材料力学刘德华版课后习题答案word版
完整版材料力学答案单辉祖版全部答案
第二章轴向拉压应力与材料的力学性能13}2-1 试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-2 试画图示各杆的轴力图,并指出轴力的最大值。
图a与b所示分布载荷均沿杆轴均匀分布,集度为q。
A Bq<1aHD题2-2图(a)解:由图2-2a(1)可知,F N(X) 2qa qx 轴力图如图2-2a(2)所示,F N,max 叩图2-2a(b)解:由图2-2b(2)可知,F R qaF N (X1) F R qaF N(X2)F R q(x2 a) 2qa qx2F N,max qa图 2-2b2-3 图示轴向受拉等截面杆,横截面面积A=500mm 2,载荷F=50kN 。
试求图示斜截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题图T ax—50MPa22-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量 E 、比例极限 p 、屈服极限s 、强度极限b 与伸长率 判断该材料属于何种类型(塑性或脆性材料) 。
T -sin2 a 50MPa sin( 100 )49.2MPa2杆内的最大正应力与最大切应力分别为轴力图如图2-2b(2)所示,^maxlOOMPaF 50 103N— A 500 10-6m 2斜截面m-m 的方位角 a 50,故有解:该拉杆横截面上的正应力为1.00 108Pa lOOMPa题2-5解:由题图可以近似确定所求各量。
2 2(T ocos a lOOMPa cos ( 50 ) 41.3MPa A- 220 106PaAe 0.001220 109Pa 220GPa-220MPa ,- 240MPa ,并-440MPa ,3 29.7%该材料属于塑性材料。
2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。
若杆径d =10mm , 杆长 I =200mm ,杆端承受轴向拉力 F = 20kN 作用,试计算拉力作用时与卸去 后杆的轴向变形。
材料力学课后答案
材料力学课后答案材料力学是一门研究材料的结构和性质以及力学行为的学科。
以下是材料力学课后习题的答案。
1. 对于一个材料试验样品的拉伸测试,如何计算应力和应变?答:应力是试样受到的外部力除以其截面积,应变是试样的长度变化除以其原始长度。
2. 当一根钢条受到拉伸力时,它的截面积会变大还是变小?为什么?答:当钢条受到拉伸力时,它的截面积会减小。
这是因为外部力导致钢条内部发生塑性变形,使其截面积减小。
3. 什么是杨氏模量?如何计算?答:杨氏模量是表征材料在受到应力时的变形能力的物理量。
它可以通过应力与应变之间的比率来计算,即杨氏模量=应力/应变。
4. 什么是泊松比?如何计算?答:泊松比是一个无量纲的物理量,它描述了材料在拉伸或压缩时的横向收缩量与纵向伸长量之间的比例关系。
它可以通过横向应变与纵向应变之间的比率来计算,即泊松比=横向应变/纵向应变。
5. 什么是屈服强度?如何确定屈服强度?答:屈服强度是材料在受到应力时开始产生塑性变形的应力值。
它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,屈服强度对应于曲线上的屈服点。
6. 材料的断裂强度是什么?如何计算?答:材料的断裂强度是指材料在受到拉伸或压缩的最大应力值。
它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,断裂强度对应于曲线上的断裂点。
7. 什么是韧性?如何评价材料的韧性?答:韧性是材料在受力过程中吸收能量的能力。
可以通过材料的断裂能量来评价韧性,断裂能量是在材料断裂前吸收的总能量。
8. 什么是冷加工和热加工?它们对材料性能有何影响?答:冷加工是在室温下对材料进行塑性变形,而热加工是在高温下对材料进行塑性变形。
冷加工会使材料变硬和脆化,而热加工则会使材料变软和韧性增加。
以上是材料力学课后习题的答案,希望对你的学习有所帮助。
如果有任何疑问,请随时向我提问。
材料力学课后习题答案
8-1 试求图示各杆的轴力,并指出轴力的最大值。
`解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段; 110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;>220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段; 》(a)(c) ¥ (d)N 1F RF N 1110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c) '(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =,【F N 211#N 2F N 3(1) 用截面法求内力,取1-1、2-2截面;。
(2) 取1-1截面的右段;|110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;*220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。
