初中数学综合测试(5)
(北师大版)初中数学七年级下册 第五章综合测试 (含答案)
第五章综合测试一、选择题(共10小题,满分30分)1.下列防疫的图标中是轴对称图形的是( )A .B .C .D .2.如图是一个经过改造的规则为47⨯的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是( )A .1号袋B .2号袋C .3号袋D .4号袋3.如图,30A ︒∠=,60C ︒∠'=,ABC △与A B C '''△关于直线l 对称,则B ∠度数为( )A .30︒B .60︒C .90︒D .120︒4.如图,在33⨯的网格中,与ABC △成轴对称,顶点在格点上,且位置不同的三角形有( )A .5个B .6个C .7个D .8个5.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水.某同学用直线(虛线)l 表示小河,P ,Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( )A .B .C .D .6.如图,将ABC △沿直线DE 折叠,使点C 与点A 重合,已知7AB =,6BC =,则BCD △的周长为( )A .12B .13C .19D .207.如图,在ABC △中,90C ︒∠=,DE AB ⊥于点E ,CD DE =,26CBD ︒∠=,则A ∠的度数为( )A .40︒B .34︒C .36︒D .38︒8.如图,ABC △中,BO 平分ABC ∠,CO 平分ACB ∠,M ,N 经过点O ,且MN BC ∥,若5AB =,AMN △的周长等于12,则AC 的长为( )A .7B .6C .5D .49.如图,在ABC △中,AB AC =,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ︒∠=,则DBC ∠=( )A .40︒B .30︒C .20︒D .10︒10.如图,ABC △是等边三角形,P 是三角形内任意一点,D E F 、、分别是AC 、AB 、BC 边上的三点,且PF AB ∥,PD BC ∥,PE AC ∥.若PF PD PE a ++=,则ABC △的边长为( )ABC .2D .a二、填空题(共8小题,满分24分)11.在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是________.12.如图,点P 是AOB ∠平分线OC 上一点,PD OB ⊥,垂足为D ,若2PD =,则点P 到边OA 的距离是________.13.如图,在ABC △中,AB AC =,=10BC ,AD 是BAC ∠平分线,则BD =________.14.如图,在ABC △中,AB AC =,28DBC ︒∠=,且BD AC ⊥,则A ∠=________︒.15.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字________的格子内.16.已知等腰三角形有一边长为5,一边长为2,则周长为________.17.如图,已知ABC △中,132BAC ︒∠=,现将ABC △进行折叠,使顶点B C 、均与顶点A 重合,则DAE ∠的度数为________.18.如图,CD 是ABC △的角平分线,AE CD ⊥于E ,6BC =,4AC =,ABC △的面积是9,则AEC △的面积是________.三、解答题(共7小题,满分66分)19.如图,ABC △中,90A ︒∠=,D 为AC 上一点,E 为BC 上一点,点A 和点E 关于BD 对称,点B 和点C 关于DE 对称.求ABC ∠和C ∠的度数.20.如图,长方形台球桌ABCD 上有两个球P Q ,.(1)请画出一条路径,使得球P 撞击台球桌边AB 反弹后,正好撞到球Q ;(2)请画出一条路径,使得球P 撞击台球桌边,经过两次反弹后,正好撞到球Q ;21.如图,在ABC △中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,分别交BC 于点D E 、,已知ADE △的周长5 cm .(1)求BC 的长;(2)分别连接OA OB OC 、、,若OBC △的周长为13 cm ,求OA 的长.22.如图,在ABC △中,=AB AC ,BD 平分ABC ∠交AC 于点D ,BE BD DE BC ⊥,∥,BE 与DE 交于点E ,DE 交AB 于点F .(1)若=56A ︒∠,求E ∠的度数;(2)求证:=BF EF .23.在ABC △中,AB AC =,点D 是BC 的中点,点E 是AD 上任意一点.(1)如图1,连接BE CE 、,则BE CE =吗?说明理由;(2)若45BAC ︒∠=,BE 的延长线与AC 垂直相交于点F 时,如图2,12BD AE =吗?说明理由.24.在等边ABC △中,(1)如图1,P Q ,是BC 边上两点,==20AP AQ BAP ︒∠,,求AQB ∠的度数;(2)点P Q ,是BC 边上的两个动点(不与B C ,重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM PM ,. ①依题意将图2补全;②求证:=PA PM .25.如图,已知D 是ABC △的边BC 上的一点,CD AB BDA BAD =∠=∠,,AE 是ABD △的中线. (1)若60B ︒∠=,求C ∠的值;(2)求证:AD 是EAC ∠的平分线.第五章综合测试答案解析一、 1.【答案】C【解析】解:A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意.故选:C. 2.【答案】D【解析】解:根据轴对称的性质可知,台球走过的路径为:所以球最后将落入的球袋是4号袋,故选:D. 3.【答案】C【解析】解:ABC △与A B C '''△关于直线l 对称,ABC A B C ∴'''△≌△, 60C C ︒∴∠=∠'=, 30A ︒∠=,18090B A C ︒︒∴∠=-∠-∠=,故选:C. 4.【答案】D【解析】解:如图所示:与ABC △成轴对称,顶点在格点上,且位置不同的三角形有8个, 故选:D.5.【答案】C【解析】解:作点P 关于直线l 的对称点C ,连接QC 交直线l 于M . 根据两点之间,线段最短,可知选项C 铺设的管道最短. 故选:C. 6.【答案】B【解析】解:由折叠可知,AD CD =,76AB BC ==,,BCD ∴△的周长7613BC BD CD BC BD AD BC AB =++=++=+=+=.故选:B. 7.【答案】D 【解析】解:DE AB DC BC DE DC ⊥⊥=,,,BD ∴平分ABC ∠,26EBD CBD ︒∴∠=∠=,909022638A ABC ︒︒︒︒∴∠=-∠=-⨯=.故选:D. 8.【答案】A 【解析】解:BO 平分CBA ∠,CO 平分ACB ∠,MBO OBC OCN OCB ∴∠=∠∠=∠,, MN BC ∥,MOB OBC NOC OCB ∴∠=∠∠=∠,, MBO MOB NOC NCO ∴∠=∠∠=∠,, MO MB NO NC ∴==,, =5AB AMN ,△的周长等于12,AMN ∴△的周长512AM MN AN AB AC AC =++=+=+=,7AC ∴=,故选:A. 9.【答案】B 【解析】解:40AB AC A ︒=∠=,,1804070ABC C ︒︒︒∴∠=∠=-()=,AD BD =,40ABD A ︒∴∠=∠=,30DBC ABC ABD ︒∴∠=∠-∠=,故选:B. 10.【答案】D【解析】解:延长EP 交BC 于点G ,延长FP 交AC 于点H ,如图所示:PF AB ∥,PD BC ∥,PE AC ∥,∴四边形AEPH 、四边形PDCG 均为平行四边形,PE AH PG CD ∴==,.又ABC △为等边三角形,FGP ∴△和HPD △也是等边三角形,PF PG CD PD DH ∴===,,PE PD PF AH DH CD AC ∴++=++=, AC a ∴=;故选:D. 二、11.【答案】线段、直角、等腰三角形【解析】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意; 直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意; 等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意; 直角三角形不一定是轴对称图形,不符合题意. 故成轴对称图形的是:线段、直角、等腰三角形. 故答案为:线段、直角、等腰三角形. 12.【答案】2【解析】解:过P 作PE OA ⊥于点E , 点P 是AOB ∠平分线OC 上一点,PD OB ⊥,PE PD ∴=, 2PD =, 2PE ∴=,∴点P 到边OA 的距离是2.故答案为2. 13.【答案】5 【解析】解:AB AC BAC =∠,的平分线交BC 边于点10D BC =,,5BD CD BC ∴===,故答案为:5. 14.【答案】56 【解析】解:BD 是AC 边上的高,902862180218012456DBC C DBC C AB AC A C ︒︒︒︒︒︒︒∴∠+∠=∠=∴∠==∴∠=-∠=-=,,,故答案为:56.15.【答案】3【解析】解:如图所示,把阴影涂在图中标有数字3的格子内所组成的图形是轴对称图形,故答案为:3.16.【答案】12【解析】解:①若5为腰长,2为底边长,5,5,2能组成三角形,∴此时周长为:55212++=;②若2为腰长,5为底边长,2245+=<,∴不能组成三角形,故舍去;∴周长为12.故答案为:12.17.【答案】84︒【解析】解:如图,132BAC ︒∠=,18013248B C ︒︒︒∴∠+∠==-;由题意得:B DAB ∠=∠(设为a ),C EAC ∠=∠(设为β),2218021809684ADE AED DAE αβαβ︒︒︒︒∴∠=∠=∴∠=+-=,-()=, 故答案为:84︒.18.【答案】3【解析】解:延长AE 交BC 于F , CD 是ABC △的角平分线,ACE FCE ∴∠=∠AE CD ⊥于E9046=2AEC CEF CE CE ACE FCE ASA CF AC BC BF ︒∴∠=∠==∴∴===∴,△≌△(),,,ABC ∵△的面积是9,2963ACF S =∴⨯=△ AEC ∴△的面积132ACF S ==△, 故答案为:3.三、19.【答案】解:A 点和E 点关于BD 对称, ABD EBD ∴∠=∠,即22ABC ABD EBD ∠=∠=∠, 又B 点、C 点关于DE 对称,290239030260DBE C ABC C A ABC C C C C C ABC C ︒︒︒︒∴∠=∠∠=∠∠=∴∠+∠=∠+∠=∠=∴∠=∴∠=∠=,,,,.20.【答案】解:(1)如图,点M 即为所求.(2)如图,点E ,点F 即为所求.21.【答案】解:(1)DM 是线段AB 的垂直平分线, DA DB ∴=,同理,EA EC =,ADE △的周长5,5AD DE EA ∴++=,5cm BC DB DE EC AD DE EA ∴=++=++=(); (2)OBC △的周长为13,13OB OC BC ∴++=,5BC =,8OB OC ∴+=, OM 垂直平分AB ,OA OB ∴=,同理,OA OC =,4cm OA OB OC ∴===(). 22.【答案】解:(1)56AB AC A ︒=∠=,, 1805662ABC ︒︒︒∴∠=(-)=, BD 平分ABC ∠, 1312DBF DBC ABC ︒∴∠=∠==∠, DE BC ∥,31EDB DBC ︒∴∠=∠=,BE BD ⊥,90DBE ︒∴∠=,903159E ︒︒︒∴∠=-=;(2)31EDB DBF ︒∠=∠=,59E EBF ︒∴∠=∠=,BF EF ∴=.23.