同济大学版高等数学期末考试试卷 (2)
同济大学版高等数学期末考试试卷
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 分,共 分).下列各组函数中,是相同的函数的是( )(✌)()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 ()g x =( )()f x x = 和 ()2g x = ( )()||x f x x=和 ()g x =.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩在0x =处连续,则a =( )(✌) ( )14( ) ( ) .曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) (✌)1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( )y x =.设函数()||f x x =,则函数在点0x =处( )(✌)连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微.点0x =是函数4y x =的( )(✌)驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点.曲线1||y x =的渐近线情况是( ) (✌)只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线( )既无水平渐近线又无垂直渐近线 .211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ) (✌)1f C x ⎛⎫-+ ⎪⎝⎭( )1f C x ⎛⎫--+ ⎪⎝⎭( )1f C x ⎛⎫+ ⎪⎝⎭( )1f C x ⎛⎫-+ ⎪⎝⎭.x x dxe e -+⎰的结果是( )(✌)arctan xe C + ( )arctan xeC -+ ( )x x e e C --+ ( )ln()x x e e C -++.下列定积分为零的是( )(✌)424arctan 1xdx x ππ-+⎰ ( )44arcsin x x dx ππ-⎰ ( )112x xe e dx --+⎰ ( )()121sin xx x dx -+⎰.设()f x 为连续函数,则()12f x dx '⎰等于( )(✌)()()20f f - ( )()()11102f f -⎡⎤⎣⎦( )()()1202f f -⎡⎤⎣⎦( )()()10f f -二.填空题(每题 分,共 分).设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.21xy x =-的垂直渐近线有条 .()21ln dxx x =+⎰.()422sin cos xx x dx ππ-+=⎰三.计算(每小题 分,共 分) .求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- .求曲线()ln y x y =+所确定的隐函数的导数x y ' .求不定积分 ①()()13dxx x ++⎰ ②()220a x a>-⎰③x xe dx -⎰四.应用题(每题 分,共 分). 作出函数323y x x =-的图像.求曲线22y x =和直线4y x =-所围图形的面积《高数》试卷 参考答案一. 选择题. . .✌ . . . . .✌ .✌ .二.填空题.2- . 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②1611xy x y '=+- ①11ln ||23x C x +++ ②ln |x C +③()1x e x C --++四.应用题1.略 2.18S =。
高等数学同济版下册期末考四套试题及答案
高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程x yx y dx dy tan +=的通解为 。
7、方程04)4(=-y y的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰212sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
同济大学版高等数学期末考试试卷
《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。
同济大学《高等数学》期末试卷及参考答案
⎰ ⎰⎰⎰⎰⎰⎰ ∞n ⎩x n !同济大学2020年数学系《高等数学》第二学期期末考试试卷一、单选题(共 15 分,每小题 3 分)1.设函数 f (x , y ) 在 P (x 0 , y 0 ) 的两个偏导 f x (x 0 , y 0 ) , f y (x 0 , y 0 )都存在,则 ()A . f (x , y ) 在 P 连续B . f (x , y ) 在 P 可微C . lim f (x , y 0 ) 及x →x 0lim y → y 0f (x 0 , y ) 都存在D .lim ( x , y )→( x 0 , y 0 )f (x , y ) 存在2.若 z = y ln x ,则 dz 等于( ). y ln x ln y y ln x ln y y ln x ln yA . +B .x yxC . y ln xln ydx + y ln x ln y xdy D .y ln x ln y y ln x ln x dx + x ydy 3.设Ω 是圆柱面 x2+ y 2 = 2x 及平面 z = 0, z = 1所围成的区域,则 ⎰⎰⎰ Ωf (x , y , z )dxdydz = ().A.π2d θ2cos θ dr 1f (r cos θ , r sin θ , z )dzB.π2d θ2cos θrdr 1f (r cos θ , r sin θ , z )dz0 π22cos θ1π2cos x1C. -π 2d θ ⎰0rdr ⎰0 f (r cos θ , r sin θ , z )dzD .⎰0 d θ ⎰0rdr ⎰0f (r cos θ , r sin θ , z )dz4.4.若∑a (x -1)n在 x = -1处收敛,则此级数在 x = 2 处().n =1A.条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定⎧x - y + z = 25.曲线⎨ z = x 2 + y 2在点(1,1,2)处的一个切线方向向量为( ).A. (-1,3,4)B.(3,-1,4)C. (-1,0,3)D. (3,0,-1)二、填空题(共 15 分,每小题 3 分)1.设 x + 2 y - 2xyz = 0 ,则 z '(1,1) = .eln x2. 交 换 I =⎰1dx ⎰f (x , y )dy 的积分次序后, I = .3.设u = 2xy - z 2,则u 在点 M (2,-1,1) 处的梯度为 .x∞xn - x4. 已知 e = ∑ ,则 xe n =0 = .5.函数 z = x 3 + y 3 - 3x 2 - 3y 2的极小值点是.三、解答题(共 54 分,每小题 6--7 分)1.(本小题满分 6 分)设 z = y arctan y, 求∂z ,∂z.x∂x ∂y2.(本小题满分 6 分)求椭球面 2x2+ 3y 2 + z 2 = 9 的平行于平面 2x - 3y + 2z +1 = 0 的切平面方程,并求切点处的法线方程.3. (本小题满分 7 分)求函数 z = x 2 + y 2 在点 (1, 2) 处沿向量 l = 1 i + 3j 方向的方向导数。