解:(a) 、(b)《(c)F N 1F N 2FNF NFF N:(d)<8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
材料力学完整课后习题答案
习题2-2一打入基地内的木桩如图所示,杆轴单位长度的摩擦力fkx2,试做木桩的后力图。
解:由题意可得:l 1 0 fdx F 有kl 3 F k 3F / l 3 3 l FN x1 3Fx 2 / l 3dx F x1 / l 3 0习题2-3 石砌桥墩的墩身高l 10m ,其横截面面尺寸如图所示。
荷载 F 1000kN ,材料的密度2.35kg / m 3 ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:N F G F Alg 2-3 图1000 3 2 3.14 12 10 2.35 9.8 3104.942kN 墩身底面积: A 3 2 3.14 12 9.14m 2 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
N 3104.942kN 339.71kPa 0.34MPa A 9.14m 2习题2-7 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7 图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:Fdx l F F l dx d l ,l dx EA x 0 EA x E 0 A x r r1 x r r d d1 d ,r 2 1 x r1 2 x 1 ,r2 r1 l l 2l 2 d d1 d d1 d d1 2 d d A x 2 x 1 u2 ,d 2 x 1 du 2 dx 2l 2 2l 2 2l 2l 2l dx d d 2l du dx du ,2 2 1 du 2 d 2 d1 A x u d1 d 2 u l F F l dx 2 Fl l du 因此,l dx 0 u 2 0 EA x E 0 A x E d1 d 2 l 2 Fl 1 l 2 Fl 1 u E d d d d E d1 d 2 0 2 2 d 1 1 x 1 2l 2 0 2 Fl 1 1 E d1 d 2 d 2 d 1 dd1 l 1 2l 2 2 2 Fl 2 2 4 Fl E d1 d 2 d 2 d1 Ed 1 d 2习题2-10 受轴向拉力 F 作用的箱形薄壁杆如图所示。
华科材料力学课后答案
华科材料力学课后答案1. 弹性力学。
1.1 问题一。
根据胡克定律,弹簧的伸长量与所受外力成正比。
即伸长量ΔL与外力F满足ΔL=kF,其中k为弹簧的弹性系数。
根据题意,当外力为100N时,弹簧的伸长量为5mm,求弹簧的弹性系数k。
解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=kF。
代入已知条件ΔL=5mm,F=100N,解得k=0.05N/mm。
1.2 问题二。
一根钢棒的长度为2m,横截面积为2cm²,弹性模量为2×10^11N/m²。
当外力作用在钢棒上时,钢棒的伸长量为多少?解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=FL/AE,其中F为外力,L为长度,A为横截面积,E为弹性模量。
代入已知条件F=100N,L=2m,A=2cm²=2×10^-4m²,E=2×10^11N/m²,解得ΔL=0.1mm。
2. 塑性力学。
2.1 问题一。
一块材料的屈服强度为200MPa,抗拉强度为400MPa。
求这种材料的屈服应力和极限应力。
解,屈服应力即屈服强度,为200MPa;极限应力即抗拉强度,为400MPa。
2.2 问题二。
一块材料在拉伸过程中,当外力达到1000N时发生塑性变形,而当外力继续增加到1500N时,材料发生断裂。
求这种材料的屈服强度和极限强度。
解,屈服强度为1000N,极限强度为1500N。
3. 疲劳力学。
3.1 问题一。
一根钢材在交变应力作用下,发生疲劳破坏,其疲劳极限为200MPa。
求该钢材在交变应力为150MPa时的寿命。
解,根据疲劳极限的定义,当交变应力小于疲劳极限时,材料不会发生疲劳破坏,因此寿命为无穷大。
3.2 问题二。
一根铝材在交变应力为100MPa时,其寿命为1000次循环。
求该铝材的疲劳极限。
解,根据题意,当交变应力为100MPa时,寿命为1000次循环,代入疲劳极限的定义,得到疲劳极限为100MPa。
(完整版)材料力学课后习题答案
8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
解:(1) 对节点A (2) 84 mm 。
8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。
8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
《材料力学》课后题答案(第1-3章)
(2)CD和AB一样长时,计算总的伸长量(复合杆)
PL /(E1A1 E2 A2 )
4PL
/[E1πd12
E2π(d
2 2
d12
)]
1.7mm
(3)没有套管时,计算总的伸长量
' PL / E1A1 4PL / E1πd12
3.42mm
比较3种情况下的 变形,能得到什
么结论?