【答案】解:(1)成立.理由:AB AC =,D 是BC 的中点,BAE CAE ∴∠=∠.在ABE △和ACE △中,AB AC BAE CAE AE AE =⎧⎪=⎨⎪=⎩∠∠,ABE ACE SAS ∴△≌△(), BE CE ∴=;(2)成立.理由:45BAC BF AF ︒∠=⊥,.ABF ∴△为等腰直角三角形由(1)知AD ⊥BC ,EAF CBF ∴∠=∠在AEF △和BCF △中,EAF CBF AF BF AFE BFC =⎧⎪=⎨⎪=⎩∠∠∠∠, 12.AEF BCF ASA AE BC BD BC BD AE ∴∴==∴=△≌△(),, 24.【答案】解:(1)ABC △为等边三角形 608080B APC BAP B AP AQ AQB APC ︒︒︒∴∠=∴∠=∠+∠==∴∠=∠=,(2)①补全图形如图所示,②证明:过点A 作AH BC ⊥C 于点H ,如图. 由ABC △为等边三角形,AP AQ =,可得PAB QAC ∠=∠,点Q M ,关于直线AC 对称,QAC MAC AQ AM ∴∠=∠=,60MAC PAC PAB PAC ︒∴∠+∠=∠+∠=, APM ∴△为等边三角形PA PM ∴=.25.【答案】(1)解:60B BDA BAD ︒∠=∠=∠,, 60BAD BDA︒∴∠=∠=,AB AD ∴=,CD AB =,DAC C ∴∠=∠,2BDA DAC C C ∴∠=∠+∠=∠,60BAD ︒∠=,30C ︒∴∠=;(2)证明:延长AE 到M ,使EM AE =,连接DM , 在ABE △和MDE △中,BM AE AEB MED BE DE =⎧⎪=⎨⎪=⎩∠∠,ABE MDE ∴△≌△,B MDE AB DM ∴∠=∠=,,ADC B BAD MDE BDA ADM ∠=∠+∠=∠+∠=∠,在MAD △与CAD △,DM CD ADM ADC AD AD =⎧⎪=⎨⎪=⎩∠∠,MAD CAD ∴△≌△,MAD CAD ∴∠=∠,AD ∴是EAC ∠的平分线.。
初中数学轴对称的实际应用综合测试题
初中数学轴对称的实际应用综合测试题
初中数学轴对称的实际应用综合测试题
一、单选题(共5道,每道20分)
1.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为( )
A.15°
B.20°
C.25°
D.30°
2.如图,在△ABC中,AB=AC,AB=5,BC=
3.将△ABC 折叠,使得点A落在点B处,折痕为DF,与AB交于点D,与AC交于点F,连接BF,则△BCF的周长是( )
A.5
B.8
C.11
D.13
3.如图,在长方形ABCD中,AB=11cm,BC=6cm,点E,F分别在AB,CD上.将长方形ABCD沿EF折叠,使点A,D分别落在长方形ABCD外部的点A′,D′处,则整个阴影部分图形的周长为( )
A.17cm
B.23cm
C.28cm
D.34cm
4.已知:如图,点P是∠ABC内一定点,点M,N分别为边BA,BC上的两个动点,若∠ABC=30°,BP=4,则△PMN的周长的最小值为( )
A.2
B.4
C.6
D.8
5.如图,∠AOB=45°,点P为∠AOB内部任意一点,点E,F分别是∠AOB两边OA,OB上的动点,当△PEF的周长最小时,∠EPF的度数为( )
A.60°
B.90°
C.120°
D.135°。
初三数学综合测试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
初中数学综合试卷五三答案
一、选择题1. 答案:B解析:由题意可知,平行四边形ABCD中,∠B=90°,所以ABCD是矩形。
又因为矩形的对角线相等,所以AC=BD。
所以选B。
2. 答案:C解析:根据勾股定理,在直角三角形中,直角边的平方和等于斜边的平方。
所以3²+4²=5²,故选C。
3. 答案:D解析:根据有理数的乘法法则,负数乘以负数等于正数。
所以-3×-4=12。
故选D。
4. 答案:A解析:由题意可知,圆的半径为2cm,圆心角为60°,所以弧长为2π×2×(60°/360°)=π。
故选A。
5. 答案:B解析:根据一元一次方程的解法,将方程两边的x合并,得到2x-3=7,解得x=5。
故选B。
二、填空题6. 答案:-1/2解析:由题意可知,a²-b²=(a+b)(a-b),所以(a-b)(a+b)=a²-b²=1/2。
解得a-b=±√(1/2)。
故答案为-1/2。
7. 答案:-3/2解析:由题意可知,(a+b)²=a²+2ab+b²,所以(a-b)²=a²-2ab+b²。
将a=2,b=-1代入,得到(2-(-1))²=2²-2×2×(-1)+(-1)²=9。
所以a-b=±3。
故答案为-3/2。
8. 答案:4解析:由题意可知,三角形ABC中,∠A=90°,∠B=30°,∠C=60°。
所以AC=BC/√3。
将BC=4代入,得到AC=4/√3。
故答案为4。
9. 答案:12解析:由题意可知,等差数列{an}中,a1=2,d=3,n=5。
所以an=a1+(n-1)d=2+(5-1)×3=14。
故答案为12。
10. 答案:0解析:由题意可知,函数f(x)=x²-4x+4。
2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
人教版初中数学七年级上册 第五章相交线与平行线 综合测试(含答案)
第五章综合测试一、选择题(每小题5分,共40分)1.如图所示的四幅图案中,能通过平移得到图①的是( )图①ABCD2.直线l 上有A ,B ,C 三点,直线l 外有一点P ,若4cm PA =,3cm PB =,2cm PC =,PC l ⊥,则点P 到直线l 的距离( ) A .等于2cmB .小于2cmC .不大于2cmD .大于2cm 而小于3cm3.如图,AB BC ⊥,BC CD ⊥,EBC BCF ∠=∠,那么ABE ∠与DCF ∠的位置关系和大小关系分别是( )A .是同位角且相等B .不是同位角,但相等C .是同位角,但不相等D .不是同位角,也不相等4.将一直角三角板与两边平行的纸条如图所示放置,给出下列结论: ①12∠=∠;②34∠=∠;③2490∠+∠=︒;45180∠+∠=︒. 其中正确的个数为( )A .1B .2C .3D .45.如图,AD BC ∥,点E 在BD 的延长线上,若155ADE =︒∠,则DBC ∠的度数为( )A .155︒B .50︒C .45︒D .25︒6.如图,AB CD ∥,27E ∠=︒,52C ∠=︒,则EAB ∠的度数为( )A .25︒B .63︒C .79︒D .101︒7.如图,AE 是FAB ∠的平分线,且1C ∠=∠,则下列结论中错误的是( ) A .AE BC ∥ B .2ABC ∠=∠ C .C ABC ∠=∠ D .180FAB C ∠+∠=︒8.在55⨯的方格纸中,将图①中的图形N 平移到如图②所示的位置,那么正确的平移方法是( ) A .先向下移动1格,再向左移动1格 B .先向下移动1格,再向左移动2格 C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格 二、填空题(每小题5分,共20分)9.如图,已知AB ,CD 相交于点O ,OE AB ⊥,28EOC ∠=︒,则AOD =∠________.10.把命题“锐角的补角是钝角”改写成“如果……那么……”的形式是______________________________. 11.如图,已知AB CD ∥,试再添上一个条件,使1=2∠∠成立(要求给出两个以上答案),所添的条件为_______________________________________________________.12.如图,C 处在B 处的北偏西75︒方向,C 处在A 的北偏西40︒方向,则ACB ∠等于________.三、解答题(共40分)13.(10分)如图,三角形ABC 沿射线x y →方向平移一定距离到三角形'''A B C ,请利用移的相关知识找出图中相等的线段、角和完全相同的图形,并予以解释.14.(10分)如图,已知12∠=∠,50D ∠=︒,求B ∠的度数.15.(10分)如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,:7:1AOD BOE ∠∠=,求AOE ∠的度数.16,(10分)如图,已知AB CD ∥,40B ∠=︒,CN 是BCE ∠的平分线,CM CN ⊥,求BCM ∠的度数.第五章综合测试答案解析一、 1.【答案】D 2.【答案】A 3.【答案】B 4.【答案】D【解析】根据平行线的性质,可得12∠=∠;34∠=∠;45180∠+∠=︒,再根据平角定义可得2490∠+∠=︒. 5.【答案】D 6.【答案】C【解析】延长EA 交CD 于点F ,所以101EFC ∠=︒ 所以79EFD ∠=︒ 因为AB CD ∥ 所以79EAB ∠=︒ 7.【答案】D 8.【答案】B 二、9.【答案】62︒【解析】由OE AB ⊥,28EOC ∠=︒,知902862=BOC AOD ∠=︒-︒=︒∠. 10.【答案】如果一个角是锐角,那么它的补角是钝角 11.【答案】EBC FCB ∠=∠或CF BE ∥或E F ∠=∠ 12.【答案】35︒【解析】过点C 作CD AB ∥,则75BCD ∠=︒,40DCA ∠=︒ 所以35ACB BCD DCA ∠=∠-∠=︒. 三、13.【答案】解:相等的线段有''AB A B =,''BC B C =,''AC A C =(平移运动中,对应线段分别相等),'''AA BB CC ==(平移运动中,连接对应点的线段相等).相等的角有'''BAC B A C ∠=∠,'''ABC A B C ∠=∠,'''ACB A C B ∠=∠(平移运动中,对应角分别相等). 三角形ABC 与三角形''A BC 完全相同(平移变换不改变图形的形状和大小). 14.【答案】解:因为1AGF ∠=∠,12∠=∠,所以2AGF ∠=∠. 所以AB CD ∥.所以180B D ∠+∠=︒. 因为50D ∠=︒,所以18050130B ∠=︒-︒=︒.15.【答案】解:设7AOD x ∠=,则BOE x ∠=.因为OE 平分BOD ∠,BOE x ∠=,所以22BOD BOE x ∠=∠=. 因为180AOB ∠=︒,所以9180x =︒,解得20x =︒. 所以20DOE ∠=︒.所以40AOC BOD ∠=∠=︒,160COE ∠=︒. 因为OF 平分COE ∠,所以1802COF COE ∠=∠=︒. 所以120AOF AOC COF ∠=∠+∠=︒.16.【答案】解:因为AB CD ∥,所以180B BCE ∠+∠=︒. 因为40B ∠=︒,所以180********BCE B ∠=︒-∠=︒-︒=︒. 所以1702BCN BCE ∠=∠=︒.因为CM CN ⊥,所以90BCN BCM ∠+∠=︒. 所以90907020BCM BCN ∠=︒-∠=︒-︒=︒.。
2023年新人教版初中七年级数学下册第五单元综合能力提升测试卷(附参考答案)