同济大学版高等数学期末考试试卷
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩在0x =处连续,则a =( ). (A )0 (B )14(C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1xdx xππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x x e edx --+⎰ (D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于().(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分)1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰ ②()220a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln |x C + ③()1x e x C --++四.应用题1.略 2.18S =。
同济大学版高等数学期末考试试卷
同济大学版高等数学期末考试试卷Revised on November 25, 2020《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14 (C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211f dx x x ⎛⎫' ⎪⎝⎭⎰的结果是( ).(A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1fC x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭8.x xdxe e -+⎰的结果是( ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1xdx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条.4.()21ln dxx x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分①()()13dx x x ++⎰②()0a >⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1.作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一. 选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctanln x c + 5.2 三.计算题1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C +③()1x e x C --++四.应用题1.略 2.18S =。
高等数学(同济)下册期末考试题及答案(5套)之欧阳索引创编
高等数学(下册)考试试卷(一)欧阳家百(2021.03.07)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(xyxf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰220103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰200102sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
高等数学同济版下册期末考四套试题及答案
高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。
2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。
3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。
4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。
5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。
6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。
7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。
8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。
同济大学高等数学上期末试卷(2套)
《高等数学》上 期末试卷(基础卷)一.填空题(本题满分15分,每小题3分)1.极限π2ln sin lim1sin x xx →=-________.2.设()ln 1arctan x t y t t⎧=+⎨=-⎩,则1d |d t yx ==________.3. 曲线323y x x =+在 x = 1 处对应的切线方程为: .4. 333)e d xx x x -+=⎰(________.5. 常系数齐次线性微分方程6130y y y '''++=的通解是 ________. 二.选择题(本题满分15分,每小题3分)下列每小题给出4个答案, 其中只有一个是正确的,请将正确答案的编号填入括号内。
