变量之间的关系单元测试题

合集下载

2020年北师大版七年级数学下册《第3章变量之间的关系》单元测试题(含答案)

2020年北师大版七年级数学下册《第3章变量之间的关系》单元测试题(含答案)

七年级下册单元测试卷《第3章变量之间的关系》测试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是( )A .时间B .骆驼C .沙漠D .体温2.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量是( )A .金额B .数量C .单价D .金额和数量 3.下面说法中正确的是( ) A .两个变量间的关系只能用关系式表示 B .图象不能直观的表示两个变量间的数量关系 C .借助表格可以表示出因变量随自变量的变化情况 D .以上说法都不对4.我们知道,在弹性限度内,弹簧挂上重物后会伸长.已知一根弹簧的长度(cm )与所挂重物的质量(kg )之间的关系如下表,则下列说法错误的是( )A .在这一变化过程中,重物的质量是自变量,弹簧的长度是因变量B .当所挂重物的质量是4kg 时,弹簧的长度是14cmC .在弹性限度内,当所挂重物的质量是6kg 时,弹簧的长度是16cmD .当不挂重物时,弹簧的长度应为12cm5.自行车以10千米/小时的速度行驶,它所行走的路程S (千米)与所用的时间t (时)之间的关系为( ) A .S=10+t B .10t C .S=t10D .S=10t 6.甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲、乙两人的速度相同B .甲先到达终点重物的质量(kg )1 2 3 4 5弹簧的长度(cm ) 12 12.51313.51414.5C.乙用的时间短 D.乙比甲跑的路程多7.下列情境①~④分别可以用哪幅图来近似地刻画?正确的顺序是()①一杯越来越凉的水(水温与时间的关系);②一面冉冉升起的旗子(高度与时间的关系);③足球守门员大脚开出去的球(高度与时间的关系)④匀速行驶的汽车(速度与时间的关系).A.cdab B.acbd C.dabc D.cbad8.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()9.小明同学周末晨练,他从家里出发,跑步到公园,然后在公园玩一会儿篮球,再走路回家,那么,他与自己家的距离y(米)与时间x(分钟)之间的关系的大致图象是()10.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个 B.2个 C.3个 D.4个二、填空题(本大题6小题,每小题4分,共24分)11.变量x与y之间的关系是y=2x-3,当因变量y=6时,自变量x的值是________.12.汽车开始行驶时,油箱内有油40L,油箱内的余油量Q(L)与行驶时间t(h)之间关系的图象如图所示,则每小时耗油_____L.13.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0 1 2 3y(升)100 92 84 76由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为0.14.米店卖米,数量x(千克)与售价c(元)之间的关系如下表:x/千克0.5 1 1.5 2 …c/元 1.3+0.1 2.6+0.1 3.9+0.1 5.2+0.1 …当x=5千克时,c= _________元.15.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是______________.16.在关系式y=3x+5中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是变量,它的值与x 无关;④用关系式表示的不能用图象表示;⑤y 与x 的关系还可以用列表法和图象法表示, 其中说法正确的是___________.(只填写序号)三、解答题(一)(本大题共3题,每小题6分,共18分)17.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示. 根据图象回答下列问题:(1)小明家离图书馆的距离是______千米; (2)小明在图书馆看书的时间为______小时; (3)小明去图书馆时的速度是______千米/小时.18.某校办工厂现在年产值是15万元,计划今后每年增加2万元. (1)写出年产值y (万元)与年数x 之间的关系式________; (2)5年后的年产值是_______万元.19.如图,圆柱的高是3cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是_____,因变量是_______;(2)若圆柱的底面半径为r,圆柱的体积为V,V 与r 的关系式____________;(3)当底面半径由1cm 变化到10cm 时,圆柱的体积增加了_____c 3m .四、解答答题(二)(本大题共3题,每小题7分,共21分) 20.一个长方形的长是x ,宽是10,周长是y ,面积是s .d 50 80 100 150 b25405075(1)写出y与x变化而变化的关系式;(2)写出s随x变化而变化的关系式;(3)当s=200时,x等于多少?y等于多少?21.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如表数据:(1)该轿车油箱的容量为____L,行驶150km时,油箱剩余油量为_____L;(2)根据上表的数据,写出油箱剩余油量Q(L)与轿车行驶的路程s(km)之间的表达式;(3)某人将油箱加满后,驾驶该轿车从A地前往B地,到达B地时邮箱剩余油量为26L,求A,B两地之间的距离22.如图是某地某天温度变化的情况,根据图象回答问题:(1)上午3时的气温是_______0(2)这一天的最高温度和最低温度分别是_____0和______0.(3)这一天的温差是______.从最低温度到最高温经过了_________时间.(4)图中A点表示的是什么?B点呢?轿车行驶的路程s(km)0 100 200 300 400 ... 油箱剩余油量Q(L)50 42 34 26 18 ...五、解答题(三)(本大题共3题,每小题9分,共27分)23.如图,梯形上底长为10,下底长为x,高长为8,面积为y.(1)请你写出y与x之间的关系式;(2)用表格表示当x从15到20时(每次加l),y的相应值;(3)当x增加l时,y是如何变化的?24.一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是390元,问他一共批发了多少千克的西瓜?(4)请问这个水果贩子一共赚了多少钱?25.已知动点P以每秒2cm的速度沿图甲边框按从B→C→D→E→F→A的路径移动,相应的三角形ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题:(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?参考答案:1、A 2、D 3、C 4、C 5、D 6.B7.解:①一杯越来越凉的水,水温随着时间的增加而越来越低,故c 图象符合要求;②一面冉冉上升的旗子,高度随着时间的增加而越来越高,故d 图象符合要求; ③足球守门员大脚开出去球,高度与时间成图象是抛物弧线,故a 图象符合要求; ④匀速行驶的汽车,速度始终不变,故b 图象符合要求; 正确的顺序是cdab . 故选:A .8.解:根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢. 故选:C .9.解:根据以上分析可知能大致反映当天小明同学离家的距离y 与时间x 的关系的是B . 故选:B .10.解:读图可得,在x=40时,速度为0,故(1)(4)正确; AB 段,y 的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误; 故选:C .11:4.5 12:5L . 13:12.5小时. 14:13.1(元) 15:b=d 2116.①②⑤17.解:(1)根据图象可知y 随t 的变化而变化小明家离图书馆的距离是3千米; (2)路程不变,时间为72-12=60分钟,故小明在图书馆看书的时间为1小时; (3)根据速度=路程/时间可知小明去图书馆时的速度是15千米/小时.18.解:(1)根据题意,找到两个变量关系:即现在年产值是15万元,计划今后每年增加2万元,x 年后增加2x 万元,所以年产值y (万元)与年数x 之间的关系式y=2x+15(x ≥0); (2)将x=5代入解析式得:y=2x+15=2×5+15=25(x ≥0).19.解:(1)自变量是:半径,因变量是:体积. (2)体积V 与高h 之间的关系式V=23r π; (3)体积增加了(π×210-π×21)×3=297π3cm . 故答案为:(1)半径,体积;(2)297π.20.解:(1)y 和x 之间关系式为y=2(10+x )=2x+20; (2)s 与x 之间关系式为s=10x ;(3)当s=200时,即200=10x ,∴x=20,∴y=2(20+10)=60.21.解:(1)由表格中的数据可知,该轿车油箱的容量为50L ,行驶150km 时,油箱剩 余油量为:50-100150×8=38(L ).故答案是:50;38; (2)由表格可知,开始油箱中的油为50L ,每行驶100km ,油量减少8L ,据此 可得Q 与s 的关系式为Q=50-0.08s ;故答案是:Q=50-0.08s ;(3)令Q=26,得s=300.答:A ,B 两地之间的距离为300km .22.解:(1)上午3时的气温为23℃;(2)这一天最高温度和最低温度分别是:37℃、23℃; (3)37-23=14(℃),15-3=12(小时),这一天的温差是14℃,从最低温度到最高温度经过了12小时; (4)A 点表示21时的温度为31℃,B 点表示0时的温度为26℃.23.解:(1)y =28)10(⨯+x ,即y=4x+40(x >10) (2)(3)当x 增加1时,y 相应的增加4.24.解:(1)由图可得农民自带的零钱为50元, 答:农民自带的零钱为50元; (2)(290-50)÷80=240÷80=3元,x 15 16 17 18 19 20y 100 104 108 112 116 120答:降价前他每千克西瓜出售的价格是3元;(3)(390-290)÷(3-0.5)=100÷2.5=40(千克),80+40=120千克, 答:他一共批发了120千克的西瓜; (4)390-120×1.8-50=124元, 答:这个水果贩子一共赚了124元钱.25.解:(1)动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒 =8cm ;故图甲中的BC 长是8cm .(2)由(1)可得,BC=8cm ,则:a=21×BC ×AB=24c 2m ;图乙中的a 是24c 2m . (3)由图可得:CD=2×2=4cm ,DE=2×3=6cm , 则AF=BC+DE=14cm ,又由AB=6cm ,则甲图的面积为AB ×AF-CD ×DE=60c 2m ,图甲中的图形面积为60c 2m . (4)根据题意,动点P 共运动了BC+CD+DE+EF+FA=8+4+6+2+14=34cm , 其速度是2cm/秒,则b=234=17秒,图乙中的b 是17秒.。

