弗兰克赫兹实验思考题答案
弗兰克赫兹实验思考题
弗兰克赫兹实验思考题
弗兰克-赫兹实验是由德国物理学家弗兰克和赫兹于1914年进行的实验。
他们在实验中观察到了电子的散射现象,从而验证了能量量子化的概念。
思考题:
1. 弗兰克-赫兹实验的目的是什么?
2. 实验中的主要装置是什么?
3. 实验中观察到的现象是什么?它是怎样验证能量量子化的?
4. 弗兰克-赫兹实验对于量子力学的发展有何重要意义?
答案:
1. 弗兰克-赫兹实验的目的是研究气体原子对电子的散射行为,验证能量的量子化假设。
2. 实验中的主要装置是一个真空管,其中包含有气体原子
和阴极阳极电极。
3. 实验中观察到的现象是电子在通过真空管时的能量损失。
当电子从阴极经过真空管时,它们会与气体原子发生碰撞,导致能量损失和方向改变。
弗兰克-赫兹实验中研究气体原
子的电离和激发过程,通过观察电流的变化,可以获得电
子在真空管中的能量损失情况。
这些能量损失的离散化现
象验证了能量的量子化假设。
4. 弗兰克-赫兹实验的成功验证了能量量子化的概念,为后续量子力学的发展奠定了基础。
实验结果表明,电子的能
量是离散的,只能取特定的能级。
这一发现对于理解原子
和分子的能级结构、光谱现象、电子行为等方面具有重要
意义,为量子力学的发展提供了重要的实验依据。
夫兰克-赫兹实验思考题(DOC)
一、夫兰克-赫兹管的伏安特性曲线的奇异性的来源玻尔原子模型理论指出:1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态对应于一定的能量(1,2,3,)i E i =。
2.当一个原子从某定态m E 跃迁到另一定态n E 时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差m n E E -,并满足以下关系:m n hv E E =-式中普朗克常数346.62610h J s -=⨯⋅。
原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。
从基态跃迁到第一激发态所需要的能量称为临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。
如果电子能量大于临界能量,则发生非弹性碰撞,这时电子可把数值为21E E E ∆=-的能量传递给原子(2E 是原子第一激发态能量,1E 是基态能量),其余能量仍由电子保留。
在充氩的夫兰克-赫兹管中,电子由阴极K 发出,阴极K 和第一栅极1G 之间的加速电压1G K V 及与第二栅极2G 之间的加速电压2G K V 使电子加速。
在板极A 和第二栅极2G 之间可设置拒斥电压2G A V ,管内空间电压分布如图2所示。
当灯丝加热时,阴极的外层即发射电子,电子在1G 和2G 间的电场图 1 夫兰克-赫兹实验原理图 作用下被加速而取得越来越大的能量。
但在起始阶段,由于电压2G K V 较低,电子的能量较小,即使在运动过程中,它与原子相碰撞(弹性碰撞)也只有微小的能量交换。
这样,穿过图 2 夫兰克-赫兹管内空间电位分布原理图 第二栅极的电子所形成的电流A I 随第二栅极电压2G K V 的增加而增大(图 3 oa 段)。
当2G K V 达到氩原子的第一激发电位时,电子在第二栅极附近与氩原子相碰撞(非弹性碰撞)。
电子把从加图 3 夫兰克-赫兹管的伏安特性曲线 速电场中获得的全部能量传递给氩原子,使氩原子从基态激发到第一激发态,而电子本身由于把全部能量传递给了氩原子,即使它穿过第二栅极,也不能克服拒斥电压2G A V 从而被折回第二栅极,所以板极电流A I 将显著减小(图3 ab 段)。
夫兰克-赫兹实验思考题
弗兰克赫兹实验1、简要解释伏安特性曲线的奇特性?玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。
原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。
如果用Em和En分别代表原子的两个定态的能量,则发射或吸收辐射的频率由以下关系决定:hv=|Em-En|h为普朗克常量。
原子从低能级向高能级跃迁,也可以通过具有一定能量的电子与原子相碰撞进行能量交换来实现。
本实验即让电子在真空中与氩蒸气原子相碰撞。
设氩原子的基态能量为E1,第一激发态的能量为E2,从基态跃迁到第一激发态所需的能量就是E2-E1。
