A′<∠B′<∠C,∴∠ICD>∠I′A′C,∴IC和I′A′不平行,故选:C.作ID⊥BA′于D,IE⊥AC于E,I′F⊥BA′于F,由内心的性质得出ID=IE=IF,∠ICD=12∠ACB,∠I′A′C=12∠B′A′C,证出四边形IDFI′是矩形,得出II′//L,证出∠ICD>∠I′A′C,得出IC和I′A′不平行,即可得出结论.本题考查了三角形的内心、平行线的判定、旋转的性质;熟练掌握三角形的内心性质和平行线的判定是解题的关键.14.答案:D解析:解:根据方位角的概念,结合题意要求和选项,故选D.根据方位角的概念,由南向西旋转60度即可.解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.15.答案:A解析:先计算括号内的减法,再计算乘法,继而将a−b=1整体代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.解:原式=(1−b2a2)⋅2a2a+b=(a+b)(a−b)a2⋅2a2a+b=2(a−b),当a−b=1时,原式=2×1=2,故选:A.16.答案:A解析:本题主要考查了轴对称的性质:①如果两个图形关于某直线对称,那么这两个图形全等;②如果两个图形关于某直线对称,那么对应线段或者平行,或者共线,或者相交于对称轴上一点;③如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.根据轴对称的性质作答.解:A.AB与DF不一定平行,故错误;B.△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,∠B=∠E,正确;C.△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,AB=DE,正确;D.△ABC与△DEF关于直线MN轴对称,A与D的对应点,AD的连线被MN垂直平分,正确.故选:A.17.答案:6解析:本题考查了平方差公式和二次根式的混合运算,根据平方差公式将原式变形后即可解答本题.解:(3√2+2√3)(3√2−2√3)=(3√2)2−(2√3)2=18−12=6,故答案为6 .18.答案:73解析:把n=−2代入程序中计算,判断结果比10小,将结果代入程序中计算,使其结果大于10,输出即可.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.解:把n=−2代入程序中,得:2×(−8)+19=−16+19=3<10,把n=3代入程序中,得:2×27+19=54+19=73>10,则最后输出的结果为73,故答案为:73.19.答案:135°;(n−2)⋅180∘.n解析:本题考查了正多边形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.根据正八边形的性质可以得出AB=BC,∠ABC=∠BCD=135°,就可以得出△ABA1≌△BCB1,就可以得出∠CBB1=∠BAA1,就可以得出∠AOB1=135°,由正三角形中∠AOB1=60°=(3−2)×180°3,正方形中,∠AOB1=90°=(4−2)×180°4;正五边形中,∠AOB1=108°=(5−2)×180°5,…正n(n≥3)边形中,∠AOB1=(n−2)×180°n,就可以得出结论.解:如图,∵多边形ABCDEFGH是正八边形,∴AB=BC,∠ABC=∠BCD=135°.在△ABA1和△BCB1中,{AB=BC∠ABC=∠BCD BA1=CB1,∴△ABA1≌△BCB1(SAS),∴∠CBB1=∠BAA1.∵∠AOB1=∠ABO+∠BAA1.∴∠AOB1=∠ABO+∠CBB1=135°.∵在正三角形中∠AOB1=60°=(3−2)×180°3;在正方形中∠AOB1=90°=(4−2)×180°4;在正五边形中,∠AOB1=108°=(5−2)×180°5;…∴在正n(n≥3)边形中,∠AOB1=(n−2)×180°n,故答案为135°;(n−2)⋅180∘n.20.答案:(1)∵a⊙b=a(a+b)−1,∴(−2)⊙31 2=(−2)×[(−2)+312]−1=(−2)×32−1=(−3)−1=−4;(2)3m+2+n.解析:解:(1)见答案;(2)∵5⊕3=20,∴m⊕n=3m+2+n,故答案为:3m+2+n.(1)根据a⊙b=a(a+b)−1,可以求得题目中所求式子的值;(2)根据题意只要写出一个符合要求的式子即可,这是一道开放性题目,答案不唯一.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.答案:解:(1)401(2)根据题意得:4n+1=805,解得:n=201;∴第201次划分后能有805个正方形;(3)不能,∵4n+1=2018,解得:n=504.25,∴n不是整数,∴不能将正方形ABCD划分成有2018个正方形的图形;(4)由题意:34(1+14+142+143+⋯+14n)=S正方形ABCD−(14)n+1⋅S正方形ABCD=1−14n+1.解析:解:(1)∵第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,∴第n次可得(4n+1)个正方形,∴第100次可得正方形:4×100+1=401(个);故答案为:401;(2)(3)(4)见答案(1)探究规律,利用规律即可解决问题;(2)构建方程即可解决问题;(3)构建方程即可判断;(4)利用数形结合的思想解决问题,根据34(1+14+142+143+⋯+14n)=S正方形ABCD−(14)n+1⋅S正方形ABCD计算即可;本题考查规律型:图形的变化类问题,解题的关键是学会从特殊到一般的探究规律分方法,属于中考常考题型.22.答案:解:(1)12;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率=812=23.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的乒乓球球面上的数之和是正数的结果数,然后根据公式求解.解:(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率=24=12;故答案为12;(2)见答案.23.答案:解:(1)∵四边形ABCD是矩形,∴AB//CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=12EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,{BF=CF∠ABF=∠DCF AB=DC,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4√7.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH//BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴GFEF =EFAF,即EF2=AF⋅GF,∵AF⋅GF=28,∴EF=2√7,∴CE=2EF=4√7.解析:本题属于四边形综合题,主要考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质的综合应用,解决问题的关键是作辅助线,构造全等三角形.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.(1)根据平行线的性质以及角平分线的定义,即可得到∠DCE=∠DEC,进而得出DE=DC;(2)连接DF,根据等腰三角形的性质得出∠DFC=90°,再根据直角三角形斜边上中线的性质得出BF=CF=EF=12EC,再根据SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,据此可得(3)根据等角的余角相等可得∠BAF=∠FEH,再根据公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,进而得出EF2=AF⋅GF=28,求得EF=2√7,即可得到CE=2EF=4√7.24.答案:解:(1)由题意可得,a=900÷4.5=200,b=6000÷200=30,即a的值是200,b的值是30;(2)设甲追上乙时的时刻为t,乙加速后的速度是200×1.5=300米/分,300(t−4.5−900)=200t,300解得,t=22.5,则200t=200×22.5=4500,答:甲追上乙时,距学校的路程是4500米;(3)当两人相距500米时,300(t−4.5)+200(t−4.5)=500,得t=5.5,)+500=200t,得t=17.5,或300(t−4.5−900300即t的值是5.5或17.5.解析:(1)根据函数图象中的数据和题意可以求得a、b的值;(2)根据题意和函数图象中的数据可以求得甲追上乙时,距学校的路程;(3)由题意和图象可知,存在两种情况使得两人相距500米,从而可以求得t的值.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.答案:(1)证明:过C作CF⊥AB于F,∵在Rt△ABC中,∠C=90°,AC=√5,BC=2AC,由勾股定理得:AB=√AC2+BC2=5,∵△ACB的面积S=12×AB×CF=12×AC×BC,∴CF=√5×2√55=2,∴CF为⊙C的半径,∵CF⊥AB,∴AB为⊙C的切线;(2)解:图中阴影部分的面积=S△ACB−S扇形DCE =12×√5×2√5−90π⋅22360=5−π.解析:本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF 的长是解此题的关键.