曲线最小二乘拟合
曲线拟合最小二乘法
曲线拟合最小二乘法
最小二乘法是统计学中最常用的数据拟合方法,也被称为**最小平方法**。
该方法在数学和统计学中已经有很长的历史,广泛应用于各种学科的科学研究和实际应用。
最小二乘法的主要思想是最小化所给数据点与目标曲线之间的误差平方和,以此来确定目标曲线的参数。
具体而言,最小二乘法是根据**基函数**与参数之间的函数关系,采用多元函数去拟合所给数据点,旨在最小化拟合数据点和多元函数之间误差平方和的拟合方法。
最小二乘法可以用来拟合任何形式的曲线,在各种应用中都大量应用。
比如在政治学、经济学和心理学中,研究者通过最小二乘法来拟合某种结果与输入变量之间的联系,以更好地理解呈现结果的背景机制;在数值计算中,最小二乘法可用来拟合数值计算数据,从而精确地求解各种方程;而在工程学中,最小二乘法常用来拟合统计数据,估计影响工作效率的各种自变量。
总之,最小二乘法是一种统计学中经久不衰的拟合方法,可以用来拟合任何形式的曲线,在广泛的应用领域有着重要地位。
excel最小二乘法拟合曲线
Excel是一款功能强大的电子表格软件,广泛应用于数据处理与分析领域。
其中最小二乘法是一种常见的曲线拟合方法,在Excel中通过使用函数进行实现。
本文将介绍如何利用Excel进行最小二乘法拟合曲线的操作步骤及相关注意事项。
希望通过本文的介绍,读者能够掌握利用Excel进行曲线拟合的方法,从而在实际工作中能够更加高效地处理数据和分析结果。
一、最小二乘法简介最小二乘法是一种数学上常用的曲线拟合方法,其本质是通过调整曲线参数使得实际观测值与拟合值之间的差异最小化。
在实际应用中,最小二乘法常用于拟合直线、曲线以及多项式等形式的函数模型,用于描述变量之间的关系。
二、Excel中最小二乘法拟合曲线的操作步骤1. 准备数据首先需要在Excel中准备好需要拟合的数据,通常是包含自变量和因变量的数据列。
假设我们有一组数据,自变量为x,因变量为y,我们希望通过最小二乘法找到一条曲线来描述它们之间的关系。
2. 插入散点图在准备好数据之后,需要在Excel中插入散点图来直观地观察数据点的分布情况。
选择数据区域后,点击插入菜单中的散点图,选择合适的图表类型进行插入。
通过散点图可以直观地观察到数据点的分布情况,从而初步判断需要拟合的曲线形式。
3. 计算拟合曲线参数利用Excel中的函数可以很方便地进行最小二乘法拟合曲线的计算。
在Excel中,可以使用“线性拟合”函数进行直线拟合,使用“多项式拟合”函数进行多项式曲线拟合。
通过输入相关参数和数据范围,即可得到拟合曲线的参数值,并在图表中显示拟合曲线。
4. 绘制拟合曲线根据计算得到的拟合曲线参数值,可以利用Excel中的图表工具绘制出拟合曲线。
在散点图的基础上,添加拟合曲线,并进行必要的格式设置,可以清晰地展示出拟合曲线与原始数据之间的关系。
5. 拟合曲线的评估拟合曲线的好坏可以通过一些评价指标来进行评估,例如拟合优度R方值、残差分布等。
通过观察这些评价指标,可以对拟合曲线的质量进行初步判断,从而确定是否需要调整模型或者采取其他措施。
计算方法课件第六章最小二乘法与曲线拟合
例1: y aebx
ln y ln a bx
u ln y, A ln a, B b
u A Bx
例2: y
a
1 bx
u 1 y
1 a bx y u a bx
3.写出矛盾方程组。 4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。 6.将正则方程组的解带回到数学模型中,得到拟 合曲线。
Remark
1.同一问题可以有不同的拟合曲线,通常根据均方误
差 N [ (xi 和) 最yi大]2 偏差
max
1i N
( xi
t cos 0.669131 0.390731 0.121869 -0.309017 -0.587785
记 a 1 , b e ,得拟合模型:a bt y
p
p
则矛盾方程组为:
1 0.669131
0.370370
1
1 1