解:(1)由已知条件得,
应变 0.001
由胡克定律,得
铜 E铜 100GPa 0.001 100MPa 铝 E铝 72GPa 0.001 72MPa
计算轴力
FN,铝 铝 A铝
FN,铜 铜 A铜
72MPa 100MPa
π 4π 4
[(40mm)2 (25mm)2 (25mm)2 49.1kN
0
则可得: 29.1
如图所示总长L0=1.25m的柔性弦线栓在A、B两个支座上,A、 B高度不同,A比B高。弦线上放置无摩擦滚轮,滚轮上承受 力P。图中C点为平衡后滚轮停留的位置。设A、B间水平距离 L=1.0m,弦线拉断力为200N,设计安全因数为3.0,试确定许
用载荷P。
解:对C处进行受力分析, 列出平衡方程:
ε l / l (1mm)/(5103 mm) 2 104
(2)计算横截面上的正应力
c FN / A 6 106 N / m2 6MPa
(3)计算混凝土的弹性模量
E c / 6MPa / 2 104 30GPa
如图所示构件上一点 A处的两个线段AB和 AC,变形前夹角为 60°,变形后夹角为 59°。试计算A点处的 切应变。
解:(1)计算AC段与BC段的伸长量
AC BD Pb / E1A1 4Pb / E1πd12 0.685mm
材料力学课后习题答案
材料力学课后习题答案欢迎大家来到,XX搜集整理了材料力学课后习题答案供大家查阅,希望大家喜欢。
1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成1个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的1种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
材料力学(单辉祖版)完整课后习题答案-9
第九章复杂应力状态强度问题题号页码9-4 (1)9-5 (3)9-8 (4)9-9 (5)9-10 (7)9-14 (8)9-16 (10)9-17 (11)9-18 (13)9-19 (14)9-22 (16)9-23 (16)9-24 (17)9-25 (18)9-26 (18)9-27 (20)9-28 (21)(也可通过左侧题号书签直接查找题目与解)9-4试比较图示正方形棱柱体在下列两种情况下的相当应力r3σ,弹性常数E和µ均为已知。
(a) 棱柱体轴向受压;(b) 棱柱体在刚性方模中轴向受压。
题9-4图(a)解:对于棱柱体轴向受压的情况(见题图a),三个主应力依次为0,===σσσ−σ132由此可得第三强度理论的相当应力为σσσσ=−=31r3 (a)(b)解:对于棱柱体在刚性方模中轴向受压的情况(见题图b ),可先取受力微体及坐标如图9-4所示,然后计算其应力。
图9-4由图9-4可得σσy −=根据刚性方模的约束条件,有 0)]([1=+−=z y x x σσµσE ε即)(z y x σσµσ+=注意到x z σσ=故有 σµµσσz x −−==1三个主应力依次为 σσσµµσσ−=−−==3211,由此可得其相当应力为 σµµσσσ−−=−=12131r3 (b)比较:按照第三强度理论,(a)与(b)两种情况相当应力的比值为µµσσr b a 211)r3()r3(−−==1>r ,这表明加刚性方模后对棱柱体的强度有利。
9-5 图示外伸梁,承受载荷F = 130 kN 作用,许用应力[σ]=170 MPa 。
试校核梁的强度。
如危险点处于复杂应力状态,采用第三强度理论校核强度。
题9-5图解:1.内力分析由题图可知,+B 截面为危险截面,剪力与弯矩均为最大,其值分别为 m N 1080.7m 600.0N 10130 kN 130432S ⋅×=××====Fl M F F ,2.几何量计算34324max ,)(343)(343545433m 1090.2]m )0137.0140.0(0085.0211023.2[2m 1023.2)m 20137.0140.0(0137.0122.0m 1005.5m 140.01007.7m 1007.712)0137.02280.0()0085.0122.0(12280.0122.0[−−−−−−×=−××+×==×=−××=×=×=×=×−×−−×=z a z b z z z S S S W I 式中的足标b ,系指翼缘与腹板的交界点,足标a 系指上翼缘顶边中点。
《材料力学》课后习题答案(详细)
第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。
(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。