2023年新人教版初中七年级数学下册第五单元综合能力提升测试卷一、选择题(共12小题,满分36分,每小题3分)1.如图,下列说法错误的是()A.∠1与∠2是对顶角B.∠1与∠3是同位角C.∠1与∠4是内错角D.∠B与∠D是同旁内角2.如图,AB∥CD∥EF,则下列各式成立的是()A.∠1+∠2+∠3=180°B.∠2+∠3﹣∠1=180°C.∠1+∠2﹣∠3=180°D.∠1﹣∠2+∠3=180°3.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②4.如图,下列给出的条件中,能判定AC∥DE的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4D.∠A=∠3 5.如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b 上,若∠1=70°,则∠2的大小为()A.15°B.20°C.25°D.30°6.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④7.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠58.如图,下列推理正确的是()A.∵∠2=∠4,∴AD∥BC B.∵∠1=∠3,∴AD∥BCC.∵∠4+∠D=180°,∴AD∥BC D.∵∠4+∠B=180°,∴AD∥BC9.下列图形中,∠1和∠2是同位角的是()A.B.C.D.10.如图,已知直线AB,CD被直线ED所截,AB∥CD,若∠D=40°,则∠1等于()A.140°B.130°C.120°D.100°11.如图,直线DE与BC相交于点O,∠1与∠2互余,∠COE=36°,则∠2的度数是()A.36°B.54°C.60°D.64°12.如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=58°,则∠E 等于()A.25°B.29°C.30°D.45°二、填空题(共6小题,满分18分,每小题3分)13.如图,AO⊥BO,若∠BOC=10°,OD平分∠AOC,则∠BOD的度数是°.14.一张长方形纸条折成如图的形状,若∠1=50°,则∠2=°.15.如图,已知AB∥CD,则∠A=70°,∠C=130°,∠P=.16.“内错角相等,两直线平行”的逆命题是.17.如图,直线a∥b,AC分别交直线a、b于点B、C,AC⊥DC,若∠α=25°,那么∠β=°.18.已知∠A与∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠A的度数为.三、解答题(共7小题,满分66分)19.(9分)如图,已知∠1=52°,∠2=128°,∠C=∠D.求证:∠A=∠F.20.(9分)已知:如图,EF∥CD,∠1+∠2=180°.(1)判断GD与CA的位置关系,并说明理由.(2)若DG平分∠CDB,若∠ACD=40°,求∠A的度数.21.(9分)如图,直线AB,CD相交于点O,已知∠BOC=75°,ON将∠AOD分成两个角,且∠AON:∠NOD=2:3.(1)求∠AON的度数.(2)若OM平分∠BON,则OB是∠COM的平分线吗?判断并说明理由.22.(9分)已知:如图EF∥CD,∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠CGD的度数.23.(10分)在正方形网格中,△ABC的位置如图所示.平移△ABC,使点A移到点B的位置.(1)请画出平移后的△BDE,其中,B、D、E分别为A、B、C的对应点;(2)若图中每个小正方形的边长都为1,则△ADE的面积为.24.(10分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.25.(10分)如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.参考答案一、选择题(共12小题)1.C2.D3.A4.B5.B6.D7.B8.B9.C10.A11.B12.B;二、填空题(共6小题)13.4014.80°15.20°16.两直线平行,内错角相等17.6518.30°或110°;三、解答题(共7小题)19.证明:∵∠1=52°,∠2=128°,∴∠1+∠2=180°,∴BD∥CE,∴∠C=∠ABD,又∵∠C=∠D,∴∠ABD=∠D,∵AC∥DF,∴∠A=∠F.20.解:(1)GD∥CA.理由:∵EF∥CD,∴∠1+∠ACD=180°,又∵∠1+∠2=180°,∴∠ACD=∠2,∴GD∥CA;(2)∵GD∥CA,∴∠2=∠ACD=40°,∵DG平分∠CDB,∴∠BDG=∠2=40°,∵GD∥CA,∴∠A=∠BDG=40°.21.解:(1)∵∠AON:∠NOD=2:3,设∠AON=2x,∠NOD=3x,∴∠AOD=5x,∵∠BOC=75°,∴∠AOD=5x=75°,∴x=15°,∴∠AON=30°;(2)OB是∠COM的平分线,理由如下:∵∠AON=30°,∴∠BON=180°﹣∠AON=150°,∵OM平分∠BON,∴∠BOM=75°,∴∠BOM=∠BOC,∴OB是∠COM的角平分线.22.(1)证明:∵EF∥CD,∴∠1+∠ECD=180°,又∵∠1+∠2=180°,∴∠2=∠ECD,∴GD∥CA.(2)解:由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°,∵GD∥CA,∴∠ACB+∠CGD=180°,∴∠CGD=180°﹣∠ACB=180°﹣80°=100°.23.解:(1)如图所示:△BDE即为所求;(2)△ADE的面积为:4×8−12×2×6−12×2×4−12×2×8=14.24.解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(﹣1,5)、(﹣4,0)、(﹣1,0);(2)由平移的性质可知,四边形AA′B′B是平行四边形,∴△ABC扫过的面积=S四边形AA'B'B +S△ABC=B′B•AC+12BC•AC=5×5+12×3×5=25+152=652.25.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.。
2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)
北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。
关于初中毕业班数学综合测试试题
初中毕业班数学综合测试试题关于初中毕业班数学综合测试试题一、选择题:(10小题,每小题3分,共30分)1、在下列实数中,无理数是()A.B.C.D.2、已知直角三角形的一个锐角为25°,则它的另一个锐角的度数为()A.25°B.65°C.75° D.不能确定3、下列各图中,是中心对称图案的是()4、已知⊙O的半径为1,⊙O外有一点C,且CO=3。
以C为圆心,作一个半径为r的圆,使⊙O与⊙C相交,则()A.B.C.D.5、解不等式组,得()A.B.C.D.无解6、为检测某种新型汽车的安全性,出厂时从中随机抽取5辆汽车进行碰撞试验。
在这个问题中,5是()A.个体B.总体C.样本容量D.总体的一个样本7、平行四边形ABCD的两条对角线相等,则□ABCD一定是()A.菱形B.矩形C.正方形D.等腰梯形8、下列计算中,正确的是()A.B.C.D.9、设是方程的两个不相等的实数根,且,则函数的图像经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限10、如图,直角梯形ABCD中,∠ADC=90°,AB=6,AD=2,BC=4,你可以在CD边上找到多少个点,使其与点A、B构成一个直角三角形()A.1个B.2个C.3个D.无数多个第二部分非选择题 (共120分)二、填空题:(6小题,每小题3分,共18分)11、-3的相反数是。
12、如图,等腰梯形ABCD中,∠A=130°,则∠C=__________度。
13、要使代数式有意义,则实数a的取值范围是。
14、方程的根为。
15、某几何体的正视图与左视图是全等的'等腰三角形,则该几何体是(填写该几何体的名称)。
16、如图,正方形ABCD边长为1,E、F、G、H分别为其各边的中点,则图中阴影部分的面积为。
三、解答题:(9小题,共102分)17、(本小题满分9分)第29届奥运会于2008年8月在北京举行,我国健儿奋力拼搏,在本届奥运会中取得了举世瞩目的优异成绩,共获得了100枚奖牌。
七年级初中数学综合试卷
一、选择题(每题2分,共20分)1. 下列数中,是负数的是()A. -3.5B. 0C. 2.5D. -0.12. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形3. 一个长方形的长是8cm,宽是5cm,它的周长是()A. 26cmB. 27cmC. 28cmD. 29cm4. 在数轴上,点A表示的数是-2,点B表示的数是3,那么点A和点B之间的距离是()A. 1B. 2C. 5D. 65. 如果一个数的2倍加上3等于7,那么这个数是()A. 1B. 2C. 3D. 46. 下列分数中,最大的是()A. $\frac{1}{3}$B. $\frac{1}{4}$C. $\frac{1}{5}$D. $\frac{1}{6}$7. 如果一个三角形的一个内角是60°,那么它的另外两个内角的和是()A. 120°B. 150°C. 180°D. 210°8. 一个正方体的棱长是2cm,它的体积是()A. 4cm³B. 8cm³C. 12cm³D. 16cm³9. 下列方程中,正确的是()A. 2x + 3 = 5B. 2x - 3 = 5C. 2x + 3 = 8D. 2x - 3 = 810. 一个数的倒数是$\frac{1}{5}$,那么这个数是()A. 5B. $\frac{1}{5}$C. 0D. 5或0二、填空题(每题2分,共20分)11. $\frac{2}{3}$乘以$\frac{3}{4}$等于__________。
12. 5米减去3米等于__________米。
13. 一个数的3倍是18,这个数是__________。
14. 下列图形中,是平行四边形的是__________。
15. 在数轴上,点A表示的数是-4,那么它的相反数是__________。
16. 一个等腰三角形的底边长是6cm,腰长是8cm,它的周长是__________cm。
人教版七年级下册数学5-7章综合检测试卷(含答案)
人教版七年级下册数学5-7章综合检测试卷一、选择题(每题3分,共30分)1.小明利用电脑画出了几幅鱼的图案,则由图中所示的图案通过平移得到的图案是()A B C D2.如图,直线a,b相交于一点,若∠1=70°,则∠2的度数是()A.70°B.90°C.110°D.130°3.若x轴负半轴上的点P到y轴的距离为3,则点P的坐标为()A.(-3,0)B.(0,-3)C.(3,0)D.(0,3)4.下列运算正确的是()A.=±5B.=4C.±=5D.()2=45.已知a<<b,且a,b为两个连续的整数,则a+b=()A.3B.5C.6D.76.如图,下列说法错误的是()A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c7.如图是故宫博物院的主要建筑分布图,若分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(-2,3)C.保和殿(1,0)D.武英殿(-3.5,-4)第7题图第8题图8.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°9.已知点P(a,1)不在第一象限,则点Q(0,-a)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴或原点上D.y轴负半轴上10.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“➝”方向排列,依次为(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1),…,根据这个规律,可得第100个点的坐标为()A.(14,0)B.(14,-1)C.(14,1)D.(14,2)二、填空题(每题3分,共18分)11.写出一个比大且比小的有理数:.12.如图是小明设计的一个关于实数运算的程序图,当输入a的值为81时,输出的值为.13.