初速度为零的电子在电位差为U的加速电场作用下具有能量eU,若eU小于E2-E1这份能量,则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。
当电子的能量eU≥E2-E1时,电子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于E2-E1的那一份,使自己从基态跃迁到第一激发态,而多余的部分仍留给电子。
设使电子具有E2-E1能量所需加速电场的电位差为U0,则eU0=E2-E1U0为氩原子的第一激发电位(或中肯电位)在充氩的F—H管中,电子由热阴极发出,阴极K和第二栅极G2之间的加速电压UG2K 使电子加速。
第一栅极对电子加速起缓冲作用,避免加速电压过高时将阴极损伤。
在板极P和G2间加反向拒斥电压UpG2 。
当电子通过KG2空间,如果具有较大的能量(≥eUpG2 )就能冲过反向拒斥电场而达到板极形成板流,被微电流计pA检测出来。
如果电子在KG2空间因与氩原子碰撞,部分能量给了氩原子,使其激发,本身所剩能量太小,以致通过栅极后不足以克服拒斥电场而折回,通过电流计pA的电流就将显著减小。
当UG2K 逐渐增加时,电子在加速过程中能量也逐渐增大,但电压在初升阶段,大部分电子达不到激发氩原子的动能,与氩原子只是发生弹性碰撞,基本上不损失能量,于是穿过栅极到达板极,形成的板流Ip随UG2K 的增加而增大。
弗兰克赫兹实验思考题
课后思考题1. 二极管内Ar原子被激发,原子存在能级,原子只能停留在一定的状态上,原子辐射是只能发射一定频率的光。
2.如果以E0代表氩原子的基态能量,E1代表氩原子的第一激发态的能量,当电子与氩原子相碰撞时传递给氩原子的能量恰好是eV0=E1−E2,则氩原子就会从基态跃迁到第一激发态,而相应的电势差V0称为氩原子的第一激发电位。
从第一激发态跃迁到第二激发态相应的电势差就是第二激发电位。
3.稀有气体。
4. 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。
晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN 结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
四极管种类很多,常见的有:束射四极管,直热四极管和多子四极管等。
四极管,有音色浑厚,具有速度感等特点,实际上纯粹意义的四极管只是在电子管的发展史上作为验证管出现过而没有进入实用,这是另一话题不去说它,下面就说前面提及的目前在商品功放里超过半数以上的机种用的这东西----束射四极管。
5. 弗兰克-赫兹实验的历史1913年,丹麦物理学家玻尔(N. Bohr)将量子概念应用于当时人们尚未接受的卢瑟福(E. Rutherfond)原子核结构模型上,并提出了原子结构的量子理论,成功地解释了氢光谱,为量子力学的创建起了巨大的推动作用。
但玻尔理论的定态假设与经典电动力学明显对立,而频率定则带有浓厚的人为因素,故当时很难为人们所接受。
正是在这样的历史背景下,1914年,两位德国的实验物理学家夫兰克(J. Frank)和赫兹(G. Hertz)采用慢电子与稀薄气体原子碰撞的方法,利用两者的非弹性碰撞将原子激发到较高能态,通过测量电子与原子碰撞时交换某一定值的能量,直接证明了原子能级的存在,并验证了频率定则,为玻尔理论提供了独立于光谱研究方法的直接的实验证明。
弗兰克赫兹实验思考题
1.弗兰克-赫兹实验的特殊伏安特性曲线说明了什么?试简述该实验的物理过程玻尔原子模型理论指出:1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态相应于一定的能量Ei(i=1, 2, 3, …m…n)。
2.当一个原子从某定态Em跃迁到另一定态En时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差En—Em,并满足以下关系:hν=En—Em式中普朗克常数h=6.63×10-34J·s。
原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。
从基态跃迁到第一激发态所需要的能量称为临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。