(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.26.答案:解:(1)抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3),故−3a=−4,解得:a=43,故抛物线的表达式为:y=43x2−83x−4;(2)过点D作y轴的平行线交BC于点N,由B、C的坐标可得直线BC的表达式为:y=43x−4,设点D(x,43x 2−83x −4),点N(x,43x −4),S △BCD =12×OB ×ND =12×3×(43x −4−43x 2+83x +4)=−2x 2+6x , ∵−2<0,故S 有最大值92,此时,x =32,点D(32,−5);(3)存在,理由: 直线BC 的表达式为:y =43x −4,抛物线的对称轴为:x =1,故点H(1,−83),过点Q 作QM ⊥BC 于点M ,tan∠OCB =34=tanα,∠QBC =45°, 设QM =3x ,则HM =4x ,MB =3x ,BH =HM +MB =7x =√4+(83)2=103,解得:x =1021, QH =5x =5021,则y Q =y H +5021=−27,故点Q(1,−27).解析:(1)抛物线的表达式为:y =a(x +1)(x −3)=a(x 2−2x −3),即可求解;(2)S △BCD =12×OB ×ND =12×3×(43x −4−43x 2+83x +4)=−2x 2+6x ,即可求解;(3)设QM =3x ,则HM =4x ,MB =3x ,BH =HM +MB =7x =√4+(83)2=103,解得:x =1021,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图形的面积计算等,其中(3),用解直角三角形的方法求解点Q的坐标,是本题的亮点.。

2020年河北省九地市中考数学一模试卷(解析版)

2020年河北省九地市中考数学一模试卷(解析版)

2020年河北省九地市中考数学一模试卷一.选择题(共16小题)1.下列各数中最小的是()A.0B.﹣1C.﹣3D.22.如图所示,已知直线a,b,c,在下列条件中,能够判定a∥b的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠2=∠43.在下列图形中,其中是轴对称图形且有四条对称轴的是()A.B.C.D.4.已知1nm=10﹣9m,将12nm用科学记数法表示为a×10n m(其中1≤a<10,n为整数)的形式,则n的值为()A.﹣9B.﹣8C.8D.95.下列运算正确的是()A.a﹣(﹣a)=0B.22÷20=2C.2×=1D.(﹣a2)3=﹣a6 6.将图①中的小正方体沿箭头方向平移到图②位置,下列说法正确的是()A.图①的主视图和图②的主视图相同B.图①的主视图与图②的左视图相同C.图①的左视图与图②的左视图相同D.图①的俯视图与图②的俯视图相同7.如图,是嘉淇同学做的练习题,他最后的得分是()A.5分B.10分C.15分D.20分8.下列四种基本尺规作图分别表示,则对应选项中作法错误的是()A.作一个角等于已知角B.作一个角的平分线C.作一条线段的垂直平分线D.过直线外一点P作已知直线的垂线9.已知关于x、y的二元一次方程组的解是,则a﹣b的值是()A.4B.3C.2D.110.如图,将△ABC放在每个小正方形边长均为1的网格中,点A、B、C均落在格点上,若点B的坐标为(2,﹣1),则到△ABC三个顶点距离相等的点的坐标为()A.(0,1)B.(3,1)C.(1,﹣1)D.(0,0)11.如图,已知轮船甲在A处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为()A.北偏西40°B.北偏东40°C.北偏西35°D.北偏东35°12.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差13.《九章算术》是我国古代著名数学暮作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O 的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD=()A.13寸B.20寸C.26寸D.28寸14.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S=4:25,则DE:EC=()△ABFA.2:5B.2:3C.3:5D.3:215.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1D.﹣或﹣16.如图,在四边形ABCD中,AB⊥AD,AD∥BC,且AB=BC=4,AD=2,点E是边BC 上的一个动点,EF⊥BC交AD于点F,将四边形ABCD沿EF所在直线折叠,若两边重叠部分的面积为3,则BE的长为()A.或4﹣B.4﹣C.D.或4+二.填空题(共3小题)17.分解因式:(p+1)(p﹣4)+3p=.18.如图,正比例函数y=x的图象与反比例函数y=的图象在第一象限交于点A,将线段OA沿x轴向右平移3个单位长度得到线段O'A',其中点A与点A'对应,若O'A'的中点D 恰好也在该反比例函数图象上,则k的值为.19.将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是;(2)2022应排在A,B,C,D,E中的位置上.三.解答题(共7小题)20.有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?21.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.22.“五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300元.(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.23.(1)问题感知如图1,在△ABC中,∠C=90°,且AC=BC,点P是边AC的中点,连接BP,将线段PB绕点P顺时针旋转90°到线段PD.连接AD.过点P作PE∥AB 交BC于点E,则图中与△BEP全等的三角形是,∠BAD=°;(2)问题拓展如图2,在△ABC中,AC=BC=AB,点P是CA延长线上一点,连接BP,将线段PB绕点P顺时针旋转到线段PD,使得∠BPD=∠C,连接AD,则线段CP与AD之间存在的数量关系为CP=AD,请给予证明;(3)问题解决如图3,在△ABC中,AC=BC=AB=2,点P在直线AC上,且∠APB =30°,将线段PB绕点P顺时针旋转60°到线段PD,连接AD,请直接写出△ADP的周长.24.某月食品加工厂以2万元引进一条新的生产加工线.已知加工这种食品的成本价每袋20元,物价部门规定:该食品的市场销售价不得高于每袋35元,若该食品的月销售量y (千袋)与销售单价x(元)之间的函数关系为:y=(月获利=月销售收入﹣生产成本﹣投资成本).(1)当销售单价定位25元时,该食品加工厂的月销量为多少千袋;(2)求该加工厂的月获利M(千元)与销售单价x(元)之间的函数关系式;(3)求销售单价范围在30<x≤35时,该加工厂是盈利还是亏损?若盈利,求出最大利润;若亏损,最小亏损是多少.25.如图1,扇形OAB的半径为4,∠AOB=90°,P是半径OB上一动点,Q是上一动点.(1)连接AQ、BQ、PQ,则∠AQB的度数为;(2)当P是OB中点,且PQ∥OA时,求的长;(3)如图2,将扇形OAB沿PQ对折,使折叠后的恰好与半径OA相切于点C.若OP=3,求点O到折痕PQ的距离.26.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.2020年河北省九地市中考数学一模试卷参考答案与试题解析一.选择题(共16小题)1.下列各数中最小的是()A.0B.﹣1C.﹣3D.2【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<﹣1<0<2,故﹣3最小,故选:C.2.如图所示,已知直线a,b,c,在下列条件中,能够判定a∥b的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠2=∠4【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠1=∠2,因为∠1、∠2不是直线a、b被直线c所截形成的同位角或内错角,所以不能够判定a∥b;B、∵∠2=∠3,∴a∥b(内错角相等,两直线平行),所以能够判定a∥b.C、∠3=∠4,因为∠3与∠4不是直线a、b被直线c所截形成的同位角或内错角,所以不能够判定a∥b;D、∠2=∠4,因为∠2、∠4不是直线a、b被直线c所截形成的同位角或内错角,所以不能够判定a∥b.故选:B.3.在下列图形中,其中是轴对称图形且有四条对称轴的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解.【解答】解:A.是轴对称图形且有两条对称轴,故本选项不合题意;B.是轴对称图形且有两条对称轴,故本选项不合题意;C.是轴对称图形且有4条对称轴,故本选项符合题意;D.不是轴对称图形,故本选项不合题意.故选:C.4.已知1nm=10﹣9m,将12nm用科学记数法表示为a×10n m(其中1≤a<10,n为整数)的形式,则n的值为()A.﹣9B.﹣8C.8D.9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:12nm=12×10﹣9m=1.2×10﹣8m,∴n=﹣8,故选:B.5.下列运算正确的是()A.a﹣(﹣a)=0B.22÷20=2C.2×=1D.