数学活动中,张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(-200,300).王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是m.14.已知线段AB∥y轴,且AB=3,若点A的坐标为(1,-2),则点B的坐标是.15.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=.16.若∠α的两边与∠β的两边分别平行,且∠α比∠β的2倍少30°,则∠α的度数为.三、解答题(共52分)17.(8分)计算:(1)|3-π|++-(-1)2 019;(2)-|-3|++.18.(6分)若与互为相反数,求(1-)2 020的值.19.(8分)在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A'的坐标是(-2,2).现将三角形ABC平移,使点A与点A'重合,点B',C'分别是点B,C的对应点.(1)请画出平移后的三角形A'B'C',并写出点B',C'的坐标;(2)若三角形ABC内一点P的坐标为(a,b),则点P的对应点P'的坐标是;(3)试说明三角形ABC经过怎样的平移得到三角形A'B'C'.20.(8分)如图,在平面直角坐标系中,点A,B的坐标分别为(a,0),(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及三角形ABC的面积;(2)若点M在x轴上,且三角形ACM的面积是三角形ABC面积的,求点M的坐标.21.(10分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP 和∠PBN,交射线AM于C,D两点.(1)求∠CBD的度数;(2)当点P运动时,∠APB∶∠ADB的值是否随之发生变化?若不变,请求出这个值;若变化,请找出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.22.(12分)如图,直线MN∥GH,另一直线交GH于点A,交MN于点B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右侧且点D在点B左侧时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(2)如图2,当点C在点A右侧且点D在点B右侧时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(3)当点C在点A左侧且点D在点B左侧时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数.答案题号 1 2 3 4 5 6 7 8 9 10 答案 D C A D B C B B C D 11.2(答案不唯一)12.813.50014.(1,1)或(1,-5)15.90°16.110°或30°17.(1)|3-π|++-(-1)2 019=π-3+2-3+1=π-3.(2)-|-3|++=7+-3+3-4=3+.18.∵与互为相反数,∴(1-2x)+(3x-5)=0,解得x=4,∴(1-)2 020=(1-)2 020=(1-2)2 020=(-1)2 020=1.19.(1)三角形A'B'C'如图所示.由图可知点B',C'的坐标分别为(-4,1),(-1,-1).(2)(a-5,b-2)(3)将三角形ABC先向左平移5个单位长度,再向下平移2个单位长度得到三角形A'B'C'.(或将三角形ABC先向下平移2个单位长度,再向左平移5个单位长度得到三角形A'B'C')20.(1)∵|a+2|+=0,∴a+2=0,b-4=0,∴a=-2,b=4.∴点A的坐标为(-2,0),点B的坐标为(4,0),∴AB=|4-(-2)|=6.∵点C的坐标为(0,3),∴CO=3.∴三角形ABC的面积为AB×CO=×6×3=9.(2)设点M的坐标为(x,0),则AM=|x-(-2)|=|x+2|.∵三角形ACM的面积是三角形ABC面积的,∴AM×OC=×9,∴|x+2|×3=3,∴x=0或-4,故点M的坐标为(0,0)或(-4,0).21.(1)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-60°=120°,∴∠ABP+∠PBN=120°.∵BC,BD分别平分∠ABP和∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=120°,∴∠CBP+∠DBP=60°,∴∠CBD=∠CBP+∠DBP=60°.(2)不变.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN.∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB∶∠ADB=2∶1.∴∠APB∶∠ADB的值为2.(3)∵AM∥BN,∴∠ACB=∠CBN.当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN.由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°.22.(1)如图,过点P作PE∥MN.∵BP平分∠DBA,∴∠DBP=∠DBA=40°.∵PE∥MN,∴∠BPE=∠DBP=40°.∵CP平分∠DCA,∴∠ACP=∠DCA=25°.∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=∠ACP=25°.∴∠BPC=∠BPE+∠CPE=40°+25°=65°.(2)如图,过点P作PF∥MN.∵∠MBA=80°,∴∠DBA=180°-80°=100°.∵BP平分∠DBA,∴∠DBP=∠DBA=50°.∵PF∥MN,∴∠BPF=180°-∠DBP=130°.∵CP平分∠DCA,∴∠PCA=∠DCA=25°.∵PF∥MN,MN∥GH,∴PF∥GH,∴∠CPF=∠PCA=25°.∴∠BPC=∠BPF+∠CPF=130°+25°=155°.(3)如图,过点P作PQ∥MN.∵BP平分∠DBA,∴∠DBP=∠DBA=40°.∵PQ∥MN,∴∠BPQ=∠DBP=40°.∵∠GCD=50°,∴∠DCA=180°-∠DCG=130°.∴CP平分∠DCA,∴∠PCA=∠DCA=65°.∵PQ∥MN,MN∥GH,∴PQ∥GH,∴∠CPQ=180°-∠PCA=115°.∴∠BPC=∠BPQ+∠CPQ=40°+115°=155°.。
七年级数学综合测试题含参考答案
七年级数学综合测试题含参考答案一、选择题1. 将分数4/5写成小数是:A. 0.5B. 0.4C. 0.75D. 0.8参考答案:C2. 计算:7 × 3 –(2 + 4)× 2 ÷ 3 =A. 3B. 8C. 10D. 11参考答案:B3. 下列哪个数是负数?A. 0B. -7C. 14D. 12参考答案:B4. 一个矩形的长是6cm,宽是4cm,它的面积是多少平方厘米?A. 12B. 20C. 24D. 30参考答案:C5. 解方程:2x + 5 = 17A. x = 6B. x = 7C. x = 8D. x = 9参考答案:C二、填空题1. 十进制数0.375可以写成一个分数是______。
参考答案:3/82. 一个三角形的内角和是______ 度。
参考答案:1803. 平行四边形的对角线相等,这个命题是______。
参考答案:正确4. 0.2化成百分数是______%。
参考答案:20%5. 在一个圆的直径上,半径是______。
参考答案:一半三、解答题1. 小明有100个糖果要分给他的朋友们,如果他有4个朋友,每人应该分得几个糖果?参考答案:每人分得25个糖果。
2. 把5打折25%,打完折后的价格是多少?参考答案:打完折后的价格为3.75。
3. 一升牛奶装在500ml的瓶子里,总共可以装几瓶?参考答案:可以装2瓶。
4. 将两个直角三角形拼接在一起,得到一个什么形状的图形?参考答案:一个长方形。
5. 某书店原价出售一本书为60元,后来进行促销,以原价的8折出售,促销后的价格是多少?参考答案:促销后的价格为48元。
总结:本次数学综合测试题包括选择题、填空题和解答题共计11题,涵盖了有关分数、小数、四则运算、几何图形等知识点。
通过完成这些题目,可以对学生的数学能力进行全面的考察和评估。
希望同学们认真答题,熟练掌握各种解题方法,提升数学水平。
参考答案:一、选择题1. C2. B3. B4. C5. C二、填空题1. 3/82. 1803. 正确4. 20%5. 一半三、解答题1. 每人分得25个糖果。
初中数学圆的综合试卷
一、选择题(每题5分,共50分)1. 圆的半径为5cm,那么圆的直径是()A. 10cmB. 15cmC. 20cmD. 25cm2. 圆的周长是圆的直径的()A. 1/2B. 1/3C. 1/4D. 2/33. 圆的面积是半径的()A. 1/2B. 1/3C. 1/4D. 2/34. 圆心角是圆周角的()A. 1/2B. 1/3C. 1/4D. 2/35. 在圆中,直径所对的圆周角是()A. 直角B. 钝角C. 锐角D. 无法确定6. 圆的周长是πd,那么圆的面积是()A. πdB. πd²C. πr²D. πd/27. 圆的半径增加了2cm,那么圆的面积增加了()A. 4πcm²B. 8πcm²C. 16πcm²D. 32πcm²8. 圆的周长是10πcm,那么圆的直径是()A. 2cmB. 5cmC. 10cmD. 20cm9. 圆的面积是50πcm²,那么圆的半径是()A. 5cmB. 10cmC. 15cmD. 20cm10. 圆的周长是圆的面积的()A. 1/2B. 1/3C. 1/4D. 2/3二、填空题(每题5分,共50分)1. 圆的半径是r,那么圆的直径是______。
2. 圆的周长是______。
3. 圆的面积是______。
4. 圆心角是圆周角的______。
5. 在圆中,直径所对的圆周角是______。
6. 圆的周长是圆的直径的______。
7. 圆的面积是半径的______。
8. 圆的半径增加了2cm,那么圆的面积增加了______。
9. 圆的周长是10πcm,那么圆的直径是______。
10. 圆的面积是50πcm²,那么圆的半径是______。
三、解答题(每题10分,共30分)1. 已知圆的半径是5cm,求圆的周长和面积。
2. 已知圆的周长是20πcm,求圆的半径和面积。
3. 已知圆的面积是50πcm²,求圆的半径和周长。
初中数学人教版七年级上册期末-章节测试习题(5)