0.390731 0.121869 0.309017
a b
0.500000
一、曲线拟合模型
定义:依据某种标准选择一条“最好”的简单
曲线作为一组离散数据(
xi
,
yi
)
N i0
的连续模型。
确定曲线的类型:一般选取简单的低次多项式。
求一个次数不高于N-1次的多项式:
y (x) a0 a1x a2x2 amxm
(m N 1)
(其中a0,a1,…,am待定),使其“最好”的拟合
j 1
j 1
n a1 j x j b1
计算方法 第三章曲线拟合的最小二乘法20191103
§2 多项式拟合函数
例3.1 根据如下离散数据拟合曲线并估计误差
x 1 23 4 6 7 8 y 2 36 7 5 3 2
解: step1: 描点
7
*
step2: 从图形可以看出拟
6 5
*
合曲线为一条抛物线:
4
y c0 c1 x c2 x2
3 2 1
* *
* * *
step3: 根据基函数给出法
法
18
定理 法方程的解是存在且唯一的。
证: 法方程组的系数矩阵为
(0 ,0 ) (1 ,0 )
G
(0
,1
)
(1 ,1 )
(0 ,n ) (1 ,n )
(n ,0 )
(
n
,
1
)
(n ,n )
因为0( x),1( x), ...,n( x)在[a, b]上线性无关,
所以 G 0,故法方程 GC F 的解存在且唯一。
第三章 曲线拟合的最小二乘法
2
最小二乘拟合曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
3
三次样条函数插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
4
Lagrange插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
5
一、数据拟合的最小二乘法的思想
已知离散数据: ( xi , yi ), i=0,1,2,…,m ,假设我们用函
便得到最小二乘拟合曲线
n
* ( x) a*j j ( x) j0
为了便于求解,我们再对法方程组的导出作进一步分析。
第三章 曲线拟合的最小二乘
标准曲线的最小二乘法拟合和相关系数
标准曲线的最小二乘法拟合和相关系数(合肥工业大学控释药物研究室尹情胜)1 目的用最小二乘法拟合一组变量(,,i=1-n)之间的线性方程(y=ax+b),表示两变量间的函数关系;(开创者:德国数学家高斯)一组数据(,,i=1-n)中,两变量之间的相关性用相关系数(R)来表示。
(开创者:英国统计学家卡尔·皮尔逊)2 最小二乘法原理用最小二乘法拟合线性方程时,其目标是使拟合值()与实测值()差值的平方和(Q)最小。
式(1)3 拟合方程的计算公式与推导当Q最小时,;得到式(2)、式(3):式(2)式(3)由式(3)和式(4),得出式(4)和式(5):式(4)式(5)式(4)乘以n,式(5)乘以,两式相减并整理得斜率a:斜率(k=xy/xx,n*积和-和积)式(6)截距b的计算公式为公式(5),也即:截距b=(y-x)/n,差平均差)式(7)4 相关系数的意义与计算公式相关系数(相关系数的平方称为判定系数)是用以反映变量之间相关关系密切程度的统计指标。
相关系数(也称积差相关系数)是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
相关系数r xy取值在-1到1之间。
r xy = 0时,称x,y不相关;| r xy | = 1时,称x,y完全相关,此时,x,y之间具有线性函数关系;| r xy | < 1时,X的变动引起Y的部分变动,r xy的绝对值越大,x的变动引起y的变动就越大,|r xy | > 0.8时称为高度相关,当0.5< | r xy|<0.8时称为显著相关,当0.3<| r xy |<0.5时,成为低度相关,当| r xy | < 0.3时,称为无相关。
(式(7)5 临界相关系数的意义5.1 临界相关系数中显著性水平(α)与置信度(P)的关系显著性水平取0.05,表示置信度为95%;取0.01,置信度就是99%。
