教案7:直线与圆锥曲线的位置关系(2课时)

合集下载

直线与圆锥曲线的位置关系(2)

直线与圆锥曲线的位置关系(2)

10kb Q L 与 C 相 交 于 A , B 两 点 ,∴ 5k − 3 ≠ 0,∴ x A + x B = 3 − 5k 2 y=kx+b 2 2 ⇒ (5k 2 − 3)x 2 + 10bkx + 5b 2 = 0 y x − =0 5 3 10kb
可见AB,CD的中点横坐标都相同,从而中点重合. 可见AB,CD的中点横坐标都相同,从而中点重合. AB 的中点横坐标都相同
直线与圆锥曲线的位置关系( 直线与圆锥曲线的位置关系(2)
直线与圆锥曲线相交问题的处理方法; 有关弦中点问题的解题技巧;
一、弦的中点问题的处理方法-----点差法 弦的中点问题的处理方法 点差法
x2 y 2 设A( x1 , y1 ), B( x2 , y2 )是椭圆 2 + 2 = 1上不同的两点, a b 且x1 ≠ x2 , x1 + x2 ≠ 0, M 为弦AB的中点, 则 x12 y12 a 2 + b2 = 1 ① 2 x2 y2 2 + 2 =1 ② 2 a b
解 : 假设存在P(x1 ,y1 ), Q(x 2 ,y 2 )为直线L上的两点, 假设存在P 为直线L上的两点, PQ的中点为 的中点为A 且PQ的中点为A,则有 :
ì ï 2 y12 ïx = 1 ï 1 ï 2 ï Þ í 2 ï ï 2 y2 ï x2 = 1 ï ï 2 î
2(x 1 + x 2 )(x 1 - x 2 ) = (y1 + y 2 )(y 1 - y 2 )
一、对于椭圆、抛物线而言: 对于椭圆、抛物线而言 若点P在其内部,则以P为中点的弦一定存在; 若点 在其内部,则以 为中点的弦一定存在; 在其内部 为中点的弦一定存在 在其外部或曲线上 为中点的弦一定不 若P在其外部或曲线上,则以 为中点的弦一定不 在其外部或曲线上,则以P为中点的弦一定 存在 二、对于双曲线而言 : 当点P落在双曲线与其渐近线所夹区域; 当点 落在双曲线与其渐近线所夹区域;在双曲 落在双曲线与其渐近线所夹区域 线上;在其渐近线(中心除外)上时,以点P为 线上;在其渐近线(中心除外)上时,以点 为 中点的弦不存在。 中点的弦不存在。 当点P落在其它区域时,以点 为中点的弦存在 为中点的弦存在。 当点 落在其它区域时,以点P为中点的弦存在。 落在其它区域时 检验方法:将求出的直线与曲线联立, 检验方法:将求出的直线与曲线联立,看△ >0?

直线和圆锥曲线位置关系教学设计

直线和圆锥曲线位置关系教学设计

数学思想方法分析:本节复习课在教学中力图让学生动手操作,自主探究,发现共性,类比归纳, 总结解题规律.同时还需要强化学生的分类讨论的数学意识以及寻找分类讨论标准的方法。
高中数学教学设计
教学 课题 课程 类型 课时 理论 依据
编写人:管雨坤
直线和圆锥曲线的位置关系 复习课 一课时 有效学习策略:视觉比听觉效果好,所以用多媒体几何画板和板书;自己动手比看效 果好,所以学生要落实好;讲给别人听比自己做一遍效果更好,所以小组合作。 本节课是平面解析几何的核心内容之一。 本节内容是 《直线与圆锥曲线的位置关系》 的 第一节课,着重是学会如何判断直线与圆锥曲线的位置关系,体会运用方程思想、数形结合、 分类讨论、类比归纳等数学思想方法,优化解题思维,提高解题能力。这为后面解决直线与 圆锥曲线的综合问题打下良好的基础。这节复习课还是培养数学能力的良好题材,所以说是 解析几何的核心内容之一。 本节内容在高考中的地位:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、 压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出 考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和 解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能。 数学思想方法分析:本节复习课在教学中力图让学生动手操作,自主探究,发现共性,类 比归纳,总结解题规律.同时还需要强化学生的分类讨论的数学意识以及寻找分类讨论标准 的方法。
ax2 bx c 0
a 0时, b 2 4ac (1) 0 相交 (2) 0 相切 (3) 0 相离
学生独立思考,培养 学生的独立思考能 力以及思维的严密 性。 (1)观察图形中 的直线与圆锥曲线 (2) C 的位置关系: 可以利用直线方程 与圆锥曲线方程组 成的方程组,消去某 个变量(x 或 y)后, 所得的方程根的情 况来研究

《直线与圆锥曲线位置关系》教案

《直线与圆锥曲线位置关系》教案

《直线与圆锥曲线位置关系》教案
作者:王晓丹
来源:《学校教育研究》2020年第01期
一、教学目标
知识与技能:了解直线与圆锥曲线的位置关系,通过类比直线与圆的位置关系,学会判断直线与椭圆、双曲線、抛物线的位置关系,能利用对方程组解的讨论来研究直线与圆锥曲线的位置关系。

过程与方法:在探究过程中,运用数形结合和方程的思想,以运动的观点观察问题,思考问题,分析问题,进一步提高学生解决问题的能力。

情感与态度:通过师生合作,生生合作学习,感受学习交流带来的成功感,激发学生提出问题和解决问题的勇气,树立自信心。

二、教学重点与难点
重点:用代数的方法(对方程组解的讨论)来研究直线与圆锥曲线的公共点问题。

难点:对直线与圆锥曲线仅有一个公共点时位置关系的应用探索。

三、教学方法
以学生为主体,引导学生探索发现如何用代数法判断直线与圆锥曲线的位置关系,再通过师生合作、生生合作解决直线与圆锥曲线的相关问题。

四、教学过程
(一)复习导入
问题1:直线与圆的位置关系有相交,相切,相离三种,如果把圆换成一般圆锥曲线,又有怎样的位置关系呢?
问题2:判断直线与圆的位置关系有哪些方法?
由此,引出本节课的重点:用代数法判断直线与圆锥曲线的位置关系。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