第三章 变量之间的关系——2022-2023学年北师大版数学七年级下册单元测试

第三章 变量之间的关系——2022-2023学年北师大版数学七年级下册单元测试

第三章变量之间的关系一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.1~6个月的婴儿生长发育非常快,他们的体重y(g)随月份t(月)的变化而变化,可以用700=+(其中a是婴儿出生时的体重)来表示.在这一变化过程中,自变量y a t是( )A.yB.aC.700D.t2.某市出租车起步价为2公里内8元,超过2公里的部分计价为每公里1.6元.则该市出租车载客行驶路程(2)x x≥千米与收费y(元)之间的关系式为( )A. 1.68= D.4 1.6y xy x=+ y x=+ C.8=+ B. 1.6 4.8y x3.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设开始工作的时间为t,剩下的水量为s,下面能反映s与t之间的关系的大致图像是( )A. B.C. D.4.在烧开水时,水温达到100℃水就会沸腾,下表是小红同学做“观察水的沸腾”试验时所记录的时间t(min)和水温T(℃)的数据:10t<A.7 30,=+ B.1430T t T=-, D.3014,T t tT t t=+, C.1416=-T t T5.2021年泰安市市区出租车调整收费标准,起步价由原来2公里内6元调整为2公里内8元,超过2公里,超过部分由原来1.5元每公里调整为1.6元每公里.外地游客小明在泰安搭乘出租车沿环山路欣赏泰山美景,则行驶路程(2)x x≥千米与收费y(元)之间的函数关系式为( )A. 1.68= D.4 1.6y xy x=+ =+ B. 1.6 4.8y xy x=+ C.86.《龟兔赛跑》是我们非常熟悉的故事.大意是乌龟和兔子赛跑,兔子开始就超过乌龟好远,兔子不耐烦了就在路边睡了一觉,乌龟一直往目的地奔跑,最终乌龟获得了胜利.下面能反映这个故事情节的图像是哪个?( )A. B.C. D.7.2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是( )A. B. C. D.8.皮皮小朋友燃放一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示.下列说法正确的是( )B.飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C.估计飞行时间t 为5秒时,飞行高度h 为11.8米D.只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格9.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B 地比乙到A 地早112小时 10.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km ðkm .一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM OM 表示货车离西昌距离1(km)y y 1(km )与时间x (h)x (h )之间的函数关系:折线OABN 表示轿车离西昌距离y 2(km )与()2km y 时间x (h)x (h )之间的函数关系,则以下结论错误的是( )A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hn km/hD.轿车到雅安20分钟后,货车离雅安还有40km(km二、填空题(每小题4分,共20分)11.某道路安装的护栏平面示意图如图所示,每根立柱宽为0.1米,立柱间距为3米设有x根立柱,护栏总长度为y米,则y与x之间的关系式为_______________.12.在关系式302=-中,v随着t的变化而变化,其中自变量是________,因变量是v t________,当t=________时,0v=.13.如表反映的是高速路上匀速行驶的汽车在行驶过程中时间x(时)与油箱的余油量y(升)之间的关系,这种关系可以表示为_______.14.2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生下面表格是成都当日海拔h(千米)与相应高度处的气温T(℃)的关系.(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米)(1)由表格可知海拔5千米的气温约为__________℃.(2)由表格中的规律写出当日气温T与海拔h之间的关系式为___________.如图是当日飞机下降过程中海拔h与玻璃爆裂后立即返回地面所用的时间t的关系图.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为_______千米,返回地面用了_______分钟.(4)飞机在2千米高空水平面上大约盘旋了________分钟.(5)利用所学知识预测,挡风玻璃在高空爆裂时,当时飞机所处高空的气温为__________℃,由此可见机长在高空经历了多大的艰险.15.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了________元.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)据测定,海底扩张的速度是很缓慢的,在太平洋底,某海沟的某处宽度为100米,其地壳向外扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x 年,海沟的宽度为y米.(1)写出海沟扩张时间x(年)与海沟的宽度y(米)之间的关系式;(2)计算出海沟宽度扩张到400米需要的年数.17.(8分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(030≤≤,单位:分)之间的关系如表所示:x(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用的时间是10分钟时,学生对概念的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间为多少时,学生对概念的接受能力最强?(4)根据表格中的数据,当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步增强?当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步降低?18.(10分)小红帮弟弟荡秋千,秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图所示.(1)根据函数的定义,请判断变量h是不是关于t的函数;(2)结合图象回答:①当0.7t s时,h的值是多少?并说明它的实际意义;②秋千摆动第一个来回需要多长时间?19.(10分)小明、小亮从图书馆出发,沿相同的线路跑向体育场,小明先跑一点路程后,小亮开始出发,当小亮超过小明150米时,小亮停下等候小明,两人相遇后,一起以小明原来的速度跑向体育场,图反映了两人所跑路程y(米)与所用时间x(秒)之间的关系,请根据题意解答下列问题:(1)自变量是_______,因变量是_________;(填“x”或“y”)(2)小明共跑了_________米,小明的速度为________米/秒;(3)图中a _________米,小亮在途中等候小明的时间是_______秒;(4)小亮在AB段的平均速度为________米/秒.20.(12分)为了参加“圆梦抚州、冬季旅游文化节”活动,甲、乙两山地自行车选手进行骑行训练.他们同地出发,反向而行,分别前往A地和B地甲先出发1 min且先到达A地.两人到达目的地后均以原速按原路立即返回,直至两人相遇.两人之间的距离y (km)与乙出发时间x(min)之间关系的图象如图所示请根据图象解决下列问题:(1)直接写出甲车和乙车的速度;(2)求图中a,b的值;(3)乙车出发多长时间两车首次相距22.6 km?21.(12分)在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1)由图象可知,新设备因工人操作不当停止生产了__________天;(2)求新,旧设备每天分别生产多少万个口罩?(3)在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.答案以及解析1.答案:D 解析:体重y (g )随月份t (月)的变化而变化,所以自变量是时间t ,故选D.2.答案:B解析:由题意得:()8 1.62y x =+-,即 1.6 4.8y x =+,故选:B.3.答案:D解析:根据题意可知随着抽水机工作,剩下的水量越来越少.而且一台抽水机工作的效率比两台抽水机工作效率慢,所以两台抽水机工作时,剩下的水量减少的速度更快. 故选:D.4.答案:A解析:开始时水温为30℃,每增加1 min ,水温增加7 ℃,所以水温T 与时间t 之间的关系式为730T =+.因为水温T 随时间t 的变化而变化,所以因变量为T .故选A.5.答案:B解析:由题意得:()8 1.62 1.6 4.8y x x =+-=+,故选B.6.答案:D解析:从图D 提供的信息可知:表示乌龟赛跑的图象应该是一条一直上升的直线,且比兔子早到达终点;表示兔子赛跑的图象应该是开始时是一条上升的直线,中途变为水平直线,然后又变为上升,且比乌龟晚到达终点.故选:D.7.答案:B解析:随着时间的增多,汽车离剧场的距离y (千米)减少,排除A 、C 、D ;由于途中停车加油耽误了几分钟,此时时间在增多,汽车离剧场的距离y 没有变化;后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡.故选:B.8.答案:C解析:由表格可知从0秒到3秒的过程中,随着飞行时间t 的增加,飞行高度h 增加;3秒以后,随着飞行时间t 的增加,飞行高度h 减小.所以A 、B 选项不正确;由表格可知飞行高度h 在3秒左右是对称的,所以C 选项正确;已知中没有涉及合格的标准,所以D 选项不正确.故选C.9.答案:D解析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意; B.乙先出发,0.5小时,两车相距()10070km -,∴乙车的速度为:60km/h ,故乙行驶全程所用时间为:10021603=(小时), 由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.750.5 1.25-=(小时),故甲车的速度为:()100 1.2580km/h ÷=,故B 选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,4060100+=,故两车相遇,故C 选项正确,不合题意;D.由以上所求可得,乙到A 地比甲到B 地早:211.751312-=,(小时),故此选项错误,符合题意.故选:D.10.答案:D解析:由题意可知,货车从西昌到雅安的速度为:240460(km/h)÷=,故选项B 不合题意;轿车从西昌到雅安的速度为:(24075)(3 1.5)110(km/h)-÷-=,故选项C 不合题意;轿车从西昌到雅安所用时间为:2240110211÷=(小时), 29321111-=(小时), 设货车出发x 小时后与轿车相遇,根据题意得:96011011x x ⎛⎫=- ⎪⎝⎭, 解得 1.8x =,∴货车出发1.8小时后与轿车相遇,故选项A 不合题意;轿车到雅安20分钟后,货车离雅安还有60206040(km)60-⨯=,故选项D 符合题意. 故选:D.11.答案: 3.1 -3y x =解析:由题意得,y 与x 之间的关系式为(0.13) -3 3.1 -3y x x =+=12.答案:t ,v ,15解析:根据函数的定义,则自变量是t ,因变量是v ;要使0v =,则3020t -=,解得15t =.13.答案:6010y x =-解析:由表格数据可知,行驶时间每延长1小时,剩余油量减少10升,即耗油量为10升/时,所以6010y x =-.14.答案:(1)-10;(2)206T h =-;(3)9.8;20;(4)2;(5)-38.8解析:(1)由题中表格可知,海拔5千米的气温约为-10℃.(2)由题中表格可知,海拔每上升1千米,气温下降6℃,所以当日气温T 与海拔h 之间的关系式为206T h =-.(3)由题中图象可知挡风玻璃在高空爆裂时飞机所处的高度为9.8千米,返回地面用了20分钟.(4)飞机在2千米高空水平面上大约盘旋了12102-=(分).(5)当9.8h =时,2069.838.8T =-⨯=-(℃).15.答案:36解析:解:根据题意得:由降价前40千克西瓜卖了64元,那么售价为:6440 1.6÷=元,降价0.4元后单价变为1.60.4 1.2-=,钱变为了76元,说明降价后卖了766412-=元,那么降价后卖了12 1.210÷=千克.总质量将变为401050+=千克,那么小李的成本为:500.840⨯=元,赚了764036-=元.16.答案:(1)根据题意得,海沟每年扩张的宽度为0.06米,∴海沟扩张时间x (年)与海沟的宽度y (米)之间的关系式为0.06100y x =+.(2)当400y =时,0.06100400x +=,解得5000x =.答:海沟宽度扩张到400米需要5000年.17.答案:(1)题中表格反映了提出概念所用的时间x 和学生对概念的接受能力y 之间的关系,其中x 是自变量,y 是因变量.(2)由题中表格可知,当提出概念所用的时间是10分钟时,学生对概念的接受能力是59.(3)由题中表格可知;当提出概念所用的时间为13分钟时,学生对概念的接受能力最强.(4)由题中表格可知,当提出概念所用的时间x 在2分钟至13分钟范围内时,学生对概念的接受能力逐步增强;当提出概念所用的时间x 在13分钟至20分钟范围内时,学生对概念的接受能力逐步降低.18.答案:(1)对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①当0.7t =s 时,0.5h =m ,它的实际意义是秋千摆动0.7s 时,离地面的高度为0.5m.②由题图可知,秋千摆动第一个来回需2.8s.19.答案:(1)由题意可得自变量是x ,因变量是y ,故答案为x ;y .(2)小明共跑了900米,小明的速度为900600 1.5÷=米/秒,故答案为900;1.5.(3) 1.5500750a =⨯=,小亮在途中等候小明的时间是500(750150) 1.5100--÷=秒,故答案为750;100.(4)小亮在AB 段的平均速度为750[(750150) 1.5100] 2.5÷-÷-=米/秒,故答案为2.5.20.答案:(1)甲的速度是0.636160=(km/h ). 乙的速度是33.60.6366636303060--=-=(km/h ). (2)根据题意,得3630(3630)0.660-⨯-=(km ), 33.6-0.6=33(km ),所以33a =.因为33(3630)0.5÷+=(h ),0.5 h=30 min ,36+30=66(min ),所以66b =.(3)设乙车出发x min 两车首次相距22.6 km , 根据题意,得36300.622.66060x x ⨯+⨯+=,解得20x =. 所以乙车出发20 min 后两车首次相距22.6 km.21.答案:(1)2;(2)甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同 解析:(1)由图象知,新设备因工人操作不当停止生产了2天, 故答案为:2;(2)新设备:4.81 4.8÷=(万个/天),乙设备:16.87 2.4÷=(万个/天), 答:甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)①2.4 4.8x =,解得2x =;②()2.4 4.82x x =-,解得4x =;答:在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同.。

北师大版七年级下册数学第三章变量之间的关系单元测试卷(Word版,含答案)

北师大版七年级下册数学第三章变量之间的关系单元测试卷(Word版,含答案)

第 1 页 共 10 页 北师大版七年级下册数学第三章变量之间的关系单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q (升)与流出时间t (分钟)的关系式是( )A .()0.20100Q t t =≤≤B .()200.20100Q t t =-≤≤C .()0.2020t Q Q =≤≤D .()200.2020t Q Q =-≤≤2.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对3.小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y (元)与购买彩笔的支数x (支)之间的关系式为( )A .23y x =B .32y x =C .12y x =D .18=y x4.在△ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S =12ah ,当a 为定长时,在此函数关系式中( ) A .S ,h 是变量,12,a 是常量 B .S ,h ,a 是变量,12是常量 C .a ,h 是变量,12,S 是常量 D .S 是变量,12,a ,h 是常量 5.为积极响应振兴乡村的号召,某工作队步行前往某乡村开展入户调查.队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地.设行进时间为t (单位:min ),行进的路程为x (单位:m ),则能近似刻画x 与t 之间的函数关系的大致图象是( )A .B .C.D.6.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a7.甲、乙两人在一次赛跑中,路程s(米)与时间t(秒)的关系如图所示,则下列结论错误的是()A.甲的速度为8米/秒B.甲比乙先到达终点C.乙跑完全程需12.5秒D.这是一次100米赛跑8.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8679.刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y(米)第2页共10页。

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2.B.变量是C、π、r。

C.变量是C、r。

D.常量是2、r2.函数y=中自变量x的取值范围是()A.x≤2B.x≥2C。

x<2.D。

x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()XXX4.以下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的工夫为x (h),两车之间的间隔为y(km),图中的折线透露表现y与x之间的函数关系.以下说法中正确的是()A。

B点透露表现此时快车抵达乙地B。

B﹣C﹣D段透露表现慢车先加快后减速最后抵达甲地 C.快车的速度为km/h。

D.慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.XXX.6.一个长方体木箱的长为4㎝,宽为体的体积V与高为宽的2倍,则这个长方体的表面积S与的关系及长方的关系分别是()A.C.B.D.7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着迟钝匍匐的乌龟,自满起来,睡了一觉,当它醒来时。

发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1s2分别透露表现乌龟和兔子所行的旅程,t为工夫,则以下图象中与故工作节相符合的是()XXX.C.D.8.自行车以10千米/小时的速度行驶,t时)它所行走的路程S(千米)与所用的时间(之间的关系为()A。

S=10+t。

B.C。

S=D。

S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:以下说法不正确的是()x/kgy/cm 20 20.5 21 21.5 22 22.5A.弹簧不挂重物时的长度为0cmB。

七年级数学下册第三章《变量之间的关系》单元测试卷(含答案)

七年级数学下册第三章《变量之间的关系》单元测试卷(含答案)