(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。
材料力学课后答案第1、2章 习题解答
p
…………
………
A
e
正应变 0.76 103 0.00076 相应的弹性应变 e 0.00046 塑性应变 p 0.0003
2013-5-27
13
解:根据题意及已知数据可知 延伸率
l0 l l 100% 1 0 100% 26.4% l l0
tan 0.1925, 10.89 F FN 2 16 8 F N1 kN 21.2kN 2sin 2sin10.89
22
A
l1
解:1.计算杆件的轴向变形
l 2
由(2-15)可知:
FN1 F 50KN(拉力)
FN2 2F 50 2KN (压力)
45
2013-5-27
1 sin 2 10 sin 900 MPa 5MPa 2 2
11
0
解:由题图可近似确定所求各量:
弹性模量
b
E
220MPa 220 109 Pa 220GPa 0.10 0 0
s
屈服极限
强度极限 伸长率
s 240MPa
AB段 BC段 CD段 最大拉应力 最大压应力
2013-5-27
▕
FN1
FN1 2kN
FN 2
FN3
FN 2 1kN
FN 3 3kN
F拉 max A
t ,max
c ,max
3 103 N 60MPa 6 2 50 10 m
F压 max 2 103 N 40MPa 6 2 A 50 10 m
材料力学习题册答案-第3章 扭转(完整资料).doc
此文档下载后即可编辑第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。
(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。
(×)4.圆杆扭转变形实质上是剪切变形。
(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
(×)7.切应力互等定理仅适用于纯剪切情况。
(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
(√)10.受扭圆轴的最大切应力只出现在横截面上。
(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√ )12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。
( × )二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )A0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D )A 扭矩最大的截面;B 直径最小的截面;C 单位长度扭转角最大的截面;D 不能确定。
材料力学课后习题答案
8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2(4) 取3-3截面的右段;(5) 轴力最大值:(d)(1) 用截面法求内力,取1-1、2-2(2) 取1-1截面的右段;(2) 取2-2截面的右段;(5) 轴力最大值: 8-2 试画出8-1解:(a)(b) (c) (d) 8-5 图示阶梯形圆截面杆,段的直径分别为d 1=20 (c) (d)F RN 2F N 3F N 1F F Fmm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1) 用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
解:(1) 对节点A(2) 84 mm 。
8-16 题8-14解:(1) 由8-14得到的关系; (2) 取[F ]=97.1 kN 。
8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
材料力学课后习题答案
8-1 试求图示各杆的轴力,并指出轴力的最大值。
解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;(a)(c)(d)N 1F RF N 1110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;F RF N 211F N 1N 2F N 3(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。
解:(a)(b) (c) (d)FN 1F N 2F FFFF 1kN8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
(完整版)材料力学习题册答案..