课题:直线与圆锥曲线的位置关系授课者:滦县第十中学陈智勇高考要求1掌握直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题2会运用“设而不求”解决相交弦长问题及中点弦问题3会利用圆锥曲线的焦半径公式解决焦点弦的问题掌握求焦半径以及利用焦半径解题的方法4会用弦长公式|AB|=21k|x2-x1|求弦的长;5会利用“设点代点、设而不求”的方法求弦所在直线的方程(如中点弦、相交弦等)、弦的中点的轨迹等一、复习目标(一)知识目标1、掌握用坐标法判断直线与圆锥曲线的位置关系,进一步体会曲线方程的解与曲线上点的坐标之间的关系;2、领会中点坐标公式和弦长公式及韦达定理在解题中的灵活应用;3、理解“点差法”在解决直线与圆锥曲线位置关系中的解题技巧;(二)能力目标1、通过多媒体课件的演示,培养学生发现运动规律、认识规律的能力.2、培养学生运用方程思想、分类讨论、数形结合思想解决问题的能力.(三)情感目标1、通过课件的演示获得培养学生探索数学的兴趣.2、通过师生、生生的合作学习,树立竞争意识与合作精神,感受学习交流带来的成功感,激发提出问题和解决问题的勇气,树立自信心。

二、教学重点与难点重点:直线与圆锥曲线的位置关系的判定及方程思想、分类讨论思想、数形结合思想运用;难点:等价转换、“点差法”设而不求在解题中的灵活应用。

三、方法指导:1、在研究直线与圆锥曲线的交点个数问题时,不要仅由判别式进行判断,一定要注意二次项的系数对交点个数的影响。

2、涉及弦长问题时,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦问题,利用点差法较为简便。

3、要注意判别式和韦达定理在解题中的作用。

应用判别式,可以确定直线和圆锥曲线的位置关系,确定曲线中的参数取值范围,求几何极值等。

应用韦达定理,可以解先相交时的弦长问题,弦的中点问题或最值问题。

4、 要重视方程思想、等价转换思想、分类讨论、数形结合等数学思想的运用。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。

2. 能够运用直线与圆锥曲线的位置关系解决实际问题。

3. 培养学生的逻辑思维能力和数学解决问题的能力。

二、教学内容1. 直线与圆锥曲线的基本概念和性质。

2. 直线与圆锥曲线的相切、相离和相交情况。

3. 直线与圆锥曲线的交点个数与判别式。

4. 直线与圆锥曲线的应用问题。

三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。

2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。

3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。

四、教学准备1. 教学课件和教学素材。

2. 直尺、圆规等绘图工具。

3. 练习题和答案。

五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。

2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。

3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。

4. 练习:让学生进行相关的练习题,巩固所学知识。

6. 作业布置:布置相关的练习题,巩固所学知识。

六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。

2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。

七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。

2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。

八、作业布置1. 完成课后练习题,巩固所学知识。

2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。

九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。

2. 教学方法的适用性,是否达到预期教学效果。

十、教学评价1. 学生作业、练习题和课堂表现的评价。

2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。

3. 教学反馈,了解学生对教学内容的满意度和建议。

高中数学_直线与圆锥曲线的位置关系教学设计学情分析教材分析课后反思

高中数学_直线与圆锥曲线的位置关系教学设计学情分析教材分析课后反思

菏泽第一中学《直线与圆锥曲线的位置关系》教学设计设计人:直线与圆锥曲线的位置关系教学设计设计人:【教材分析】圆锥曲线是解析几何的核心内容,在整章的复习中,主要以课本知识系统为线索,全面、深刻地复习基础知识、基本技能和其中蕴涵的基本的数学思想方法.本章内容主要突出了解析几何中的数形结合思想,方程思想,函数思想,对应和运动变化思想等数学思想及定义法,待定系数法,参数法等常用的基本方法.其中,直线与圆锥曲线的位置关系是考查的重点内容之一,主要涉及的问题有直线与圆锥曲线的位置关系的判断,求相交弦长,焦点弦长及中点弦等问题,主要考查数形结合,等价转化,函数与方程等数学思想.【学情分析】《直线与圆锥曲线的位置关系》.学生在高二解析几何的学习中已经基本掌握了圆锥曲线的定义、方程、性质以及直线与圆的位置关系等,具备了一定的知识基础和分析问题、解决问题的能力.通过对方程组解的讨论,巩固用代数的方法来研究直线与圆锥曲线公共点的问题,掌握直线与圆锥曲线之间的位置关系的判断,进一步领会用代数方法研究几何问题的数学本质.同时,借助几何画板,运用运动变化的观念,让学生在直接观察、运动变化的过程中实现自主探究,数形结合,以形助数.【教学目标】1.知识与技能:了解直线与圆锥曲线的位置关系,能利用对方程组解的的讨论来研究直线与圆锥曲线的位置关系2.过程与方法:在探究过程中,运用数形结合和方程的思想,以运动的观点观察问题,思考问题,分析问题,进一步提高学生解决问题的能力3.情感、态度与价值观:让学生欣赏圆锥曲线曲线之美,体会数形结合和方程的思想在解决几何问题中的价值,体验探索的乐趣,增强学习数学的乐趣。

【教学重点】重点:用代数的方法(对方程组解的讨论)来研究直线与圆锥曲线的公共点问题,对直线与圆锥曲线仅有一个公共点时位置关系的应用探究。

难点:对直线与圆锥曲线仅有一个公共点时位置关系的应用探究,直线与圆锥曲线的综合应用。

【教学程序与设计环节】——与以前所学知识类比,引起认知上的冲突——通过对一个讨论题组的研究,巩固研究问题的基本方法——在讨论和探索中,进一步巩固基本的研究方法,发现容易出错之处并引起重视——师生交流共同小结,归纳一般方法及易错点,解决课前提出的疑问——巩固本节课的知识及方法【教学过程与操作设计】【情景一】 问题1:直线与圆位置关系有相离,相切,相交三种.如果把圆换成椭圆、双曲线、抛物线,又有怎样的位置关系呢?如何判定?【设计意图】与直线和圆的位置关系进行类比,引起学生认知上的冲突.【情景二】讨论题组1题型一:直线与圆锥曲线的公共点问题1.直线y=kx-k+1与椭圆 14922=+y x 的位置关系为( ) (A) 相交 (B) 相切 (C) 相离 (D) 不确定2.已知双曲线方程x 2-y 2=1,过P (0,1)点的直线l 与双曲线只有一个公共点,则l 的条数为( )(A) 4 (B) 3 (C) 2 (D) 13.直线2+=kx y 与抛物线x y 82=有且只有一个公共点,则k 的值为4(A ) 1 (B) 1或3 (C )0 (D) 1或04.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围问题2:浏览之后想一想,你打算用什么方法来解决这几个问题呢?【设计意图】复习巩固直线与圆锥曲线位置关系判断的两种方法,几何法和代数法,注意利用数形结合。

