1[1].7定积分的简单应用
定积分的几个简单应用
定积分的几个简单应用一、定积分在经济生活中的应用在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决.例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余.解 由p 50=,q p 15.065-=,得10000=q ,于是dq q )5015.065(100000--⎰10000023)1.015(q q -=50000=,所求消费者剩余为50000元.例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量.解 所求的总产量为⎰⎰+='=105105)1240()(dt t dt t Q Q 1052)640(t t +=650=(件). 二、用定积分求极限例1 求极限 ∑=∞→n k n n k 123lim .解 nn n n n n n n k n k 12111123+++=∑= )21(1nn n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有∑=∞→n k n n k 123lim ⎥⎦⎤⎢⎣⎡+++=∞→)21(1lim n n n n n n 3210==⎰dx x . 例2 求极限 2213lim k n n k n k n -∑=∞→. 解 212213)(11n k nk n k n n k n k n k -⋅=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有2213lim k n n k n k n -∑=∞→31)1(31110232102=⎥⎦⎤⎢⎣⎡--=-=⎰x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明.例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证:⎰⎰+≥b ab a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x xa x a ⎰⎰+-=)(2)()(ϕ, 显然0)(=a ϕ,且)(2)(21)()(x f x a dt t f x xf x x a ⎰+--='ϕ )(2))((21)(2x f a a x f x f x ---=ξ [])()(2ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ϕ,从而)(x ϕ在闭区间[]b a ,上单调增加,所以0)()(=≥a x ϕϕ,取b x =得⎰⎰+≥b a ba dx x fb a dx x xf )(2)(. 定积分在许多领域中有着重要应用,它是解决一些几何学问题、物理学问题和经济学问题的重要工具.这一章主要介绍了定积分在不同学科中的应用问题.。
人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件
[答案]
1 2
2 3
[解析] 曲线y=x 与y=cx 由题意知
1 1 的交点为c ,c2.
2 1 =3.∴c=2.
典例探究学案
不分割型平面图形面积的求解
如图,求曲线y=x2与直线y=2x所围图形的面 积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为一 个三角形与一个曲边三角形面积的差,进而可以用定积分求 出面积.为了确定出积分的上、下限,我们需要求出直线和 抛物线的交点的横坐标.
(1)(2014· 山东理,6)直线y=4x与曲线y=x3在第一象限内 围成的封闭图形的面积为( A.2 2 C.2 ) B.4 2 D.4
(2)由y=-x2与y=x-2围成图形的面积S=________.
9 [答案] (1)D (2)2
[解析] (1)如图所示
y=4x, 由 3 y = x .
[答案] C
) B.gt2 0 1 2 D.6gt0
[解析] 如果变速直线运动的速度为 v=v(t)(v(t)≥0), 那么
b 从时刻 t=a 到 t=b 所经过的路程是 v(t)dt,
a
故应选 C.
2 4.若两曲线y=x 与y=cx (c>0)围成的图形的面积是 3 ,
2 3
则c=________.
[解析]
y=2x, 解方程组 2 y = x ,
得x1=0,x2=2.
故所求图形的面积为 S= 2xdx- x
2 0 2 0
2
2 2 dx=x 0
1 3 4 2 -3x 0 =3.
[方法规律总结] 利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图象. (2)将平面图形分割成曲边梯形,并分清在x轴上方与下方的 部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数和( 定积分为负的部分求面积时要改变符号处理为正),求出面 积.
1.7定积分的简单应用(3课时)
W =
ò
b
a
F (x )dx
思考3:如图,在弹性限度内,将一弹簧 从平衡位置拉到离平衡位置xm处,那么 拉伸弹簧所需的力F(x)与x的函数关系是 什么? F(x)=kx,
其中k为弹力系数.
x
思考4:如果将弹簧从平衡位置拉到离平 衡位置l m处,那么克服弹力所作的功为 多少?
l
1 2 l 1 2 W = ò kxdx = kx |0 = kl (J ) 0 2 2
思考3:该图形的面积用定积分怎样表示?
y y =x 2 1 O C B D A 1 x y 2=x
S =
蝌
0
1
xdx -
1 0
x dx
2
思考4:利用微积分基本定理计算,该图 形的面积等于多少?