第5章-1 曲线拟合(线性最小二乘法)讲解
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
最小二乘法拟合三维曲线
最小二乘法拟合三维曲线
最小二乘法是一种常用的曲线拟合方法,用于通过已知数据点拟
合出一个函数曲线。
在三维空间中,我们可以通过最小二乘法来拟合
一个三维曲线。
假设我们有一组数据点{(x1,y1,z1), (x2,y2,z2), ...,
(xn,yn,zn)},我们的目标是找到一个函数 f(x,y) 来拟合这些数据点。
我们可以假设这个函数是一个形如 f(x,y) = a + bx + cy 的曲线。
为了找到最佳的拟合曲线,我们需要计算误差函数,这里我们选
择使用平方误差函数。
平方误差函数定义为 E = Σ(z - f(x,y))^2,
其中Σ 表示求和。
我们的目标是最小化这个误差函数。
通过最小二乘法,我们可以求得最优解。
首先,我们需要计算系
数 a、b 和 c。
最小化误差函数 E 的过程可以用线性代数的方法求解。
具体而言,我们需要求解一个多元线性方程组,该方程组的矩阵形式
为 XTAX = XTY,其中 XTAX 是一个3x3的矩阵,XTY 是一个3x1 的矩阵,X 是一个 n x 3 的矩阵,X 的每一行对应一个数据点,其中第一
列为1,第二列为 x 值,第三列为 y 值,Y 是一个 n x 1 的矩阵,
每一行为对应的 z 值。
解出系数 a、b 和 c 后,我们的拟合曲线即为 f(x,y) = a +
bx + cy。
最小二乘法是一种常用且经典的曲线拟合方法,在实际应用中被
广泛使用。
通过拟合三维曲线,我们可以更好地理解数据的分布规律,并进行预测和分析。
excel拟合曲线用的最小二乘法
Excel拟合曲线用的最小二乘法1. 介绍Excel作为一款常用的办公软件,被广泛应用于数据分析和处理,而拟合曲线是数据分析中常用的方法之一。
拟合曲线用的最小二乘法是一种常见的拟合方法,通过最小化数据点与拟合曲线之间的距离来找到最佳拟合曲线,从而对数据进行预测和分析。
在本文中,我将从深度和广度的角度来探讨Excel拟合曲线用的最小二乘法,带你深入探索这一主题。
2. 最小二乘法的原理在Excel中进行曲线拟合时,最小二乘法是一种常用的拟合方法。
其原理是通过最小化残差平方和来找到最佳拟合曲线。
残差是指每个数据点到拟合曲线的垂直距离,最小二乘法通过调整拟合曲线的参数,使得残差平方和最小化,从而得到最佳拟合曲线。
在Excel中,可以利用内置函数或插件来实现最小二乘法的曲线拟合,对于不同类型的曲线拟合,可以选择不同的拟合函数进行拟合。
3. Excel中的拟合曲线在Excel中进行拟合曲线时,首先需要将数据导入Excel,然后利用内置的数据分析工具或者插件来进行曲线拟合。
通过选择拟合函数、调整参数等操作,可以得到拟合曲线的相关信息,如拟合优度、参数估计值等。
可以根据拟合曲线的结果来对数据进行预测和分析,从而得到对应的结论和见解。
4. 个人观点与理解对于Excel拟合曲线用的最小二乘法,我认为这是一种简单而有效的数据分析方法。
它能够快速对数据进行拟合,并得到拟合曲线的相关信息,对于数据的预测和分析具有一定的帮助。
然而,也需要注意到拟合曲线并不一定能够准确描述数据的真实情况,需要结合实际背景和专业知识进行分析和判断。
在使用最小二乘法进行曲线拟合时,需要注意数据的可靠性和拟合结果的可信度,以避免出现不准确的结论和偏差的情况。
5. 总结通过本文的探讨,我们对Excel拟合曲线用的最小二乘法有了更深入的了解。
最小二乘法的原理、Excel中的实际操作以及个人观点与理解都得到了充分的展示和探讨。
在实际应用中,需要结合具体情况和专业知识来灵活运用最小二乘法进行曲线拟合,从而得到准确的分析和预测结果。
最小二乘法曲线拟合推导过程
假设现在有n对坐标系中的点
现在要做k阶多项式拟合,多项式函数如下
将已知的观测点数据代入上述公式得到如下n组等式:
......