北师大版高中数学选修2-1《直线与圆锥曲线的位置关系》2课时教学设计

北师大版高中数学选修2-1《直线与圆锥曲线的位置关系》2课时教学设计

直线与圆锥曲线的位置关系一、教学目标1、知识教学点:使学生掌握点、直线与圆锥曲线的位置及其判定,重点掌握直线与圆锥曲线相交的有关问题.2、能力训练点:通过对点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力.3、学科渗透点:通过点与圆锥曲线的位置及其判定,渗透归纳、推理、判断等方面的能力.二、教材分析1.重点:直线与圆锥曲线的相交的有关问题.(解决办法:先引导学生归纳出直线与圆锥曲线的位置关系,再加以应用.)2.难点:圆锥曲线上存在关于直线对称的两点,求参数的取值范围.(解决办法:利用判别式法和内点法进行讲解.)3.疑点:直线与圆锥曲线位置关系的判定方法中△=0不是相切的充要条件.(解决办法:用图形向学生讲清楚这一点.)三、教学方法:探析归纳,讲练结合四、教学过程(一)问题提出1.点P(x0,y0)和圆锥曲线C:f(x,y)=0有哪几种位置关系?它们的条件是什么?引导学生回答,点P与圆锥曲线C的位置关系有:点P在曲线C上、点P在曲线C内部(含焦点区域)、点P在曲线的外部(不含焦点的区域).那么这三种位置关系的条件是什么呢?这是我们要分析的问题之一.2.直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0有哪几种位置关系?引导学生类比直线与圆的位置关系回答.直线l与圆锥曲线C的位置关系可分为:相交、相切、相离.那么这三种位置关系的条件是什么呢?这是我们要分析的问题之二.(二)讲授新课1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系的焦点为F1、F2,y2=2px(p>0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:(由教师引导学生完成,填好小黑板)上述结论可以利用定比分点公式,建立两点间的关系进行证明.2.直线l∶Ax+Bx+C=0与圆锥曲线C∶f(x,y)=0的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.3.应用求m的取值范围.解法一:考虑到直线与椭圆总有公共点,由直线与圆锥曲线的位置关系的充要条件可求.由一名同学演板.解答为:由椭圆方程及椭圆的焦点在x轴上,知:0<m<5.又∵直线与椭圆总有公共点,即(10k)2-4x(m+5k2)×5(1-m)≥0,亦即5k2≥1-m对一切实数k成立.∴1-m≤0,即m≥1.故m的取值范围为m∈(1,5).解法二:由于直线过定点(0,1),而直线与椭圆总有公共点,所以定点(0,1)必在椭圆内部或边界上,由点与椭圆的位置关系的充要条件易求.另解:由椭圆方程及椭圆的焦点在x轴上知:0<m<5.又∵直线与椭圆总有公共点.∴ 直线所经过的定点(0,1)必在椭圆内部或边界上.故m的取值范围为m∈(1,5),小结:解法一由直线与圆锥曲线的位置关系的充要条件求,思路易得,但计算量大;解法二由点与圆锥曲线的位置关系的充要条件求,思路灵活,且简捷.称,求m的取值范围.解法一:利用判别式法.并整理得:∵直线l′与椭圆C相交于两点,解法二:利用内点法.设两对称点为P1(x1,y1),P2(x2,y2),P1P2的中点为M(x0,y0),∴y1+y2=3(x1+x2).(1)小结:本例中的判别式法和内点法,是解决圆锥曲线上存在两点关于直线的对称的一般方法,类似可解抛物线、双曲线中的对称问题.练习1:(1)直线过点A(0,1)且与抛物线y2=x只有一个公共点,这样的直线有几条?(2)过点P(2,0)的直线l与双曲线x2-y2=1只有一个公共点,这样的直线有几条?由学生练习后口答:(1)3条,两条切线和一条平行于x轴的直线;(2)2条,注意到平行于渐近线的直线与双曲线只有一个交点,故这样的直线也只有2条.练习2:求曲线C∶x2+4y2=4关于直线y=x-3对称的曲线C′的方程.由教师引导方法,学生演板完成.解答为:设(x′,y′)是曲线C上任意一点,且设它关于直线y=x-3的对称点为(x,y).又(x′,y′)为曲线C上的点,∴(y+3)2+4(x-3)2=4.∴曲线C的方程为:4(x-3)2+(y+3)2=4.(三)小结:本课主要研究了点、直线与圆锥曲线的三种位置关系及重要条件.(四)、布置作业的值.2.k取何值时,直线y=kx与双曲线4x2-y2=16相交、相切、相离?3.已知抛物线x=y2+2y上存在关于直线y=x+m对称的相异两点,求m的取值范围.作业答案:1.由弦长公式易求得:k=-4当4-k2=0,k=±2, y=±2x为双曲线的渐近线,直线与双曲线相离当4-k2≠0时,△=4(4-k2)×(-6);(1)当△>0,即-2<k<2时,直线与双曲线有两个交点;(2)当△<0,即k<-2或k>2时,直线与双曲线无交点;(3)当△=0,即k=±2时,为渐近线,与双曲线不相切。

教案直线和圆锥曲线的位置关系

教案直线和圆锥曲线的位置关系

课题:直线和圆锥曲线的位置关系【教学目标】1. 知识目标:能从“数”和“形”角度判断直线和圆锥曲线的位置关系。

2. 能力目标:培养学生提出问题和解决问题的能力;培养学生的自主探索精神和创新能力。

3. 情感目标:通过课堂中和谐、民主的师生关系,让学生在平等、尊重、信任、理解和宽容的氛围中受到激励和鼓舞,培养学生严谨的科学态度。

【教学重点、难点与关键】1. 重点:利用“代数”或“几何”的方法解决直线和圆锥曲线的位置关系。

2. 难点:在开放式教学中让学生自己发现问题,提出问题。

3. 关键点:帮助学生寻找“数”、“形”之间的联系。

【教学方法与手段】教学方法:开放式、探究式教学。

教学手段:利用教学软件几何画板辅助教学。

【教学过程及说明】:一、引例:已知椭圆C :12422=+y x ,直线l :y =ax +b ①请你具体给出a ,b 的一组值,使直线l 和椭圆C 相交。

②直线l 和椭圆C 相交时,a ,b 应满足什么关系?③若a +b =1,试判定直线l 和椭圆C 的位置关系。

分析: ②:联立方程:22142y ax b x y =+⎧⎪⎨+=⎪⎩,消去y ,得:(1+2a 2)x 2+4ab x+2b 2-4=0 (*) 则△=(4ab )2-4(1+2a 2)(2b 2-4)>0,整理得:b 2-4a 2<2③:思路一:(1-a )2-4a 2=-3a 2-2a +1=-3(a +21433)+<2恒成立。