y y =x 2 y 2=x
1 O
3 2 1 0
C
B
D A 1
x
2 1 3 1 1 S = x | - x |0 = 3 3 3
1.7
1.7.1
定积分的简单应用
定积分在几何中的应用
问题提出
b
1 5730 p 2
t
1.定积分ò f (x )dx 的含义及其几何意 a 义分别是什么 n b b- a f ( xi ) òa f (x )dx = nlim å n i= 1
y
y=f(x)
ò
O
b
a
f (x )dx
O
10
40
C 60 t(s)
思考2:汽车在[0,10],[10,40],[40, 60](单位:s)三个时段内行驶的路程, 用定积分分别如何表示?
v(m/s) 30
A
例谈定积分的应用
例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。
一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。
2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。
3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。
4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。
二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。
2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。
3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。
4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。
三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。
由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。
定积分在几何中的应用
1.7定积分的简单应用1.7.1 定积分在几何中的应用双基达标限时20分钟1.由y=1x,x=1,x=2,y=0所围成的平面图形的面积为( ).A.ln 2 B.ln 2-1 C.1+ln 2 D.2ln 2解析画出曲线y=1x(x>0)及直线x=1,x=2,y=0,则所求面积S为如图所示阴影部分面积.=ln 2-ln 1=ln 2.故选A.答案A2.在下面所给图形的面积S及相应表达式中,正确的有( ).A .①③B .②③C .①④D .③④答案 D3.由曲线y =x 2与直线y =2x 所围成的平面图形的面积为( ).A.163B.83C.43D.23解析 画出曲线y =x 2和直线y =2x ,则所求面积S 为图中阴影部分的面积.解方程组⎩⎨⎧y =2x ,y =x 2,得⎩⎨⎧x =0,y =0或⎩⎨⎧x =2,y =4.∴A (2,4),O (0,0).=4-⎝ ⎛⎭⎪⎫83-0=43.故选C.答案 C4.由曲线y =2x 2,及x =0,x =3,y =0所围成图形的面积为________. 解析 由题意画草图:答案 18 5.直线x =π2,x =3π2,y =0及曲线y =cos x 所围成图形的面积________. 解析 由题意画草图:由图形面积为答案 26.求由曲线y =x 3及直线y =2x 所围成的图形面积. 解 由⎩⎨⎧y =x 3,y =2x ,解得x 1=0,x 2=2,x 3=- 2.交点为(-2,-22),(0,0),(2,22). 所求面积S 为:综合提高 限时25分钟7.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为( ).解析 当f (x )>g (x )时,所求面积为;当f (x )≤g (x )时,所求面积为.综上,所求面积为.答案 C8.曲线y =x 2+2x 与直线x =-1,x =1及x 轴所围图形的面积为( ).A .2 B.83 C.43D.23=23+43=2.答案 A9.抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________.解析 由y ′=-2x +4得在点A 、B 处切线的斜率分别为2和-2,则两直线方程分别为y =2x -2和y =-2x +6, 由⎩⎨⎧y =2x -2,y =-2x +6,得两直线交点坐标为C (2,2),∴S =S △ABC - (-x 2+4x -3)d x=12×2×2-⎝ ⎛⎭⎪⎫-13x 3+2x 2-3x ⎪⎪⎪31=2-43=23.答案2310.已知函数f (x )=3x 2+2x +1,若f (x )d x =2f (a )成立,则a 的值为________.所以2(3a 2+2a +1)=4, 即3a 2+2a -1=0, 解得a =-1或a =13.答案 -1或1311.直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 值及直线方程. 解 由⎩⎨⎧y =kx ,y =x -x 2,得⎩⎨⎧x =0,y =0,或⎩⎨⎧x =1-k ,y =k -k 2.(0<k <1)即⎝⎛⎭⎪⎫1-k 2x 2-13x 3⎪⎪⎪1-k0=12⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪10.∴1-k 36=112, ∴(1-k )3=12,k =1-342.∴直线方程为y =⎝⎛⎭⎪⎪⎫1-342x . 12.(创新拓展)已知函数f (x )=⎩⎨⎧x 3,x ∈[0,1],x ,x ∈[1,2],求曲线y =f (x )与x 轴、直线x =0、x =2所围成的图形的面积.(注:本资料素材和资料部分来自网络,仅供参考。
数学:171《定积分在几何中的应用》课件新人教A版选修
y
y x2
1
C
B
y2 x
DAo1x以 看 出,所 求 图 形 的 面积可以转化为两
图1.7 1
个 曲 边 梯 形 面 积 的 差,进 而 可 以 用 定 积 分 求 面
积 S.为 了 确 定 出 被 积 函 数 和积 分 的 上 、 下 限,
我 们 需 要 求 出 两 条 曲 线的 交 点 的 横 坐 标.