如果电子动能大于临界能量,则发生非弹性碰撞,这时电子可把数值为△E=En—E1的能量交给原子(En 是原子激发态能量,E1是基态能量),其余能量仍由电子保留。
如初始能量为零的电子在电位差为U0的加速电场中运动,则电子可获得的能量为eU0;如果加速电压U0恰好使电子能量eU0等于原子的临界能量,即eU0=E2—E1,则U0称为第一激发电位,或临界电位。
测出这个电位差U0,就可求出原子的基态与第一激发态之间的能量差E 2—E 1。
原子处于激发态是不稳定的。
不久就会自动回到基态,并以电磁辐射的形式放出以前所获得的能量,其频率可由关系式hν=eU0求得。
在玻尔发表原子模型理论的第二年(1914),夫兰克(James Franck,1882—1964)和赫兹(Gustav Hertz,1887—1975)参照勒纳德创造反向电压法,用慢电子与稀薄气体原子(Hg;He)碰撞,经过反复试验,获得了图2的曲线。
实验原理如图3所示,在充氩的夫兰克-赫兹管中,电子由阴极K发出,阴极K和第一栅极G1之间的加速电压K G V 1 及与第二栅极G2之间的加速电压K G V 2使电图3 夫兰克-赫兹原理图子加速。
弗兰克赫兹实验思考题
弗兰克赫兹实验思考题2010211018 伍云天1、解释伏安特性曲线的奇特性?玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。
原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。
如果用Em和En分别代表原子的两个定态的能量,则发射或吸收辐射的频率由以下关系决定:hv=|Em-En|式中:h为普朗克常量。
原子从低能级向高能级跃迁,也可以通过具有一定能量的电子与原子相碰撞进行能量交换来实现。
本实验即让电子在真空中与氩蒸气原子相碰撞。
设氩原子的基态能量为E1,第一激发态的能量为E2,从基态跃迁到第一激发态所需的能量就是E2-E1。
初速度为零的电子在电位差为U的加速电场作用下具有能量eU,若eU小于E2-E1这份能量,则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。
当电子的能量eU≥E2-E1时,电子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于E2-E1的那一份,使自己从基态跃迁到第一激发态,而多余的部分仍留给电子。
设使电子具有E2-E1能量所需加速电场的电位差为U0,则eU0=E2-E1 式中:U0为氩原子的第一激发电位(或中肯电位),是本实验要测的物理量。
在充氩的F—H管中,电子由热阴极发出,阴极K和第二栅极G2之间的加速电压UG2K 使电子加速。
第一栅极对电子加速起缓冲作用,避免加速电压过高时将阴极损伤。
在板极P和G2间加反向拒斥电压UpG2 。
当电子通过KG2空间,如果具有较大的能量(≥eUpG2 )就能冲过反向拒斥电场而达到板极形成板流,被微电流计pA检测出来。
如果电子在KG2空间因与氩原子碰撞,部分能量给了氩原子,使其激发,本身所剩能量太小,以致通过栅极后不足以克服拒斥电场而折回,通过电流计pA的电流就将显著减小。
弗兰克赫兹实验思考题
1.氩原子的特殊伏安特性曲线说明了什么?说明了原子存在能级,原子只能停留在一定的状态上,原子辐射是只能发射一定频率的光。
2.第一激发电位的物理含义是什么?如果以E0代表氩原子的基态能量,E1代表氩原子的第一激发态的能量,当电子与氩原子相碰撞时传递给氩原子的能量恰好是eV0=E1−E2则氩原子就会从基态跃迁到第一激发态,而相应的电势差V0称为氩原子的第一激发电位。
3.有没有第二,第三激发电位?有,从第一激发态跃迁到第二激发态相应的电势差就是第二激发电位。
4.弗兰克-赫兹实验的历史1913年,丹麦物理学家玻尔(N. Bohr)将量子概念应用于当时人们尚未接受的卢瑟福(E. Rutherfond)原子核结构模型上,并提出了原子结构的量子理论,成功地解释了氢光谱,为量子力学的创建起了巨大的推动作用。
但玻尔理论的定态假设与经典电动力学明显对立,而频率定则带有浓厚的人为因素,故当时很难为人们所接受。