1.设()1,0sin ,0x x f x x x x-≤⎧⎪=⎨>⎪⎩,则0x =为()f x 的_______.A . 可去间断点 B. 跳跃间断点 C. 无穷间断点 D. 连续点2.设()()()()123f x x x x x =---,则()f x ''在()0,3上恰有_______零点.A. 1个B. 2个C. 3个D. 4个3. 当0x →时,cos x x x -与sin cos x x x -是 无穷小.A.等价B.同阶C.高阶D.低阶 4. 函数()(ln ln f x x a =-是 .A. 偶函数B. 奇函数C. 非奇非偶函数D. 奇偶性取决于a 值5. 微分方程d e d x yy x= 的通解为 .A .e x y C = B. e e xy C = C . x C y ln =; D.ln e x y C x =+.三.计算题(本题满分24 分,共4小题,每小题满分6分)1.求I x =⎰.2.30ln cos d limxx t t x+→⎰.3. 函数)(x y y =由方程e cos x y y =+确定,求d d yx. 4. 求tan sin 2y y x x '+=的通解.四.(本题10分)设平面区域D由曲线y =直线 1x = 及0y =所围成, 求区域D 的面积,以及该区域绕y 轴旋转所成旋转体的体积V .五.(本题10分)求内接于椭圆12222=+by a x 而面积最大的矩形的各边之长..六.(本题10分)设函数()x bx ax x f ++=23在1=x 取得极大值5, (1)求常数a 和b ; (2)求函数()x f 的极小值. 七.(本题10分)求函数2361(3)xy x =++的单调区间,凹凸区间、拐点和渐近线,并画出函数的图形.八.(本题6分)设()f x 二阶可导,且()00f =,()0f x ''>,证明:()f x x在 ()0,+∞上单调增加.《高等数学》上 期末试卷(综合卷)一.填空题(本题满分15分,每小题3分) 1. 极限()cot 0lim 12xx x →+=________.2. 设()f x 可导,并且()()112lim3x f f x x→--=,则()1f '=________.3. 设2e et tx t y t -⎧=-⎨=+⎩,求22d d y x =________. 4.设()23f '=,则函数()22y f x =在1x =处的微分为________. 5.(5π5πln d x x -⎡=⎢⎣⎰________.二.选择题(本题满分15分,每小题3分)下列每小题给出4个答案, 其中只有一个是正确的,请将正确答案的编号填入括号内。
同济大学版高等数学期末考试试卷
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 分,共 分).下列各组函数中,是相同的函数的是( )( )()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 ()g x =( )()f x x = 和 ()2g x =( )()||x f x x=和 ()g x = .函数()00x f x a x ≠=⎨⎪=⎩在0x =处连续,则a =( )( ) ( )14( ) ( ).曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) ( )1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( )y x = .设函数()||f x x =,则函数在点0x =处( )( )连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微.点0x =是函数4y x =的( )( )驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点.曲线1||y x =的渐近线情况是( ) ( )只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线 ( )既无水平渐近线又无垂直渐近线.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( )( )1f C x ⎛⎫-+ ⎪⎝⎭ ( )1f C x ⎛⎫--+ ⎪⎝⎭ ( )1f C x ⎛⎫+ ⎪⎝⎭ ( )1f C x ⎛⎫-+ ⎪⎝⎭.x x dxe e -+⎰的结果是( )( )arctan xe C + ( )arctan xeC -+ ( )x x e e C --+ ( )ln()x x e e C -++.下列定积分为零的是( )( )424arctan 1x dx x ππ-+⎰ ( )44arcsin x x dx ππ-⎰ ( )112x xe e dx --+⎰ ( )()121sin x x x dx -+⎰ .设()f x 为连续函数,则()12f x dx '⎰等于( )( )()()20f f - ( )()()11102f f -⎡⎤⎣⎦( )()()1202f f -⎡⎤⎣⎦( )()()10f f -二.填空题(每题 分,共 分).设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.21xy x =-的垂直渐近线有条 .()21ln dxx x =+⎰.()422sin cos xx x dx ππ-+=⎰三.计算(每小题 分,共 分) .求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- .求曲线()ln y x y =+所确定的隐函数的导数x y ' .求不定积分①()()13dx x x ++⎰ ②()220dxa x a >-⎰ ③x xe dx -⎰四.应用题(每题 分,共 分). 作出函数323y x x =-的图像.求曲线22y x =和直线4y x =-所围图形的面积《高数》试卷 参考答案一. 选择题. . . . . . . . . . 二.填空题 .2- .33- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②1611xy x y '=+-①11ln ||23x C x +++ ②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =。
中国大学mooc《高等数学(二)(同济大学) 》满分章节测试答案
title高等数学(二)(同济大学) 中国大学mooc答案100分最新版content第一周第一讲测验1、答案:2、答案:3、答案:4、答案:5、答案:6、答案:7、答案:8、答案: 9、答案:10、答案:11、答案:12、答案:13、答案:14、答案:15、答案:16、答案:17、答案:18、答案:第一周第二讲测验1、答案:2、答案:3、答案:4、答案:5、答案: 6、答案: 7、答案: 8、答案: 9、答案: 10、答案: 11、答案: 12、答案: 13、答案:14、答案:15、答案:16、答案:17、答案:18、答案:第二周第三讲测验1、答案:2、答案: 3、答案: 4、答案: 5、答案: 6、答案: 7、答案: 8、答案: 9、答案: 10、答案:11、答案: 12、答案: 13、答案: 14、答案: 15、答案: 16、答案: 17、答案:18、答案:第二周第四讲测验1、答案:2、答案:3、答案:4、答案:5、答案:6、答案: 7、答案: 8、答案:9、答案:10、答案:11、答案:12、答案:13、答案:14、答案:15、答案:16、答案:17、答案:18、答案:第三周第五讲测验1、答案:2、答案:3、答案:4、答案:5、答案:6、答案:7、答案:8、答案:9、答案: 10、答案:11、答案: 12、答案:13、答案:14、答案:15、答案: 16、答案: 17、答案: 18、答案:。
同济大学大一公共课高等数学期末试卷及答案2套
(2)该曲线在哪点处的曲率半径为 2 ?