还需把所求图形的面积 分成两部分 S1和 S 2. 为了确定出被积函数和 积分的上、下限 ,需
要求出直线 y x 4与曲线 y 2x 的交点
的横坐标 , 直线 y x 4与 x轴的交点 .
编辑ppt
6
y
yx4
解 作出直线 y x4,曲线
4
y 2x的草图,所求面积为2
y 2x S2
图1.7
1.7 定积分的简单应用
编辑ppt
1
我们已经看,定到积分可以用来计边算曲 梯形的面,求 积变速运动物体的.事位实移 上,定积分有着广泛的.下应面用我们介绍 定积分的一些简单. 应用
编辑ppt
2
1.7.1 定积分在几何中的应用
编辑ppt
3
例1 计算由曲线y2
x,y x2所围图形 的 面 积S. 分析 首先画草图
3
3
2
0
4编辑ppt
43
7
思考本题还有其他解 ?如法果吗,有 请 写出你的解 ,并法 比较一下这些 . 解法
由 上 面 例 题 可 以 发 ,在现利 用 定 积 分 求 平 面 图 形 的 面 积,一时般 要 先 画 出 它 的 草 图,再 借 助 图 形 直 观 确被定积出函 数 以 及 积 分 的 上 、.下 限
高中数学人教A版选修2-2课件 1-7 定积分的简单应用 第13课时《定积分的简单应用》
解析:(1)由v(t)=8t-2t2≥0,得0≤t≤4,
即当0≤t≤4时,P点向x轴正方向运动,
当t>4时,P点向x轴负方向运动.
故t=6时,点P离开原点的路程为
s1=4(8t-2t2)dt-6(8t-2t2)dt
0
4
=4t2-23t3|40-4t2-23t3|64=1328.
a
成的曲边梯形的面积.
【练习1】 曲线y=cosx0≤x≤32π与坐标轴所围成的图形面积是
() A.2
B.3
5 C.2
D.4
3
3
解析:S= 2 a
cosxdx+|
2
cosxdx|=
2
0
cosxdx-
2
cosxdx=sinx|
2 0
-
(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度 在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间, 然后分别计算,否则会出现计算失误.
变式探究2 (1)一物体沿直线以v=3t+2(t单位:s,v单位:m/s)
的速度运动,则该物体在3 s~6 s间的运动路程为( )
A.46 m
3
(3t2-2t+4)dt=()-(8
2
-4+8)=18.
答案:(1)B (2)D
考点三 利用定积分计算变力做功 例3 设有一长25 cm的弹簧,若加以100 N的力,由弹簧伸长到
30 cm,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使 弹簧由25 cm伸长到40 cm所做的功.
∴W=∫00.1250xdx=25x2|00.12=0.36(J). 答案:0.36 J
高中数学选修2-2优质课件:1.7.1 定积分在几何中的应用
2.曲线 y=cos x(0≤x≤32π)与坐标轴所围图形的面积是( B )
A.2 解析
B.3
C.52
S=π2
0
cos
xdx-32πcos π
xdx=sin
π x2 0
D.4 3π 2
-sin x π 2
2
=sin π2-sin 0- sin 32π+sin π2=1-0+1+1=3.
1234
4 3.由曲线y=x2与直线y=2x所围成的平面图形的面积为__3__.
1234
S=4f(x)dx-7f(x)dx
1
4
③
S=a[g(x)-f(x)]dx+b[f(x)-g(x)]dx
0
a
④
A.①③ C.①④
B.②③ D.③④
1234
解析 ①应是 S=b[f(x)-g(x)]dx,②应是 S=82 2xdx-
a
0
8(2x-8)dx,③和④正确.故选 D.