七年级数学下册第三章《变量之间的关系》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.某工程队承建一条长30km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的关系式为()A. y=30−14x B. y=30+14x C. y=30−4x D. y=14x2.大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A. B.C. D.3.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m34.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积()A. 从20cm2变化到64cm2B. 从64cm2变化到20cm2C. 从128cm2变化到40cm2D. 从40cm2变化到128cm25.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随着高度的升高而降低.已知某地地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h千米处的温度t为()A. t=20−6ℎB. ℎ=20−6tC. t=20−ℎ6D. ℎ=20−t66.从某容器口以均匀的速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()A.B.C.D.7.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A. B.C. D.8.小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系().A. B.C. D.9.如图所示图象(折线ABCDE)描述了汽车沿笔直路线行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的变量关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个10.如图的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中,正确的是()A. y=4n−4B. y=4nC. y=4n+4D. y=n2二、填空题(本大题共5小题,共20.0分)11.河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有行驶路程s(千米)050100150200...剩余油量Q(升)4035302520...则该汽车每行驶100千米的耗油量为__________升.12.如图所示是关于变量x,y的程序计算,若开始输入的x值为6,则最后输出因变量y的值为.13.如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A处停止,设点P运动的路程为x,△PAB的面积为y,如果y关于x的图象如图2所示,则长方形ABCD的周长等于____.14.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).15.某书定价25元,如果一次购买20本以上,超过20本的部分打八折(原价的80%),试写出付款金额y(单位:元)与购书数量x(单位:本,x>20)之间的关系式:________________.三、解答题(本大题共10小题,共100.0分)16.(8分)某天早晨,小王从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是小王从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小王从家到学校的路程共______米,从家出发到学校,小明共用了______分钟;(2)小王吃早餐用了______分钟;(3)小王吃早餐以前和吃完早餐后的平均速度分别是多少米/分钟?17.(10分)某通信公司在某地的资费标准为包月18元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.如表所示是超出部分国内拨打的收费标准.时间/分12345…电话费/元0.360.72 1.08 1.44 1.8…(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果打电话超出25分钟,需付多少电话费?(3)某次打电话超出部分的费用是54元,那么小明的爸爸打电话超出几分钟?18.(10分)某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入−支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)在这个变化关系中,自变量是什么?因变量是什么?(2)若要不亏本,该公交车每天乘客人数至少达到多少?(3)请你判断一天乘客人数为500人时,利润是多少?(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.19.(10分)某车间的甲、乙两名工人分别同时生产同一种零件,他们一天生产零件的个数y与生产时间t(时)的关系如图所示.(1)根据图象填空: ①甲、乙两人中,先完成一天的生产任务;在生产过程中,因机器故障停止生产小时; ②当t=时,甲、乙生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.20.(10分)我市为了提倡节约,用水x吨,自来水收费实行阶梯水价y元,收费标准如下表所示:(1)___________是因变量.(2)若用水量达到15吨,则需要交水费_____________元.(3)用户5月份交水费54元,则所用水为________吨.(4)当x>18时,y与x的关系式是_______________.21.(8分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用−支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)−3000−2000−1000010002000…(1)在这个变化过程中,________是自变量;________是因变量;(2)观察表中数据可知,每月乘客量达到________人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?22.(10分)在梯形ABCD中,BC//AD,∠A=90°,AB=2,BC=3,AD=4,点E为AD的中点、点F为CD上一点.过点F作FG⊥AD于点G,且FG=1,点P 为BC上的一个动点(不与点B、C重合),设BP为x,四边形PEFC的面积为y,求y与x之间的关系式并写出x的取值范围.23.(10分)小强买了一张100元的乘车IC卡,如果用x表示他乘车的次数,那么卡内的余额y(元)如表所示:(2)利用上述关系式计算小强乘了25次车后,卡内的余额还有多少元?(3)小强用这张IC卡最多能乘多少次车?24.如果用t示时间,y表示电话费,那么随t的变化,y的变化趋势是______;(2)丽丽打了6分钟电话,那么电话费需付多少元?(3)你能写出y与t之间的关系式吗?25.(12分)端午节小明来到奥体中心观看比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车把小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题:(假设骑自行车和步行的速度始终保持不变)(1)从图中可知,小明家离奥体中心_________米,爸爸在出发后________分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离.(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.答案1.A2.D3.D4.B5.A6.C7.C8.D9.B10.B11.1012.4213.1614.y=20−2t15.y=20x+10016.解:(1)1000,25;(2)10;(3)小王吃早餐以前的平均速度为:500÷10=50米/分钟;小王吃早餐后的平均速度为:(1000−500)÷5=100米/分钟.17.解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量,电话费是因变量.(2)0.36×25=9(元),即如果打电话超出25分钟,需付18+9=27(元)的电话费.(3)54÷0.36=150(分钟).故小明的爸爸打电话超出150分钟.18.解:(1)在这个变化关系中,自变量是每天的乘车人数x(人);变量是每天利润y(元);(2)当y=0时,x=300因此要不亏本,该公交车每天乘客人数至少达到300人;(3)200+100×500−40050=400元,因此当一天乘客人数为500人时,利润是400元;(4)y=100×x−30050=2x−60019.解:(1) ①甲;甲;2. ②3或5.5.(2)甲在4∼7时的生产速度最快,甲在这段时间内每小时生产零件的个数为40−107−4=10.20.(1)收费标准;(2)31.5;(3)23;(3)y=3x−15.21.解:(1)每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.22.解:∵BC=3,BP=x,∴PC=3−x,∵AD=4,E为AD的中点,∴DE=12AD=2,∵BC//AD,FG⊥AD,∠A=90°,AB=2,∴S四边形PEFC =S梯形PEDC−S△EFD=12(3−x+2)×2−12×2×1=5−x−1=4−x,∴y=4−x,0<x<3.23.解:(1)由题意可得:y=100−1.6x;(2)当x=25时,y=100−1.6×25=60(元);(3)令y=0,100−1.6x=0解得:x=62.5x是整数位62.答:这张IC卡最多能乘62次.24.解:(1)时间;电话费;时间;电话费;y随着t的增大而增大;(2)每增加1分钟,电话费增加0.6元,则y=0.6t,当t=6时,y=0.36(元),(3)y=0.6t(t≥0).25.解:(1)3600;15;(2)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15⋅x+3x⋅15=3600,解得x=60(米/分),∴15x=15×60=900(米),即父亲与小明相遇时距离体育馆还有900米;(3)∵从B点到O点的速度为3x=180(米/秒),=5(分),∴返回时,从B点到体育馆所需的时间=900180而小明从体育馆到点B用了15分钟,∴小明从点A到点B,再从点B到点A需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.。

北师大版数学七年级下学期第三章《变量之间的关系》单元测试题 含答案

北师大版数学七年级下学期第三章《变量之间的关系》单元测试题 含答案

北师大版七年级数学下册第三章《变量之间的关系》单元测试题时间:100分钟 满分:120分班级____________姓名____________成绩________________题号 一二三总分得分一.选择题(本大题共12小题,共36分,每小题只有一个正确选项) 1. 圆的周长公式为C=2πr,下列说法正确的是( )A. 常量是2B. 变量是C 、π、rC. 变量是C 、rD. 常量是2、r2. 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是( ).A .弹簧不挂重物时的长度为0 cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为23.5 cm3. 一辆汽车以平均速度60 km /h 的速度在公路上行驶,则它所走的路程s(km )与所用的时间t(h )之间的关系式为 ( ) A .s =60 t B .s=t 60 C .s=60tD .s =60t 4. 某地区用电量与应缴电费之间的关系如表:则下列叙述错误的是( )A .若所缴电费为2.75元,则用电量为6千瓦·时B .若用电量为8千瓦·时,则应缴电费4.4元C .用电量每增加1千瓦·时,电费增加0.55元D .所缴电费随用电量的增加而增加5. 一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱体,桶口的半径是杯口半径的2倍,如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是( )6. 小明观看了《中国诗词大会》第三期,主题为“人生自有诗意”,受此启发根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,如图用y轴表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面图像与上述诗的含义大致相吻合的是( )A.B.C.D.7. 如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.8. 对于关系式y=2x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示;其中正确的是 ( )A.①②③ B.①②④ C.①③⑤ D.①②⑤9. 如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降10. 如图,折线OEFPMN描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3分钟时汽车的速度是40千米/时B.第12分钟时汽车的速度是0千米/时C.从第9分钟到第12分钟,汽车的速度从60千米/时减少到0千米/时D.从第3分钟到第6分钟,汽车停止11. 如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时12.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是().A. BC D.二.填空题(本大题共6小题,每小题4分,共24分)13..香蕉数量(千克) 0.5 1 1.5 2 2.5 3 3.5 …售价(元) 1.5 3 4.5 6 7.5 9 10.5 ….14.点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:t/分0 2 4 6 8 10h/厘米30 29 28 27 26 25(1)蜡烛未点燃前的长度是________厘米;(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式______________________;(3)这根蜡烛能燃烧的时间为_____________分;15.某市的出租车收费按里程计算,3km内(含3km)收费5元,超过3km,每增加1km 加收1元,则路程x ≥3时,车费y (元)与x (km )之间的关系式是_____. 16.如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n 根火柴棍时,若摆出的正方形所用的火柴棍的根数为S ,则S=(用含n 的代数式表示,n 为正整数).17.在小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑 米,直线 表示小明的路程与时间的关系,大约 秒时,小明追上了小强,小强在这次赛跑中的速度是 。

七年级数学下册第三章《变量之间的关系》单元测试卷(附答案)

七年级数学下册第三章《变量之间的关系》单元测试卷(附答案)

七年级数学下册第三章《变量之间的关系》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.变量x与y之间的关系是y=2x+1,当y=5时,自变量x的值是()A. 13B. 5C. 2D. 3.52.陈灿从家中出发,到离家1.5千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是()A. B.C. D.3.某日广东省遭受台风袭击,大部分地区发生强降雨.某条河流因受到暴雨影响,水位急剧上升,下表为这一天的水位记录,观察表中数据,水位上升最快的时间段是时间/时04812162024水位/米2 2.534568时到时时到时时到时20时到24时4.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A. 金额B. 数量C. 单价D. 金额和数量5.长方形的周长为24cm,其中一边为x cm(其中x>0),面积为y cm2,则y与x的表达式可以写为().A. y=x2B. y=(12−x)2C. y=(12−x)·xD. y=2(12−x)6.如图所示,在△ABC中,已知BC=16,高线AD=10,动点C′由点C沿CB向点B 移动(不与点B重合).设CC′的长为x,△ABC′的面积为S,则S关于x的关系式为()A. S=80−5xB. S=5xC. S=10xD. S=5x+805.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m36.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(单位m)和放学后的时间t(单位min)之间的关系如图所示,那么下列说法错误的是()A. 小刚边走边聊阶段的行走速度是125m/minB. 小刚家离学校的距离是1000mC. 小刚回到家时已放学10minD. 小刚从学校回到家的平均速度是100m/min7.柿子熟了,从树上落下来.下面可以大致刻画柿子下落过程中(即落地前)的速度变化情况的一幅图为()A.B.C. D.8.某一天早晨小强从家出发,以v1的速度前往学校,途中在饮食店吃早点,之后以v2的速度向学校行进.已知v1>v2,下列图象能表示小强从家到学校的时间t(min)与路程s(km)之间的关系的是().A. B.C. D.二、填空题(本大题共5小题,共20.0分)9.为了解某品牌汽车的耗油量,人们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(ℎ)0123⋯油箱剩余油量Q(L)100948882⋯根据上表的数据,写出Q与t的关系式:.10.长方形的周长为24cm,其中一边为xcm,面积为ycm2,则长方形的面积y与边长x之间的关系式为______.11.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y与x之间的关系式是.12.小聪步行去上学,5分钟走了总路程的1,估计步行不能6准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了分钟.13.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,到目的地后停止运动。