最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,如下所示:
代入公式可以得到
可以通过上述公式对求偏导后,令其为0来求解所有a的值,得到下面的式子
......
将上述方程整理归纳得
......
将上述方程用矩阵表述
将上述方程分解,令
,
那么上面的矩阵计算可以简化为,所以得到
网上的一些证明到这里基本就结束了,但我觉得根据逆矩阵的特性还可以优化的,在矩阵中AB的逆等于B的逆乘A的逆,如下
化简可以得到a为X的逆乘Y
计算出X的逆矩阵乘Y得到的就是多项式的系数,就能得到一个多项式了,曲线拟合就算完成了。
但是有没有发现,X的逆矩阵计算量很大,还要明白如何求解逆矩阵的,用程序去实现也有一定难度。
后面会介绍一种法则,求解多项式的系数,套公式即可。
以及用C语言实现最小二乘法的2次曲线拟合算法。
普通最小二乘法的拟合曲线准则
普通最小二乘法的拟合曲线准则1. 什么是普通最小二乘法?普通最小二乘法(Ordinary Least Squares, OLS)是一种经典的统计学和数学工具,用于拟合数据点与数学模型的关系。
通过最小化观测数据点与拟合曲线之间的残差平方和来确定最佳拟合曲线,从而推断出数据点之间的潜在关系。
2. 拟合曲线的准则在进行数据拟合时,选择合适的拟合曲线准则对最终结果具有至关重要的影响。
常见的拟合曲线准则包括最小化残差平方和、最小化残差绝对值和最小化残差的百分比等。
其中,最小二乘法的核心就是最小化残差平方和,使得拟合曲线与观测数据点之间的误差达到最小。
3. 评估拟合曲线的深度和广度为了全面评估拟合曲线的深度和广度,我们可以从以下几个方面进行考虑:- 数据拟合的准确性:通过分析拟合曲线与实际观测数据点之间的误差大小和分布情况,可以评估拟合曲线对数据的拟合程度。
一般来说,残差应该在一定范围内呈现随机分布,同时残差的平方和应该足够小,这样才能认为拟合曲线较好地拟合了数据点。
- 拟合曲线的泛化能力:除了拟合实际观测数据点外,我们还需要考虑拟合曲线在未知数据的泛化能力。
拟合曲线是否能够很好地适应新的数据点,是否具有较好的预测能力,这些都是评价拟合曲线广度的重要指标。
- 模型的复杂度:复杂的拟合曲线可能会过度拟合观测数据点,导致在未知数据上的预测能力降低;而过于简单的拟合曲线可能无法很好地拟合实际观测数据点。
我们需要对拟合曲线的复杂度进行合理的权衡,以达到最佳的拟合效果。
4. 个人观点和理解在我看来,普通最小二乘法是一种较为可靠和普遍适用的拟合方法,其核心准则即最小化残差平方和可以帮助我们得到相对较好的拟合效果。
然而,需要注意的是,在进行数据拟合时,我们应该不断地评估拟合曲线的准确性和泛化能力,并合理地考虑拟合曲线的复杂度,以得到更加可靠和实用的结果。
通过对普通最小二乘法的拟合曲线准则进行充分的评估,我们可以更深入地理解数据拟合的原理和方法,从而在实际应用中取得更加准确和可靠的结果。
三次贝塞尔曲线最小二乘拟合
三次贝塞尔曲线可以用最小二乘法进行拟合。
最小二乘法是一种数学优化技术,它通过最小化误差的平方和来找到最佳函数匹配。
对于三次贝塞尔曲线,可以使用四个控制点来定义曲线。
设这四个控制点为P0, P1, P2, P3,并设t为参数,满足
0<=t<=1。
根据贝塞尔曲线的定义,三次贝塞尔曲线的参数形式为:B(t) = (1-t)^3*P0 + 3*(1-t)^2*P1 + 3*(1-t)*P2 + P3
这是一个关于t的函数,可以将其视为一个误差函数。
最小二乘法的目标是找到一组最佳控制点,使得这个误差函数最小。
为了实现这个目标,需要将实际问题转化为数学问题。
设实际的曲线为y(t),我们可以通过测量得到一组数据点
{(t1,y1),(t2,y2),...,(tn,yn)}。