正是在这样的历史背景下,1914年,两位德国的实验物理学家夫兰克(J. Frank)和赫兹(G. Hertz)采用慢电子与稀薄气体原子碰撞的方法,利用两者的非弹性碰撞将原子激发到较高能态,通过测量电子与原子碰撞时交换某一定值的能量,直接证明了原子能级的存在,并验证了频率定则,为玻尔理论提供了独立于光谱研究方法的直接的实验证明。
由于这项卓越的成就,这两位物理学家获得了1925年的诺贝尔物理学奖。
夫兰克—赫兹实验至今仍是探索原子内部结构的主要手段之一。
所以在近代物理实验中,仍把它作为传统的经典实验。
5.正确的实验&错误的解释弗兰克和G.赫兹最初是依据斯塔克的理论,斯塔克认为线光谱产生的原因是原子或分子的电离,光谱频率ν与电离电势V有如下的量子关系:hν=eV。
弗兰克和G.赫兹在 1914年以后有好几年仍然坚持斯塔克的观点,他们相信自己的实验无可辩驳地证实了斯塔克的观点,认为4.9V电势差引起了汞原子的电离。
他们也许因为战争期间信息不通,对玻尔的原子理论不甚了解,所以还在论文中表示他们的实验结果不符合玻尔的理论。
弗兰克赫兹含思考题
交通大学实验报告第 1 页〔共 9 页〕课程:_______近代物理实验_______实 验 日 期 :年月日 专业班号______组别_______交报告日期:年月日姓 名__Bigger__学号__报 告 退 发 : 〔订正、重做〕 同 组 者__________教师审批签字:实验名称:弗兰克-赫兹实验一、 实验目的1) 通过测氩原子第一激发电位,了解Franck 和Hertz 在研究原子部能量量子化方面所采用的实验方法。
2) 了解电子和原子碰撞和能量交换过程的微观图像。
二、 实验仪器FH —1A 、Franck-Hertz 实验仪、示波器等。
三、 实验原理图1是充氩四极Franck-Hertz 实验原理图。
图1Franck-Hertz 实验原理图电子与原子的碰撞过程可以用一下方程描述:22221111''2222e e m v MV m v MV E +=++∆(2.1) 式中:m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后能的变化量。
按照波尔原子能级理论,ΔE =0 弹性碰撞; ΔE =E 1 - E 0 非弹性碰撞;式中:E 0——原子基态能量; E 1——原子第一激发态能量。
电子碰撞前的动能1/2m e v 2 < E 1-E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE=0,原子仍然停留在基态。
电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥E 1-E 0,才能在电子产生非弹性碰撞,使得电子获得某一值〔E 1 - E 0〕的能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。
Franck-Hertz 管即是为此目的而专门设计的。
在充入氩气的F-H 管中〔如图2所示〕,阴极K 被灯丝加热发射电子,第一栅极〔G1〕与阴K 之间的电压V G1K 约为1.5V ,其作用是消除空间电荷对阴极K 的影响。
弗兰克赫兹实验思考
对氩原子第二激发电位的测量方法:
<1>改变接线:(1)G1,G2用导线相连,以确保G1,G2间的电势相等,(2)在K,G1间接入加速电压,让电子在开始碰撞前就完成加速。
有第一激发电位,也有第二激发电位。第二激发电位即原子中的一个外层电子从基态激发至第二激发态所需要的能量。
想要测量第二激发电位,就需要改变四极弗兰克赫兹管的接线方式,让碰撞区域是等电势区,电子进入碰撞区前,就加速到较高的能量,这样,就可以避免无法提高电子碰撞前最高能量的问题。
就这样,随着Ug2k的升高,伏安特性曲线整体升高,但呈现周期性波动的特性。
这样的伏安特性曲线说明了氩原子的能量状态是不连续的,即氩原子有分立的能级。
至于要考察氩原子的有多少激发态,则不能使用这样的接线方式:因为,我们所用的接线方式使得电子每加速到能使氩原子能量由基态跃迁到第一激发态时,其能量就被吸收了。没有办法观察到能量更高的能态。
弗兰克和G.赫兹最初是依据斯塔克的理论,斯塔克认为线光谱产生的原因是原子或分子的电离,光谱频率ν与电离电势V有如下的量子关系:hν=eV。