4
答案 D
1234
跟踪演练2 求由曲线y=x2,直线y=2x和y=x围成的图形的面积.
y=x2, y=x2,
解 方法一 如图,由
和
y=x
y=2x
解出 O,A,B 三点的横坐标分别是 0,1,2.
故所求的面积 S=10(2x-x)dx+12(2x-x2)dx=x2210 + x2-x3321 =12-0+(4-83)-(1-13)=76.
y=2x, x=0, x=2,
解析 解方程组
得
或
y=x2, y=0, y=4.
∴曲线y=x2与直线y=2x交点为(2,4),(0,0).
∴S=2(2x-x2)dx= 0
x2-13x320
1.7定积分的简单应用
∫
b
a
f (x)dx = S1 − S2 + S3
S1 S2
S3
类型1.求由一条曲线y=f(x)和直线x=a,x=b(a<b) 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a<b) 1.求由一条曲线y=f(x)和直线 及x轴所围成平面图形的面积S 轴所围成平面图形的面积S
y
y = f (x)
π
x
∫
2
−
π
2
f ( x)dx = A2 − A1 = 0
由一条曲线和直线所围成平面图形的面积的求解
2
练习. 求抛物线y=x 直线x=2 y=0所围成的 x=2, 练习. 求抛物线y=x -1,直线x=2,y=0所围成的 图形的面积。 图形的面积。
1=0得到抛物线与 得到抛物线与x 解:如图:由x2-1=0得到抛物线与x轴 如图: 的交点坐标是( 1,0),(1,0).所求面积 的交点坐标是(-1,0),(1,0).所求面积 如图阴影所示: 如图阴影所示: 所以: 所以:
∫
1
2
求两曲线围成的平面图形的面积的一般步骤: 求两曲线围成的平面图形的面积的一般步骤: (1)作出示意图;(弄清相对位置关系) (1)作出示意图;(弄清相对位置关系) 作出示意图;(弄清相对位置关系 (2)求交点坐标;(确定积分的上限 下限) (2)求交点坐标;(确定积分的上限,下限) 求交点坐标;(确定积分的上限, (3)确定积分变量及被积函数; (3)确定积分变量及被积函数; 确定积分变量及被积函数 (4)列式求解. (4)列式求解. 列式求解
1.7定积分的简单应用 定积分的简单应用
一、复习
平面图形的面积: 1.平面图形的面积:
推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2
1.7定积分的简单应用积为S 1.由直线x =a ,x =b ,曲线y =g(x )和x 轴围成的曲边梯形的面积为S 2.问题1:如何求S 1? 提示:S 1=⎠⎛a b f(x)d x.问题2:如何求S 2? 提示:S 2=⎠⎛ab g(x)d x.问题3:如何求阴影部分的面积S? 提示:S =S 1-S 2.平面图形的面积由两条曲线y =f (x ),y =g (x )和直线x =a ,x =b (b >a )所围图形的面积.(1)如图①所示,f (x )>g (x )>0,所以所求面积S =⎠⎛ab d x .(2)如图②所示,f (x )>0,g (x )<0,所以所求面积S =⎠⎛a b f (x )d x +⎪⎪⎪⎪⎠⎛a b=⎠⎛ab d x .相交曲线所围图形的面积求法如下图,在区间上,若曲线y =f (x ),y =g (x )相交,则所求面积S =S 1+S 2=⎠⎛ac d x +⎠⎛c b-=⎠⎛ab |f (x )-g (x )|d x .问题:在《1.5.2 汽车行驶的路程》中,我们学会了利用积分求物理中物体做变速直线运动的路程问题,利用积分还可以解决物理中的哪些问题?提示:变力做功.1.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间上的定积分,即s =⎠⎛ab2.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b(a<b),那么变力F(x)所做的功为W =⎠⎛ab F(x )d x.求变速直线运动的路程的注意点对于给出速度-时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意的是分段解析式要分段求路程,然后求和.计算曲线由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03d x =⎠⎛03(-x 2+3x )d x =⎝ ⎛⎭⎪⎫-13x3+32x23=92.求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数图象上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积.求曲线y =e x,y =e -x及x =1所围成的图形面积.解:作图,并由⎩⎪⎨⎪⎧y =ex ,y =e -x ,解得交点(0,1). 所求面积为⎠⎛01(e x-e -x)d x =(e x +e -x)1=e +1e-2.先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为,将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022xd x +⎠⎛28(2x -x +4)d x=423x322+⎝ ⎛⎭⎪⎫223x -12x2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为,如图得所求的面积为 S =⎠⎛-42⎝ ⎛⎭⎪⎫4-y -y22d y =⎝ ⎛⎭⎪⎫4y -12y2-16y324-=18.