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
材料力学刘德华版课后习题答案word版
材料力学刘德华版课后习题答案word版2.1试求图示杆件各段的轴力,并画轴力图。
f(1)f+fn图30kn50kn20kn(2)+20kn+-fn图10knf10kn15kn15kn20knf10kn5kn-fn图+-10kn30kn-fql40kn(4)40kn(5)q2.2未知题2.1图中各杆的直径d=20mm,f=20kn,q=10kn/m,l=2m,求各杆的最大正应力,并用图形表示正应力沿轴线的变化情况。
l请问(1)63.66mpa,(2)127.32mpa,(3)63.66mpa,(4)-95.5mpa,(5)127.32mpa15kn15kn20kn10kn15.82mpa+-31.85mpa--31.85mpafs图95.5mpa(4)ff127.32mpa+(5)qlfn2?300?103?27.5mpaa220024m2.4一正方形横截面的阶梯柱受力如题2.4图右图。
未知:a=200mm,b=100mm,f=100kn,数等柱的蔡国用,先行排序该柱横截面上的最小正形变。
解:1-1截面和2-2截面的内力为:fn1=-f;ffn2=-3f相应截面的应力为:fn1?100?103?110mpaa110024mff63.69mpafab最大应力为:max10mpa题2.4图2.6钢杆受到轴向外力如图所示,横截面面积为500mm2,试求30aab斜横截面上的形变。
求解:fn=20knbfnfnapα==cos30ofnaaα0fb?α?pαcos30o?ncos230oaa0sαpα20?103330mpaταb50043f20?103ooonτcos30sin3017.32mpaα?pαsin30?a050042.8图示钢杆的横截面内积a=1000mm2,材料的弹性模量e=200gpa,试求:(1)各段的轴向变形;(2)各段的轴向线快速反应;(3)杆的总弯曲。
20kn解:轴力图如图所示20kn20knⅲⅰⅱfn1?20kn1m1m2mfn2?0kn20kn+fn3??20kn-fl20?1?420kn?l1?n11??10m9?6ea200?10?1000?10?l2?0mfn3l320?2?4?l2?10m39?6ea2 00?10?1000?10?l110?4m?4?410?l?10m11l11ml20ml220l2l32104ml32104m3104l32mlliliiliii0.1mm00.2mm0.1mm2.10图示结构中,五根杆的抗拉刚度均为ea,杆ab长为l,abcd是正方形。
材料力学答案word版
习 题2-1 一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量51010.0⨯=E MPa .如不计柱自重,试求:(1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4) 柱的总变形.解:(1) 轴力图(2) AC 段应力a a MP P σ5.2105.22.010100623-=⨯-=⨯-= CB 段应力 a a MP P σ5.6105.62.010260623-=⨯-=⨯-=(3) AC 段线应变 45105.2101.05.2-⨯-=⨯-==E σε N-图 CB 段线应变45105.6101.05.6-⨯-=⨯-==E σε (4) 总变形 m 3441035.15.1105.65.1105.2---⨯=⨯⨯-⨯⨯-=AB ∆2-2 图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7 kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(1)轴力图(2)a MP σ4.194101024.015.0767311=⨯⨯⨯⨯⨯=-a MP σ1.311101025.015.0767322=⨯⨯⨯⨯⨯=- a MP σ9.388101026.015.07673=⨯⨯⨯⨯=- 最大拉应力a MP σσ9.3883max == 2-3 直径为1cm 的圆杆,在拉力P =10 kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为α=30o 的斜截面上的正应力与剪应力。
解:(1) 最大剪应力a d MP ππP στ66.6310101102212672241max =⨯⨯⨯⨯===- (2) ︒=30α界面上的应力()a MP ασσα49.952366.632cos 12=⨯=+= a MP αστα13.5530sin 66.632sin 2=⨯=⨯=︒2-4 图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 试求图示杆件各段的轴力,并画轴力图。
2.2 已知题2.1图中各杆的直径d =20mm ,F =20kN ,q =10kN/m ,l =2m ,求各杆的最大正应力,并用图形表示 正应力沿轴线的变化情况。