(﹣a2)3=﹣a6【分析】直接利用合并同类项以及实数运算、积的乘方运算法则分别化简得出答案.【解答】解:A、a﹣(﹣a)=2a,故此选项错误;B、22÷20=4,故此选项错误;C、2×=2×=,故此选项错误;D、(﹣a2)3=﹣a6,正确.故选:D.6.将图①中的小正方体沿箭头方向平移到图②位置,下列说法正确的是()A.图①的主视图和图②的主视图相同B.图①的主视图与图②的左视图相同C.图①的左视图与图②的左视图相同D.图①的俯视图与图②的俯视图相同【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,得出图①、图②的三视图即可.【解答】解:找到图①、图②从正面、侧面和上面看所得到的图形,可知图①的主视图与图②的左视图相同,图①的左视图与图②的主视图相同.故选:B.7.如图,是嘉淇同学做的练习题,他最后的得分是()A.5分B.10分C.15分D.20分【分析】直接利用平方根以及立方根的定义、无理数的定义分别分析得出答案.【解答】解:(1)﹣1没有平方根,故错误;(2)=2,则的相反数是﹣2,正确;(3)8的立方根是2,8是512的立方根,故错误;(4)请写出一个无理数﹣π,正确;故他最后的得分是:5×2=10.故选:B.8.下列四种基本尺规作图分别表示,则对应选项中作法错误的是()A.作一个角等于已知角B.作一个角的平分线C.作一条线段的垂直平分线D.过直线外一点P作已知直线的垂线【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.9.已知关于x、y的二元一次方程组的解是,则a﹣b的值是()A.4B.3C.2D.1【分析】将x=2、y=﹣2代入方程求出a、b的值,再进一步代入计算可得.【解答】解:将x=2、y=﹣2代入方程,得:,由①,得:a=2,由②,得:b=﹣2,所以a﹣b=2﹣(﹣2)=4,故选:A.10.如图,将△ABC放在每个小正方形边长均为1的网格中,点A、B、C均落在格点上,若点B的坐标为(2,﹣1),则到△ABC三个顶点距离相等的点的坐标为()A.(0,1)B.(3,1)C.(1,﹣1)D.(0,0)【分析】到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,进而得出其坐标.【解答】解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,∴到△ABC三个顶点距离相等的点的坐标为(0,0),故选:D.11.如图,已知轮船甲在A处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为()A.北偏西40°B.北偏东40°C.北偏西35°D.北偏东35°【分析】设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB =∠B,根据方位角的概念,∠B=∠CAB=180°﹣65°﹣40°=75°,可得答案.【解答】解:设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB=∠B,根据题意得,∠B=∠CAB=180°﹣65°﹣40°=75°,75°﹣40°=35°,所以轮船乙的航行方向为北偏东35°.故选:D.12.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.13.《九章算术》是我国古代著名数学暮作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O 的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD=()A.13寸B.20寸C.26寸D.28寸【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,由AB=10可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x的方程,求出方程的解即可得到x的值,即为圆的半径,把求出的半径代入即可得到答案.【解答】解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x,则OC=OD=x∵DE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).故选:C.14.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S=4:25,则DE:EC=()△ABFA.2:5B.2:3C.3:5D.3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.15.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1D.﹣或﹣【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+2m,∴这条抛物线的顶点为(2,2m+4),∴关于x轴对称的抛物线的顶点(2,﹣2m﹣4),∵它们的顶点相距6个单位长度.∴|2m+4﹣(﹣2m﹣4)|=6,∴4m+8=±6,当4m+8=6时,m=﹣,当4m+8=﹣6时,m=﹣,∴m的值是﹣或﹣.故选:D.16.如图,在四边形ABCD中,AB⊥AD,AD∥BC,且AB=BC=4,AD=2,点E是边BC 上的一个动点,EF⊥BC交AD于点F,将四边形ABCD沿EF所在直线折叠,若两边重叠部分的面积为3,则BE的长为()A.或4﹣B.4﹣C.D.或4+【分析】如图1,将四边形ABCD沿EF所在直线折叠,两边重叠部分为五边形EB′GDF,推出四边形ABEF是矩形,得到AB=EF=4,AF=BE,根据折叠的性质得到A′F=AF,B′E=BE,A′B′=AB=4,设BE=x,则AF=A′F=B′E=x,根据相似三角形的性质得到B′G=4(2﹣x),根据题意列方程得到[(2﹣x)+(4﹣x)]×4﹣(4﹣2x)(8﹣4x)=3此方程无实数根,故这种情况不存在;如图2,将四边形ABCD沿EF所在直线折叠,两边重叠部分为矩形A′B′EF,设BE=x,则AF=A′F=B′E=x,根据题意列方程得到BE=;如图3,将四边形ABCD沿EF所在直线折叠,两边重叠部分为△CEG,设BE=x,则AF=A′F=B′E=x,根据相似三角形的性质得到EG=2(4﹣x),根据题意列方程得到结论.【解答】解:如图1,将四边形ABCD沿EF所在直线折叠,两边重叠部分为五边形EB′GDF,∵AB⊥AD,AD∥BC,EF⊥BC,∴四边形ABEF是矩形,∴AB=EF=4,AF=BE,∵将四边形ABCD沿EF所在直线折叠,∴A′F=AF,B′E=BE,A′B′=AB=4,设BE=x,则AF=A′F=B′E=x,∴DF=2﹣x,CE=4﹣x,∴A′D=2x﹣2,CB′=4﹣2x,∵A′D∥B′C,∴△A′DG∽△B′CG,∴=,∴,∴B′G=4(2﹣x),∵两边重叠部分的面积为3,∴[(2﹣x)+(4﹣x)]×4﹣(4﹣2x)(8﹣4x)=3此方程无实数根,故这种情况不存在;如图2,将四边形ABCD沿EF所在直线折叠,两边重叠部分为矩形A′B′EF,设BE=x,则AF=A′F=B′E=x,∵两边重叠部分的面积为3,∴B′E•A′B′=4x=3,解得:x=,∴BE=;如图3,将四边形ABCD沿EF所在直线折叠,两边重叠部分为△CEG,设BE=x,则AF=A′F=B′E=x,∴DF=x﹣2,CE=4﹣x,∵DF∥CE,∴△DFG∽△CEG,∴=,∴=,∴EG=2(4﹣x),∵两边重叠部分的面积为3,∴×2(4﹣x)(4﹣x)=3,解得:x=4﹣或x=4+(不合题意舍去),综上所述,BE的长为或4﹣,故选:A.二.填空题(共3小题)17.分解因式:(p+1)(p﹣4)+3p=(p+2)(p﹣2).【分析】根据题目中的式子先化简,再利用平方差公式可以进行因式分解.【解答】解:(p+1)(p﹣4)+3p=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p﹣2).18.如图,正比例函数y=x的图象与反比例函数y=的图象在第一象限交于点A,将线段OA沿x轴向右平移3个单位长度得到线段O'A',其中点A与点A'对应,若O'A'的中点D恰好也在该反比例函数图象上,则k的值为4.【分析】作DE∥x轴交OA于E,如图,先利用平移的性质得到OO′=3,OA=O′A′,再证明四边形OO′DE为平行四边形得到OE=O′D,接着判定OE=OA,设E(t,t),则A(2t,2t),D(t+3,t),根据反比例函数图象上点的坐标特征k=2t•2t=t(t+3),然后先求出t,从而得到k的值.【解答】解:作DE∥x轴交OA于E,如图,∵线段OA沿x轴向右平移3个单位长度得到线段O'A',∴OO′=3,OA=O′A′,∵OA∥O′A′,∴四边形OO′DE为平行四边形,∴OE=O′D,∵点D为O'A'的中点,∴O′D=O′A′,∴OE=OA,设E(t,t),则A(2t,2t),D(t+3,t),∵A(2t,2t),D(t+3,t)在反比例函数y=的图象上,∴k=2t•2t=t(t+3),解得t=1,k=4.故答案为4.19.将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是24;(2)2022应排在A,B,C,D,E中A的位置上.【分析】观察题中数列的规律:奇数前面是负号,偶数前面是正号,峰n中,A位置的绝对值可以表示为:5n﹣3;B位置的绝对值可以表示为:5n﹣2;C位置的绝对值可以表示为:5n﹣1;D位置的绝对值可以表示为:5n;E位置的绝对值可以表示为:5n+1;注意先判断绝对值的位置再判断符号,根据规律求解即可.