需分割的图形的面积的求法由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间上位于上方和下方的曲线不同.求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间上曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如下图).解方程组⎩⎪⎨⎪⎧y =x2+1,y =-x +7,得⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =-3,y =10(舍去),即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x=⎝ ⎛⎭⎪⎫13x3+x 20+⎝⎛⎭⎪⎫7x -12x272=143+252 =1036.A ,BC 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,速度为(24-1.2t ) m/s ,经t s 后,在B 点恰好停车.试求:(1)A ,C 间的距离; (2)B ,D 间的距离. (1)设A 到C 的时间为t 1, 则1.2t 1=24,t 1=20 s ,则AC =⎠⎛0201.2t d t =0.6t220=240(m).(2)设D 到B 的时间为t 2, 则24-1.2t 2=0,t 2=20 s , 则DB =⎠⎛020 (24-1.2t )d t求变速直线运动的路程、位移应关注三点(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.一点在直线上从时刻t =0(单位:s )开始以速度v =t 2-4t +3(单位:m /s )运动,求: (1)在t =4 s 时的位置; (2)在t =4 s 时运动的路程. 解:(1)在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 40=43(m ), 即在t =4 s 时该点距出发点43m .(2)∵v(t)=t 2-4t +3=(t -1)(t -3), ∴在区间及上v(t)≥0, 在区间上,v(t)≤0. ∴在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 10-⎝ ⎛⎭⎪⎫13t3-2t2+3t 31+13t 3-2t 2+3t43=4(m ), 即在t =4 s 时运动的路程为4 m .一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力位移曲线如图所示.求该物体从x =0 m 处运动到x =4 m 处力F (x )做的功.由力位移曲线可知F (x )=⎩⎪⎨⎪⎧10,0≤x≤2,3x +4,2<x≤4,因此该物体从x =0处运动到x =4处力F (x )做的功为W =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x 2+⎝ ⎛⎭⎪⎫32x2+4x 42=46(J).解决变力做功应关注两点(1)首先将变力用其方向上的位移表示出来,这是关键的一步; (2)根据变力做功的公式将其转化为求定积分的问题.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,解得即0.05k =100,∴k =2 000, ∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =⎠⎛00.152 000x d x =1 000x 2.015=22.5(J).4.利用定积分求面积的策略由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积为( ) A .16-3223B .16+3223C.403D.403+3223由题意,作图形如图所示,由⎩⎪⎨⎪⎧y2=>,x +y -6=0,得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4).法一:(选y 为积分变量)S =⎠⎛04⎝ ⎛⎭⎪⎫6-y -18y2d y=⎝⎛⎭⎪⎫6y -12y2-124y340=24-8-124×64=403.法二:(选x 为积分变量)S =⎠⎛02(8x)d x +⎠⎛26(6-x )d x=8×23x 322+⎝⎛⎭⎪⎫6x -12x262=163+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6×6-12×62-⎝ ⎛⎭⎪⎫6×2-12×22=403.C1.本题易搞错被积函数及积分上、下限,误认为S =⎠⎛04-x -8x)d x ,从而得出S =16-3223的错误答案.2.求平面图形面积时,应首先求出交点坐标,确定积分上、下限,然后确定被积函数,判定积分的正负,用公式求解面积.如本例法一中的被积函数为f(y)=6-y -18y 2,y ∈(0,4],法二中的被积函数为f(x)=⎩⎨⎧8x ,,2],6-x ,,6].3.利用定积分求面积时,应根据具体问题选择不同的方法求解,常见类型有以下几种: (1)换元积分:当两区域所围成图形纵坐标一致时,换元变成对y 积分可简化运算.如本例中的法一. (2)分割求和:当两曲线处于不同区间时,可分割成几块,分别求出面积再相加,如本节例2的求解法.