然后,我们可以计算出实际曲线与贝塞尔曲线的差距,即误差函数:
E = Σ[(y(ti) - B(ti))^2]
这个误差函数就是我们要优化的目标函数。
我们可以通过求导来找到最佳的控制点。
在实际操作中,可能还需要根据实际情况进行一些其他的
处理,比如数据归一化、异常值处理等。
总的来说,三次贝塞尔曲线最小二乘拟合需要将实际问题
转化为数学问题,然后通过数学方法来找到最佳的解决方案。
最小二乘法多项式曲线拟合原理与实现
最小二乘法多项式曲线拟合原理与实现一、引言最小二乘法多项式曲线拟合是一种常用的数据拟合方法,它可以通过一组离散的数据点来拟合出一个多项式函数,从而达到对数据进行预测和分析的目的。
本文将详细介绍最小二乘法多项式曲线拟合的原理与实现。
二、最小二乘法最小二乘法是一种数学优化方法,它可以通过最小化误差平方和来求解未知参数。
在多项式曲线拟合中,我们需要求解多项式函数中各个系数的值,使得该函数与给定数据点之间的误差平方和最小。
三、多项式曲线拟合多项式曲线拟合是指通过一组离散的数据点来拟合出一个多项式函数,该函数能够较好地描述这些数据点之间的关系。
在实际应用中,我们通常使用低阶的多项式函数来进行拟合,例如一次、二次或三次多项式函数。
四、最小二乘法多项式曲线拟合原理假设我们有n个离散的数据点(x1,y1),(x2,y2),...,(xn,yn),其中xi表示自变量,yi表示因变量。
我们希望通过这些数据点来拟合出一个m次多项式函数y=f(x),其中m为多项式的阶数。
我们可以将多项式函数表示为如下形式:f(x)=a0+a1x+a2x^2+...+amxm其中a0,a1,...,am为待求解的系数。
我们需要通过最小二乘法来求解这些系数的值。
首先,我们需要定义误差平方和E(a0,a1,...,am):E(a0,a1,...,am)=∑i=1n(yi−f(xi))^2然后,我们需要求解使得误差平方和最小的系数值。
为了方便计算,我们可以将误差平方和展开:E(a0,a1,...,am)=∑i=1n(yi−a0−a1xi−a2xi^2−...−amxm)^2接下来,我们需要对误差平方和进行求导,并令导数等于零,从而得到使得误差平方和最小的系数值。
具体来说,我们需要分别对每个系数进行求导:∂E/∂a0=−2∑i=1n(yi−a0−a1xi−a2xi^2−...−amxm)∂E/∂a1=−2∑i=1n(xi(yi−a0−a1xi−a2xi^2−...−amxm))...∂E/∂am=−2∑i=1n(xmi(yi−a0−a1xi−a2xi^2−...−amxm))然后,我们将每个导数等于零,得到一个线性方程组:∑j=0maijaj=∑i=1nyi×xi^j其中aij表示第j个系数的第i次幂。
最小二乘法拟合曲线公式
最小二乘法拟合曲线公式
最小二乘法是一种常用的数学方法,可以用来拟合一条曲线,使得曲线上的点与实际观测值的误差最小化。
最小二乘法拟合曲线的公式为:
y = a + bx
其中,y 是因变量,x 是自变量,a 和 b 是拟合曲线的系数。
最小二乘法通过最小化误差平方和来确定 a 和 b 的值,即:
b = (n∑xy - ∑x∑y) / (n∑x^2 - (∑x)^2)
a = (∑y - b∑x) / n
其中,n 是数据点的个数,∑表示求和符号,x 和 y 分别表示自变量和因变量的值。
拟合曲线的误差可以通过计算残差平方和来评估,即:
SSR = ∑(y - )^2
其中,y 是实际观测值,是拟合曲线的预测值。
最小二乘法拟合曲线的优点在于可以用简单的数学公式表示,易于理解和应用。
- 1 -。
第3章曲线拟合的最小二乘法计算方法
最小二乘拟合,特别是多项式拟合,是最流行的数据处理 方法之一.它常用于把实验数据(离散的数据)归纳总结为经 验公式(连续的函数),以利于进一步的推演分析或应用.