弗兰克和G.赫兹在 1914年以后有好几年仍然坚持斯塔克的观点,他们相信自己的实验无可辩驳地证实了斯塔克的观点,认为4.9V电势差引起了汞原子的电离。他们也许因为战争期间信息不通,对玻尔的原子理论不甚了解,所以还在论文中表示他们的实验结果不符合玻尔的理论。其实,玻尔在得知弗兰克-赫兹的实验后,早在1915年就指出,弗兰克-赫兹实验的4.9V正是他的能级理论中预言的汞原子的第一激发电势。
弗兰克赫兹含思考题
西安交通大学实验报告成绩第 1 页(共 9 页)课程:_______近代物理实验_______ 实验日期:年月日专业班号___ ___组别_______ 交报告日期:年月日姓名__Bigger __学号_ _ 报告退发:(订正、重做)同组者__ ________ 教师审批签字:实验名称:弗兰克-赫兹实验一、实验目的1)通过测氩原子第一激发电位,了解Franck和Hertz在研究原子内部能量量子化方面所采用的实验方法。
2)了解电子和原子碰撞和能量交换过程的微观图像。
二、实验仪器FH—1A、Franck-Hertz实验仪、示波器等。
三、实验原理图1是充氩四极Franck-Hertz实验原理图。
图1 Franck-Hertz实验原理图电子与原子的碰撞过程可以用一下方程描述:22221111''2222e e m v MV m v MV E +=++∆(2.1)式中:m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后内能的变化量。
按照波尔原子能级理论,ΔE = 0 弹性碰撞; ΔE = E 1 - E 0 非弹性碰撞;式中:E 0——原子基态能量; E 1——原子第一激发态能量。
电子碰撞前的动能1/2m e v 2 < E 1 - E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE = 0,原子仍然停留在基态。
电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥ E 1 - E 0,才能在电子产生非弹性碰撞,使得电子获得某一值(E 1 - E 0)的内能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。
Franck-Hertz 管即是为此目的而专门设计的。
在充入氩气的F-H 管中(如图2所示),阴极K 被灯丝加热发射电子,第一栅极(G1)与阴K 之间的电压V G1K 约为1.5V ,其作用是消除空间电荷对阴极K 的影响。
弗兰克赫兹实验思考题
1.弗兰克-赫兹实验的特殊伏安特性曲线说明了什么,试简述该实验的物理过程玻尔原子模型理论指出:1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态相应于一定的能量Ei(i=1, 2, 3, …m…n)。
2(当一个原子从某定态Em跃迁到另一定态En时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差En—Em,并满足以下关系: ,h=En—Em式中普朗克常数h=6.63×10-34J?s。
原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。
从基态跃迁到第一激发态所需要的能量称为临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。
如果电子动能大于临界能量,则发生非弹性碰撞,这时电子可把数值为?E=En—E1的能量交给原子(En 是原子激发态能量,E1是基态能量),其余能量仍由电子保留。
如初始能量为零的电子在电位差为U0的加速电场中运动,则电子可获得的能量为eU0;如果加速电压U0恰好使电子能量eU0等于原子的临界能量,即eU0,E2—E1,则U0称为第一激发电位,或临界电位。
测出这个电位差U0,就可求出原子的基态与第一激发态之间的能量差E 2—E 1。
原子处于激发态是不稳定的。
不久就会自动回到基态,并以电磁辐射的形式放,出以前所获得的能量,其频率可由关系式h=eU0求得。
在玻尔发表原子模型理论的第二年(1914),夫兰克(James Franck,1882—1964)和赫兹(Gustav Hertz,1887—1975)参照勒纳德创造反向电压法,用慢电子与稀薄气体原子(Hg;He)碰撞,经过反复试验,获得了图2的曲线。