北师大版数学七年级下册 第3章《变量之间的关系》单元测试试题

北师大版数学七年级下册 第3章《变量之间的关系》单元测试试题

北师大版七年级下册第3章《变量之间的关系》单元测试题(满分100分)姓名:___________班级:___________成绩:___________一.选择题(共10小题,满分30分)1.下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1B.2C.3D.42.在关系式y=2x﹣7中,下列说法错误的是()A.x的数值可以任意选择B.y的值随x的变化而变化C.用关系式表示的不能用图象表示D.y与x的关系还可以用列表法表示3.在圆的面积公式S=πR2中,常量与变量分别是()A.2是常量,S、π、R是变量B.π是常量,S、R是变量C.2是常量,R是变量D.2是常量,S、R是变量4.如图,向容器甲中匀速的注水,下面哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A.B.C.D.5.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间的关系如下表所示,则下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5 A.弹簧不挂重物时长度为0cmB.X与y都是变量,且x是自变量,y是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm7.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度8.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分)11.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.12.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.13.甲骑自行车、乙骑摩托沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是(填“甲”或“乙”)②甲的行驶速度是(公里/分)③乙的行驶速度是(公里/分)14.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.15.某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.三.解答题(共7小题,满分52)17.如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层,第二层,……,第n层,第n层的小正方体的个数记为S,解答下列问题:(1)填写表格:n1234…S1…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?18.甲开汽车,乙骑自行车从M地出发沿同一条公路匀速前往N地,乙先行1小时后,甲再出发,设乙行驶的时间为x(h),甲、乙两人之间的距离为y(km),y与x的函数关系如图所示.(1)求甲、乙两人的速度及M、N两地的距离;(2)甲、乙两人何时相距25km?19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.如图,长方形ABCD,点P按B→C→D→A方向运动,开始时,以每秒2个长度单位匀速运动,达到C点后,改为每秒a个单位匀速运动,到达D后,改为每秒b个单位匀速运动.在整个运动过程中,三角形ABP的面积S与运动时间t的函数关系如图所示.求:(1)AB、BC的长;(2)a,b的值.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.如图,小明的爸爸去参加一个聚会,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗?(1)在上述变化过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是什么?(3)小车在哪段时间保持匀速,达到多少?(4)用语言大致描述这辆汽车的行驶情况?23.随着移动互联网的快速发展,ofo、摩拜等互联网共享单车应运而生并快速发展.小军骑着摩拜单车,爸爸骑着摩托车,沿着相同路线由A地到B地,下面图象表示的是两人由A地到达B地,行驶过程中路程y(千米)和时间x(分钟)之间的变化情况,根据图象,回答下列问题.(1)A地与B地之间的距离是.(2)爸爸比小军晚出发分钟,小军比爸爸晚到B地分钟.(3)行驶过程中,爸爸骑车速度为每分钟千米,小军骑车速度为每分钟千米.(4)若两人都在同一条直线上行驶,爸爸出发后经过分钟,两人相距0.4千米.参考答案一.选择题(共10小题)1.【解答】解:①y=3x﹣5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数;④y=,y是x的函数.所以y是x的函数的有3个.故选:C.2.【解答】解:A、x的数值可以任意选择;正确;B、y随x的变化而变化;正确;C、用关系式表示的不能用图象表示,错误;D、y与x的关系还可以用列表法表示,正确;故选:C.3.【解答】解:∵在圆的面积公式S=πR2中,S与R是改变的,π是不变的;∴变量是S、R,常量是π.故选:B.4.【解答】解:由容器的形状可知:注入水的高度随着时间的增长越来越高,但增长的速度越来越慢,即图象开始陡峭,后来趋于平缓,故选:C.5.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.6.【解答】解:由表格,得A、弹簧不挂重物时的长度为0cm,错误,故A符合题意B、x与y都是变量,且x是自变量,y是x的函数,正确,故B不符合题意;C、物体质量每增加1kg,弹簧长度y增加0.5cm,正确,故C不符合题意;D、所挂物体质量为7kg时,弹簧长度为20+7×0.5=23.5cm,正确,故D不符合题意;故选:A.7.【解答】解:由函数图象可得,他们都骑了20km,故选项A不合题意;两人在各自出发后半小时内的速度相同,故选项B不合题意;甲先到达目的地,故选项C符合题意;相遇后,甲的速度大于乙的速度,故选项D不合题意;故选:C.8.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.9.【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选:B.10.【解答】解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷(9﹣1)=35(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.二.填空题(共6小题)11.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.12.【解答】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为电影票的售价,电影票的张数,票房收入.13.【解答】解:(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度==0.2(公里/分);(3)乙10分钟行驶了4公里,则甲的速度==0.4(公里/分).故答案为甲;0.2;0.4.14.【解答】解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.215.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.16.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④三.解答题(共7小题)17.【解答】解:(1)∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2=3,第3个图有3层,第3层正方体的个数为1+2+3=6,∴n=4时,即第4层正方体的个数为:1+2+3+4=10,故答案为:3,6,10;(2)第n层时,S=1+2+3+…+n=n(n+1),当n=10时,S=×10×11=55.18.【解答】解:(1)设甲的速度为akm/h,乙的速度为bkm/h,,解得,,则M、N两地的距离是:(2.5﹣1)×75=112.5km,答:甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km;(2)∵甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km,∴当t=1或t=4.5﹣1=3.5时,两人相距25km,(t﹣1.5)×(75﹣25)=25,得t=2,答:甲、乙两人1h,2h或3.5h相距25km.19.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为:每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为:观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.20.【解答】解:(1)从图象可知,当点P在BC上运动时,3秒钟到C,所以BC=2×3=6,从图象可知,当3≤t≤15时,△ABP面积不变为30,∴AB•BC=30,即×6×AB=30,∴AB=10,∴长方形的长为AB=10,宽为BC=6;(2)有(1)可知DC=AB=10,AD=BC=6,∴a==,b==1.21.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.22.【解答】解:(1)自变量是时间,因变量是速度.(2)根据速度与时间图象的横坐标可知:小车共行驶了55分钟,最高时速是85千米/时;(3)35分钟到55分钟保持匀速,达到85千米每小时;(4)先匀加速行驶至第10分钟,然后匀减速行驶至第25分钟,接着停下5分钟,再匀加速行驶至第35分钟,然后匀速行驶第55分钟,再匀减速行驶至停止.23.【解答】解:(1)根据图象可知:A地与B地之间的距离为6千米.故答案为6千米.(2)根据图象与x轴的交点可知:爸爸比小军晚出发10分钟,小军比爸爸晚到B地5分钟.故答案为10、5.(3)爸爸骑车速度为每分钟6÷(25﹣10)=0.4.小军骑车速度为每分钟6÷30=0.2.故答案为0.4、0.2.(4)设爸爸行驶路程为y1=kx+b,图象过(10,0)、(20,4)所以解得所以y1=x﹣4,设小军行驶的路程为y2=kx,图象过(20,4),所以20k=4,解得k=所以y2=x.当y1﹣y2=x﹣4﹣x.=0.4,解得x=22,当y2﹣y1=x﹣x+4=0.4,解得x=18.30﹣22=8,30﹣18=12.∵小军骑车速度为每分钟0.2千米,0.2×2=0.4千米,∴第三种情况:爸爸已经到B地,孩子离B地还有0.4千米,(6﹣0.4)÷0.2=28(分钟),28﹣10=18(分钟)故答案为8或12或18.。

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(答案解析)

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(答案解析)

一、选择题1.下面说法中正确的是( )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系3.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量4.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是()A.B.C.D.5.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.676.某品牌电饭锅成本价为 70 元,销售商对其销售与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150销量(个) 80 100 110 100 80 60在这个问题中,下列说法正确的是 ( )A.定价是自变量,销量是因变量B.销量是自变量,定价是因变量C.定价为 110 元时,销量为 110 个D.定价越高,销量越大7.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x8.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量9.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.10.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.11.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.12.在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积12S ah,当高h为定值时,下列说法正确的是( )A.S,a是变量;12,h是常量B.S,a,h是变量;12是常量C.a,h是变量;S是常量D.S是变量;12,a,h是常量二、填空题13.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑_______米,直线__________表示小明的路程与时间的关系,大约_______秒时,小明追上了小强,小强在这次赛跑中的速度是________ .14.梯形的上底长是2,下底长是8,则梯形的面积y关于高x之间的关系式是______,自变量是____,因变量是______.15.在公式s=v0t+2t2(v0为已知数)中,常量是________ ,变量是________ .16.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.17.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.18.如图,圆柱的高是3cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm 变化到10cm 时,圆柱的体积增加了______cm 3.19.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示,当乙到达终点A 时,甲还需________分钟到达终点B .20.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度xkm 的几组对应值如表: 向上攀登的高度x/km 0.5 1.0 1.5 2.0 气温y/℃2.0﹣1.0﹣4.0﹣7.0若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃.三、解答题21.在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:x kg012345所挂物体的质量()y cm182022242628弹簧长度()(1)在这个变化的过程中,自变量是;因变量是;(2)写出y与x之间的关系式,并求出当所挂重物为6kg时,弹簧的长度为多少?22.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.23.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下:日期12345678电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少.24.近期,大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售,某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价(元) 38 37 36 35 (20)每天销量(千克) 50 52 54 56 (86)设当单价从38元/千克下调了x元时,销售量为y千克.(1)写出y与x之间的关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,这天的销售利润是多少?(3)以前在两岸未直接通航时,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,一次进货最多只能是多少千克?25.星期天,小宇的爸爸9点钟从家里到附近的一个银行办理业务,他走了一段路后,突然发现忘记带身份证,于是他跑步回家,拿了身份证,跑到银行办理业务,办完业务他步行回到家.他离家的路程s(米)与时间t(分)之间的关系如图7所示.(1)小宇的爸爸几点钟到达银行?他办理业务共用多长时间?(2)几点钟,小宇的爸爸发现忘记带身份证,此时,他离家多远?(3)小宇的爸爸在去银行办理业务的过程中走过的路程为多少米?(4)求小宇爸爸从银行回到家的速度.26.在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为3=-.y x(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x-10123456y【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.2.B解析:B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.3.B解析:B【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.4.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.5.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.6.A解析:A【解析】(1)观察、分析题中数据可知,在这个问题中,电饭锅的销售量是随着销售定价的变化而变化的,所以“定价是自变量,销售量是因变量”,所以A中说法正确,B中说法错误;(2)观察所给数据可知:“当定价为110元时,销售量为100个”,所以C中说法错误;(3)观察、分析所给数据可知:“销售量开始时随着定价的升高而变大,但随后随着定价的继续升高而变小”,所以D中说法错误.故选A.7.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.8.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.9.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.10.C解析:C【解析】燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20−4t(0⩽t⩽5),图象是以(0,20),(5,0)为端点的线段。