所以直线和椭圆相交。

思路二:直线y=a x+(1-a )过定点(1,1),而点(1,1)在椭圆内部,所以直线和椭圆相交。

引例设计说明:问题①是个开放题,结果不唯一。

学生可以分别从形与数这两个角度考虑这个问题,给出一组符合题意的a ,b 的值。

问题②是在问题①基础上的提升,探求直线和椭圆相交时的一般情况。

切入本节课的主题。

也为后面比较直线和双曲线位置关系的代数处理的异同点,做个铺垫。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案教学目标:1. 理解直线与圆锥曲线的位置关系;2. 学会运用直线与圆锥曲线的性质解决问题;3. 提高推理能力和解决问题的能力。

教学重点:1. 直线与圆锥曲线的位置关系的判定;2. 直线与圆锥曲线的性质及应用。

教学难点:1. 直线与圆锥曲线的位置关系的判定;2. 直线与圆锥曲线的性质的灵活运用。

教学准备:1. 教材或教学资源;2. 投影仪或白板;3. 粉笔或教学板书。

教学过程:第一章:直线与圆锥曲线的位置关系简介1.1 引入通过展示一些实际问题,引导学生思考直线与圆锥曲线的位置关系,例如:在平面直角坐标系中,给定一个圆锥曲线(如椭圆、双曲线、抛物线),如何判断一条给定的直线与该圆锥曲线的位置关系(相交、切线、平行、远离)?1.2 讲解讲解直线与圆锥曲线的位置关系的判定方法,包括:(1)相交:直线与圆锥曲线有两个不同的交点;(2)切线:直线与圆锥曲线有一个交点,且该交点为切点;(3)平行:直线与圆锥曲线没有交点;(4)远离:直线与圆锥曲线相离,没有交点。

1.3 练习给出一些练习题,让学生运用所学知识判断直线与圆锥曲线的位置关系,并解释原因。

1.4 小结总结本章内容,强调直线与圆锥曲线的位置关系的判定方法及应用。

第二章:直线与圆锥曲线的性质2.1 引入通过展示一些实际问题,引导学生思考直线与圆锥曲线的性质,例如:在平面直角坐标系中,给定一条直线和一个圆锥曲线(如椭圆、双曲线、抛物线),如何描述它们的交点、切点等特征?2.2 讲解讲解直线与圆锥曲线的性质,包括:(1)交点的坐标:根据直线和圆锥曲线的方程,求出它们的交点坐标;(2)切点的坐标:根据直线和圆锥曲线的方程,求出它们的切点坐标;(3)斜率:直线与圆锥曲线相交时,交点的切线斜率与直线的斜率的关系;(4)距离:直线与圆锥曲线的距离公式。

2.3 练习给出一些练习题,让学生运用所学知识描述直线与圆锥曲线的交点、切点等特征,并计算相关距离和斜率。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 知识与技能:(1)理解直线与圆锥曲线的位置关系;(2)学会运用直线与圆锥曲线的性质解决相关问题。

2. 过程与方法:(1)通过观察、分析、推理等方法,探索直线与圆锥曲线的位置关系;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神,提高学生的表达沟通能力。

二、教学重点与难点1. 教学重点:(1)直线与圆锥曲线的位置关系;(2)运用直线与圆锥曲线的性质解决相关问题。

2. 教学难点:(1)直线与圆锥曲线的位置关系的判断;(2)灵活运用直线与圆锥曲线的性质解决实际问题。

三、教学过程1. 导入:(1)复习相关知识点,如直线、圆锥曲线的定义及性质;(2)提出问题,引导学生思考直线与圆锥曲线的位置关系。

2. 探究:(1)分组讨论,让学生观察直线与圆锥曲线的位置关系,总结规律;(2)每组派代表分享探究成果,师生共同总结直线与圆锥曲线的位置关系。

3. 讲解:(1)讲解直线与圆锥曲线的位置关系的判断方法;(2)举例说明如何运用直线与圆锥曲线的性质解决实际问题。

4. 练习:(1)布置课堂练习题,让学生巩固所学知识;(2)挑选部分练习题进行讲解,解答学生疑问。

5. 总结:(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调直线与圆锥曲线位置关系在实际问题中的应用。

四、课后作业1. 完成课堂练习题;2. 选取一个实际问题,运用直线与圆锥曲线的性质进行解答;3. 预习下一节课内容。

五、教学反思1. 反思教学效果:(1)学生对直线与圆锥曲线的位置关系的掌握程度;(2)学生运用直线与圆锥曲线的性质解决实际问题的能力。

2. 改进措施:(1)针对学生掌握不足的地方,进行有针对性的讲解和练习;(2)提供更多实际问题,让学生锻炼运用所学知识解决问题的能力。

六、教学评价1. 学生自评:(1)评价自己在课堂学习中的表现,如参与度、理解程度等;(2)反思自己在课后作业中的表现,如完成情况、解决问题能力等。

精品教案:直线与圆锥曲线的位置关系

精品教案:直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系【知识网络】1.直线与圆锥曲线之间的位置关系及其判定方法. 2.一元二次方程根的判别式及韦达定理的应用. 3.中点问题,弦长问题的求解. 4.进一步应用数形结合思想. 【典型例题】[例1](1)过点(2,4)作直线与抛物线x y 82=有且只有一个公共点,这样的直线有( )A.一条 B.两条 C.三条 D.四条(2)直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是( ) A.[)()+∞,55,1 B.(0,5) C.[)+∞,1 D.(1,5)(3)以圆锥曲线过焦点的弦为直径的圆与对应的准线无交点,则此圆锥曲线是( ) A 不能确定 B 椭圆 C 双曲线 D 抛物线(4)斜率为2的直线与圆锥曲线交于),(),,(2211y x B y x A 两点,若弦长52=AB ,则=-21y y . (5)双曲线122=-y x 的左焦点为F,点P为左支下半支上的动点(异于顶点),则直线PF的斜率的范围是 .[例2] 在椭圆141622=+y x 内,求通过点M(1,1)且被这点平分的弦AB所在直线的方程.[例3] 中心在坐标原点,焦点在x 轴上的椭圆,它的离心率为23,与直线x+y -1=0相交于两点M、N,且OM⊥ON.求椭圆的方程.[例4] 如图,在△ABC 中,∠C =90°,BC =2AC ,A 、B 、C 都是椭圆上的点,其中A 是椭圆的左顶点,直线BC 经过椭圆中心(即原点O ).(1)求证:无论 AC 的长取何正实数,椭圆的离心率恒为定值,并求出该 定值; (2)若PQ 是椭圆的一条弦,PQ ∥AB ,求证∠PCQ 的平分线垂直于AO .【课内练习】1.平面内有一线段AB,其长为33,动点P满足3=-PB PA ,O为AB的中点,则OP 的最小值为 ( ) A.23B.1 C.2 D.3 2.已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和,它们所表示的曲线可能是( )A B C D3.设A 为双曲线191622=-y x 右支上一点,F 为该双曲线的右焦点,连AF 交双曲线于B ,过B 作直线BC 垂直于双曲线的右准线,垂足为C ,则直线AC 必过定点( )A .(0,1041) B .(0,518) C .(4,0) D .(0,522) 4.若直线1-=kx y 与椭圆1422=+ay x 有且只有一公共点,那么 ( ) A.(]⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k a B.()⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k aC.(]⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a D.()⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a 5.过原点的直线l ,如果它与双曲线14322=-x y 相交,则直线l 的斜率k 的取值范围是 . 6.直线y=x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积是 .7.若曲线y 2=|x |+1与直线y=kx +b 没有公共点,则k,b 应满足的条件是 .8.已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λ.(1)证明:λ=1-e 2; (2)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程. .9.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