实验原理如图3所示,在充氩的夫兰克-赫兹管中,电子由阴极K发出,阴极K 和第一栅极G1之间的加速电压及与第二栅极G2之间的加速电压使电VVG1KG2K图3 夫兰克-赫兹原理图子加速。
近代物理实验思考题答案
一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。
电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。
2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化为什么答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。
总的来说到达极板的电子数减小,因此极板电流减小。
3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化为什么答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。
灯丝电压不能过高或过低。
因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。
灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U 曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。
但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。
二、 塞曼效应1、什么叫塞曼效应,磁场为何可使谱线分裂答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。
后人称此现象为塞曼效应。
原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。
总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离2、叙述各光学器件在实验中各起什么作用答;略3、如何判断F-P标准具已调好答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P标准具的两反射面平行了。
弗兰克赫兹实验思考题
1、夫兰克-赫兹实验中,发生什么过程导致U -I 曲线?玻尔原子模型理论指出:1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态相应于一定的能量Ei(i=1, 2, 3, …m …n)。
2.当一个原子从某定态Em 跃迁到另一定态En 时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差En —Em ,并满足以下关系:h ν=En —Em式中普朗克常数h=6.63×10-34J ·s 。
原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。
从基态跃迁到第一激发态所需要的能量称为临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。
如果电子动能大于临界能量,则发生非弹性碰撞,这时电子可把数值为△E=En —E1的能量交给原子(En 是原子激发态能量,E1是基态能量),其余能量仍由电子保留。
如初始能量为零的电子在电位差为U0的加速电场中运动,则电子可获得的能量为eU0;如果加速电压U0恰好使电子能量eU0等于原子的临界能量,即eU0=E2—E1,则U0称为第一激发电位,或临界电位。
测出这个电位差U0,就可求出原子的基态与第一激发态之间的能量差E 2—E 1。
原子处于激发态是不稳定的。
不久就会自动回到基态,并以电磁辐射的形式放出以前所获得的能量,其频率可由关系式h ν=eU0求得。
在玻尔发表原子模型理论的第二年(1914),夫兰克(James Franck,1882—1964)和赫兹(GustavHertz,1887—1975)参照勒纳德创造反向电压法,用慢电子与稀薄气体原子(Hg ;He )碰撞,经过反复试验,获得了图2的曲线。
实验原理如图3所示,在充氩的夫兰克-赫兹管中,电子由阴极K 发出,阴极K 和第一栅极G1之间的加速电压K G V 1 及与第二栅极G2之间的加速电压K G V 2使电图3 夫兰克-赫兹原理图子加速。