北师大版数学七年级下册 第3章《变量之间的关系》单元测试题

北师大版数学七年级下册 第3章《变量之间的关系》单元测试题

北师大版七年级下册第3章《变量之间的关系》单元测试题(满分100分)姓名:___________班级:___________成绩:___________一.选择题(共10小题,满分30分)1.下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1B.2C.3D.42.在关系式y=2x﹣7中,下列说法错误的是()A.x的数值可以任意选择B.y的值随x的变化而变化C.用关系式表示的不能用图象表示D.y与x的关系还可以用列表法表示3.在圆的面积公式S=πR2中,常量与变量分别是()A.2是常量,S、π、R是变量B.π是常量,S、R是变量C.2是常量,R是变量D.2是常量,S、R是变量4.如图,向容器甲中匀速的注水,下面哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A.B.C.D.5.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间的关系如下表所示,则下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5 A.弹簧不挂重物时长度为0cmB.X与y都是变量,且x是自变量,y是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm7.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度8.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分)11.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.12.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.13.甲骑自行车、乙骑摩托沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是(填“甲”或“乙”)②甲的行驶速度是(公里/分)③乙的行驶速度是(公里/分)14.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.15.某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.三.解答题(共7小题,满分52)17.如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层,第二层,……,第n层,第n层的小正方体的个数记为S,解答下列问题:(1)填写表格:n1234…S1…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?18.甲开汽车,乙骑自行车从M地出发沿同一条公路匀速前往N地,乙先行1小时后,甲再出发,设乙行驶的时间为x(h),甲、乙两人之间的距离为y(km),y与x的函数关系如图所示.(1)求甲、乙两人的速度及M、N两地的距离;(2)甲、乙两人何时相距25km?19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.如图,长方形ABCD,点P按B→C→D→A方向运动,开始时,以每秒2个长度单位匀速运动,达到C点后,改为每秒a个单位匀速运动,到达D后,改为每秒b个单位匀速运动.在整个运动过程中,三角形ABP的面积S与运动时间t的函数关系如图所示.求:(1)AB、BC的长;(2)a,b的值.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.如图,小明的爸爸去参加一个聚会,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗?(1)在上述变化过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是什么?(3)小车在哪段时间保持匀速,达到多少?(4)用语言大致描述这辆汽车的行驶情况?23.随着移动互联网的快速发展,ofo、摩拜等互联网共享单车应运而生并快速发展.小军骑着摩拜单车,爸爸骑着摩托车,沿着相同路线由A地到B地,下面图象表示的是两人由A地到达B地,行驶过程中路程y(千米)和时间x(分钟)之间的变化情况,根据图象,回答下列问题.(1)A地与B地之间的距离是.(2)爸爸比小军晚出发分钟,小军比爸爸晚到B地分钟.(3)行驶过程中,爸爸骑车速度为每分钟千米,小军骑车速度为每分钟千米.(4)若两人都在同一条直线上行驶,爸爸出发后经过分钟,两人相距0.4千米.参考答案一.选择题(共10小题)1.【解答】解:①y=3x﹣5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数;④y=,y是x的函数.所以y是x的函数的有3个.故选:C.2.【解答】解:A、x的数值可以任意选择;正确;B、y随x的变化而变化;正确;C、用关系式表示的不能用图象表示,错误;D、y与x的关系还可以用列表法表示,正确;故选:C.3.【解答】解:∵在圆的面积公式S=πR2中,S与R是改变的,π是不变的;∴变量是S、R,常量是π.故选:B.4.【解答】解:由容器的形状可知:注入水的高度随着时间的增长越来越高,但增长的速度越来越慢,即图象开始陡峭,后来趋于平缓,故选:C.5.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.6.【解答】解:由表格,得A、弹簧不挂重物时的长度为0cm,错误,故A符合题意B、x与y都是变量,且x是自变量,y是x的函数,正确,故B不符合题意;C、物体质量每增加1kg,弹簧长度y增加0.5cm,正确,故C不符合题意;D、所挂物体质量为7kg时,弹簧长度为20+7×0.5=23.5cm,正确,故D不符合题意;故选:A.7.【解答】解:由函数图象可得,他们都骑了20km,故选项A不合题意;两人在各自出发后半小时内的速度相同,故选项B不合题意;甲先到达目的地,故选项C符合题意;相遇后,甲的速度大于乙的速度,故选项D不合题意;故选:C.8.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.9.【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选:B.10.【解答】解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷(9﹣1)=35(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.二.填空题(共6小题)11.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.12.【解答】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为电影票的售价,电影票的张数,票房收入.13.【解答】解:(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度==0.2(公里/分);(3)乙10分钟行驶了4公里,则甲的速度==0.4(公里/分).故答案为甲;0.2;0.4.14.【解答】解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.215.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.16.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④三.解答题(共7小题)17.【解答】解:(1)∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2=3,第3个图有3层,第3层正方体的个数为1+2+3=6,∴n=4时,即第4层正方体的个数为:1+2+3+4=10,故答案为:3,6,10;(2)第n层时,S=1+2+3+…+n=n(n+1),当n=10时,S=×10×11=55.18.【解答】解:(1)设甲的速度为akm/h,乙的速度为bkm/h,,解得,,则M、N两地的距离是:(2.5﹣1)×75=112.5km,答:甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km;(2)∵甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km,∴当t=1或t=4.5﹣1=3.5时,两人相距25km,(t﹣1.5)×(75﹣25)=25,得t=2,答:甲、乙两人1h,2h或3.5h相距25km.19.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为:每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为:观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.20.【解答】解:(1)从图象可知,当点P在BC上运动时,3秒钟到C,所以BC=2×3=6,从图象可知,当3≤t≤15时,△ABP面积不变为30,∴AB•BC=30,即×6×AB=30,∴AB=10,∴长方形的长为AB=10,宽为BC=6;(2)有(1)可知DC=AB=10,AD=BC=6,∴a==,b==1.21.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.22.【解答】解:(1)自变量是时间,因变量是速度.(2)根据速度与时间图象的横坐标可知:小车共行驶了55分钟,最高时速是85千米/时;(3)35分钟到55分钟保持匀速,达到85千米每小时;(4)先匀加速行驶至第10分钟,然后匀减速行驶至第25分钟,接着停下5分钟,再匀加速行驶至第35分钟,然后匀速行驶第55分钟,再匀减速行驶至停止.23.【解答】解:(1)根据图象可知:A地与B地之间的距离为6千米.故答案为6千米.(2)根据图象与x轴的交点可知:爸爸比小军晚出发10分钟,小军比爸爸晚到B地5分钟.故答案为10、5.(3)爸爸骑车速度为每分钟6÷(25﹣10)=0.4.小军骑车速度为每分钟6÷30=0.2.故答案为0.4、0.2.(4)设爸爸行驶路程为y1=kx+b,图象过(10,0)、(20,4)所以解得所以y1=x﹣4,设小军行驶的路程为y2=kx,图象过(20,4),所以20k=4,解得k=所以y2=x.当y1﹣y2=x﹣4﹣x.=0.4,解得x=22,当y2﹣y1=x﹣x+4=0.4,解得x=18.30﹣22=8,30﹣18=12.∵小军骑车速度为每分钟0.2千米,0.2×2=0.4千米,∴第三种情况:爸爸已经到B地,孩子离B地还有0.4千米,(6﹣0.4)÷0.2=28(分钟),28﹣10=18(分钟)故答案为8或12或18.。

北师大版2019-2020学年七年级数学下册《第3章变量之间的关系》单元测试卷(含答案)

北师大版2019-2020学年七年级数学下册《第3章变量之间的关系》单元测试卷(含答案)

七年级下册单元测试卷《第3章变量之间的关系》测试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1、在一次运动会的100米比赛中,小明以8米/秒速度奔跑,设小明离终点的距离为y (米),则y与奔跑时间t(秒)之间的关系()8 C、 y=100-8t D、y=8t-100A、y=8tB、y=t2、如图,OA和BA分别表示甲乙两名学生运动的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米 B.2米 C.1.5米 D.1米3、家用电饭煲煮饭时,饭熟后保温,下列四种图象能刻画煮饭后电饭煲的温度随时间变化而变化情况的是()A.B.C.D.4、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系()A.B. C .D.5、一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A.B.C.D.6、下列图象中,能反映出投篮时篮球的离地高度与投出后的时间之间关系的是()A.B.C.D.7、如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的图象大致是()A.B.C.D.8、向一个容器中注水,注满为止.若注水量V(c3m)与容器中水的高度h(cm)之间关系的图象大致如图,则这个容器是下列四个图中的()A.B.C.D.9、李先生手中有一张记录他从出生到24岁期间的身高情况表(见如表):年龄x/岁0 3 6 9 12 15 18 21 24身高h/cm 48 100 130 140 150 158 165 170 170.4下列说法错误的是()A.李先生的身高增长速度总体上先快后慢B.李先生的身高在21岁以后基本不长了C.李先生的身高从0岁到24岁平均每年增高7.1cmD.李先生的身高从0岁到24岁平均每年增高5.1cm10、小明和他爸爸做了一个实验,小明由一幢245米高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:下落时间t(s) 1 2 3 4 5 6下落路程s(m) 5 20 45 80 125 180下列说法错误的是()A.苹果每秒下落的路程不变B.苹果每秒下落的路程越来越长C.苹果下落的速度越来越快D.可以推测,苹果下落7秒后到达地面二、填空题(本大题6小题,每小题4分,共24分)11、一杯滚烫的水10min后冷却下来,在这个变化过程中,自变量是______,因变量是___________.12、如图,射线l,乙l分别表示甲,乙两名运动员在自行车比赛甲中所走路程S与时间t的关系图象,则甲的速度_____乙的速度(用“>”,“=”,“<”填空).13、如图,小刚骑自行车从A地到B地,一段时间后,小强也从A地出发追赶小刚,两人所走的路程与行走的时间如图,看图回答问题:(1)小强比小刚晚出发______小时.(2)小强速度是小刚速度的______倍.14、某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系________________.15、如图给出了一家商场一个月内家用电器和生活用品的销售情况,请你根据图中的信息回答下列问题:(1)该商场本月第四周家用电器与生活用品的销售额哪个较大?_________.(2)根据这两种商品的销售情况,请你为这家商场提供一份进货建议.______________________________________________________________.16、如图1,在长方形ABCD中,动点P从点B出发,沿BC-CD-DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的图象如图2所示,则△ABC的面积是_______.三、解答题(一)(本大题共3题,每小题6分,共18分)17、将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)4张白纸粘合后的总长度_____________.(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式_____________;(3)求当x=20时,y的值为_______________.18、某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:方案一①买一个书包赠送一个文具盒;方案二②按总价九折付款.若某班需购8个书包,文具盒若干个(不少于8个),如果设购文具盒数为x(个),付款为y(元)(1)分别求出两种优惠方案中y与x之间的关系式;(2)若两种优惠图象如图,购买60个文具盒时选哪种优惠方案更省钱?19、如图,AB=a,点P是线段AB上的一个动点,分别以AP,BP为边作正方形.当P点运动时,两个正方形的大小会随着改变.若AP为x.(1)当点P运动时,两个正方形的周长和为C会改变吗?若不会改变,请求出来.(2)猜想:当点P运动时,两个正方形的面积的和S会改变吗?四、解答答题(二)(本大题共3题,每小题7分,共21分)20、出租车收费按路程计算,3千米以内(含3千米)收费8元,超过3千米时,每1千米加收1.80元.(1)写出车费y(元)与路程x(千米)(x≥3)之间关系式;(2)某人在离家6千米处,身上仅有14元,他们打算乘出租车回家,问钱够不够?21、某学校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,甲种方式:收制版费6元,每印一份收印刷费0.1元;乙种方式:没有制版费,每印一份收印刷费0.12元,若数学学案需印刷x份.(1)填空:按甲种收费方式应收费_____元;按乙种收费方式应收费_______元;(2)若该校一年级需印500份,选用哪种印刷方式合算?(3)印刷多少份时,甲、乙两种收费方式一样多?22、如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B 地,乙也于同日下午骑摩托车按同路从A地出发驶往B地.如图所示,图中的折线PQR 和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙哪一个先出发?先出发多长时间?(2)甲和乙哪一个先到达B地?先到多长时间?(3)分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.(4)乙出发大约用多长时间就追上甲?五、解答题(三)(本大题共3题,每小题9分,共27分)23、“龟兔赛跑”的故事同学们非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题.(1)折线OABC表示赛跑过程中_______(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全程是________米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?24、用一根长是20cm的细绳围成一个长方形,这个长方形的一边的长为x cm,它的面积为y c2m.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围能使得到的长方形的面积最大?最大是多少?(5)估计一下,当围成的长方形的面积是22c2m时,x的值应在哪两个相邻整数之间?25.我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”.如图1,平行四边形MNPQ的的一边PQ作左右平移,图2反映它的边NP的长度(cm)随时间(s)变化而变化的情况 .请解答下列问题(1)在这个变化过程中,自变量是_______,因变量是_______.(2)观察图2,P向左平移前,边NP的长度是______cm,请你根据图象呈现的规律写出0至5秒间l与r的关系式(3)填写下表,并根据表中呈现的规律写出8至14秒间l与t的关系式参考答案1、C2、解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64-12)÷8=6.5(m/s),故快者比慢者的速度每秒快:8-6.5=1.5(m/s).故选:C.3、解:当饭熟之前,温度逐渐升高,饭熟后开始保温,一段时间温度不变,接着温度逐渐降低.故选:A.4、解:太阳能热水器在太阳光的照射下,不断加热热水器内的水,水温不断上升,当升到100℃时,由于水的特性,水温就不再变化,即使太阳光强度不强,由于太阳能热水器的功能,也能使水保持100℃.故选:B.5、解:公共汽车经历:加速-匀速-减速到站-加速-匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.故选:B.6、解:∵投篮时篮球的离地高度与投出后的时间之间关系的图象为抛开物体线路,∴能够反映出投篮时篮球的离地高度与投出后的时间之间关系的是C选项的图象.故选:C.7、解:一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过半径OA 这一段,蚂蚁到O 点的距离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离S 不变,图象是与x 轴平行的线段;走另一条半径OB 时,S 随t 的增大而减小; 故选:B .8、解:由题可得,水深与注水量之间图象是一条直线,说明随着水的深度变高,需要的注水量也是均匀升高,从而可知水瓶形状是均匀的 ∴水瓶的形状是圆柱, 故选:A .9、解:A 、从0-18增长较快,18-24增长变慢,所以高增长速度总体上先快后慢是正确; B 、从21岁步入成年,身高在21岁以后基本不长了是正确的;C 、(170.4-48)÷24=5.1cm ,从0岁到24岁平均每年增高7.1cm 是错误的;D 、(170.4-48)÷24=5.1cm ,从0岁到24岁平均每年增高5.1cm 是正确的. 故选:C .10、解:由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为15、25、35、45等等,所以观察备选答案A 不对. 故选:A .11、解:一杯滚烫的水10min 后冷却下来,在这个变化过程中,自变量是时间,因变量是温度.故答案为:时间、温度.12、解:根据题意:相同时间时甲走的路比乙多,故甲的速度大于乙的速度. 故答案为>.13、(1)小强比小刚晚出发4小时.(2)100÷8=12.5(千米/时),100÷(6-4)=50(千米/时)小强速度是小刚速度的4倍.14、解:⎪⎩⎪⎨⎧>-⨯⨯+⨯≤≤=)20)(20(258.02025)200(25x x x x y 即:⎩⎨⎧>+≤≤=)20(10020)200(25x x x x y15、(1)该商场本月第四周生活用品的销售额比家用电器的销售额大;(2)从折线图看出,家用电器的销售额较平稳,而生活用品的销售额增幅较大,所以这家商场可以增加生活用品的进货量,家用电器的近货量可保持不变. 16、解:∵动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,而当点P 运动到点C ,D 之间时,△ABP 的面积不变,图象上横轴表示点P 运动的路程,x=4时,y 开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5, ∴AB=5,BC=4,∴△ABC 的面积是:21×4×5=10. 故答案为:10.17、解:(1)4张白纸粘合后的总长度=4×20-2×3=80-6=74(厘米); (2)由题意得:y=20x-(x-1)×2=18x+2; (3)当x=20时,y=18x+2=362. 18、解:(1)①y=30×8+5(x-8)=5x+200; ②y=(30×8+5x )×90%=4.5x+216;∴两种优惠方案中的y 与x 的关系式为:方案一:y=5x+200, 方案二:y=4.5x+216; (2)当购买60个文具盒时,第二个方案的图象在第一个方案的图象的下方,所以第二个方案最省钱.19、(1)ΘAP 为x ,则BP 为a-x ,∴周长和C=4x+4(a-x )=4a ;∴周长的和不变(2)Θ两个正方形的面积和用“S ”来表示. S=2x +2)(x a -=ax a x x ax a x 22222222-+=+-+∴当P 点运动时,两个正方形的大小会随着改变,所以两个正方形的面积的和也会改变.20、解:(1)由题意可得:y=8+1.8(x-3)=1.8x+2.6; (2)由(1)得:y=1.8×6+2.6=13.4<14, 故乘出租车回家钱够.21、解:(1)甲种收费方式应收费0.1x+6,乙种收费方式应收费0.12x ; 故答案为:0.1x+6;0.12x ;(2)把x=500代入甲种收费方式应收费0.1x+6=56元,把x=500代入乙种收费方式应收费0.12x=60元, 因为56<60,所以选甲种印刷方式合算; (3)根据题意可得:0.1x+6=0.12x , 解得:x=300.答:印刷300份时,两种收费方式一样多.22.解:(1)由图可知, 甲先出发,先出发2-1=1小时;(2)由图可知,乙先到达B 地,先到5-3=2小时;(3)乙摩托车的速度为:50÷(3-2)=50千米/小时,甲骑自行车在全程的平均速度是:50÷(5-1)=12.5千米/小时;(4)设乙出发大约x 小时就追上甲,甲在PQ 段速度为10252050=--千米/小时, ∴20+10x=50x ,x=0.5答:乙出发大约0.5小时就追上甲.23.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻; ∴折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的路程为1500米; 故答案为:兔子、1500;(2)结合图象得出:兔子在起初每分钟跑700米. 1500÷30=50(米)∴乌龟每分钟爬50米. (3)700÷50=14(分钟)∴乌龟用了14分钟追上了正在睡觉的兔子.(4)乌龟跑完用时30分钟,兔子晚0.5分钟,即兔子跑完用时30.5分钟 其中前700米用1分钟,后800米用时2400800=即2分钟,中途休息a 分钟时有1+2+a=30.5 ∴a=27.5(分钟),∴兔子中间停下睡觉用了27.5分钟.24、解:(1)y=(220-x )×x=(10-x )×x=10x-2x ;x 是自变量,0<x <10; (2)当x 从1变到9时(每次增加1),y 的相应值列表如下:(3)从上面的表格中,可以看出的规律:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来,y的值在由大变小的过程中,变小的速度越来快;③当x取距5等距离的两数时,得到的两个y值相等;(4)当长方形的长与宽相等即x为5时,y的值最大,最大值为25c2m;(5)由表格可知,当围成的长方形面积是22c2m时,x的值应在3~4之间或6~7之间.25.解:(1)这个变化过程中,自变量是时间t、因变量NP的长度,故答案为:t,NP;(2)由图2知,当t=0时,NP=8,即PQ未移动前NP长度为8cm,从图2可看出每增加1秒时NP增长2cm,即移动速度为2cm/s,故t秒时NP长度应为2t+8(cm),关系式为NP=2t+8(0≤t≤5),∴故答案为8;关系式为NP=2t+8(0≤t≤5)(3)由图2知,8至14秒间每增加1秒,NP长度减少3cm,从而可得当t=11时NP=9故答案为9.。