个性化辅导教案教师姓名学生姓名上课时间学科数学年级教材版本北师大阶段第()阶段观察期:□维护期:□课题名称直线与圆锥曲线的位置关系课时计划第()次课共()次课教学目标把握直线与圆锥曲线的位置关系,会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹教学重点难点重点:直线与圆锥曲线的位置关系难点:圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立解决圆锥曲线综合问题知识要点教学过程:基础梳理1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A、B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即⎩⎨⎧Ax+By+C=0,F(x,y)=0,消去y后得ax2+bx+c=0.(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C无公共点.(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行.2.圆锥曲线的弦长(1)圆锥曲线的弦长直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.(2)圆锥曲线的弦长的计算2b 2+4=27. ⎦⎥⎤-12,12=3;由已知,得|m|1+k2=32,即=34(=-6km3k2+1,=3(m-1)3k2+1.)·⎣⎢⎡⎦⎥⎤36k m(3k2+1)2-12(m-1)3k2+1=12(k+1)(3k+1-m)(3k2+1)2=3(k+1)(9k+1)(3k2+1)2=+12k9k4+6k2+1.+12+1k2+≤+122×3+6==1k2,即±33时等号成立.此时=3,综上所述=12××32=32.解 (1)∵a 2=2,b 2=1,∴c =1,F (-1,0), ∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M ⎝ ⎛⎭⎪⎫-12,t ,则圆半径r =⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-12-(-2)=32, 由|OM |=r ,得⎝ ⎛⎭⎪⎫-122+t 2=32,解得t =±2,∴所求圆的方程为⎝ ⎛⎭⎪⎫x +122+(y ±2)2=94.(2)设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根. 如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1, y 0=k (x 0+1)=k2k 2+1,∴AB 的垂直平分线NG 的方程为y -y 0=-1k (x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2,∵k ≠0,∴-12<x G <0,∴点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.考向四 定值(定点)问题【例4】►椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (1)当|CD |=322时,求直线l 的方程.(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值.[审题视点] (1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求解决圆锥曲线中的定值问题的基本思路很明确:即定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积等,其不受变化的量所影响的一个值即为定值,化解这类问题的关键是引进参数表示直线方程、数量积等,根据等式的恒成立、数式变换等寻找不受参数影响的量,解题过程中要注意讨论直线斜率的存在情况,计算要准确.规范解答17——怎样求解析几何中的探索性问题【问题研究】 解析几何中探索性问题的结论往往不明确,需要根据已知条件通过推理论证或是计算对结论作出明确的肯定或是否定,因此解决起来具有较大的难度.【解决方案】 明确这类问题的解题思想:即假设其结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答,如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.【示例】►如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M 、N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e .直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D . (1)设e =12,求|BC |与|AD |的比值;(2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.第(1)问,设C 1的方程,C 2的方程同样由C 1的系数a ,b 来表示,再分别求点A 、B 的坐标,进而可求|BC |∶|AD |;第(2)问利用k BO =k AN ,得t 与e 、a 的关系式,再由|t |<a ,求e 的范围.[解答示范] (1)因为C 1,C 2的离心率相同,故依题意可设C 1:x 2a 2+y 2b 2=1,C 2:b 2y 2a 4+x 2a 2=1,(a >b >0).,a b a 2-t 2)⎭⎪⎫,b a a 2-t 2=12时,=32a =2|y B |2|y |=b a 2=34.b a a 2-t 2t =a b a 2-t 2t -a ,解得=-ab a 2-b 2=-1-e e 2·,所以1-e e 2<,解得22<≤22时,不存在直线;当22<。

《直线与圆锥曲线的位置关系》教案全面版

《直线与圆锥曲线的位置关系》教案全面版

(4) 显然当 l ox 时,弦 CD 不存在.
当 l 不与 x 轴垂直时,设
C(
c2 , c) , D ( 2p
d2
,
2p
d ) ,且
c ≠ d ,则 kCD
=
2p cd

若 l ⊥ CD ,则 kl =- c d 2p
∵ kl ≠0,∴ c d ≠ 0
设线段 CD 的中点为
M
(x0 , y0 ) , 则
A( x1, y1 ), B(x2 , y2 ) 两点,证明 :(1)焦点弦公式 AB = x1 x2 p ; (2) 若 l 的倾斜角为
2p ,则 AB = sin 2
11
; (3)
+
为常量; (4) 若 CD 为抛物线的任何一条弦,则直
FA FB
线 l 不可能是线段 CD 的垂直平分线. 分析 : 已知直线 l 过抛物线的焦点,分斜率存在、不存在将直线方程设出,将直线方程和抛物线方程
2
2a 1 a2
,
5 12
x22
2
2
2a 1 a2
.消去
x2 , 得
2a 289 1 a 2 = 60
由 a 0, 所以 a = 17 . 13
小结: 本题考查直线、双曲线的概念性质,韦达定理、不等式、平面向量的运算,解方程等知识,
考查数形结合,方程、不等式的思想方法,以及推理运算能力和综合运用数学知识解决问题的能力,此
2
2
( 2 ,+ ∞ ).
(2) 设 A( x1 , y1 ), B( x2 , y2 ) , P (0,1) .∵ PA =
5 12
PB