1
结束
§3.2 线性拟合和二次拟合函数
1. 线性拟合
计 已知数据点为 ( xi , yi ), i 1,2,..., n
算 用直线 p( x) a bx作为近似曲线,均方误差为
计
i xi yi xi yi xi2 xi2yi xi3
xi4
0 3 5 15 9 45 27
81
算
1 5 2 10 25 50 125 625
方
2 6 1 6 36 36 216 1296
法
3 8 2 16 64 128 512 4096
课
4 10 4 40 100 400 1000 10000
件
Y ln y, A ln a Y A bx
8
i
xi
0
1
yi
Yi
15.3
2.7279
xi2
xiYi
1
2.7279
1
2
20.5
3.0204
4
6.0408
计
2
3
27.4
3.3105
9
9.9315
算
3
4
36.6
3.6000
16
14.4000
方
4
5
49.1
3.8939
25
19.4695
法
5
6
65.6
4
例1 设5组数据如下表,用一多项式对其进行拟合。
x 3 5 6 8 10
计
最小二乘法拟合曲线求最大值
最小二乘法拟合曲线求最大值
最小二乘法是一种拟合曲线的方法,它是通过优化平方误差最小化来找到拟合曲线的参数。
最小二乘法可以用来拟合各种类型的曲线,包括直线、多项式、指数和对数函数等。
如果要找到拟合曲线的最大值,可以通过以下步骤进行:
1. 根据数据点的坐标,使用最小二乘法找到最佳拟合曲线的参数。
这可以通过使用线性回归或多项式回归的方法来实现。
2. 使用找到的曲线参数,求曲线的导数。
导数表示曲线在每个点上的斜率。
3. 找到导数等于零的点。
这些点可能是拟合曲线的极值点,包括最大值和最小值。
4. 比较这些极值点的函数值,找到最大值。
需要注意的是,最小二乘法本身不能直接找到曲线的最大值,它只能通过拟合曲线函数的参数来间接推断最大值所在的位置。
因此,在找到最佳拟合曲线的参数后,还需要进行额外的导数计算和极值点分析才能找到实际的最大值点。
此外,如果数据点中存在噪声或异常值,最小二乘法可能会受到影响,导致拟合曲线得到的最大值并不准确。
在实际应用中,可能需要使用其他方法来处理这些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
(abxi yi)2 min
i1
n
设 S ( a , b ) ( a bx i y i ) 2 min i1
由微积分基本知识,得 到
S (a,b)
a
S (a,b)
b
n
i 1 n
S(a1,a j ,am)in12c11(xi),,cmm(xi)yij(xi)0
( n
n
1(xi)1(xi))c1 .....(
1(xi)m(xi))cm
n
yi1(xi )
i1
i1
i1
n
( i1
2(xi )1(xi ))c1
.....(
n
2(xi )m(xi ))cm
i1
n i1
从 而 得 到 f(x)的 最 小 二 乘 拟 合 多 项 式 p(x)a0a1x...amxm
例题
求最小二乘拟和二次多项式,拟和 如下数据表。
k
1
3
4
5
x
0
0.25 0.50 0.75 1
y
1
1.284 1.6487 2.117 2.7183
解 : 设 最 小 二 乘 拟 和 二 次 多 项 式 为 y=a 0 a1x a2 x 2 该问题的正规方程组为
n
n
x i 2
n
2
x i
i1 i1
n n x i y i n x i n y i
b
i1
i1 i1
n
n
x i 2
n
2
x i
i1 i1
例 。 将 区 间 [0,/4]10等 分 , x00,xi ih,i1,...,10,
给 定 函 数 ysinx在 xi处 的 函 数 值 ,
线性最小二乘拟合
定义:在实数集 X上合,函数 1(x),,n(x)
满足:存在不全为零的k实1, 数,kn使得
k11(x)knn(x) 0 称1(x),,n(x)在集合X上线性相关。
否则,线性无关。
线性最小二乘拟合
给 定 函 数 y f ( x ) 在 点 x 1 , . . . x n 处 的 函 数 值 y 1 , . . . y n ,
i1
[a,A,B]=niheerch(x,y)
a =1.0051 0.8642 0.8437
A =5.0000 2.5000 1.8750 2.5000 1.8750 1.5625 1.8750 1.5625 1.3828
B =8.7680 5.4514 4.4015
所以,最小二乘拟和二次多项式为 p=1.0051+0.8642x+0.8437x2
n
yi
i 1
i 1
i 1
n
( i1
xi )a0
n
(
i 1
n
xi2 )a1 ... (
i 1
xi m 1 ) am
n i 1
xi yi
..............