答 (1)63.66MPa ,(2)127.32MPa ,(3)63.66MPa ,(4)-95.5MPa ,(5)127.32MPa2.4 一正方形截面的阶梯柱受力如题2.4a=200mm ,b=100mm ,F=100kN ,不计柱的自重,试 计算该柱横截面上的最大正应力。
解:1-1截面和2-2截面的内力为: FN1=-F ;FN2=-3F相应截面的应力为:最大应力为:10kNF40kN10kN 20kN (2(1)F N N F (5)q (5)31.85MPa 题2.4图3N11213N22221001010MPa 100300107.5MPa200F A F A σσ-⨯===--⨯===-max 10MPaσ=2.6 钢杆受轴向外力如图所示,横截面面积为500mm2ab 斜截面上的应力。
解: FN=20kN2.8 图示钢杆的横截面积 A=1000mm2,材料的弹性模量E=200GPa ,试求:(1)各段的轴向变形;(2)各段的轴向线应变;(3)杆的总伸长。
解:轴力图如图所示2.10 图示结构中,五根杆的抗拉刚度均为EA ,杆AB 长为l ,ABCD 是正方形。
在小变形条件下,试求两种加载情况下,AB 杆的伸长。
解 (a )受力分析如图,由C 点平衡可知:p αo N N 0cos30F F p A A ααo 2oN 03cos30cos 302010330MPa 5004F p A σ==⨯=⨯=ααo o o N020sin30cos30sin305004F p A ⨯===αατ12320N 0N 20N N N N F k F k F k ===-11196243339620120010100010020221020010100010N N F l L EA L m F l L m EA ---⨯∆==⨯⨯⨯∆=⨯∆===-⨯⨯⨯⨯4411122244333101010210102L m l mL l L ml mεεε----∆===∆==∆-⨯===-41243100210L m L m L m--∆=∆=∆=-⨯I II III 0.1mm 00.2mm 0.1mm l l l l ∆=∆+∆+∆=+-=-F ’AC=F ’CB=0;由D 点平衡可知: F ’AD=F ’BD=0再由A 点的平衡:因此(b )受力分析如图,由C 点平衡可知:再由A 点的平衡:因此2.12 图示结构中,水平刚杆AB 不变形,杆①为钢杆,直径d1=20mm ,弹性模量E1=200GPa ;杆②为铜杆,直径d2=25mm ,弹性模量E2=100GPa 。
设在外力F=30kN 作用下, AB 杆保持水平。
(1)试求F 力作用点到A 端的距离a ;(2)如果使刚杆保持水平且竖向位移不超过2mm ,则最大的F 应等于多少?解:受力分析如图BF N2()()1120:220,2N N Ba M F a F F F -=--==∑220:2012N A N M FFa F Fa=-==∑()N11N22121122121122F l F l L L E A E A F 2-a l Fal 2E A 2E A ∆=∆===(a )F ABF x AB =0:=F F F∑AB AB F l Fl L EA EA ∆==AB(b )F 0:0:2cos 45,2x AC BC y oAC ACF F F F F F F F =''=='==∑∑AB ABF l FlL EA EA ∆==-()0:cos450;ox AC AD AB AB F F F F F F =++==-∑d1=20mm ,E1=200GPa ; d2=25mm ,E2=100GPa 。
2.15 图示结构中,AB 杆和AC 杆均为圆截面钢杆,材料相同。
已知结点A 无水平位移,试求两杆直径之比。
由两杆变形的几何关系可得121122F 2-a l Fal E A E A ()()926926224 1.542001020101001025101.5, 1.0791 1.08m 2025--2-a a2-a 2aa ⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===ππ12N222222229262222m 2m 410010251044181.95kN 1.081max maxL L F l F al L E A 2E A E A F al -∆=∆=∆===⨯⨯⨯⨯⨯===⨯π,0:cos 45cos300x o o AB AC AB ACAB AC F F F F F =+===∑cos 45cos30cos30cos 45o o AB AC o AB AC ACoL L L L L ===;22y AB y AC AB AC L L L LL L ∆=∆=∆=∆'sin 4521sin 302o AB yo AC y L AA L AA L AA L AA ∆==='''∆''∆==='''∆222222 1.06241.03AC ACAB AB AB AC AC ACAB AB AB AC AB AB AB AC AC AC AB F L L A A F L L d d d L d F L d ======∴=2.20 图示结构中,杆①和杆②均为圆截面钢杆,直径分别为d1=16mm ,d2=20mm ,已知F=40kN ,刚材的许用应力[σ]=160MPa ,试分别校核二杆的强度。