章节测试题1.【答题】如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A. 点A和点CB. 点B和点DC. 点A和点DD. 点B和点C 【答案】C【分析】本题考查了相反数的定义.根据相反数的定义进行解答即可.【解答】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.选C.2.【答题】随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学计数法表示为()A. 2.135×1011B. 2.135×107C. 2.135×1012D. 2.135×103【答案】A【分析】本题考查科学记数法的表示方法,科学记数法的表示形式为ax10n的形式,其中1<|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:2135亿=2.135×1011,选A.3.【答题】下列说法:①如果∠1+∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短.正确的个数是()A. 2个B. 3个C. 4个D. 5个【答案】A【分析】本题考查了余角和补角、对顶角、同位角等.根据互余互补的概念确定①②的正误;根据对顶角的定义,确定③的正误;根据平行的性质确定④的正误;根据两点之间的距离关系,判定⑤的正误.【解答】解:互补是指两个角之间的关系,故①错误;根据余角的定义可知②正确;相等的角不一定是对顶角,故③错误;两条直线被第三条直线所截,只有这两条直线是平行线时,才同位角相等,故④错误;根据两点之间的距离关系,可知⑤正确.选A.4.【答题】将AD与BC两边平行的纸条ABCD按如图所示折叠,则∠1的度数为()A. 72°B. 45°C. 56°D. 60°【答案】C【分析】本题考查了平行的性质和补角的定义.根据折叠的性质得出∠C′FE=62°,再利用平行线的性质进行解答即可;【解答】解:如图:根据折叠的性质得出∠C’FE=62°∴∠C’FC=124°∵C′F∥D′E∴∠C′GE=∠C′FC=124°又∵∠C′GE+∠1=180°∴∠1=180°-124°=56°选C.5.【答题】如图所示,AC⊥BC与C,CD⊥AB于D,图中能表示点到直线(或线段)的距离的线段有()A. 1条B. 2条C. 3条D. 5条【答案】D【分析】本题考查了点到直线的距离的定义.根据定义判断即可.【解答】表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.选D.6.【答题】比较大小,______(用“>”,“<”或“=”填空).【答案】<【分析】本题考查了有理数的大小比较.正数都大于0,负数都能小于0,正数大于负数.【解答】正数大于负数,所以选<.7.【答题】如果与互为相反数,那么ab的值为______.【答案】-1【分析】本题考查了绝对值的非负性.(1)两个式子的值互为相反数,则这两个式子的和为0;(2)两个非负数的和为0,则这两个非负数都为0.据此解答即可.【解答】由题意可得:,∴,解得,∴.8.【答题】如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=56°23′,则∠BOC的度数为______.【答案】146°23′【分析】此题主要考查了垂线、互余、互补的定义.根据垂直、互余、互补的定义进行解答即可.【解答】解:∵EO⊥AB于点O∴∠EOA=90°又∵∠EOD=56°23′∴∠COB=∠AOD=∠EOD+∠EOA=90°+56°23′=146°23′选146°23′9.【答题】如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是______.【答案】16【分析】本题考查了整式的加减.设剪去的长方形的长为a,宽为b,然后分别表示两块阴影部分的长和宽,最后求周长即可.【解答】解:设剪去的长方形的长为a,宽为b,a+b=6则左下角长方形的长为a,宽为4-b,周长为8+2a-2b右上角长方形的长为b,宽为4-a,周长为8+2b-2a∴阴影部分周长和为:8+2a-2b+8+2b-2a=16选16.10.【答题】观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形中共有______个〇.【答案】6055【分析】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案:6055.11.【题文】计算:(1)(2)(3)【答案】(1);(2);(3).【分析】本题考查了有理数的四则混合运算.(1)先去绝对值,然后进行相加减即可.(2)先乘方,再乘除,最后进行加减运算即可.(3)先乘方,再算括号内的,再乘除,最后进行加减运算即可.【解答】解:(1)==(2)====(3)=====12.【题文】已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段BM的长.(请同学们先画出符合题意的图形,再解答该问题.)【答案】6cm或2cm【分析】本题考查了线段的和差和线段的中点.考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上,然后分情况作答.【解答】解:如图:点C在线段AB的延长线上∴AC=AB+BC=12cm∵M是线段AC的中点∴MC=AC=6cm∴MB=MC-BC=6cm-4cm=2cm点C在线段AB上∴AC=AB-BC=4m∵M是线段AC的中点,∴MC=AC=2cm∴MB=MC+CM=2cm+4cm=6cm∴线段AM的长为6cm或2cm.13.【题文】有这样一道题:先化简,再求值:,其中,.小明同学在抄题时,把“”错抄成“”,但他计算的结果却是正确的.这是怎么回事呢?请同学们先正确解答该题,然后说明理由.【答案】见解答.【分析】本题考查了了整式的加减运算.先化简,结果与x无关,据此解答即可.【解答】解:===∵无论”还是“,都x无关,∴不影响结果.14.【题文】如图点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.试说明:∠A=∠F.请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB=∠DGF()∠AGB=∠EHF(已知)∴∠DGF=∠EHF()∴()∥()()∴∠D=()()∵∠D=∠C(已知)∴()=∠C()∴()∥()()∴∠A=∠F()【答案】(1)对顶角相等(2)等量代换(3)DB(4)CE(5)同位角相等,两直线平行(6)∠FEH(7)两直线平行,同位角相等(8)∠FEH(9)等量代换(10)DF(11)AC(12)内错角相等,两直线平行(13)两直线平行,内错角相等【分析】根据平行的性质和判定解答即可.【解答】解:成立,理由如下:解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴(DB)∥(CE)(同位角相等,两直线平行)∴∠D=(∠FEH)(两直线平行,同位角相等)∵∠D=∠C(已知)∴(∠FEH)=∠C(等量代换)∴(DF)∥(AC)(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)15.【题文】某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下:(单位:km)+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5(1)请问,收工时检修小组距离A地多远?在A地的那一边?(2)若检修小组所乘汽车的平均油耗是7.5升/100km,则汽车在路上行走大约耗油多少升?(精确到0.1升)【答案】(1)检修小组最后在A地东面36km处;(2)汽车在路上行走大约耗油5.6升.【分析】本题考查了正负数的实际应用.(1)把所有数据相加,根据结果判定方向与距离;(2)算出走的总路程,再乘以7.5,再除以100,即可解答【解答】解:(1)15-2+5-3+8-3-1+11+4-5-2+7-3+5=36Km答:∴检修小组最后在A地东面36km处(2)由题意可知(|15|+|2|+|5|+|3|+|8|+|3|+|1|+|11|+|4|+|5|+|2|+|7|+|3|+|5|)×7.5÷100=(15+2+5+3+8+3+1+11+4+5+2+7+3+5)×7.5÷100=74×7.5÷100=5.55≈5.6升答:汽车在路上行走大约耗油5.6升.16.【题文】网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一.收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网);同时,每一种收费方式均对上网时间加收0.02元/分的通信费.某用户一周内的上网时间记录如下表:星期五34星期六40星期日48(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为小时,请你分别写出两种收费方式下该用户所支付的费用.(用含的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.【答案】(1)h;(2)(2)方式一的费用为:0.05×60x+0.02×60x=4.2x(元);方式二的费用为:50+0.02×60x=(50+1.2x)(元);(3)包月制合算.【分析】本题考查了一元一次方程的应用.(1)平均时间=;(2)第一种是费用=每分钟的费用×时间+通信费,第二种的费用=月费+通信费(3)将30乘(1)计算出平均时间,得到费用的大小,再进行比较就可以得出结论【解答】解:(1)该用户一周内平均每天上网的时间=40(分钟)=h答:该用户一周内平均每天上网的时间是h;(2)采用收费方式一(计时制)的费用为:0.05×60x+0.02×60x=4.2x(元)采用收费方式二(包月制)的费用为:50+0.02×60x=(50+1.2x)(元);(3)若一个月内上网的时间为30x=20小时则计时制应付的费用为4.2×20=84(元),包月制应付的费用为50+1.2×20=74(元).由84>74,∴包月制合算.17.【题文】知识链接:“转化、化归思想”是数学学习中常用的一种探究新知、解决问题的基本的数学思想方法,通过“转化、化归”通常可以实现化未知为已知,化复杂为简单,从而使问题得以解决.(1)问题背景:已知:△ABC.试说明:∠A+∠B+∠C=180°.问题解决:(填出依据)解:(1)如图①,延长AB到E,过点B作BF∥AC.∵BF∥AC(作图)∴∠1=∠C()∠2=∠A()∵∠2+∠ABC+∠1=180°(平角的定义)∴∠A+∠ABC+∠C=180°(等量代换)小结反思:本题通过添加适当的辅助线,把三角形的三个角之和转化成了一个平角,利用平角的定义,说明了数学上的一个重要结论“三角形的三个内角和等于180°.”(2)类比探究:请同学们参考图②,模仿(1)的解决过程试说明“三角形的三个内角和等于180°”(3)拓展探究:如图③,是一个五边形,请直接写出五边形ABCDE的五个内角之和∠A+∠B+∠C+∠D+∠E=______.【答案】(1)(2)见解答;(3)540°【分析】本题考查了平行线的性质、三角形的内角和定理的证明以及运用.(1)运用平行线的性质进行分析即可;(2)运用两次两直线平行,内错角相等即可;(3)连接EC、EB,转换成三个三角形的内角和即可.【解答】解:(1)如图①,延长AB到E,过点B作BF∥AC.∵BF∥AC(作图)∴∠1=∠C(两直线平行,内错角相等)∠2=∠A(两直线平行,同位角相等)∵∠2+∠ABC+∠1=180°(平角的定义)∴∠A+∠ABC+∠C=180°(等量代换)(2)如图②,过C作MN∥AB∵MN∥AB∴∠1=∠B,∠2=∠A(两直线平行,内错角相等)又∵∠1+∠ACB+∠2=180°(平角的定义)∴A+∠ABC+∠C=180°(3)如图:连接EC、EB,∵在△ABC、△ACD和△AED中,∴∠BAC+∠B+∠ACB=180",∠DAC+∠ACD+∠ADC=180°∠DAE+∠E+∠ADE=180°∴∠BAE+∠B+∠DCB+∠CDE+∠E=∠BAC+∠CAD+∠DAE+∠BCA+∠ACD+∠ADE+∠ADC+∠B+∠E=(∠BAC+∠B+∠ACB)+(∠DAC+∠ACD+∠ADC)+(∠DAE+∠E+∠ADE)=540°18.【题文】一副直角三角板(其中一个三角板的内角是45°,45°,90°,另一个是30°,60°,90°)(1)如图①放置,AB⊥AD,∠CAE=______,BC与AD的位置关系是______;(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD边重合,AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由.