5
(x1, y1 1)

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案第一章:直线与圆锥曲线的基本概念1.1 直线的基本概念直线的定义直线的性质直线的方程1.2 圆锥曲线的基本概念圆锥曲线的定义圆锥曲线的性质圆锥曲线的方程第二章:直线与圆锥曲线的交点2.1 直线与圆的交点直线与圆的位置关系直线与圆的交点个数直线与圆的交点坐标求解方法2.2 直线与椭圆的交点直线与椭圆的位置关系直线与椭圆的交点个数直线与椭圆的交点坐标求解方法2.3 直线与双曲线的交点直线与双曲线的position 关系直线与双曲线的交点个数直线与双曲线的交点坐标求解方法第三章:直线与圆锥曲线的切点3.1 直线与圆的切点直线与圆的位置关系直线与圆的切点性质直线与圆的切点坐标求解方法3.2 直线与椭圆的切点直线与椭圆的位置关系直线与椭圆的切点性质直线与椭圆的切点坐标求解方法3.3 直线与双曲线的切点直线与双曲线的position 关系直线与双曲线的切点性质直线与双曲线的切点坐标求解方法第四章:直线与圆锥曲线的距离4.1 直线与圆的距离直线与圆的位置关系直线与圆的距离公式直线与圆的距离求解方法4.2 直线与椭圆的距离直线与椭圆的位置关系直线与椭圆的距离公式直线与椭圆的距离求解方法4.3 直线与双曲线的距离直线与双曲线的position 关系直线与双曲线的距离公式直线与双曲线的距离求解方法第五章:直线与圆锥曲线的应用5.1 直线与圆的相切问题直线与圆相切的条件直线与圆相切的应用实例直线与圆相切的解题方法5.2 直线与椭圆的相切问题直线与椭圆相切的条件直线与椭圆相切的应用实例直线与椭圆相切的解题方法5.3 直线与双曲线的相切问题直线与双曲线相切的条件直线与双曲线相切的应用实例直线与双曲线相切的解题方法第六章:直线与圆锥曲线的对称性6.1 直线与圆的对称性直线与圆的对称性质直线与圆的对称变换直线与圆的对称问题实例与解法6.2 直线与椭圆的对称性直线与椭圆的对称性质直线与椭圆的对称变换直线与椭圆的对称问题实例与解法6.3 直线与双曲线的对称性直线与双曲线的对称性质直线与双曲线的对称变换直线与双曲线的对称问题实例与解法第七章:直线与圆锥曲线的相交弦7.1 直线与圆的相交弦直线与圆的相交弦性质直线与圆的相交弦公式直线与圆的相交弦问题实例与解法7.2 直线与椭圆的相交弦直线与椭圆的相交弦性质直线与椭圆的相交弦公式直线与椭圆的相交弦问题实例与解法7.3 直线与双曲线的相交弦直线与双曲线的相交弦性质直线与双曲线的相交弦公式直线与双曲线的相交弦问题实例与解法第八章:直线与圆锥曲线的焦点8.1 直线与圆的焦点直线与圆的焦点性质直线与圆的焦点问题实例与解法直线与圆的焦点应用8.2 直线与椭圆的焦点直线与椭圆的焦点性质直线与椭圆的焦点问题实例与解法直线与椭圆的焦点应用8.3 直线与双曲线的焦点直线与双曲线的焦点性质直线与双曲线的焦点问题实例与解法直线与双曲线的焦点应用第九章:直线与圆锥曲线的综合问题9.1 直线与圆的综合问题直线与圆的位置关系的综合应用直线与圆的交点、切点、距离的综合问题实例与解法直线与圆的对称性、相交弦、焦点的综合应用9.2 直线与椭圆的综合问题直线与椭圆的位置关系的综合应用直线与椭圆的交点、切点、距离的综合问题实例与解法直线与椭圆的对称性、相交弦、焦点的综合应用9.3 直线与双曲线的综合问题直线与双曲线的position 关系的综合应用直线与双曲线的交点、切点、距离的综合问题实例与解法直线与双曲线的对称性、相交弦、焦点的综合应用第十章:直线与圆锥曲线的拓展与提升10.1 直线与圆锥曲线的拓展问题直线与圆锥曲线的特殊位置关系问题直线与圆锥曲线的创新性问题实例与解法直线与圆锥曲线的综合应用提升10.2 直线与圆锥曲线的解题策略与方法直线与圆锥曲线的分类讨论方法直线与圆锥曲线的数形结合方法直线与圆锥曲线的构造法与方程法10.3 直线与圆锥曲线的教学反思与评价直线与圆锥曲线教学的重点与难点直线与圆锥曲线教学的方法与技巧直线与圆锥曲线教学的评价与反思重点和难点解析1. 第一章:直线与圆锥曲线的基本概念重点关注直线和圆锥曲线的定义、性质和方程。

直线与圆锥曲线位置关系教案

直线与圆锥曲线位置关系教案

直线与圆锥曲线的位置关系(学案)B一、知识梳理:1.直线与圆锥曲线位置关系问题转化为研究方程组的实数解的问题或利用数形结合方法解决.几何角度: 直线与圆锥曲线位置关系,从几何角度可分为三类:无公共点,.仅有一个公共点及有两个相异公共点.代数角度: 直线与圆锥曲线位置关系的研究方法可通过代数方法即解方程组办法来研究,设直线l的方程为Ax+By+C=0,圆锥曲线C的方程为F(x,y)=0,联立方程组,消去y (或消去x)得到一个关于变量x的一元二次方程:ax2 +bx+x=0(1)当0时,则有下表中的结论(方程的判别式2-4ac)(2)当0时,得到一个一元一次方程,则直线l与圆锥曲线相交,且只有一个交点,此时若C为双曲线,则直线与双曲线的渐近线平行,若C 为抛物线,则直线l与抛物线的对称轴平行或重合,因此直线与抛物线,直线与双曲线有一个公共点是直线与抛物线,双曲线相切的必要条件,但不是充分条件.2.常用方法及公式(1).把研究直线与圆锥曲线的位置关系问题转化为研究方程组的实数解的问题;(2).当根不易求解时一般用韦达定理建立参数与根的关系,同时要注意用判别式检验根存在性;(3).能利用弦长公式解决直线与圆锥曲线相交所得的弦长的有关问题,弦长公式:设A(x),B(,y2),则|AB|==(方程是x的方程); |AB|==(方程是y的方程),当直线斜率不存在时,可求出交点坐标,直线计算弦长,另外,过焦点的弦长还可根据定义求解.(4).处理弦的中点问题时,用点差法较为方便,能直接体现弦的斜率和中点的坐标之间的关系,但不易验证根的存在.二、题型探究[探究一]:直线与圆锥曲线的交点个数问题例1:直线y=kx+1与双曲线的右支有两个不同的公共点,求实数K的取值范围.[探究二]:弦长问题例2: 已知直线y=kx+b与椭圆交于A,B两点,记的面积为S,(1)在k=0,的条件下,求S的最大值.(2).当|AB|=2,S=1时,求直线AB的方程.[探究三]:有关弦的中点问题例3:已知椭圆的左焦点为F,O为坐标原点.设过F的直线交椭圆于A,B两点,且线段AB的中点在直线x+y=0上,求直线AB方程及|AB|.三、方法提升:1、直线与圆锥曲线的公共点问题,实际上是研究由它们的方程组成的方程组的实数解的问题,此时要注意分类讨论与数形结合的思想方法;2、关于直线与圆锥曲线的相交弦问题则结合韦达定理采用设而不求的办法;3、合理引入参数表示点的坐标,减少变量。