∫⎧
2.设
ϕ
(x)
=
⎪ ⎨
⎪
2x et2 d t
x
,
x
⎩ a,
x ≠ 0, 求 a 的值,使得ϕ(x)在 x = 0 处连续,并用导数定义求ϕ ′(0) .
x = 0,
三、
∫ 1.求定积分 I = π x2 1− sin 2 x d x . 0
2.若
f
(x)
2 0
−
x2 sin x + 2x cos x − 2 sin x
π π
2
= π 2 + 2π − 4 . 2
2.当 x < 0 时, 当 x ≥ 0 时,
∫ F(x) =
x −∞
1 1+ t2
dt
= arctan x +
π 2
;
∫ ∫ F(x) = 0 1 d t + x
−∞ 1+ t2
0
1 d t = π + [2 arctan t (1+ t) 2
4 + y2 d y −1000g
h(t )
y
4+ y2 d y ,
−1
−1
−1
上式两边对 t 求导,得
∫ d F = 1000g h(t) 4 + y2 d y d h ,
dt
−1
dt
由于 d h = −0.01,因此,当水面下降至平板的中位线(即 x 轴)时,平板一侧所受到的水压力的下 dt
降速率为
t
]
x 0
=
2 arctan
x+π . 2
同济大学高等数学期末考试试卷
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.33- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++ ②22ln ||x a x C -++ ③()1xex C --++四.应用题1.略 2.18S =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高数》试卷1(上)
一.选择题(将答案代号填入括号内,每题3分,共30分)、
1.下列各组函数中,就是相同的函数的就是( )、
(A)()()2ln 2ln f x x g x x == 和 (B)()||f x x = 与 (
)g x =(C)()f x x = 与 (
)2
g x =
(D)()||
x f x x
=
与 ()g x =1 2、函数()
00x f x a x ≠=⎨⎪
=⎩
在0x =处连续,则a =( )、
(A)0 (B)1
4
(C)1 (D)2
3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( )、 (A)1y x =- (B)(1)y x =-+ (C)()()ln 11y x x =-- (D)y x = 4、设函数()||f x x =,则函数在点0x =处( )、
(A)连续且可导 (B)连续且可微 (C)连续不可导 (D)不连续不可微
5.点0x =就是函数4
y x =的( )、
(A)驻点但非极值点 (B)拐点 (C)驻点且就是拐点 (D)驻点且就是极值点
6.曲线1
||
y x =
的渐近线情况就是( )、 (A)只有水平渐近线 (B)只有垂直渐近线 (C)既有水平渐近线又有垂直渐近线ﻫ(D)既无水平渐近线又无垂直渐近线 7.
211
f dx x x
⎛⎫' ⎪⎝⎭⎰
的结果就是( ). (A)1f C x ⎛⎫
-+ ⎪⎝⎭
(B)1f C x ⎛⎫
--+ ⎪⎝⎭
(C)1f C x ⎛⎫
+ ⎪⎝⎭
(D)1f C x ⎛⎫
-+ ⎪⎝⎭
8、
x x dx
e e -+⎰的结果就是( )、
(A)arctan x
e C + (B)arctan x
e
C -+ (C)x x e e C --+ (D)ln()x x e e C -++
9.下列定积分为零的就是( ).
(A)424arctan 1x dx x π
π-+⎰ (B)44
arcsin x x dx ππ-⎰ (C)112x x
e e dx --+⎰ (D)()121sin x x x dx -+⎰ 10、设()
f x 为连续函数,则()1
2f x dx '⎰等于( )、
(A)()()20f f - (B)
()()11102f f -⎡⎤⎣⎦(C)()()1
202f f -⎡⎤⎣
⎦(D)()()10f f -
二、填空题(每题4分,共20分)
1、设函数()21
00x e x f x x a x -⎧-≠⎪
=⎨⎪=⎩
在0x =处连续,则a =
、
2、已知曲线()y f x =在2x =处的切线的倾斜角为5
6
π,则()2f '=、
3.2
1
x
y x =-的垂直渐近线有条. 4、
()21ln dx
x x =
+⎰、
5、
()4
22
sin cos x
x x dx π
π
-
+=
⎰、
三、计算(每小题5分,共30分) 1.求极限
①21lim x
x x x →∞+⎛⎫
⎪⎝⎭ ②()
2
0sin 1
lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①
()()13dx x x ++⎰
②()0a >
③x xe dx -⎰
四.应用题(每题10分,共20分) 1. 作出函数3
2
3y x x =-的图像、
2、求曲线2
2y x =与直线4y x =-所围图形的面积、
《高数》试卷1参考答案
一.选择题
1.B 2、B 3.A 4.C 5.D 6、C 7.D 8、A 9、A 10.C 二、填空题 1、2-
2.3
3
- 3. 2 4、arctanln x c + 5.2 三、计算题 1①2
e ②
1
6
2、11x
y x y '=+- 3、 ①
11
ln ||23
x C x +++ ②22ln ||x a x C -++ ③()1x
e
x C --++
四、应用题
1、略 2.18S =。