(3)根据(1)(2)的计算,请解决下列问题:如图③∠BAD=90°,∠BAC=∠FAD=(是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.【答案】(1)15°,相互平行;(2)见解答;(3)见解答.【分析】本题考查了角的综合计算和平行线的判定.关键在于求出对应角的度数进行比较.(1)∠CAE=∠BAD-∠BAC-∠EAD=15°,∵AB⊥AD,AB⊥BC,∴BC与AD相互平行;(2)先计算出∠EAB′=∠EAD-∠B′AC′=15°,由(1)可得∠EAB′=∠CAE,∴AE是∠CAB′的角平分线;(3)分别计算出∠CAE=∠FAE=45°-α,∴AE是∠CAF的角平分线.【解答】(1)∵AB⊥AD,∴∠BAD=90°,∴∠CAE=90°-45°-30°=15°,∵AB⊥AD,AB⊥BC,∴BC与AD相互平行;(2)AE是∠CAB′的角平分线.理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,∴∠EAB′=∠EAD-∠B′AC′=15°.又由(1)知,∠CAE=15°,∴∠CAE=∠EAB′,即AE是∠CAB′的角平分线;(3)AE是∠CAF的角平分线.理由如下:如图③,∵∠EAD=45°,∠BAD=90°,∴∠BAE=∠DAE=45°,又∵∠BAC=∠FAD=α,∴∠BAE-∠BAC=∠DAE-∠FAD,∴∠CAE=∠FAE,即AE是∠CAF的角平分线.19.【答题】比–1小3的数是()A. 4B. 1C. –2D. –4【答案】D【分析】根据有理数的减法计算即可.【解答】–1–3=–4,选D.20.【答题】一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【分析】本题考查了用科学计数法表示较大的数.【解答】2180000的小数点向左移动6位得到2.18,∴2180000用科学记数法表示为2.18×106,选A.。
初中数学综合测试及答案
初中数学综合测试及答案一、选择题(每题4分,共36分)1、抛物线y=3(x-1)+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1) 2、二次函数26y x x =+-的图像与x 轴交点的横坐标是( ) A. -2和-3 B.-2和3 C. 2和3 D. 2和-33、抛物线2)1(2++=x a y 的一部分如图1所示,该抛物线在y 轴右侧部分与x 轴交点的坐标是( ) A 、(21,0) B 、(1,0) C 、(2,0) D 、(3,0) 4、(2007 长沙市)把抛物线22y x =-向上平移1个单位,得到的抛物线是( )C A .22(1)y x =-+ B .22(1)y x =-- C .221y x =-+ D .221y x =-- 5、若抛物线22y x x c =-+与y 轴的交点为(03)-,,则下列说法不正确的是( ) A .抛物线开口向上B .抛物线的对称轴是1x =C .当1x =时,y 的最大值为4-D .抛物线与x 轴的交点为(10)(30)-,,,6、抛物线c bx x y ++-=2的部分图象如图2所示,若0>y ,则x 的取值范围是( ) A.14<<-x B. 13<<-x C. 4-<x 或1>x D.3-<x 或1>x 7、(2007 常州市)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下(图3),则a 的值为( )A .2-B .2-C .1D 28、一个运动员打尔夫球,若球的飞行高度(m)y 与水平距离(m)x 之间的函数表达式为()21301090y x =--+,则高尔夫球在飞行过程中的最大高度为( ) A .10m B .20m C .30m D .60m9、小敏在某次投篮中,球的运动路线是抛物线5.3512+-=x y 的一部分(如图4),若命中篮圈中心,则他与篮底的距离l 是( )A 、3.5mB 、4mC 、4.5mD 、4.6m二、填空题(每题3分,共27分)10、抛物线y =2x 2+4x+5的对称轴是x=_________ . 11、二次函数()y x =-+122的最小值是_____________.12、已知抛物线的顶点坐标为(-1,4),且其图象与x 轴交于点(-2,0),抛物线的解析式为___________________.13、已知二次函数222c x x y ++-=的对称轴和x 轴相交于点(0,m )则m 的值为_______. 14、请写出一个开口向下,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .15、二次函数y =x 2+bx +c 的图象经过点A(-1,0)、B(3,0)两点.其顶点坐标是__________. 16、(2007 甘肃省兰州市)抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_____________.17、(2007 甘肃省兰州市)将抛物线y =2x 2先沿x 轴方向向左平移2个单位,再沿y 轴 方向向下平移3个单位,所得抛物线的解析式是________________.18、(2007 佛山市)已知二次函数2y ax bx c =++(a b c ,,是常数),x 与y 的部分对应值如下表,则当x 满足的条件是 时,0y =;当x 满足的条件是 时,0y >.三、解答题(共57分)19、(8分)二次函数2(0)y ax bx c a =++≠的图象如图9 所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.20、(12分)(1)把二次函数2339424y x x =-++代成2()y a x h k =-+的形式. (2)写出抛物线2339424y x x =-++的顶点坐标和对称轴,并说明该抛物线是由哪一条形如2y ax =的抛物线经过怎样的变换得到的? (3)如果抛物线2339424y x x =-++中,x 的取值范围是03x ≤≤,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).21、(12分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22、(12分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)23、(2007 安徽省)(13分)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)参考答案:一、1、A 2、D 3、B 4、C 5、C 6、B 7、D 8、A 9、B二、10、-1 11、2 12、y=-4(x+1)2+4 13、1 14、y=-(x -1)2+7 15、(1,-4) 16、(1,0) 17、y =2x 2+8x +5 18、0或2;20<<x三、19、(1)11x =,23x = (2)13x << (3)2x > (4)2k < 20、解:(1)2339424y x x =-++ 239(2)44x x =--+239(211)44x x =--+-+23(1)34x =--+.(2)由上式可知抛物线的顶点坐标为(13),,其对称轴为直线1x = 该抛物线是由抛物线234y x =-向右平移1个单位,再向上平移3个单位(或向上平移3 个单位,再向右平移1个单位)得到的.(3)抛物线与x 轴交于(30),,与y 轴交于904⎛⎫⎪⎝⎭,,顶点为(13),,把这三个点用平滑的曲线连接起来就 得到抛物线在03x ≤≤的图象(如图所示).(画出的图象没有标注以上三点的减1分)情境示例:小明在平台上,从离地面2.25米处抛出一物体,落在离平台底部水平距离 为3米的地面上,物体离地面的最大高度为3米. (学生叙述的情境只要符合所画出的抛物线即可)21、(1)903(50)y x =--化简得:3240y x =-+ (2)2(40)(3240)33609600w x x x x =--+=-+-(3)233609600w x x =-+-0a <,∴抛物线开口向下.当602bx a=-=时,w 有最大值 又60x <,w 随x 的增大而增大∴当55x =元时,w 的最大值为1125元∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.22、解:(1)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+.由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+. (或21112y x x =-++)(2)(3分)令20(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+ 1210CD x x ∴=-=. 1361017BD ∴=-+=(米).23、(1)当P=12时,y=x +()11002x -,即y=1502x +. ∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)又当x=20时,y=1100502⨯+=100.而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;(2)本题是开放性问题,答案不唯一.若所给出的关系式满足:(a )h≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求. 如取h=20,y=()220a x k -+,∵a >0,∴当20≤x≤100时,y 随着x 的增大 令x=20,y=60,得k=60 ① 令x=100,y=100,得a×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+.。
七年级数学综合测试卷
一、选择题(每题4分,共40分)1. 下列各数中,最小的正整数是()A. -3B. 0C. 1D. 22. 如果a=3,b=-2,那么a-b的值是()A. 5B. -5C. 1D. -13. 下列各数中,有理数是()A. √4B. √-1C. πD. 0.1010010001……4. 下列各数中,无理数是()A. √9B. √-4C. πD. 2/35. 如果x=5,那么x-3的值是()A. 2B. 8C. 12D. 56. 下列各式中,正确的有()A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 2xD. 2x - 3 = 2x7. 如果a+b=5,a-b=3,那么a和b的值分别是()A. a=4,b=1B. a=3,b=2C. a=2,b=3D. a=1,b=48. 下列各式中,方程是()A. 2x + 3 = 7B. 3x - 2 = 7C. 2x + 3 = 2xD. 3x - 2 = 2x9. 如果x=2,那么2x+1的值是()A. 5B. 3C. 4D. 210. 下列各式中,比例是()A. 2x + 3 = 7B. 3x - 2 = 7C. 2x : 3 = 6 : 9D. 3x - 2 = 2x二、填空题(每题4分,共40分)11. 3的平方根是______,5的立方根是______。
12. 如果a=5,b=-3,那么a-b的值是______。
13. 下列各数中,无理数是______。
14. 下列各式中,正确的有______。
15. 如果x=4,那么2x-3的值是______。
16. 下列各式中,方程是______。
17. 如果a+b=8,a-b=2,那么a和b的值分别是______。
18. 下列各式中,比例是______。
19. 下列各数中,有理数是______。
20. 下列各式中,正确的有______。
三、解答题(每题10分,共30分)21. 解方程:3x - 2 = 7。