事实上,本例中的法二就是分割求和.(3)上正下负:若a ≤x ≤c 时,f(x)<0,则⎠⎛a c f(x)d x <0;若c ≤x ≤b 时,f(x)≥0,则⎠⎛cb f(x)d x ≥0.此时曲线y =f(x)和直线x =a ,x =b(a <b)及y =0所围图形的面积是 S =⎪⎪⎪⎪⎠⎛ac +⎠⎛c b f(x)d x =-⎠⎛ac f(x)d x +⎠⎛c bd x.例:求正弦曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,3π2和直线x =0,x =3π2及y =0所围图形的面积S .解:作出曲线y =sin x 和直线x =0,x =3π2,y =0的草图,如图所示,所求面积为图中阴影部分的面积.由图可知,当x ∈时,曲线y =sin x 位于x 轴的上方; 当x ∈⎣⎢⎡⎦⎥⎤π,3π2时,曲线位于x 轴下方. 因此,所求面积应为两部分的和,即S =π⎰32|sin x |d x =⎠⎛0πsin x d x -ππ⎰32sin x d x =-cos xπ+cos xππ32=3.(4)上下之差:若在区间上f (x )>g (x ),则曲线f (x )与g (x )所围成的图形的面积S =⎠⎛a b d x .例:求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y2=x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01xd x -⎠⎛01x 3d x =23x 321-14x 41=512.1.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .22B .4 2 C .2 D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02-=⎝⎛⎭⎪⎫2x2-14x42=4.2.一物体沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在3 s ~6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m解析:选B s =⎠⎛36 (3t +2)d t =⎝ ⎛⎭⎪⎫32t2+2t 63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).3.(天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x2-13x3⎪⎪⎪10=16. 答案:164.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0a xd x =23x 32a=23a 32=a 2,所以a 12=23,所以a =49. 答案:495.一物体在变力F (x )=36x2(x 的单位:m ,F 的单位:N)的作用下沿坐标平面内x 轴的正方向由x =8处运动到x =18处,求力F (x )在这一过程中所做的功.解:由题意得力F (x )在这一过程中所做的功为F (x )在上的定积分,从而W =⎠⎛818F (x )d x =-36x -1188=(-36×18-1)-(-36×8-1)=(-2)-⎝ ⎛⎭⎪⎫-92=52(J).从而可得力F (x )在这一过程中所做的功为52 J.一、选择题1.用S 表示下图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB.⎪⎪⎪⎪⎠⎛acC.⎠⎛a b f(x)d x +⎠⎛bc f(x)d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x解析:选D 由图可知,x 轴上方阴影部分的面积为⎠⎛b c ,x 轴下方阴影部分的面积为-⎠⎛ab f (x )d x ,故D 正确. 2.曲线y =x 3与直线y =x 所围图形的面积等于( ) A.⎠⎛-11(x -x 3)d x B.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d xD .2⎠⎛-10(x -x 3)d x解析:选C 由⎩⎪⎨⎪⎧y =x ,y =x3,求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),(0,0),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x .3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:选D 结合函数图象可得所求的面积是定积分∫π3-π3cos x d x =sin x π3-π3= 3. 4.一质点运动的速度与时间的关系为v (t )=t 2-t +2,质点做直线运动,则它在时间内的位移为( )A.176B.143C.136 D.116解析:选A 质点在时间内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t3-12t2+2t 21=176. 5.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( ) A.23 B .1 C.43 D.53解析:选B S =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x=⎝ ⎛⎭⎪⎫13x3-12x20-1+⎝ ⎛⎭⎪⎫12x2-13x310=1.