【解答】解:(1)观察发现:峰n中,A位置的绝对值可以表示为:5n﹣3;B位置的绝对值可以表示为:5n﹣2;C位置(峰顶)的绝对值可以表示为:5n﹣1;D位置的绝对值可以表示为:5n;E位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×402﹣3,∴2022应排在A的位置.故答案为:(1)24;(2)A.三.解答题(共7小题)20.有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=7.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?【分析】(1)直接根据题意得出关于m的等式进而得出答案;(2)直接根据题意得出关于n的等式进而得出n的值.【解答】解:(1)根据题意可得:﹣m☆3=32﹣2m+1=﹣4,解得:m=7;故答案为:7;(2)根据题意可得:2n☆(n﹣2)=9,即(n﹣2)2+4n+1=9,解得:n=2或﹣2,(n﹣2)☆2n=4n2+2(n﹣2)+1=9,解得:n=﹣2或,则n=﹣2或或2.21.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【分析】(1)边长=周长÷边数;(2)分别表示出a和b的代数式,让其相等,看是否有相应的值.【解答】解:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a>b或a<b,但可令a=b,得,即.∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.22.“五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300元.(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.【分析】(1)树状图展示所有12种等可能的结果数,找出获得礼品的总价值不低于50元的结果数,则可计算出该顾客在甲商场获得礼品的总价值不低于50元的概率;(2)利用同样方法计算出该顾客在乙商场获得礼品的总价值不低于50元的概率,然后比较两概率大小进行判断.【解答】解:(1)若在甲商场消费,画树状图为:共有12种等可能的结果数,其中获得礼品的总价值不低于50元的结果数为8,所以该顾客在甲商场获得礼品的总价值不低于50元的概率==;(2)该顾客去甲商场消费使获得礼品的总价值不低于50元机会更大.理由如下:若在乙商场消费,画树状图为:共有8种等可能的结果数,其中获得礼品的总价值不低于50元的结果数为4,所以该顾客在乙商场获得礼品的总价值不低于50元的概率==,因为>,所以该顾客去甲商场消费使获得礼品的总价值不低于50元机会更大.23.(1)问题感知如图1,在△ABC中,∠C=90°,且AC=BC,点P是边AC的中点,连接BP,将线段PB绕点P顺时针旋转90°到线段PD.连接AD.过点P作PE∥AB 交BC于点E,则图中与△BEP全等的三角形是△P AD,∠BAD=90°;(2)问题拓展如图2,在△ABC中,AC=BC=AB,点P是CA延长线上一点,连接BP,将线段PB绕点P顺时针旋转到线段PD,使得∠BPD=∠C,连接AD,则线段CP 与AD之间存在的数量关系为CP=AD,请给予证明;(3)问题解决如图3,在△ABC中,AC=BC=AB=2,点P在直线AC上,且∠APB =30°,将线段PB绕点P顺时针旋转60°到线段PD,连接AD,请直接写出△ADP的周长.【分析】(1)由“SAS”可证△P AD≌△BEP,可得∠P AD=∠BEP=135°,依据∠ABC =45°,可得∠BAD=90°;(2)过点P作PH∥AB,交CB的延长线于点H,由“SAS”可证△APD≌△HBP,可得PH=AD,通过证明△CAB∽△CPH,可得,即可得结论;(3)分两种情况讨论,由直角三角形的性质和相似三角形的性质可求解.【解答】证明:(1)∵点P是边AC的中点,PE∥AB,∴点E是BC的中点,∴CE=BE,∵AC=BC,∴BE=AP,∵将线段PB绕点P顺时针旋转90°到线段PD.∴PB=PD,∵∠APD+∠BPC=90°,∠BPC+∠APD=90°,∴∠EBP=∠APD,又∵PB=PD,∴△P AD≌△BEP(SAS),∴∠P AD=∠BEP,∵∠C=90°,AC=BC,∴∠BAC=∠ABC=45°,∵PE∥AB,∴∠ABC=∠PEC=45°,∴∠BEP=135°,∴∠BAD=∠P AD﹣∠BAC=135°﹣45°=90°,故答案为:△P AD,90;(2)如图,过点P作PH∥AB,交CB的延长线于点H,∴∠CBA=∠CHP,∠CAB=∠CPH,∵CB=CA,∴∠CBA=∠CAB,∴∠CHP=∠CPH,∴CH=CP,∴BH=AP,∵将线段PB绕点P顺时针旋转90°到线段PD.∴PB=PD,∵∠BPD=∠C,∴∠BPD+∠BPC=∠C+∠BPC,∴∠PBH=∠APD,∴△APD≌△HBP(SAS),∴PH=AD,∵PH∥AB,∴△CAB∽△CPH,∴,∴,∵AC=BC=AB,∴,∴CP=PH=AD;(2)当点P在CA的延长线上时,∵AC=BC=AB=2,∴△ABC是等边三角形,∴∠ACB=60°,∵将线段PB绕点P顺时针旋转60°到线段PD,∴BP=PD,∠BPD=60°=∠ACB,过点P作PE∥AB,交CB的延长线于点E,∵∠ACB=∠APB+∠ABP,∴∠ABP=∠APB=30°,∴AB=AP=2,∴CP=4,∵AB∥PE,∴,∴CP=PE=4,由(2)得,PE=AD=4,∵∠APD=∠APB+BPD=90°,∴DP===2,∴△ADP的周长=AD+AP+DP=2+6,当点P在AC延长线上时,如图,同理可求△ADP的周长=6+2,综上所述:△ADP的周长为6+2.24.某月食品加工厂以2万元引进一条新的生产加工线.已知加工这种食品的成本价每袋20元,物价部门规定:该食品的市场销售价不得高于每袋35元,若该食品的月销售量y (千袋)与销售单价x(元)之间的函数关系为:y=(月获利=月销售收入﹣生产成本﹣投资成本).(1)当销售单价定位25元时,该食品加工厂的月销量为多少千袋;(2)求该加工厂的月获利M(千元)与销售单价x(元)之间的函数关系式;(3)求销售单价范围在30<x≤35时,该加工厂是盈利还是亏损?若盈利,求出最大利润;若亏损,最小亏损是多少.【分析】(1)将x=25代入反比例函数中求得y值即可确定月销量;(2)用月销量×每袋的利润=总利润求得M(千元)与销售单价x(元)之间的函数关系式即可;(3)求30<x≤35范围内的利润,利用二次函数增减性,即可确定最值.【解答】解:(1)当x=25时,y==24千袋,所以当销售单价定位25元时,该食品加工厂的月销量为24千袋;(2)当20<x≤30时,M=(x﹣20)﹣20=580﹣;当30<x≤35时,M=(0.5x+10)(x﹣20)﹣20=x2﹣220;(3)当30<x≤35时,M=x2﹣220,当x=35时,w最大,则w=×352﹣220=392.5(千元)=39.25(万元),答:此时该加工厂盈利,最大利润为:39.25万元.25.如图1,扇形OAB的半径为4,∠AOB=90°,P是半径OB上一动点,Q是上一动点.(1)连接AQ、BQ、PQ,则∠AQB的度数为135°;(2)当P是OB中点,且PQ∥OA时,求的长;(3)如图2,将扇形OAB沿PQ对折,使折叠后的恰好与半径OA相切于点C.若OP=3,求点O到折痕PQ的距离.【分析】(1)根据圆周角定理解答;(2)连接OQ,根据直角三角形的性质求出∠OQP=30°,根据弧长公式计算,得到答案;(3)找点O关于PQ的对称点O′,根据折叠的性质得到OM=O′M,OO′⊥PQ,O′P=OP=3,根据切线的性质得到O′C⊥AO,证明△O'BP≌△OCN,根据全等三角形的性质得到∠O'BP=∠OCN=90°,证明四边形OCO′B是矩形,根据勾股定理计算,得到答案.【解答】解:(1)∵∠AOB=90°,∴大于180°的圆心角∠AOB=360°﹣90°=270°,由圆周角定理得,∠AQB=×270°=135°,故答案为:135°;(2)如图1,连接OQ,∵扇形OAB的半径为4且P是OB中点,∴OP=2,OQ=4,∵PQ∥OA,∴∠BPQ=∠AOB=90°,∴∠OQP=30°,∴∠AOQ=∠OQP=30°,∴的长==π;(3)如图2,找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,ON,则OM=O′M,OO′⊥PQ,O′P=OP=3,点O′是所在圆的圆心,∴O′C=OB=4,∵折叠后的弧QB′恰好与半径OA相切于C点,∴O′C⊥AO,∴O′C∥OB,∴∠POO'=∠CO'M=∠PO'M,∵∠PMO'=∠QMO'=90°,∴∠O'PM=∠MNO',∴O'P=O'N=OP=3,∴四边形OPO'N是平行四边形,∴O'P=ON,∵O与O'关于PQ对称,∴ON=O'N=3,∴BP=CN=4﹣3=1,∵PN⊥OO',∴∠MNO'=∠MNO,∴∠BPO'=∠CNO,∴△O'BP≌△OCN(SAS),∴∠O'BP=∠OCN=90°,∴四边形OCO′B是矩形,。

2020河北保定数学中考试题

2020河北保定数学中考试题