(
i
n 1
xim )a0
n
(
i 1
n
x m1 i
)a1
...
(
i 1
xi2m )am
n i 1
xim yi
求 解 法 方 程 组 , 得 到 a 0 , a 1 ,.....,a m ,
5
a
0
(
5
5
xi )a1 (
xi2 )a2
5
yi
i 1
i 1
i 1
5
(
5
xi )a0 (
5
xi2 )a1 (
xi3)a2
5
xi yi
i1
i1
i1
i1
5
5
5
5
( xi 2 ) a 0 ( xi3 ) a1 ( xi 4 ) a 2 xi 2 yi
i1
i1
i1
曲线最小二乘拟合
主讲 孟纯军 数学与计量经济学院
插值法是用多项式近似的表示函数,并要 求在他们的某些点处的值相拟合.
最佳逼近(或者曲线拟和)也是用简单 函数逼近复杂函数(或未知函数),但 是,逼近的原则和插值的原则不一样。
最小二乘拟合直线 最小二乘拟合多项式 线性拟合 非线性拟合
最小二乘拟合直线
i 1
2 (a bx i 2 (a bx i
yi) yi ) xi
0
0
整理:
na
n
xi b
n
yi
i1
i 1
n i 1
xi a
n i 1
xi 2 b
n i 1
xi yi
n y i n x i 2 n x i n x i y i
a i1
i1 i1 i1
yi2(xi )
................
(
n i1
m(xi )1(xi))c1
.....(
n i1
m(xi )m(xi ))cm
给 定 子 空 间 S , 设 S 的 基 函 数 为 1 ( x ) , . . . .m ( x ) ( m n ) ,
求 p ( x ) c 11 ( x ) .... c m m ( x ) S ,
n
使得 (p(xi)yi)2min i1
n
S(a1,,am) c11(xi),,cmm(xi)yi2 i1
求 ysinx在 区 间 [0,/4]的 最 小 二 乘 拟 合 直 线 。
解:数据点为 x=linspace(0,pi/4,10),y=sin(x)
a(1,1)=length(x)= 10.0000 ,a(1,2)=sum(x) =3.9270, a(2, 1)=sum(x)= 3.9270 , a(2, 2)==sum(x.^2) =2.1704 b(1)=sum(y) b=3.7077 ,b(2)=dot(x,y)= 2.0257
所以,法方程为 10a+ 3.9270b=3.7077 3.9270a+ 2.1704b= 2.0257
解法方程,得到 a =0.0147 , b=0.9068
最小二乘拟合直线为y= 0.0147 +0.9068x
最小二乘拟合多项式
给 定 函 数 y f(x )在 点 x 1 ,...x n 处 的 函 数 值 y 1 ,...y n , 求 一 多 项 式 p (x ) a 0 a 1 x ... a m x m m (m 1 n ),
n
使得 (p(xi) yi)2 min i1
n
设S(a0,a1,,am) (a0 a1xi,amximyi)2 min i1
则
S(a0,a1,,am)
aj
n
2(a0
i1
a1xi ,amxim yi )xij
0
将方程整理,得到
na0 ( n
n
xi )a1 ... (
xim )am