弗兰克—赫兹实验思考题答案
弗兰克—赫兹实验思考题答案预习思考题1、 什么是能级 玻尔的能级跃迁理论是如何描述的答:在玻尔的原子模型中;原子是由原子核和核外电子所组成;原子核位于原子的中心;电子沿着以核为中心的各种不同直径的轨道运动..在一定轨道上运动的电子;具有对应的能量;轨道不同;能量的大小也不相同..这些与轨道相联系、大小不连续的能量构成了能级..当原子状态改变时;伴随着能量的变化..若原子从低能级En 跃迁到高能级Em ;则原子需吸收一定的能量;该能量的大小为△E :△E =Em -En若电子从高能级Em 跃迁到低能级En ;则原子将放出能量△E..2、 为什么I G2A -U G2K 曲线上的各谷点电流随U G2K 的增大而增大答:电子与汞原子的碰撞有一定的几率;总会有一些电子逃避了碰撞;穿过栅极而到达板极..随着U G2K 的增大;这些电子的能量增大;因此在I G2A -U G2K 曲线上的各谷点电流也随着增大..实验后思考题1、 温度对充汞F -H 管的I G2A -U G2K 曲线有什么影响答:当温度过大时;单位体积内的汞原子数增加;电子的平均自由程减小;电子与汞原子的碰撞次数增加;因此;在整个加速过程中;弹性碰撞的总能量损失相应增大;其I G2A 电流减小..2、在I G2A -U G2K 曲线上;为什么对应板极电流I G2K 第一个峰的加速电压U G2K 不等于4.9V答:对应板极电流I G2K 第一个峰的加速电压U G2K 不等于4.9V 的主要原因是:由于阴极与栅极不是由同一种材料组成;其间存在接触电势差.. 3、 如何利用该套实验设备测出汞原子的电离电势答:利用该套实验设备测量汞原子的电离电势的方法是:降低炉温;重 新选择U G1K 、U G2A ;谨慎地选择灯丝电压;使得在第二个第一激发电位峰出现后即出现电离峰;以电离曲线中的第一个峰对应4.9V 为定标标准;求出电离峰与第一峰的距离;即可知电离电位..或在不改变温度的情况下;选择合适的U G1K 、U G2A ;遏止全部电子;将全部离子拉向板极;测量离子电流与U G2K 的曲线;则该曲线拐点处即为电离电位..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弗兰克—赫兹实验思考题答案
[预习思考题]
1、什么是能级?玻尔的能级跃迁理论是如何描述的?
答:在玻尔的原子模型中,原子是由原子核和核外电子所组成,原子核位于原子的中心,电子沿着以核为中心的各种不同直径的轨道运动。
在一定轨道上运动的电子,具有对应的能量,轨道不同,能量的大小也不相同。
这些与轨道相联系、大小不连续的能量构成了能级。
当原子状态改变时,伴随着能量的变化。
若原子从低能级En跃迁到高能级Em,则原子需吸收一定的能量,该能量的大小为△E:
△E=Em-En
若电子从高能级Em跃迁到低能级En,则原子将放出能量△E。
2、为什么I G2A-U G2K曲线上的各谷点电流随U G2K的增大而增大?
答:电子与汞原子的碰撞有一定的几率,总会有一些电子逃避了碰
撞,穿过栅极而到达板极。
随着U G2K的增大,这些电子的能量增大,因此在I G2A-U G2K曲线上的各谷点电流也随着增大。
[实验后思考题]
1、温度对充汞F-H管的I G2A-U G2K曲线有什么影响?
答:当温度过大时,单位体积内的汞原子数增加,电子的平均自由程减小,电子与汞原子的碰撞次数增加,因此,在整个加速过程中,弹性碰撞的总能量损失相应增大,其I G2A电流减小。
2、在I G2A-U G2K曲线上,为什么对应板极电流I G2K第一个峰的加速电压U G2K不等于4.9V?
答:对应板极电流I G2K第一个峰的加速电压U G2K不等于4.9V的主要原因是:由于阴极与栅极不是由同一种材料组成,其间存在接触电势差。
3、如何利用该套实验设备测出汞原子的电离电势?
答:利用该套实验设备测量汞原子的电离电势的方法是:降低炉温,重新选择U G1K、U G2A,谨慎地选择灯丝电压,使得在第二个第一激发电位峰出现后即出现电离峰,以电离曲线中的第一个峰(对应4.9V)为定标标准,求出电离峰与第一峰的距离,即可知电离电位。
或在不改变温度的情况下,选择合适的U G1K、U G2A,遏止全部电子,将全部离子拉向板极,测量离子电流与U G2K的曲线,则该曲线拐点处即为电离电位。