高中数学复习教案:直线与圆锥曲线的位置关系

高中数学复习教案:直线与圆锥曲线的位置关系

复习专题二 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系问题是高考的重点内容,除在客观题中考查外,解答题对解析几何的考查也以直线与圆锥曲线的位置关系为主。

本专题的复习内容与要求是:1.掌握研究直线与二次曲线的位置关系问题(如弦长、中点弦、对称等)的基本方法.2.能够综合运用代数、三角、几何方面的知识解决直线与圆锥曲线的位置关系问题。

圆锥曲线的几种常见题型(1)直线与圆锥曲线位置关系的判定;(2)求直线与圆锥曲线相交的弦长的方法:设弦端点A ),(),,(2211yx B y x ______________________.AB =(3)圆锥曲线的弦中点问题的解法:(4)解析几何中的最值和定值的方法: 【热身练习】1、方向向量为)2,1(--=a 且与抛物线2x y =相切的直线的方程是______________。

2、“a =b ”是“直线222()()2y x x a y b =+-++=与圆相切"的______________条件。

3、过椭圆141622=+y x 内一点)1,1(M 的直线交椭圆于B A ,两点,且满足MB AM =,则该直线的方程_________。

4、直线3y x =-与抛物线24yx =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为______________.5、等轴双曲线C :221xy -=的左焦点为F ,若点P 为左下半支上任意一点(不同于左顶点),则直线PF的斜率的取值范围是________________。

6、已知实数x,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是_____________。

7、已知圆M :1)sin ()cos (22=-++θθy x ,直线l :kx y =,下列四个命题:A 、对任意实数k 与θ,直线l 和圆M 相切B 、对任意实数k 与θ,直线l 和圆M 有公共点C 、对任意实数θ,必存在对实数k ,使得直线l 和圆M 相切D 、对任意实数k ,必存在实数θ,使得直线l 和圆M 相切 其中真命题的代号是 (写出所有真命题)【例题分析】例1、已知抛物线y 2=2px (p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M. (1)求抛物线方程;(2)过M 作MN ⊥FA, 垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M.当K (m ,0)是x 轴上一动点时,讨论直线AK 与圆M 的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆锥曲线的位置关系(一)教学目标1、知识教学点:使学生掌握点、直线与圆锥曲线的位置及其判定,重点掌握直线与圆锥曲线相交的有关问题.2、能力训练点:通过对点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力.3、学科渗透点:通过点与圆锥曲线的位置及其判定,渗透归纳、推理、判断等方面的能力.重点难点:重点:直线与圆锥曲线的相交的有关问题.(解决办法:先引导学生归纳出直线与圆锥曲线的位置关系,再加以应用)。

2.难点:圆锥曲线上存在关于直线对称的两点,求参数的取值范围.(解决办法:利用判别式法和内点法进行讲解.)3.疑点:直线与圆锥曲线位置关系的判定方法中△=0不是相切的充要条件.(解决办法:用图形向学生讲清楚这一点.)教学过程:(一)问题提出1.点P(x0,y0)和圆锥曲线C:f(x,y)=0有哪几种位置关系?它们的条件是什么?引导学生回答,点P与圆锥曲线C的位置关系有:点P在曲线C上、点P在曲线C内部(含焦点区域)、点P在曲线的外部(不含焦点的区域).那么这三种位置关系的条件是什么呢?这是我们要分析的问题之一.2.直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0有哪几种位置关系?引导学生类比直线与圆的位置关系回答.直线l与圆锥曲线C的位置关系可分为:相交、相切、相离.那么这三种位置关系的条件是什么呢?这是我们要分析的问题之二.(二)讲授新课1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系的焦点为F1、F2,y2=2px(p>0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:(由教师引导学生完成,填好小黑板)上述结论可以利用定比分点公式,建立两点间的关系进行证明.2.直线l∶Ax+Bx+C=0与圆锥曲线C∶f(x,y)=0的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.3.应用求m的取值范围.解法一:考虑到直线与椭圆总有公共点,由直线与圆锥曲线的位置关系的充要条件可求.由一名同学演板.解答为:由椭圆方程及椭圆的焦点在x轴上,知:0<m<5.又∵直线与椭圆总有公共点,即(10k)2-4x(m+5k2)×5(1-m)≥0,亦即5k2≥1-m对一切实数k成立.∴1-m≤0,即m≥1.故m的取值范围为m∈(1,5).解法二:由于直线过定点(0,1),而直线与椭圆总有公共点,所以定点(0,1)必在椭圆内部或边界上,由点与椭圆的位置关系的充要条件易求.另解:由椭圆方程及椭圆的焦点在x轴上知:0<m<5.又∵直线与椭圆总有公共点.∴ 直线所经过的定点(0,1)必在椭圆内部或边界上.故m的取值范围为m∈(1,5),小结:解法一由直线与圆锥曲线的位置关系的充要条件求,思路易得,但计算量大;解法二由点与圆锥曲线的位置关系的充要条件求,思路灵活,且简捷.称,求m的取值范围.解法一:利用判别式法.并整理得:∵直线l′与椭圆C相交于两点,解法二:利用内点法.设两对称点为P1(x1,y1),P2(x2,y2),P1P2的中点为M(x0,y0),∴y1+y2=3(x1+x2).(1)小结:本例中的判别式法和内点法,是解决圆锥曲线上存在两点关于直线的对称的一般方法,类似可解抛物线、双曲线中的对称问题.练习1:(1)直线过点A(0,1)且与抛物线y2=x只有一个公共点,这样的直线有几条?(2)过点P(2,0)的直线l与双曲线x2-y2=1只有一个公共点,这样的直线有几条?由学生练习后口答:(1)3条,两条切线和一条平行于x轴的直线;(2)2条,注意到平行于渐近线的直线与双曲线只有一个交点,故这样的直线也只有2条.练习2:求曲线C∶x2+4y2=4关于直线y=x-3对称的曲线C′的方程.由教师引导方法,学生演板完成.解答为:设(x′,y′)是曲线C上任意一点,且设它关于直线y=x-3的对称点为(x,y).又(x′,y′)为曲线C上的点,∴(y+3)2+4(x-3)2=4.∴曲线C的方程为:4(x-3)2+(y+3)2=4.(三)小结:本课主要研究了点、直线与圆锥曲线的三种位置关系及重要条件.(四)布置作业的值.2.k取何值时,直线y=kx与双曲线4x2-y2=16相交、相切、相离?3.已知抛物线x=y2+2y上存在关于直线y=x+m对称的相异两点,求m的取值范围.作业答案:1.由弦长公式易求得:k=-4 当4-k2=0,k=±2, y=±2x为双曲线的渐近线,直线与双曲线相离当4-k2≠0时,△=4(4-k2)×(-6);(1)当△>0,即-2<k<2时,直线与双曲线有两个交点;(2)当△<0,即k<-2或k>2时,直线与双曲线无交点;(3)当△=0,即k=±2时,为渐近线,与双曲线不相切。