七年级数学下册《第三章 变量之间的关系》单元测试卷(附答案)

七年级数学下册《第三章 变量之间的关系》单元测试卷(附答案)

七年级数学下册《第三章 变量之间的关系》单元测试卷(附答案)一、选择题(本大题共10小题,每小题3分,共30分)1.在利用太阳能热水器加热水的过程中,热水器的水温随所晒时间的长短而变化,这个问题中因变量是( )A .太阳光强弱B .水的温度C .所晒时间D .热水器2.用总长50 m 的篱笆围成一长方形场地,长方形的面积S (m 2)与一边长l (m)之间的关系式为S =l (25-l ),那么下列说法正确的是( )A .l 是常量,S 是变量 B.25是常量,S 与l 是变量,l 是因变量 C .25是常量,S 与l 是变量,S 是因变量 D.以上说法都不对3.如果圆珠笔有12支,总售价为18元,用y (元)表示圆珠笔的总售价,x 表示圆珠笔的支数,那么y 与x 之间的关系式应该是( ) A .y =12xB.y =18xC.y =23x D.y =32x4.变量x 与y 之间的关系式是y =12x 2-3,当自变量x =4时,因变量y 的值是( ) A.-1B.-5C.5D.15.如图是某市一天的气温随时间变化的情况,下列说法正确的是( ) A .这一天最低温度是-4 ℃ B .这一天12时温度最高 C .最高温比最低温高8 ℃ D .0时至8时气温呈下降趋势6.某梯形上底长、下底长分别是x ,y ,高是6,面积是24,则y 与x 之间的关系式是( ) A .y =-x +8 B.y =-x +4 C .y =x -8D.y =x -47.右面的表格列出了一个实验的统计数据,表示皮球从高处落下时,弹跳高度b与下降高度d 的关系,下面能表示这种关系的式子是()A.b=d2B.b=2dC.b=d2D.b=d+258.如图,各图象所反映的是两个变量之间的关系,表示匀速运动的是()A.①②B.②C.①③D.无法确定9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的关系图象如图,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 mind 50 80 100 150b 25 40 50 7510.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,作为一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A B CD二、填空题(本大题共5小题,每小题3分,共15分)11.大家知道,冰层越厚,所承受的压力越大,其中自变量是,因变量是.12.某机器工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40-6t.当t=3时,Q=.13.如图是一辆匀速行驶的汽车的行驶路程s(km)与相应时间t(h)的关系图,那么这辆汽车的速度为每小时千米.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表(重物不超过20千克时,在去掉重物后,弹簧能恢复原状):物体重量(千克) 0 1 2 3 4 5 6 …弹簧长度(厘米) 6 6+0.5 6+1 6+1.5 6+2 6+2.5 6+3 …的关系式是(15.(创新题)如图1,在长方形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的关系图象如图2,则DC=,y的最大值是.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.如图是某港口在某天从0时到12时的水位情况变化曲线.(1)在这一问题中,自变量是什么?(2)大约在什么时间水位最深,最深是多少?(3)大约在什么时间段水位是随着时间推移不断上涨的?17.如图,在一个半径为18 cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)若挖去的小圆半径为x(cm),则圆环的面积y(cm2)与x的关系式是;(3)当挖去的小圆的半径由1 cm变化到9 cm时,圆环面的面积由cm2变化到cm2.18.日常生活中,我们经常要煮开水,下表为煮开水的时间与水的温度的描述.时间(分) 1 2 3 4 5 6 7 8 9 10 11 12 13 温度(℃) 25 29 32 43 52 61 72 81 90 98 100 100 100(2)在第9分钟时,水可以喝吗?为什么?在第11分钟呢?(3)根据表格的数据判断:在第15分钟时,水的温度为多少呢?(4)随着加热时间的增长,水的温度是否会一直上升?说明你判断的依据.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.(跨学科融合)点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:t/分0 2 4 6 8 10h/厘米30 29 28 27 26 25(1)(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式;(3)求这根蜡烛能燃烧多长时间.20.某水库初始的水位高度为5米,水位在10小时内持续匀速上涨,测量可知,经过4小时,水位上涨了1米.(1)写出水库的水位高度y(米)与时间x(小时)(0≤x≤10)之间的关系式;(2)经过小时,水库的水位上涨到6.5米;(3)当时间由1小时变化到10小时时,水库的水位高度由米变化到米.21.小明从家骑自行车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后,继续去学校.如图是他本次上学所用的时间t(分钟)与离开家的距离y(米)的图象.根据图象提供的信息回答下列问题:(1)小明家到学校的距离是米;(2)小明在书店停留了分钟;(3)本次上学途中,小明一共骑行了多少米?(4)整个上学的途中,哪个时间段小明骑车速度最快?五、解答题(三)(本大题共2小题,每小题12分,共24分)22.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):提出概念所用时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?23.如图,棱长为a的小正方体,按照如图所示的方法继续摆放,自上而下分别叫第1层、第2层、…、第n层.第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:n 1 2 3 4 …S 1 3 …(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?参考答案1.B2.C3.D4.C5.A6.A7.C8.B9.D 10.D11.冰层的厚度冰层所承受的压力12.2213.7514.l=6+0.5m 15.61516.解:(1)由图象可得,在这一问题中,自变量是时间.(2)大约在3时水位最深,最深是8米.(3)由图象可得,在0到3时和9到12时,水位是随着时间推移不断上涨的.17.解:(1)自变量是小圆的半径,因变量是圆环的面积.(2)y=324π-πx2(3)323π243π18.解:(1)随着时间的加长,水的温度在逐渐升高,第11分钟时达到开水温度.(2)在第9分钟时,水不可以喝,因为水还没有烧开;在第11分钟时,水烧开,可以喝.(3)第15分钟时,水的温度为100 ℃.(4)随着加热时间的增长,水的温度不会一直上升,因为水温升高到100 ℃时,水温不再升高.19.(1)30厘米(2)h=30-0.5t(3)这根蜡烛能燃烧60分20.(1)y=0.25x+5(0≤x≤10)(2)6(3)5.257.521.解:(1)1 500(2)4(3)1 200+(1 200-600)+(1 500-600)=2 700(米).答:本次上学途中,小明一共骑行了2 700米.(4)当0≤t≤6时,小明骑车的速度为1 200÷6=200(米/分);当6<t≤8时,小明骑车的速度为(1 200-600)÷(8-6)=300(米/分);当12≤t≤14时,小明骑车的速度为(1 500-600)÷(14-12)=450(米/分).因为200<300<450,所以在12≤t≤14段,小明骑车速度最快.22.解:(1)表格反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系.(2)当x =10时,y =59,所以提出概念所用时间是10分钟时,学生的接受能力是59.(3)当x =13时,y 的值最大是59.9,所以提出概念所用时间为13分钟时,学生的接受能力最强. (4)当x 在2分钟至13分钟的范围内时,学生的接受能力逐步增强;当x 在13分钟至20分钟的范围内时,学生的接受能力逐步降低. 23.解:(1)6 10 (2)S =n(n+1)2.当n =10时,S =10×(10+1)2=55.。