初中八年级数学上册11-15章综合测试卷共5套03答案
同理, BPD 为 △BMP 的一个外角, 所以 BPD BMD B . 所以 BPD BMD B BQD B D . (3)由(2)的结论,得 AGB A B E . 因为 AGB CGF , CGF C D F 360 , 所以 A B C D E F 360 .
8.【答案】C
【解析】因为正 n 边形的一个内角为135 ,所以每个外角为180 135 45 .
所以 n
360 45
8.
9.【答案】B
【解析】因为
A
1 2
B
1 3
C
,
所以 B 2A , C 3A .
因为 A B C 180 ,
所以 A 2A 3A 180 ,
所以 A 30 .
19.(12 分)平面内的两条直线有相交和平行两种位置关系. (1) AB∥CD .如图 11-11①,点 P 在 AB , CD 外部时,由 AB∥CD ,有 B BOD .又因为 BOD 是 △POD 的外角,故 BOD BPD D ,得 BPD B D .如图 11-11②,将点 P 移到 AB , CD 内 部,以上结论是否成立?若不成立,则 BPD , B , D 之间有何数量关系?请证明你的结论.
A. 70
B. 80
C. 85
D. 90
8.已知正 n 边形的一个内角为135 ,则边数 n 的值是( )
A.6
B.7
C.8
D.10
9.在 △ABC
中,已知
A
1 2
B
1 3
C
,则
△ABC
是(
)
A.锐角三角形
B.直角三角形
C.钝角三角形
D.无法确定
二、填空题(每小题 4 分,共 20 分) 10. 如 图 11-5 , 在 Rt△ABC 中 , A 90 , 小 华 用 剪 刀 沿 DE 剪 去 A 得 到 一 个 四 边 形 , 则 BDE CED _________.
2021学年初中数学单元测试(五)含答案及解析
2021学年初中数学单元测试(五)含答案及解析姓名:__________ 班级:__________考号:__________一、填空题(共8题)1、在数学中,为了简便,记=1+2+3+···+(n-1)+ n.1!=1,2!=2×1,3!=3×2×1,···,n!=n×(n-1)×(n-2)×···×3×2×1.则2、如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°3、不等式的解集为_______________.4、今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.5、如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=__________度.6、如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为__________米.7、若正整数使得在计算的过程中,各数位均不产生进位现象,则称为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.8、若关于的不等式组,恰有三个整数解,则关于的一次函数的图像与反比例函数的图像的公共点的个数为_________.二、选择题(共10题)1、一元二次方程可转化为两个一元一次方程,其中一个一元一次方程是,则另一个一元一次方程是A. B. C. D.2、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 83、若二次函数的图象经过点P(-2,4),则该图象必经过点A. (2,4)B. (-2,-4)C. (-4,2)D. (4,-2)4、的算术平方根为 ( )A.B.C.D.5、据济宁市旅游局统计,2012年春节约有359525人来济旅游,将这个旅游人数 (保留三个有效数字)用科学计数法表示为 ( )A.3.59× B.3.60× C.3.5 × D.3.6 ×6、下列运算正确的是 ( )A.B.C.D.7、如图,由几个小正方体组成的立体图形的左视图是 ( )8、下列事件中确定事件是( )A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有个球D.掷一枚六个面分别标有,,,,,的均匀正方体骰子,骰子停止转动后奇数点朝上9、若式子有意义,则x的取值范围为()A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠310、已知且,则的取值范围为 ( ) A.B.C.D.三、综合题(共6题)1、已知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x 轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB 的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2、在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是(填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种);(3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?(请画树状图或列表计算)3、如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E 是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G 恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN 的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.4、如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.5、正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直,(1)证明:;(2)设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积;(3)当点运动到什么位置时,求的值.6、如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O 上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.四、解答题(共1题)1、如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.(1)求证:AD=CE;(2)填空:四边形ADCE 的形状是.============参考答案============一、填空题1、 02、 D3、x >24、 105、60°6、 1007、8、 3二、选择题1、 D2、 C3、 A4、A5、 B6、B7、A8、C9、 C10、D三、综合题1、解:(1)由已知,得,,,..设过点的抛物线的解析式为.将点的坐标代入,得.将和点的坐标分别代入,得)解这个方程组,得故抛物线的解析式为(2)成立.点在该抛物线上,且它的横坐标为,点的纵坐标为.设的解析式为,将点的坐标分别代入,得解得的解析式为.,.过点作于点,则.,.又,....(3)点在上,,,则设.p(t,2),,.①若,则,解得.,此时点与点重合..②若,则,解得,,此时轴.与该抛物线在第一象限内的交点的横坐标为1,点的纵坐标为..③若,则,解得,,此时,是等腰直角三角形.过点作轴于点,则,设,..解得(舍去)..综上所述,存在三个满足条件的点,即或或.2、解:(1)B,C(2)画图正确得(图中小三角形与小半圆没有画出,不影响得分);如:等(3)画树状图或列表小明A B C小红A(A,A) (A,B) (A,C)B(B,A) (B,B) (B,C)C(C,A) (C,B) (C,C)或…一共有9种结果,每种结果出现的可能性是相同的.而其中能恰好拼成轴对称图形的结果有五种,分别是(A,A) 、(B,B)、(C,C)、(B,C)、(C,B),所以两件文具可以拼成一个轴对称图案的概率是.3、解:(1)∵四边形ABCD和四边形AEFG是正方形∴AB=AD,AE=AG,∠BAD=∠EAG=90º∴∠BAE+∠EAD=∠DAG+∠EAD∴∠BAE=∠DAG∴△ BAE≌△DAG(2)∠FCN=45º理由是:作FH⊥MN于H∵∠AEF=∠ABE=90º∴∠BAE+∠AEB=90º,∠FEH+∠AEB=90º∴∠FEH=∠BAE又∵AE=EF,∠EHF=∠EBA=90º∴△EFH≌△ABE∴FH=BE,EH=AB=BC,∴CH=BE=FH∵∠FHC=90º,∴∠FCH=45º(3)当点E由B向C运动时,∠FCN的大小总保持不变理由是:作FH⊥MN于H由已知可得∠EAG=∠BAD=∠AEF=90º结合(1)(2)得∠FEH=∠BAE=∠DAG又∵G在射线CD上∠GDA=∠EHF=∠EBA=90º∴△EFH≌△GAD,△EFH∽△ABE∴EH=AD=BC=b,∴CH=BE,∴==∴在Rt△FEH中,tan∠FCN===∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4、解:(1)由抛物线C1:得顶点P的为(-2,-5)∵点B(1,0)在抛物线C1上∴解得,a=(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G∵点P、M关于点B成中心对称∴PM过点B,且PB=MB∴△PBH≌△MBG∴MG=PH=5,BG=BH=3∴顶点M的坐标为(4,5)抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到∴抛物线C3的表达式为(3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到∴顶点N、P关于点Q成中心对称由(2)得点N的纵坐标为5设点N坐标为(m,5)作PH⊥x轴于H,作NG⊥x轴于G作PK⊥NG于K∵旋转中心Q在x轴上∴EF=AB=2BH=6∴FG=3,点F坐标为(m+3,0)H坐标为(2,0),K坐标为(m,-5),根据勾股定理得PN2=NK2+PK2=m2+4m+104PF2=PH2+HF2=m2+10m+50NF2=52+32=34①当∠PNF=90º时,PN2+ NF2=PF2,解得m =,∴Q 点坐标为(,0)②当∠PFN=90º时,PF2+ NF2=PN2,解得m =,∴Q 点坐标为(,0)③∵PN>NK=10>NF,∴∠NPF≠90º综上所得,当Q 点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形.5、解:(1)在正方形中,,,,.在中,,,.(2),,,,当时,取最大值,最大值为10.(3),要使,必须有,由(1)知,,当点运动到的中点时,,此时.6、(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵CE是⊙O的切线∴∠OCE=90°∵AE⊥CE∴∠AEC=∠OCE=90°∴OC∥AE∴∠OCA=∠CAD∴∠CAD=∠BAC∴∴DC=BC(2)∵AB是⊙O的直径∴∠ACB=90°∴∵∠CAE=∠BAC ∠AEC=∠ACB=90°∴△ACE∽△ABC∴∴∵DC=BC=3∴∴四、解答题1、(1)证明:∵MN是AC的垂直平分线∴OA=OC ∠AOD=∠EOC=90°∵CE∥AB∴∠DAO=∠ECO∴△ADO≌△CEO∴AD=CE(2)四边形ADCE是菱形.(填写平行四边形给1分)。
初中七年级数学下册第5-10章测试卷6套02及答案
26 26
26
26
26
26
故猜想正确.