定兴县2020年初中毕业测试数学试题一、选择题(本大题共16个小题,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12的绝对值为( ) A. 12- B. 12 C. 2- D. 2 【答案】B【解析】【分析】直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案. 【详解】解:12的绝对值为12, 故选:B .【点睛】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.计算:2991981++=( )A. 298B. 9801C. 10000D. 10001 【答案】C【解析】【分析】直接利用完全平方公式求解即可.【详解】解:222991981(991)10010000++=+==.故选:C.【点睛】本题考查的知识点是利用完全平方公式求解,属于容易题.失分的原因是:无法根据题目中给出的式子,结合完全平方公式解题.3.下面列出的不等式中,正确的是( )A. “m 不是正数”表示为m <0B. “m 不大于3”表示为m <3C. “n 与4的差是负数”表示为n ﹣4<0D. “n 不等于6”表示为n >6【答案】C【解析】【分析】根据各个选项的表示列出不等式,与选项中所表示的不等式对比即可.m≤故错误.【详解】A. “m不是正数”表示为0,m≤故错误.B. “m不大于3”表示3,C. “n与4的差是负数”表示为n﹣4<0,正确.n≠,故错误.D. “n不等于6”表示为6故选:C.【点睛】考查列不等式,解决本题的关键是理解负数是小于0的数,非负数是大于或等于0的数,不大于用数学符号表示是“≤”.4.下列图形中,是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点睛】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.某地区有38所中学,其中七年级学生共6 858名.为了了解该地区七年级学生每天体育锻炼的时间,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.其中正确的是()A. ①②③④⑤B. ②①③④⑤C. ②①④③⑤D. ②①④⑤③【答案】D【解析】【分析】直接利用调查收集数据的过程与方法分析排序即可.【详解】解:解决一个问题所要经历的几个主要步骤为:②设计调查问卷,再①抽样调查;④整理数据;⑤分析数据;③用样本估计总体.所以为:②①④⑤③.故选D .【点睛】此题主要考查了调查收集数据的过程与方法,正确掌握调查的过程是解题关键.6.把0.00205写成a ×10n (1≤a <10,n 为整数)的形式,则n 为( )A. -2B. -3C. -4D. -5【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】把0.00205写成10n a -⨯(1≤a <10,n 为整数)的形式为2.05×310-,则n 为3-.故选:B .【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.下列图形中,21∠>∠的是( ) A. B. C. D.【答案】C【解析】【分析】由已知条件可知A 是两个直角,B 是两个对顶角,C 是三角形的一个内角和外角,D 是同圆中同弧对应的两个角.【详解】解:由已知条件,A 中∠1=∠2=90°;B 中∠1=∠2(互为对顶角);C 中应用三角形定理:三角形的一个外角等于与它不相邻的两个内角的和,故 ∠1<∠2;D 中应用定理:同圆中等弧对应的圆周角相等,故∠1=∠2;故选C.【点睛】本题考查了三角形的基本定理,灵活运用定理是解题的关键.8.不等式组14112x x -≤⎧⎪⎨+<⎪⎩解集在数轴上表示正确的是( ) A. B.C.D.【答案】C【解析】【分析】 分别解出两个一元一次不等式,再把得到的解根据原则(大于向右,小于向左,包括端点用实心,不包括端点用空心)分别在数轴上表示出来,再取两个解相交部分即可得到这个不等式组的解集.【详解】解:对不等式14x -≤移项,即可得到不等式14x -≤的解集为3x ≥-,对不等式112x +<,先去分母得到12x +<,即解集为1x <, 把这两个解集在数轴上画出来,再取公共部分,即:31x -≤<,解集在数轴上表示应为C.故选C . 【点睛】本题主要考查了数轴和一元一次不等组及其解法,先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较即得到答案.9.若分式211x x x x --运算结果为x ,则在“□”中添加的运算符号为( ) A. + B. — C. —或÷ D. +或×【答案】C【解析】【分析】依次计算+、-、×、÷,再进行判断. 【详解】当□为“-”时,2(1)111x x x x x x x x --==---;当□为“+”时,221111x x x x x x ++=---; 当□为“×”时,23211(1)x x x x x x ⨯=---; 当□为“÷”时,211x x x x x ÷=--; 所以结果为x 的有—或÷.故选C.【点睛】考查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.10.已知1m ,则关于x 的一元二次方程212304x x m -++=根的情况为( ) A. 无实数根B. 有两个相等实数根C. 有两个不相等实数根D. 无法确定 【答案】A【解析】【分析】 求出1m 时△的取值范围即可确定关于x 的一元二次方程212304x x m -++=根的情况. 【详解】对于关于x 的一元二次方程212304x x m -++=, △=21(2)41(3)=84m m --⨯⨯+-- 当1m 时,-m-8<0,∴△<0, ∴一元二次方程212304x x m -++=没有实数根, 故选:A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0,方程没有实数根.11.已知:如图,1110∠=︒,270,求证:a ∥b .下面为嘉琪同学的证明过程:证明:∵1110∠=︒,31∠=∠( ① ),∴3110∠=︒.又∵270,∴23180∠+∠=︒∴a ∥b ( ② ).其中①②为解题依据,则下列描述正确的是( )A. ①代表内错角相等B. ②代表同位角相等,两直线平行C. ①代表对顶角相等D. ②代表同旁内角相等,两直线平行 【答案】C【解析】【分析】依据对顶角相等以及∠2的度数,即可得到∠2+∠3=180°,根据平行线的判定即可判断a ∥b .【详解】解:∵∠1=110°,∠3=∠1(对顶角相等),∴∠3=110°,又∵∠2=70°,∴∠2+∠3=180°,∴a ∥b (同旁内角互补,两直线平行).故选:C .【点睛】本题主要考查了平行线的判定,解题时注意:同旁内角互补,两直线平行.12.如图,在数轴上,点O 对应数字O ,点A 对应数字2,过点A 作AB 垂直于数轴,且AB=4,连接OB ,绕点O 顺时针旋转OB ,使点B 落在数轴上的点C 处,则点C 所表示的数介于( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】 分析:计算出OB 的长度,进行估算即可.详解:2,4,OA AB ==2222242 5.OC OB OA AB ∴==+=+=162025,<<162025,∴<<即4255,<<故选B.点睛:考查了无理数的估算以及数轴上的点和实数之间的对应关系,夹逼法是估算的一般方法,也是常见的方法.13.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A. 15B. 25C. 35D. 45 【答案】C【解析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷=故选C14. “科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y (度)与镜片焦距x (m )成反比例.如果500度近视眼镜片的焦距为0.2m ,则表示y 与x 函数关系的图象大致是( )A. B.C. D.【答案】B【解析】【分析】由于近视眼镜的度数y (度)与镜片焦距x (米)成反比例,可设y=k x ,由于点(0.2,500)在此函数解析式上,故可先求得k 的值.【详解】根据题意近视眼镜的度数y (度)与镜片焦距x (米)成反比例,设y=k x , 由于点(0.2,500)在此函数解析式上,∴k=0.2×500=100,∴y=100x. 故选B .15.如图,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若120AOC ∠=︒,则BCD ∠的大小为( )A. 30B. 40︒C. 50︒D. 60︒【答案】A【解析】【分析】 根据三角形外角的性质求得∠OCB=60︒,根据切线的性质得出∠OCD=90°,即可求解.【详解】∵OA=OB ,120AOC ∠=︒,∴∠OCB=∠OBC=12∠AOC=60︒, ∵CD 为⊙O 的切线,∴∠OCD=90︒,∵∠BCD=90︒-60︒=30︒,故选:A .【点睛】本题考查了切线的性质定理以及三角形外角的性质,熟记和圆有关的各种性质定理是解题关键. 16.如图,已知轮船甲在A 处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B 处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为( )A. 北偏西40°B. 北偏东40°C. 北偏西35°D. 北偏东35°【答案】D【解析】【分析】 设两船相遇于点C ,如图,则△ABC 是等腰三角形,即AC=BC ,也就是∠CAB=∠B ,根据方位角的概念,∠B=∠CAB=180°-65°-40°=75°,可得答案.【详解】解:设两船相遇于点C ,如图,则△ABC 是等腰三角形,即AC =BC ,也就是∠CAB =∠B ,根据题意得,∠B =∠CAB =180°﹣65°﹣40°=75°,75°﹣40°=35°,所以轮船乙的航行方向为北偏东35°.故选:D .【点睛】本题考查了方向角的知识点,等腰三角形的性质,解答本题的关键是理解确定一个点的位置需要两个量:一个是方向角,一个是距离.二、填空题(本大题共3个小题,把答案写在题中横线上)17.计算:123_______-=. 【答案】3【解析】1232333-=-=18.