第三章 变量之间的关系单元测试卷(含答案)

第三章 变量之间的关系单元测试卷(含答案)

第3章《变量之间的关系》单元水平测试(满分:120分时间:90分钟)一、选择题(每题3分,共30分)1.如果没盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是()(A)y=12x (B)y=18x (C)y=23x (D)y=32x2.已知△ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC 的面积()(A)从20cm2变化到64cm2(B)从64cm2变化到20cm2(C)从128cm2变化到40cm2(D)从40cm2变化到128cm23.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出 (1)225310417526…那么,当输入数据8时,输出的数据是()(A)861(B)863(C)865(D)8674.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。

当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。

用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d50 80 100 150b25 40 50 75(A )2b d = (B )2b d = (C )2db =(D )25b d =+ 6.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s (米)关于时间t (分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )7.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(到少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是( ) A 、①③ B 、②③ C 、③ D 、①②8.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度( )A 、保持不变B 、越来越慢C 、越来越快D 、快慢交替变化 9.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( ) (1) 他们都行驶了18千米;A B C D图2水池蓄水量时间6418542111进水量时间进水量时间图1水池蓄水量时间6418542111进水量时间进水量时间出水量进水量S (千米)18t (小时)甲乙 O 第9题图12.5第7题图 第8题图yyyyOOOOxxxxABCD(2) 甲在途中停留了0.5小时; (3) 乙比甲晚出发了0.5小时; (4) 相遇后,甲的速度小于乙的速度; (5) 甲、乙两人同时到达目的地。

变量之间的关系单元综合测试题

变量之间的关系单元综合测试题

变量之间的关系单元综合测试题 (总分100分 时间60分钟)一.填空题1.在变化过程中,我们把变化着的量叫做变量,其中一个叫________,一个叫________.2.若某长方体底面积是602cm ,高为hcm ,则体积V 3cm 与h 的关系式为________________,若h 从1cm 变化到10cm 时,长方体的体积由________3cm 变化到________3cm .3.小明用40元钱购买5元/件的某商品,则他剩余的钱y (元)与购买这种商品的件数x (件)之间的关系式为________.4.某文具商店进一批精制的数学练习本,销售数量与销售价格如下表:((2)若用x 表示销售练习本的数量,y 表示销售额,则y 与x 的关系式为______________; (3)在这个变化过程中,自变量是_______,因变量是_______; (4)小明买10本比小强买5本需多付_______元钱.5.已知两个变量x 、y ,满足3x-2y=4,则y=________(用含x 的代数式表示),x=________(用含y 的代数式表示).6.已知关系式y=kx-2,当自变量x=-2时,因变量y=4,则当因变量y=7时,自变量x 的值是________.7.一个小球由静止在一个斜坡上向下滚动,通过仪器观察测得小球滚动的距离s (m )与时间t(s )的数据如下表,则s 与t 的关系式为______________.8.“(1)赛跑中,兔子共睡了________min ; (2)乌龟在这次赛跑中的平均速度为________m/min.二.选择题:1.一辆汽车以30千米/时的速度行驶,下面有关行驶的路程s (千米)与行驶的时间t (时)之间的关系( A.路程、时间、速度都是变量 B.路程s 随时间t 的增大而减小C.s=30tD.当行驶的时间为10小时时,行驶的路程为3千米 2.则下列有关叙述中错误的是( )A.y=2xB.豆子的质量是4.5千克时,豆子的总售价为8元C.x 是自变量,y 是因变量D.豆子的总售价随豆子的质量的增大而增大3.拒报道,某省人均耕地已从1951年的2.93亩减少到1999年的1.02亩,平均每年约减少0.04亩,若不采取措施,继续按此速度减下去,若干年后该省将无地可耕,则该省无地可耕的情况最早发生在( )A.2022年B.2023年C.2024年D.2025年 4.一游泳池已注满水,现按一定的速度将水排尽,然后进行清洗,再按相同的速度注满清水,使用一段时间后又按相同的速度将水排尽,则游泳池存水量V (米3)与时间t (时)的大致图象为( )5.小明早上7∶00出发到社区做好事,开始匀速步行,后碰到小亮,小明便停下来和小亮聊了一会儿,为了保证能准时到达,他加快了速度,但仍保持匀速步行,如果能准时到达,以下四个图象,能准确描述小明离家的距离与时间的关系的是() 6.在物理学中,导线的电阻随温度的变化而变化,有一段导线0C 0时电阻为5欧姆,温度每增加1C 0,电阻会增加0.01欧姆,则电阻R 与温度t 的关系是( )A.R=5+0.01tB.R=5t+0.01C.R=0.01tD.R=5.01t7.小红放学后帮助奶奶用电饭锅煮饭,饭熟后拔掉电源,下图可以近似的刻画电饭锅内的温度随时间变化的情况的是( )7题图8.小红骑车去玩,沿直线先前进了3千米,然后休息一会儿,又原路返回0.5千米,再前进4.5千米后到达目的地,那么小红离起点的路程s (千米)与行驶时间t (时)的关系大致可以是图中的( )三.解答题:1. (1)说出自变量,因变量;(2)当汽车行驶路程S 为20km 时,所花时间t 是多少分钟?(3)从表中说出路程S 随时间t 而变化的趋势;(4)按照这一行程规律,估计当路程S=400km 时,所需时间t 是多少分钟?2.某厂现有煤180吨,每天需烧5吨,那么剩余煤量y (吨)与燃烧天数x (天)的关系可用y=180-5x 来表示.(1)在燃烧的过程中,自变量和因变量各是什么?(2)当燃烧了8天后,剩余煤量是多少吨?(33.下列各情境分别可以用图中的哪幅图来近似刻画?(1)一杯敞口放在桌子上的开水(水温与时间的关系)________; (2)匀速行驶的火车(速度与时间的关系)________________; (3)足球守门员用脚踢开的球(高度与时间的关系)________; (4)一面冉冉上升的旗子(高度于时间的关系)________________.4.某市广电局与长江证券公司联合推出广电宽带网业务,影视欣赏等服务项目,其上网费用有一种方式是如图所示进行交纳的,其中y (元)表示每月上网费用,x (时)表示每月上网时间. (1)若某人5月上网48小时,则他应交多少网费?(2)李华在7月出差没有在家,那么李华就不必交纳上网费了,你认为呢?(3)请你求出上网时间若超过50小时,超过后的部分平均每小时的上网费用是多少钱?5.王老师上午9时骑自行车离开家,15时回家,他描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是 自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米? (5)他可能在哪段时间内休息,并吃午饭?(6)他由离家最远的地方返回时的平均速度是多少?6.如图所示,正方形ABCD 的边长为2cm ,有一点P 在BC 上运动,梯形APCD 的面积会发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果BP 长为xcm ,那么梯形APCD 的面积ycm 2可以表示为什么?(3)如果APCD ABP S S 梯形21=∆,试确定P 点的位置.。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(含答案解析)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(含答案解析)