故当-2<k<2时,直线与双曲线相交。

当k≤-2或k≥2时,直线与双曲线相离。

直线与圆锥曲线的位置关系(二)教学目标1、知识教学点:使学生掌握点、直线与圆锥曲线的位置及其判定,重点掌握直线与圆锥曲线相交的有关问题.2、能力训练点:通过对点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力.3、学科渗透点:通过点与圆锥曲线的位置及其判定,渗透归纳、推理、判断等方面的能力.重点难点:重点:直线与圆锥曲线的相交的有关问题.(解决办法:先引导学生归纳出直线与圆锥曲线的位置关系,再加以应用.)难点:圆锥曲线上存在关于直线对称的两点,求参数的取值范围.(解决办法:利用判别式法和内点法进行讲解.)疑点:直线与圆锥曲线位置关系的判定方法中△=0不是相切的充要条件.(解决办法:用图形向学生讲清楚这一点.)教学过程(一)基本方法:1. 直线与圆锥曲线的位置关系可以通过对直线方程与圆锥曲线方程组成的二元二次方程组的解的情况的讨论来研究。

即方程消元后得到一个一元二次方程,利用判别式⊿来讨论(注⊿≠0时,未必只有二个交点)。

2. 直线与圆锥曲线的位置关系,还可以利用数形结合、以形助数的方法来解并决。

3. 如果直线的斜率为k ,被圆锥曲线截得弦AB 两端点坐标分别为(x1,y1)、(x2,y2)则弦长公式为:(二)基本方法举例例1.当k 为何值时,直线y=kx+k-2 与抛物线 y =4x 有两个公共点? 仅有一个公共点? 无公共点。

解:由得k x +2(k -2k-2)x+(k-2) =0 ⊿=-16(k -2k-1)1).当⊿>0时,即2121+<<-k 且k≠0时有两个公共点。

2). 当⊿=0时,即21±=k 或k=0 时,直线与抛物线有一个公共点。

3).当 21-<k 或21+>k 时,直线与抛物线无公共点。

点评:本题利用方程思想及数形结合的思想解决问题。

尤其是k=0时直线与抛物线有一个公共点,而k=0时,⊿>0.例2.已知:A(-3,4),B(4,4)若线段AB 与椭圆2222a y x =+没有公共点。

求正数a 的取值范围。

解:线段AB 的方程为 y=4 (-3≤x≤4)得:822-=a xⅰ.当082<-a 时,方程组无解,即220≤<aⅱ.当082<-a 时,方程组无解,即或62>a ∴220≤<a 或62>a点评:本例利用了方程的思想对参数的值进行讨论求解。

例3.已知:椭圆1222=+y x 及点B(0,-2)过左焦点F 与B 的直线交椭圆于 C 、D 两点,椭圆的右焦点为F2 ,求⊿CDF2的面积。

解:∵ F 1(-1,0) ∴ 直线BF1的方程为 y= -2x-2 代入椭圆方程得:061692=++x x又∵ 点F2(1,0)到直线BF1的距离554=d ∴212=∆CDF S 1094=⨯d CD 点评:本题使用了弦长公式及点到直线的距离公式来解决问题,这是一种基本的解题方法。

(三)利用数形结合的思想解题例4.过点(0,2)的直线l 与抛物线 y =4x 仅有一个公共点,则满足条件的直线l 有( C )A. 1条B. 2条C. 3条D. 4条例5.不论k 为何值,直线y=kx+b 与椭圆14922=+x y 总有公共点,求b 的取值范围。

解:观察演示可得: []3,3-∈b例6.过双曲线1222=-y x 的右焦点作直线l 交双曲线于 A 、B 两点,|AB|=4 ,则这样的直线存在( C ) A.一条 B.二条 C.三条 D.四条(四)总结:1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。

2. 数形结合、以形助数是我们解决问题的一个重要思想。

(五)作业:1、直线2-=kx y 交抛物线x y 82=于A 、B 两点,若AB 的中点横坐标等于2,求AB 。

2、已知双曲线C :2222=-y x 与点)2,1(P ,(1)求过)2,1(P 点的直线l 的斜率k 的取值范围,使l 与C 分别有一个交点、两个交点、没有交点。

(2)是否存在过点P 点的弦AB ,使A 、B 中点为P ?(3)若)1,1(Q ,试判断以Q 点为中点的弦是否存在。

3、如图所示,已知抛物线x y 42=的顶点为O ,点A 的坐标为)0,5(,倾斜角为4π的直线l 与线段OA 相交,(不过点O 或点A ),且交抛物线于M 、N 两点,求AMN ∆面积的最大值时l 的方程,并求AMN ∆的最大面积。

4、已知圆锥曲线C 经过定点)32,3(P ,它的一个焦点为)0,1(F ,对应于该焦点的准线为1-=x ,过焦点F 任意作曲线C 的弦AB ,若弦AB 的长度不超过8,且直线AB 与椭圆22322=+y x 相交与不同的两点,求(1)AB 的倾斜角θ的取值范围。

(2)设直线AB 与椭圆相交于C 、D 两点,求CD 中点M 的轨迹方程。

相关文档
最新文档