如图, AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于12EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M ,则射线AP 为_____________;若110ACD ∠=︒,则CMA ∠的度数为__________.【答案】 (1). CAB ∠的平分线 (2). 35︒【解析】【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【详解】∵AB ∥CD ,∠ACD=110°,∴∠CAB=70°,∵根据作图可知:射线AP 为∠CAB 平分线,∴∠CAM=∠BAM=35°,∵AB ∥CD ,∴∠CMA=∠MAB=35°.故答案为:∠CAB 平分线,35°.【点睛】本题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键. 19.一小球从距地面3m 高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第2次着地时,经过的总路程___________m;(2)小球第n次着地后,反弹的高度为___________m.【答案】(1). 6 (2). 132n⎛⎫⨯ ⎪⎝⎭【解析】【分析】(1)根据题意可以求得小球第2次着地时,经过的总路程;(2)逐一列出前三次着地后反弹的高度,找出规律,即可解答.【详解】解:(1)小球第2次着地时,经过的总路程为:333622++=,故答案为:6;(2)第1次着地后反弹的高度为:132⨯,第2次着地后反弹的高度为:211133222⎛⎫⨯⨯=⨯ ⎪⎝⎭,第3次着地后反弹的高度为:2311133222⎛⎫⎛⎫⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭,…第n次着地后反弹的高度为:132n⎛⎫⨯ ⎪⎝⎭,故答案为:132n⎛⎫⨯ ⎪⎝⎭.【点睛】本题考查了实际问题中的规律探究问题,解答本题的关键是明确题意,找出题目中数的变化规律,注意每次着地后又跳回到原高度的一半再落下.三、解答题(本大题共5个小题,解答应写出文字说明、证明过程或演算步骤)20.(1)计算:22982-;(2)已知12.8a =-, 2.8b =,求代数式222a ab b ++的值.【答案】(1)9600;(2)100【解析】【分析】(1)利用平方差公式计算可得;(2)根据完全平方公式计算可得.【详解】(1)22982-()()982982=+-10096=⨯9600=;(2)222a ab b ++()2a b =+当12.8a =-, 2.8b =时,原式()()2212.8 2.801001=-=-+=.【点睛】本题主要考查了因式分解-运用公式法,解题的关键是掌握完全平方公式和平方差公式. 21.如图,桌面上竖直放置着一个等腰直角三角板ABC ,若测得斜边AB 的两端点到桌面的距离分别为AD ,BE .(1)求证:ADC CEB △≌△;(2)若10DE =,7AD =,求BE 的长.【答案】(1)见解析;(2)3【解析】【分析】(1)先利用同角的余角相等,判断出∠DAC=∠BCE ,进而判断出△ACD ≌△CBE ;(2)由全等三角形的性质,即可求出答案.【详解】解:(1)证明:∵AD DC ⊥,BE CE ⊥,∴90ADC CEB ∠=∠=︒,∴90ACD DAC ∠+∠=︒.∵AC BC ⊥,∴90ACB ∠=︒,∴90ACD BCE ∠+∠=︒,∴DAC BCE =∠∠.∴()ADC CEB AAS ∆∆≌(2)解:∵ADC CEB ∆∆≌,∴AD CE =,CD BE =.∵7AD =,∴7CE =,∵10DE =,∴1073CD DE CE =-=-=,∴3BE =.【点睛】此题主要考查了等腰直角三角形的性质,全等三角形的判定和性质,判断出△ACD ≌△CBE 是解本题的关键.22.某中学开展“阳光体育一小时”活动,按学校实际情况,决定开设A :踢毽子;B :篮球;C :跳绳;D :乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了________名学生;(2)在扇形统计图中,“B ”所在扇形的圆心角是________度;(3)将条形统计图补充完整;(4)若该中学有1200名学生,喜欢篮球运动的学生约有________名.【答案】(1)200;(2)54;(3)作图见解析(4)180【解析】【分析】(1)结合条形统计图和扇形统计图,利用A 组频数80除以A 组频率40%,即可得到该校本次调查中,共调查了多少名学生;(2)用360度乘以B 组的百分比可得;(3)总人数乘以C 项目的百分比可得圆心角度数;(4)用1200乘以抽查的人中喜欢篮球运动项目的人数所占的百分比即可.【详解】(1)根据题意得:80÷40%=200(人),故本次共调查200名学生.故答案为200.(2)扇形统计图中,“B ”所在扇形的圆心角是360°×(1﹣40%﹣20%﹣25%)=54°.故答案为54;(3)C 项目的人数为200×20%=40,补全图形为:(4)“篮球”的百分比为1﹣40%﹣20%﹣25%=15%,则喜欢篮球运动的学生约有1200×15%=180(人).故答案为180.点睛:本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.如图,一次函数y kx b =+图象与反比例函数m y x=的图象交于点A 、B ,与x 轴交于点C .(1)求一次函数y kx b =+与反比例函数m y x=的解析式. (2)求点C 坐标. (3)平面上的点D 与点O 、C 、A 构成平行四边形,请直接写出满足条件的D 点坐标______.【答案】(1)24y x =+,6y x=;(2)()2,0-;(3)()5,2--或()1,2--或()1,2 【解析】【分析】(1)先由图形得出的信息代入求出m,再求出B 点,利用待定系数法将A 、B 代入求出即可.(2)一次函数令y =0求出x 即可得出C 坐标.(3)根据题意分别找到点所在的直线,再根据线段长度判断即可.【详解】解:(1)把()3,2A --代入m y x =得:6m =, 把B 横坐标1x =代入6y x=得:6y =,即()1,6B , 把()3,2--,()1,6代入y kx b =+得:326k b k b -+=-⎧⎨+=⎩, 解得:24k b =⎧⎨=⎩, ∴一次函数解析式为24y x =+;反比例函数的解析式6y x=. (2)对于24y x =+,令0y =,得到2x =-,则C 的坐标为()2,0-;(3)如下图所示,分三种情况考虑:O 、C 、A 三点确定,D 点满足题意得点必定在y 轴上或过点A 平行x 轴的平行线上,在y 轴上可得(1,2)、(﹣1,﹣2)满足在过A 点平行x 轴的平行线上可得(﹣5,﹣2),(﹣1,﹣2)满足综上所述:()15,2D --;()21,2D --;()31,2D .故答案为:()5,2--或()1,2--或()1,2.【点睛】本题考查一次函数与反比例函数的结合,关键在于理解两者联系,利用待定系数法解题. 24.如图,在直角坐标系中,二次函数经过()2,0A -,()2,2B ,()0,2C 三个点.(1)求该二次函数的解析式.(2)若在该函数图象的对称轴上有个动点D ,求当D 点坐标为何值时,ACD 的周长最小.【答案】(1)211242y x x =-++;(2)31,2D ⎛⎫ ⎪⎝⎭【解析】【分析】(1)设这个二次函数的解析式为y=ax 2+bx+c ,利用待定系数法求抛物线解析式;(2)AB 与对称轴的交点即为点D ,此时△ACD 的周长最小;【详解】解:(1)设二次函数的解析式为2y ax bx c =++,将A 、B 、C 三点代入 42c 042c 22a b a b c -+=⎧⎪++=⎨⎪=⎩,解得:14a =-,12b = ∴抛物线的解析式为:211242y x x =-++; (2)如图,连接AB 与对称轴1x =交于点D ,点D 即为所求设直线AB 解析式为y kx b =+将A 、B 两点代入得2022k b k b -+=⎧⎨+=⎩,解得:121k b ⎧=⎪⎨⎪=⎩,直线AB 的解析式为:112y x =+, 当1x =时,32y =, ∴31,2D ⎛⎫ ⎪⎝⎭时,ACD ∆的周长最小;【点睛】本题考查了二次函数的性质,一次函数的性质,以及线段求和极值类型和直角三角形分类讨论求点问题,难度不大,典型的数形结合问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年河北省保定市定兴县中考一模数学一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题,每小题2分,共42分)1.,-1,-3,0这四个实数中,最小的是( )B.-1C.-3D.0解析:根据实数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小)比较即可.∵-3<-1<0,∴最小的实数是-3.答案:C2.有两个完全相同的长方体,按如图方式摆放,其主视图是( )A.B.C.D.解析:根据主视图的定义可知这个立体图形的主视图是C.答案:C3.“一带一路”的“朋友圈”究竟有多大?“一带一路”涉及沿线65个国家,总涉及人口约4400000000,将4400000000用科学记数法表示为( )A.4.4×107B.44×108C.4.4×109D.0.44×1010解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4400000000有10位,所以可以确定n=10-1=9.4 400 000 000=4.4×109.答案:C4.