解:受力分析如图(1)+(2)可解得:F2=29.3kN; F1=20.7kNd1=16mm ,d2=20mm ,[σ]=160MPa杆①和杆②都满足强度要求。
2.24 图示结构,BC 杆为5号槽钢,其许用应力[σ]1=160MPa ;AB 杆为100×50mm2的矩形截面木杆,许用应力[σ]2=8MPa 。
试求:(1)当F=50kN 时,校核该结构的强度;(2)许用荷载[F]。
解:受力分析如图联立(1)和(2)解得:FBC=25kN; FBA=43.3kN 。
查型钢表可得:ABC=6.928cm2,FBC=25kN; FBA=43.3kN ;ABC=6.928cm2, [σ]1=160MPa ;AAB=100×50mm2 ;[σ]2=8MPa 。
杆BC 满足强度要求,但杆BA 不满足强度要求。
将[FBA]带入(1)、(2)式中求得许用荷载[F]=46.2kNF 212120:sin 45sin 300(1)0:cos 45cos300(2)x o o y o oF F F F F F F =-+==+-=∑∑21122112222222420.7420.710103MPa []160MPa 3.1416429.3429.31093.3MPa []160MPa 3.1420F A d FA d σσπσσπ⨯⨯⨯====<=⨯⨯⨯⨯====<=⨯0:sin 60sin 300(1)0:cos30cos 600(2)y o oBC BA x o o BA BC F F F F F F F =+==--=∑∑BA311222251036.1MPa []160MPa 6.9281043.38.66MPa []8MPa 10050BC BC BA BA F A F A σσσσ⨯===<=⨯===>=⨯22[][];[][]81005040NBA BA BA BAF F A k A σσ===⨯⨯=2.25 图示结构中,横杆AB 为刚性杆,斜杆CD 为直径d=20mm 的圆杆,材料的许用应力[σ]=160MPa ,试求许用荷载[F]。
解:CD=1.25m ,sin θ=0.75/1.25=0.6d=20mm [σ]=160MPa2.27 图示杆系中,木杆的长度a 不变,其强度也足够高,但钢杆与木杆的夹角α可以改变(悬挂点C 点的位置可上、下调整)。
若欲使钢杆AC 的用料最少,夹角α应多大?解:杆AC 的体积:钢杆AC的用料最少,则体积最小,有:2.37 图示销钉连接中,F=100kN ,销钉材料许用剪切应力[τj]=60MPa ,试确定销钉的直径d 。
解:FF A DC DC M 0:2sin 102100.63F F F F F 32262634104010[]16033201016032010[]15.14010DC DC F F F A d F kN σσπππ--⨯⨯===≤=⨯⨯⨯⨯⨯==⨯32262634104010[]33201016032010[]15.14010DC DC F F F A d F kN σσπππ--⨯⨯===≤=⨯⨯⨯⨯⨯==⨯DC 103F F A A F F 0:sin 0y AC F F F α=-=∑AC AC AC AC AC [][]sin /cos F F A l a σσαα===AC AC AC AC AC AC [][]sin cos []sin 2F Fa 2FaV =A l σσαασα===AC AC AC []sin /cos F A l a σαα==osin 21;45αα==50N 232.6mms FF k d =====2.39 图示的铆接接头受轴向力F 作用,已知:F=80kN ,b=80mm ,δ=10mm ,d=16mm ,铆钉和板的材料相同,其许用正应力[σ]=160MPa ,,许用剪切应力[τj]=120MPa ,许用挤压应力[σbs]=320MPa解: [σ]=160MPab=80mm ,δ=10mm ,d=16mm ;[τj]=120MPa , [σbs]=320MPa3.1 试画下列各杆的扭矩图。
3.4 薄壁圆筒受力如图所示,其平均半径r0=30mm ,壁厚t=2mm ,长度l=300mm ,当外力偶矩Me=1.2kN 时,测得圆筒两端面之间的扭转角φ=0.76o ,试计算横截面上的扭转切应力和圆筒材料的切变模量G 。
解:r0=30mm ,t=2mm ,l=300mm ,φ=0.76o20N 4s F F k ==F F s 20N 4s F F k ==123/4==31.25MPa<[]-)3/4==125MPa<[]-2)==125MPa<[]-)F b d F b d Fb d σσδσσδσσδ(((323bs 4201099.5[]3.14162010===125MPa<[]1610s j j s bs F MPa A F d ττσσδ⨯⨯===<⨯⨯⨯e e(a )(b m m (d )(c )6kN ·m20300.76r ϕπ⨯ 1.32610γ⨯6232 1.210=2 3.14302=106MPa 1.3261030018000T r tl =r =radl τπγϕγ-=⨯⨯⨯⨯∴=⨯=⨯;33106.11080GPaG τ--⨯===3.8 直径d=60mm 的圆轴受扭如图所示,试求Ⅰ-Ⅰ截面上A 点的切应力和轴中的最大扭转切应力。