一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快2.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd3.是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C .D .5.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-6.某工厂去年底积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,则产品积压量y (件)与今年开工时间t (月)的关系的图象应是( )A .B .C .D .7.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t 的关系的大致图象是( )A .B .C .D .8.已知两个变量x 和y ,它们之间的3组对应值如下表,则y 与x 之间的函数关系式可能是( )A .y=3xB .y=x-4C .y=x 2-4D .y=3x9.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( ) A .B .C .D .10.在关于圆的面积的表达式S=πr 2中,变量有( ) A .4个B .3个C .2个D .1个11.柿子熟了,从树上落下来.下面的( )图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.12.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.二、填空题13.如图所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为_______.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.在公式s=v0t+2t2(v0为已知数)中,常量是________ ,变量是________ .16.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线0M为抛物线的一部分),则下列结论:①BC=BE=5cm;②=;③当0<t≤5时,y=t2;④矩形ABCD的面积是10cm2.其中正确的结论是________ (填序号).17.假定甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:(1)甲、乙两人中先到达终点的是__; (2)乙在这次赛跑中的速度为__m/s.18.某市家庭电话月租费为25元,市内通话费平均每次为0.2元.若莹莹家上个月共打出市内电话a次,那么上个月莹莹家应付话费y与a之间的关系为__;若莹莹家上个月共打出市内电话100次,那么莹莹家应付话费__元.19.一个装有10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y(千克)与时间t(小时)之间的关系式是__________,自变量t的取值范围是__________.20.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃05101520声速y/(m/s)331334337340343上表中___________是自变量, __________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346 m/s.三、解答题21.中国联通在某地的某套餐的月租金为59元,超出套餐部分国内拨打0.36元/分钟(不足1分钟按1分钟时间收费).下表是超出套餐部分国内拨打的收费标准:时间/分12345…电话费/元0.360.72 1.08 1.44 1.8…(2)如果用x表示超出套餐部分的拨打时间,y表示超出套餐部分的电话费,那么y与x的关系式是什么?(3)由于业务多,小明的爸爸上个月拨打电话的时间超出套餐部分25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出套餐部分的是54元,那么他该月拨打电话的时间超出套餐部分几分钟?22.某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确都可以)23.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.24.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:x 121322523468…y 1343213122120763273…②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.25.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?26.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.2.C解析:C【解析】试题分析:A、根据人的身高变化关系;B、根据红旗高度与时间的关系;C、跳过运动员跳跃横杆时高度与时间的关系;D、汽车紧急刹车时速度与时间的关系.解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.3.C解析:C 【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降. 【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加 故答案选:C 【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.4.B解析:B 【分析】根据油箱内余油量=原有的油量-t 小时消耗的油量,可列出函数关系式,得出图象. 【详解】解:由题意得,油箱内余油量Q (升)与行驶时间t (小时)的关系式为: Q=40-5t (0≤t≤8), 结合解析式可得出图象:故选:B . 【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.5.C解析:C 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.6.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.7.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.9.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.10.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 11.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.12.D解析:D【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.二、填空题13.15℃【解析】【分析】由于图象是表示的是时间与体温的关系而在10-14时图象是一条线段根据已知条件可以求出这条线段的函数解析式然后利用解析式即可求出这位病人中午12时的体温【详解】∵图象在10-14解析:15℃.【解析】【分析】由于图象是表示的是时间与体温的关系,而在10-14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【详解】∵图象在10-14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b,而线段经过(10,38.3)、(14,38.0),∴,∴k=-,b=39.05,∴y=-x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据所给时间找对应的体温值.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.v02st【分析】因为在公式s=v0t+2t2(v0为已知数)中再结合函数的概念即可作出判断【详解】解:因为在公式s=v0t+2t2(v0为已知数)所以v02是常量st是变量【点睛】本题考查了变量与解析:v0、2 s、t【分析】因为在公式s=v0t+2t2(v0为已知数)中,再结合函数的概念即可作出判断.【详解】解:因为在公式s=v0t+2t2(v0为已知数),所以v0、2 是常量,s、t是变量.【点睛】本题考查了变量与常量的识别,属于简单题,熟悉变量之间的定义是解题关键.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;常量与变量:在某一变化过程中始终保持不变的量叫常量;不断变化的量叫变量.16.①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段可以判断出当点P到达点E时点Q到达点C从而得到BCBE的长度再根据MN是从5秒到7秒可得ED的长度然后表示出AE的长度根据勾股定理求出AB解析:①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【详解】解:①根据图②可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm,故①正确;②∵从M到N的变化是2秒,∴DE=2,∴AE=5−2=3,∴,∴,故②错误;③如图,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PBsin∠PBF=,∴当0<t≤5时,y=BQ•PF=t•t=,故③正确;④∵AB=4cm,BC=5cm,∴S矩形ABCD=4×5=,故④错误.故答案为:①③.【点睛】本题考查的是动点问题的函数图象,能根据题意得出矩形的边长是解答此题的关键.17.(1)甲(2)8【分析】根据图象中的特殊点读出总路程和时间判断运动类型并利用速度公式计算和判断运动的快慢【详解】(1)在通过路程相同的情况下甲所用时间短速度快所以甲先到达终点;(2)乙的速度:v 乙=解析:(1)甲 (2)8【分析】根据图象中的特殊点,读出总路程和时间,判断运动类型并利用速度公式计算和判断运动的快慢.【详解】(1)在通过路程相同的情况下,甲所用时间短,速度快,所以甲先到达终点;(2)乙的速度:v 乙=100=12.5S m S 乙乙 =8m/s. 故答案为(1)甲;(3)乙的速度是8m/s.【点睛】本题考查了函数图象,观察函数图象的纵坐标得出路程,横坐标得出时间是解题的关键. 18.y=25+02a45【分析】根据题意莹莹家的电话费用是月租费+通话费即y=25+02a 若上个月共打出电话100次根据所求函数关系式计算即可【详解】∵应付话费=月租费+通话费∴y=25+02a ;将a=解析:y=25+0.2a 45【分析】根据题意,莹莹家的电话费用是月租费+通话费,即y=25+0.2a ,若上个月共打出电话100次,根据所求函数关系式计算即可.【详解】∵应付话费=月租费+通话费,∴y=25+0.2a ;将a=100代入上式,则话费=25+0.2×100=45(元).【点睛】本题考查了根据实际问题列一次函数关系式,解题的关键是根据题意,找出等量关系,然后列出含有x 、y 的式子,最后整理变形为一次函数的一般形式.19.【解析】依题意有y=10−05tt ⩾0且用水量不能超过原有水量∴05t ⩽10解得t ⩽20∴0⩽t ⩽20故函数关系式是y=10−05t 自变量t 的取值范围是0⩽t ⩽20故答案为 解析:100.5y t =- 020t ≤≤【解析】依题意有y=10−0.5t ,t ⩾0,且用水量不能超过原有水量,∴0.5t ⩽10,解得t ⩽20, ∴0⩽t ⩽20.故函数关系式是y=10−0.5t ,自变量t 的取值范围是0⩽t ⩽20.故答案为 100.5y t =- , 020t ≤≤20.气温声速25【解析】气温是自变量声速是因变量设函数解析式y=kx+b ∵该函数图象经过点(0331)和(5334)∴解得∴该函数关系式为y=x+331当y=346时x=25即当气温x 为25℃时声速y 达解析:气温 声速 25【解析】气温是自变量, 声速是因变量设函数解析式y=kx+b ,∵该函数图象经过点(0,331)和(5,334),∴3315334b k b ⎧⎨+⎩==, 解得35331k b ⎧⎪⎨⎪⎩==.∴该函数关系式为y=35x+331 . 当y=346时,x=25即当气温x 为25 ℃时,声速y 达到346 m/s.故答案为:25故答案为:气温 声速 25点睛:主要考查了函数关系式以及函数值的相关知识,解答本题的关键是:读懂表格数据,用待定系数法求函数解析式,本题难度不大,是一道基础题. 三、解答题21.(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)y=0.36x ;(3)195元;(4)150分钟.【分析】(1)根据图表可以知道:电话费随时间的变化而变化,因而打电话时间是自变量、电话费是因变量;(2)费用=单价×时间,即可写出解析式;(3)把x=25代入解析式即可求得;(4)在解析式中令y=54即可求得x 的值.【详解】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量; (2)由题意可得:y=0.36x ;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x=540.36=150(分钟).答:小明的爸爸打电话超出150分钟.【点睛】本题考查了列函数解析式以及求函数值.列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.22.①2月份每千克销售价是3.5元;② 7月份每千克销售价是0.5元;③ 1月到7月的销售价逐月下降;④ 7月到12月的销售价逐月上升.(答案不唯一,合理均可)【分析】分析得出图象是蔬菜的销售价与月份之间的关系:2月、7月的售价可以根据图中虚线直接得出,同时可以得出售价相差多少;根据图象的上升趋势和下降趋势可以分析哪些月份售价上升、哪些月份售价下降;根据图象的最低点和最高点可以得出售价最高和最低;根据图象的对称性可以得出哪些月份售价相同.【详解】观察图象可得:(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同(答案不唯一,合理的答案均可)【点睛】本题考查根据图象与变量之间的关系,掌握图象与变量之间的关系是解题关键.23.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=15 4∴30÷154=8(分钟). 即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.24.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-, (2)①根据解析式,补全下表:(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键25.(1)上午10时;(2)早上7时和晚上18时.【解析】【分析】分析曲线图可知,光合作用强度随光照强度增强而增强;在夏日中午10时;光合作用强度随光照强度减弱而减弱,早上7时和晚上18时的光合作用最弱.【详解】观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.【点睛】此题考查函数图象问题,关键是根据图象分析得出的信息.26.(1)10;(2)1;(3)3;(4)不一样,理由见解析;【解析】【分析】(1)根据t=0时甲乙两人的路程差即为两人的距离解答即可;(2)根据s不变的时间即为修车时间解答即可;(3)根据两人的函数图象的交点即为相遇,写出时间即可;(4)利用速度与时间路程的关系解答即可;【详解】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.【点睛】此题主要考查了学生从图象中读取信息的能力,以及路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(有答案解析)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(有答案解析)

一、选择题1.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.2.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气3.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量4.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A地的时刻为()A.8:30 B.8:35 C.8:40 D.8:455.某商店进了一批玩具,出售时要在进价的基础上加一定的利润,其销售个数x与售价y 如下表:个数x/个1234…售价y/元8+0.316+0.624+0.932+1.2…下列用销售个数x表示售价y的关系式中,正确的是 ( )A.y=(8+0.3)x B.y=8x+0.3 C.y=8+0.3x D.y=8+0.3+x6.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.7.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x8.下列说法不正确的是()A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应9.如图所示是某市6月20日的温度随时间变化的图象.通过观察可知,下列说法不正确的是().A.这天15时温度最高B.这天3时温度最低C.这天的温差是13℃D.这天21时温度是32℃10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.2t B.Q=20﹣0.2tC.t=0.2Q D.t=20﹣0.2Q11.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.12.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数关系,则以下判断错误..的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时.二、填空题13.下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n个“上”字需用_________枚棋子.14.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要km h的平均速度行驶20min到达单位,下班按原路返的聚集.小华爸爸早上开车以60/km h)之回,若返回时平均速度为v,则路上所用时间t(单位:h)与速度v(单位:/间的关系可表示为________.15.某物流公司的快递车和货车每天沿同一条路线往返于A、B两地,快递车比货车多往返一趟.如图所示,表示货车距离A地的路程y(单位:h)与所用时间x(单位h)的图像,其间在B地装卸货物2h.已知快递车比货车早1h出发,最后一次返回A地比货车晚1h.若快递车往返途中速度不变,且在A、B两地均不停留,则两车在往返途中相遇的次数为________次.16.如图,都是由边长为1的正方体叠成的图形。

鲁教版六年级数学下册变量之间的关系单元测试题(含答案)

鲁教版六年级数学下册变量之间的关系单元测试题(含答案)
度力随时间f变化的图象大致是(.)
某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了
学校.下图描述了他上学的情景,下列说法中错误的是(.)
鲁教版六年级数学下册变量之间的关系单元测试卷
、选择题(共15小题;共75分)
造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时
完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程
的函数关系的大致图象是
如图,一只蚂蚁以行的高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是( )
2.已知变量x ,y 满足下面的关系
则x ,y 之间用关系式表示为( ) A.y =x
3 B.y =-3
x C.y =-x
3
D.y =3
x
3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关
A.
B.
C.
D.
系的是()
4.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式20
y来表示,则y随x的增大而
35+
=x
()
A、增大
B、减小
C、不变
D、以上答案都不对
5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图1所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4,5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4,5两月均产总量与3月持平
C.1月至3月生产总量逐月增加,4,5两月均停止生产
D.1月至3月生产总量不变,4,5两月均停止生产
图2
6.如图2是反映两个变量关系的图,下列的四个情境比较合适该图的是()
A.一杯热水放在桌子上,它的水温与时间的关系 B.一辆汽车从起动到匀速行驶,速度与时间的关系 C.一架飞机从起飞到降落的速度与时晨的关系 D.踢出的足球的速度与时间的关系
7.如图3,射线l 甲
,l 乙
分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是( )
A.甲比乙快 B.乙比甲快 C.甲、乙同速 D.不
一定
8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )
A.太阳光强弱
B.水的温度
C.所晒时间
D.热水器
9.长方形的周长为24厘米,其中一边为x (其中0>x ),面积为y 平方厘米,则这样的长方形中y 与x 的关系可以写为( )
A 、2x y =
B 、()212x y -=
C 、()x x y ⋅-=12
D 、()x y -=122 10如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( ) (A )y=12x (B )y=18x (C )y=2
3
x (D )y=32
x
二、填一填,要相信自己的能力!(每小题3分,共30分) 1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)
与所存月数x之间的关系式为____(不考虑利息税).
2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.
3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为____,该汽车最多可行驶____小时.
4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中是自变量,是因变量。

5.地面温度为15 ºC,如果高度每升高1千米,气温下降6 ºC,则高度h(千米)与气温
t(ºC)之间的关系式为。

6.汽车以60千米/
的行驶路程s
7
两人同时起跑,小明肯定赢,如图4
先跑米,直线表示小明的路程与时间的
关系,大约秒时,小明追上了小强,小强在这次赛
跑中的速度是。

8.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票
后所剩钱数y(元)与买邮票的枚数x(枚)之间的关系式
图4

9.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为406
t=时,Q=_________,从关系式可知道这台拖Q t
=-.当4
拉机最多可工作_________小时.
10.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势
200
(1)上表中_____是自变量,_____是因变量.
(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.
三、做一做,要注意认真审题呀!(本大题共38分)
1.(8分)某校办工厂现在年产值是15万元,计划以后每年增加2万元.
(1)写出年产值y(万元)与年数x之间的关系式.
(2)用表格表示当x从0变化到6(每次增加1)y的对应值.
(3)求5年后的年产值.
2.(10分)如图5,反映了小明从家到超市的时间与距离之间关系的一幅图.
(1)图中反映了哪两个变量之间的关系?超市离家多远?
(2)小明到达超市用了多少时间?小明往返花了多少时间?
(3)小明离家出发后20分钟到30分钟内可以在做什么?
(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?
3.(10分)如图6,它表示甲乙两人从同一个地点
出发后的情况。

到十点时,甲大约走了13千米。


据图象回答:
(1)甲是几点钟出发?
(2)乙是几点钟出发,到十点时,他大约走了多少
千米?
(3)到十点为止,哪个人的速度快?
(4)两人最终在几点钟相遇?
(5)你能将图象中得到信息,编个故事吗?
4.(10分)在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应
值.
28 (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?
四、拓广探索!(本大题共22分)
1.(10分)小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图7所示.请你根据图象提供的信息完成以下问题:
(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式;
(2)小明从批发市场共购进多少千克西瓜?
(3)小明这次卖瓜赚子多少钱?
图7
2.(12分某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为
y元和2y
1
元.
(1)写出
y、2y与x之间的关系式;
1
(2)一个月内通话多少分钟,两种移动通讯费用相同?
(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?)
参考答案:
一、1~10 CCBACBACD C.
二、1、1000.2
y x
=-,=+;2、三角形的面积由15变为50;3、405
y x
8;
4、销售量,销售收入;
5、h=15-6t;
6、s=60t;
7、10,l1,20;
8、y=500-80x
9、16;20
3
10、 (1)年份,入学儿童人数;(2)2008;
三、1、(1)y=15+2x ;(2)略;(3)25; 2、(1)时间与距离之间的关系;900米; (2)20分钟;35分钟; (3)休息;
(4)45米/分钟;60米/分钟;
3、(1)8点;(2)9点;13米;(3)乙;(4)10点;(5)答案不惟一,略;
4、(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量; (2)24厘米;18厘米; (3)32厘米.
四、1.(1) 1.6y x =;(2)50千克;(3)36元. 2.(1)12500.4,0.6y x y x =+=;
(2)由1y =2y ,即500.40.6x x +=,解得x=250,当每个月通话250分钟时,两种移动通讯费用相同.
(3)当x=300时,1y =170,2y =180,1y <2y ,所以使用“全球通”合算.。

相关文档
最新文档