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.解析:根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.答案:A5.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于( )A.70°B.80°C.90°D.100°解析:根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.∵AB ∥CD ,∴∠1=∠B=50°, ∵∠C=40°,∴∠E=180°-∠B-∠1=90°. 答案:C6.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( )A.512 B.125 C.513 D.1213解析:在由自动扶梯构成的直角三角形中,已知了坡面l 和铅直高度h 的长,可用勾股定理求出坡面的水平宽度,进而求出θ的正切值.∵商场自动扶梯的长l=13米,高度h=5米,∴12==m 米, ∴tan θ=512. 答案:A7.一元二次方程3x2-6x+4=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根解析:直接计算方程根的判别式进行判断即可. ∵3x2-6x+4=0,∴△=(-6)2-4×3×4=36-48=-12<0,∴该方程无实数根.答案:C8.如果a-b=5,那么代数式222⎛⎫+-⎪-⎝⎭ga b abab a b的值是( )A.1 5 -B.1 5C.-5D.5解析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a-b=5,∴原式()22225-+-===-=--g ga ba b ab ab aba bab a b ab a b.答案:D9.已知正方形ABCD,点E在边AB上,以CE为边作正方形CEFG,如图所示,连接DG.求证:△BCE≌△DCG.甲、乙两位同学的证明过程如下,则下列说法正确的是( )甲:∵四边形ABCD、四边形CEFG都是正方形∴CB=CD CE=CG,∠BCD=∠ECG=90°∴∠BCD-∠ECD=∠ECG-∠ECD∴∠BCE=∠GCD∴△BCE ≌△DCG(SAS)乙:∵四边形ABCD 、四边形CEFG 都是正方形 ∴CB=CD CE=CG 且∠B=∠CDG=90° ∴△BCE ≌△DCG(HL) A.甲同学的证明过程正确 B.乙同学的证明过程正确 C.两人的证明过程都正确 D.两人的证明过程都不正确解析:根据正方形性质得出BC=CD ,CE=CG ,∠BCD=∠ECG=90°,都减去∠ECD ,即可求出∠BCE=∠DCG ,根据SAS 即可推出两三角形全等,即可判断甲同学证明过程正确;但是根据已知不能推出∠CDG=90°,即可判断乙同学证明过程不对. 答案:A10.某小组同学在一周内参加家务劳动时间与人数情况如表所示:下列关于“劳动时间”这组数据叙述正确的是( ) A.中位数是2 B.众数是2 C.平均数是3 D.方差是0解析:根据中位数,众数,平均数,方差的计算方法,判断即可. 由题意得,众数是2. 答案:B11.中国古代人民很早就在生产生活种发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A.()3229-=+x x B.()3229+=-x xC.9232-+=xx D.9232+-=xx 解析:根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可. 设有x 辆车,则可列方程:3(x-2)=2x+9. 答案:A12.如图,在直角坐标系中,点A在函数4=yx(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数4=yx(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于( )A.2C.4解析:设A(a,4a),可求出D(2a,2a),∵AB⊥CD,∴1124242==⨯⨯=g四边形ACBDS AB CD aa.答案:C13.如图所示,一架投影机插入胶片后图象可投到屏幕上.已知胶片与屏幕平行,A点为光源,与胶片BC的距离为0.1米,胶片的高BC为0.038米,若需要投影后的图象DE高1.9米,则投影机光源离屏幕大约为( )A.6米B.5米C.4米D.3米解析:因为光源与胶片组成的三角形与光源与投影后的图象组成的三角形相似,所以可用相似三角形的相似比解答.如图所示,过A作AG⊥DE于G,交BC与F,因为BC ∥DE ,所以△ABC ∽△ADE ,AG ⊥BC ,AF=0.1m ,设AG=h , 则:=AF BC AG DE ,即0.10.0381.9=h ,解得,h=5m. 答案:B14.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A.6C.9D.323解析:如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1, 此时垂线段OP 1最短,P 1Q 1最小值为OP 1-OQ 1,∵AB=10,AC=8,BC=6,∴AB 2=AC 2+BC 2, ∴∠C=90°, ∵∠OP 1B=90°, ∴OP 1∥AC ∵AO=OB , ∴P 1C=P 1B ,∴OP1=12AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.答案:C15.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )A.B.C.D.解析:连接OP:由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.答案:D16.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2020B2020C2020D2020的边长是( )A.2017 12⎛⎫ ⎪⎝⎭B.2016 12⎛⎫ ⎪⎝⎭C.2017 3⎛⎫⎪ ⎪⎝⎭D.2016⎝⎭解析:利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.∵∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=12,则1222213cos30=⎛⎝=⎭=︒B EB C,同理可得:332 13⎝=⎭=B C,故正方形A n B n C n D n的边长是:13-⎛⎝⎭n.则正方形A2020B2020C2020D2020的边长是:2017⎝⎭.答案:C二、填空题(本大题共3小题,共10分,17,18小题,每小题3分,19小题共4分)a和b之间,且ab,那么a、b的值分别是, .解析:首先找出与10邻近的两个完全平方数,则这两个数应该是9和16,所以a=3,b=4.答案:3,418.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为 .解析:如图,点M即为所求,连接AC、BC,由题意知,AB=4、BC=1,∵AB为圆的直径,∴∠ACB=90°,则====AM AC∴点M19.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第4个阴影三角形的面积是,第2020个阴影三角形的面积是 .解析:根据一次函数图象上点的坐标特征结合等腰直角三角形的性质,即可得出OA1、A2B1、A3B2、A4B3的值,根据边的长度的变化即可找出变化规律“A n+1B n=B n B n+1=2n+1”,再根据三角形的面积即可得出S n+1=12×(2n+1)2=22n+1,分别代入n=3、2016即可求出结论.当x=0时,y=x+2=2,∴OA1=OB1=2;当x=2时,y=x+2=4,∴A2B1=B1B2=4;当x=2+4=6时,y=x+2=8,∴A3B2=B2B3=8;当x=6+8=14时,y=x+2=16,∴A4B3=B3B4=16.∴A n+1B n=B n B n+1=2n+1,∴S n+1=12×(2n+1)2=22n+1.当n=3时,S4=22×3+1=128;当n=2016时,S2020=22×2016+1=24033.答案:128,24033三、解答题(本大题共7小题,共计68分)20.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c-6)2+|a+2|=0.(1)求代数式a2+c2-2ac的值.解析:(1)根据(c-6)2+|a+2|=0,利用非负数的性质求得a,c的值即可.答案:(1)∵(c-6)2+|a+2|=0,∴a+2=0,c-6=0,解得a=-2,c=6,∴a2+c2-2ac=4+36+24=64.(2)若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是 . 解析:(2)根据轴对称的性质,可得对称点离对称轴的距离相等,据此计算即可. 答案:(2)∵b是最小的正整数,∴b=1,∵(-2+1)÷2=-0.5,∴6-(-0.5)=6.5,-0.5-6.5=-7,∴点C与数-7表示的点重合.故答案为:-7(3)请在数轴上确定一点D,使得AD=2BD,则点D表示的数是 .解析:(3)设点D表示的数为x,分三种情况讨论即可得到点D表示的数是0或4. 答案:(3)设点D表示的数为x,则若点D在点A的左侧,则-2-x=2(1-x),解得x=4(舍去);若点D在A、B之间,则x-(-2)=2(1-x),解得x=0;若点D在点B在右侧,则x-(-2)=2(x-1),解得x=4.综上所述,点D表示的数是0或4.故答案为:0或4.21.