人教版七年级数学下册 第七章
一、选择题(30 分)
1.点 1, 2 所在的象限是第(
15.【答案】平行
16.【答案】135
17.【答案】真 18.【答案】140 三、 19.【答案】解:如图所示。
20.【答案】解:∵ EFG 90 , E 35 ,∴FGH 55 . ∵ GE 平分 FGD , AB∥CD ,∴FHG HGD FGH 55 , ∴EHF 180 55 125 ,∴EFB 180 E EHF 180 35 125 20 . 21.【答案】(1)证明:∵ CF 平分 DCE(已知),∴1 2 1 DCE(角平分线的定义).∵ DCE 90 ,
A. x< 1 < x<x2 x
B. x2<x< x<1 x
C. 1 <x<x2< x x
二、填空题(24 分)
11. 8 的立方根是_________.
12.能够说明“ x2 x 不成立”的 x 的值是_________.(写出一个即可)
D. x< 1 <x<x2 x
13.一个正数的平方根分别是 x 1 和 x2 x ,则 x _________.
18.【答案】 3
三、
第六章综合测试 答案
19.【答案】
20.【答案】解:(1)原式 5 3 2 2 019 2 019 . (2)原式 3 4 1 (2) 4 3 4 1 4 2 .
2 21.【答案】解:设每个小立方体木块的棱长是 x m ,则根据题意,得 8x3 0.125 , x 1 ,所以每个小立
A. 1 2
B. 3 4
C. 1 3 180
D. 3 4 180
数学初中综合试卷及解析
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √3B. πC. 2/3D. √-12. 若m > 0,n < 0,则下列不等式中正确的是()A. m + n > 0B. m - n < 0C. m / n > 0D. m / n < 03. 已知一次函数y = kx + b的图象过点(2,3),则k + b的值为()A. 5B. 4C. 3D. 24. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°5. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 16. 已知一元二次方程x^2 - 3x + 2 = 0,则该方程的解为()A. x = 1, x = 2B. x = 1, x = -2C. x = -1, x = 2D. x = -1, x = -27. 若x > 0,y > 0,且x + y = 1,则下列不等式中正确的是()A. xy ≤ 1/4B. xy ≥ 1/4C. xy < 1/4D. xy > 1/48. 已知正比例函数y = kx的图象过点(1,2),则k的值为()A. 2B. 1C. 0D. -19. 在等腰三角形ABC中,若底边BC = 6,腰AB = AC = 8,则高AD的长度为()A. 4B. 5C. 6D. 710. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则a^2 < b^2C. 若a > b,则|a| > |b|D. 若a > b,则|a| < |b|二、填空题(每题5分,共50分)1. 已知x + y = 3,x - y = 1,则x = ______,y = ______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学综合测试(五)
(时量:120分钟,满分:120分)
题 号 一 二 17
18 19 20 21 22 23 24 25 总分
得 分
一、填空题(本大题8小题,每小题3分,共24分) 1.数3的相反数是 . 2.计算a a -= .
3.如图,在⊙O 中,半径为5,∠AOB =60°,则弦长AB = . 4.函数1y x =-的自变量x 的取值范围是 . 5.分解因式:ax ay -= . 6.如图,两条直线a 、b 相交于点O , 若∠1=70°,则∠2= .
7.抛掷一枚质地均匀的正方体骰子一次,骰子的六个面上分别刻有1到6的点数,观 察向上的一面,点数为6的事件的概率是 .
8.如果用s 表示路程(单位:千米),t 表示时间(单位:小时),v 表示速度(单位:千米/时), 那么t = 小时 (用s 和v 表示).
二、选择题(本大题8小题,每小题3分,共24分) 9.计算23x x ⋅的结果是 A .x 5 B .x 4 C .x 3 D . x 2 10.一个角的度数是45°,那么这个角的余角是
A .35°
B .45°
C .60°
D .70°
11.随着社会的进步,农村生活水平有了很大的提高,很多村寨都通上了自来水.为了解
某组村民用水情况,随机抽取了八户家庭的月用水量,结果是(单位:吨): 6,3,4,6,6,3,5,6. 那么这组数据的众数是
A . 3
B .4
C .5
D .6
12.函数y =
3
x
是 A .一次函数 B .二次函数 C .反比例函数 D .正比例函数
13.如果一个圆的半径是8cm ,圆心到一条直线的距离也是8cm ,那么这条直线和这个 圆的位置关系是
A . 相离
B . 相交
C .相切
D .不能确定
14.下列命题正确
..的是
A.三角形内角和是200°
B.只有一组对边相等的四边形,一.定.是平行四边形
C.对顶角相等
D.对角线不.相等的四边形是正方形
15.图中几何体的主视图是
A.B.C.D.
16.如图,△ABC中,DE∥BC,
1
3
AD
AB
=,2cm
DE=,
则BC边的长是
A.6cm B.4cm
C.8cm D.7cm 三、解答题(本大题9小题,共72分)
17.(本题5分)计算:20100+1
2
+sin30°
18.(本题5分)解不等式:360
x-≥,并将解集表示在数轴上.
19.(本题6分)如图,点C是AB的中点,
AD CE
=,CD BE
=. 求证:△ACD≌△CBE
20.(本题6分)直角三角形ABC中,∠B=90°,∠C=30°,3
AB=. (1)求AC的长.
(2)求BC的长.
21.(本题6分)如图,在平面直角坐标系中,一条直线l 与x 轴相交于点(2,0)A ,与正 比例函数y kx =(0k ≠,为常数)的图象相交于点(1,1)P (1)求k 的值;
(2)求△POA 的面积.
22.(本题6分)光明中学七年级举行了一次“我最喜爱的学科”主题班会,对全年级
学生喜爱“语文、数学、英语、地理”四个学科情况,进行问卷调查(每人只能选1个学科),并将调查结果分别用图(1)和图(2)(不完整)表示.
图(1)
图(2)
(1) 根据图中信息,求这次调查的学生总数;
(2) 补全条形统计图,并求图(1)中圆心角∠AOB 的度数.
23.(本题8分)2010年5月1日,举世瞩目的世界博览会在上海隆重开园,开幕式 前,某旅行社组织甲、乙两个公司的部门主管赴上海观摩开幕式的盛况,其中
一类门票(张) 二类门票(张) 费用(元)
甲公司 2 5 1800 乙公司
1
6
1600
24.(本题10分)等腰△ABC 中,8AB AC ==, ∠BAC =100°,AD 是∠BAC 的平分
线,交BC 于D ,点E 是AB 的中点,连接DE . (1)求∠BAD 的度数; (2)求∠B 的度数; (3)求线段DE 的长.
25.(本题20分)如图,已知抛物线24y ax x c =-+经过点(0,6)A -和(3,9)B -, (1)求出抛物线的解析式;
(2)写出抛物线的对称轴方程及顶点坐标;
(3)点P (m ,m) 与点Q 均在抛物线上(其中m >0),且这两点关于抛物线的对称轴 对称,求m 的值及点Q 的坐标;
(4)在满足(3)的情况下,在抛物线的对称轴上 寻找一点M ,使得△QMA 的周长最小.。