观察下列各个等式的规律:第一个等式:2221112--=,第二个等式:2232122--=,第三个等式:2243132--=…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式.解析:(1)根据题目中的式子的变化规律可以写出第四个等式. 答案:(1)由题目中式子的变化规律可得,第四个等式是:2254142--=.(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的. 解析:(2)根据题目中的式子的变化规律可以猜想出第n个等式并加以证明.答案:(2)第n个等式是:()22112+--=n nn.证明:∵()()()221111121122222+++-+--+-==-⎡⎤⎤⎣⎦⎦==⎡⎣n n n nn nn nn,∴第n个等式是:()22112+--=n nn.22.“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 .解析:(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角.答案:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×1560=90°.故答案为:60、90°.(2)请补全条形统计图.解析:(2)由(1)可求得了解的人数,继而补全条形统计图.答案:(2)“了解”的人数为:60-15-30-10=5;补全条形统计图得:(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.解析:(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1个男生和1个女生的情况,再利用概率公式求解即可求得答案.答案:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为123 205=.23.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长.解析:(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长.答案:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴1322==OE BC.(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S. 解析:(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.答案:(2)连接OC,则易得△COE ≌△AFE ,故阴影部分的面积=扇形FOC 的面积,260336032ππ⨯==扇形FOCS .即可得阴影部分的面积为32π.24.去年某果园产销两旺,采摘的苹果部分加工销售,部分直接销售,且当天都能销售完,直接销售是4元/斤,加工销售是13元/斤(不计损耗),已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘苹果,剩下的工人加工苹果.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式.解析:(1)根据题意可以列出相应的函数关系式,注意加工之前必须先采摘才可以. 答案:(1)由题意可得,y=[70x-(20-x)×35]×4+35(20-x)×13=-35x+6300, 即y 与x 的函数关系式是y=-35x+6300.(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值. 解析:(2)根据题意和(1)中的函数解析式可以解答本题. 答案:(2)∵70≥35(20-x), ∴x ≥203, ∵x 是整数且x ≤20, ∴7≤x ≤20, ∵y=-35x+6300,∴当x=7时,y 取得最大值,此时y=-35×7+6300=6055,20-x=13,答:安排7名工人采摘,13名工人加工,才能使一天的销售收入最大,最大值是6055元.25.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为a.(1)当点D ′恰好落在EF 边上时,求旋转角a 的值. 解析:(1)根据旋转的性质得CD ′=CD=2,在Rt △CED ′中,CD ′=2,CE=1,则∠CD ′E=30°,然后根据平行线的性质即可得到∠α=30°.答案:(1)∵长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′, ∴CD ′=CD=2,在Rt △CED ′中,CD ′=2,CE=1, ∴∠CD ′E=30°, ∵CD ∥EF , ∴∠α=30°.(2)如图2,G 为BC 中点,且0°<a <90°,求证:GD ′=E ′D. 解析:(2)由G 为BC 中点可得CG=CE ,根据旋转的性质得∠D ′CE ′=∠DCE=90°,CE=CE ′,则∠GCD ′=∠DCE ′=90°+α,然后根据“SAS ”可判断△GCD ′≌△E ′CD ,则GD ′=E ′D. 答案:(2)证明:∵G 为BC 中点, ∴CG=1, ∴CG=CE ,∵长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′, ∴∠D ′CE ′=∠DCE=90°,CE=CE ′=CG , ∴∠GCD ′=∠DCE ′=90°+α, 在△GCD ′和△E ′CD 中'=⎧⎪∠'=∠'⎨⎪='⎩CD CD GCD DCE CG CE , ∴△GCD ′≌△E ′CD(SAS), ∴GD ′=E ′D.(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角a 的值;若不能说明理由.解析:(3)根据正方形的性质得CB=CD ,而CD=CD ′,则△BCD ′与△DCD ′为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD ′与△DCD ′为钝角三角形时,可计算出α=135°,当△BCD ′与△DCD ′为锐角三角形时,可计算得到α=315°. 答案:(3)能.理由如下: ∵四边形ABCD 为正方形,∵CD=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α=360902︒-︒=135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=12∠BCD=45°则α=360°-902︒=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.26.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式.解析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解.答案:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴930 10++=⎧⎨++=⎩b cb c,解得43=-⎧⎨=⎩bc,∴抛物线解析式为y=x2-4x+3.(2)求点P在运动的过程中线段PD长度的最大值.解析:(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答.答案:(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=-x+3,设点P(x,x2-4x+3),∴点D(x,-x+3),∴PD=(-x+3)-(x2-4x+3)=-x2+3x=-(x-32)2+94,∵a=-1<0,∴当x=32时,线段PD的长度有最大值94.(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由.解析:(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P 为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可.答案:(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点坐标为(2,-1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,-1),综上所述,点P(1,0)或(2,-1)时,△APD能构成直角三角形.(4)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在请求出点M的坐标,若不存在请说明理由.解析:(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA-MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.答案:(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA-MC|<BC,∴当M、B、C三点共线时,|MA-MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则3+=⎧⎨=⎩k bb,解得33=-⎧⎨=⎩kb,∴直线BC的解析式为y=-3x+3,∵抛物线y=x2-4x+3的对称轴为直线x=2,∴当x=2时,y=-3×2+3=-3,∴点M(2,-3),即,抛物线对称轴上存在点M(2,-3),使|MA-MC|最大.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

相关文档
最新文档