二、填空题6.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为________.解析:由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为∫5π6π6sin x -12d x =-cos x -12x 5π6π6=3-π3.答案:3-π37.物体A 以速度v =3t 2+1(t 的单位:s ;v 的单位:m/s)在一直线上运动,在此直线上,物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,则两物体相遇时物体A 运动的距离为________m.解析:设t =a 时两物体相遇,依题意有⎠⎛0a (3t 2+1)d t -⎠⎛0a 10t d t =(t 3+t )a 0-5t 2a 0=5,即a 3+a -5a 2=5,(a -5)(a 2+1)=0,解得a =5,所以⎠⎛05(3t 2+1)d t =53+5=130.答案:1308.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6),则t =0到t =6这段时间内流出的水量为________.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛6(6t -t 2)d t =4⎝⎛⎭⎪⎫3t2-13t360=144(cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 答案:144 cm 3三、解答题9.求由曲线y =x 2和直线y =x 及y =2x 所围图形的面积S .解:由⎩⎪⎨⎪⎧y =x2,y =x 得A (1,1),由⎩⎪⎨⎪⎧y =x2,y =2x 得B (2,4).如图所示,所求面积(即图中阴影部分的面积)为S =⎠⎛01(2x -x )d x +⎠⎛12-x 2)d x =⎠⎛01x d x +⎠⎛12-x 2)d x =12x 210+⎝⎛⎭⎪⎫x2-13x321=76.10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)求点P 从原点出发,经过时间t 后又返回原点时的t 值. 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动; 当t >4时,P 点向x 轴负方向运动.最新中小学教案、试题、试卷故t =6时,点P 离开原点的路程为s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎪⎫4t2-23t340-⎝ ⎛⎭⎪⎫4t2-23t364=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t2-23t360=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,而t =0对应于P 点刚开始从原点出发的情况, ∴t =6是所求的值.。
试论定积分在物理及其他领域的应用
试论定积分在物理及其他领域的应用1. 引言1.1 定积分的基本概念定积分是微积分的一个重要概念,它在数学中有着广泛的应用。
定积分的基本概念可以简单地理解为一个函数在一定区间内的累积效果。
在几何学中,定积分可以用来计算曲线下面积,图形的面积和体积等问题。
在数学上,定积分可以看作是不定积分的反运算,通过定积分我们可以求解函数的定积分值。
在实际应用中,定积分被广泛运用于物理、工程、经济等领域。
它的应用使得复杂问题的计算变得简单清晰。
通过定积分,我们可以计算出物体的质量、力的大小、功的大小等物理量。
在力学中,定积分可以用来描述物体的运动规律,计算出物体的位置、速度和加速度等。
在电磁学中,定积分常常用来计算电场强度、磁场强度等问题。
在热力学中,定积分可以用来计算热量、熵等热力学量。
在工程学中,定积分可以帮助工程师计算出工程设计中的各种参数。
在经济学中,定积分在求解供求关系、成本、收益等问题上起着重要作用。
定积分在各个领域中都有着重要的应用价值。
它的基本概念对于理解定积分的应用具有重要意义。
通过深入研究定积分的基本概念,可以更好地理解其在不同领域中的具体应用。
1.2 定积分在物理领域的重要性定积分在物理领域的重要性体现在多个方面,首先在力学中,定积分可以用来描述物体的质量、速度、加速度、力和能量等物理量随时间的变化,从而帮助解决力学中的各种问题。
在电磁学中,定积分可以用来描述电流、电荷、电场、磁场等物理量在空间中的分布和变化规律,从而帮助解决电磁学中的各种问题。
在热力学中,定积分可以用来描述热量、温度、熵等热力学量在空间中的分布和变化规律,从而帮助解决热力学中的各种问题。
在工程学和经济学中,定积分也有着重要的应用,可以用来描述工程和经济系统中的各种物理量的变化规律,从而帮助解决工程和经济学中的各种问题。
定积分在物理领域中的重要性不可忽视,它为我们理解和应用物理定律提供了重要的数学工具和方法。
2. 正文2.1 定积分在力学中的应用在力学中,定积分是一个非常重要的数学工具,它可以用来描述物体在运动过程中的各种性质和运动规律。
1.7定积分在物理中的简单应用
b xБайду номын сангаас
六.精彩一练 练习:如果1N能拉长弹簧1cm 为了将弹簧拉长6cm 需做功( 1N能拉长弹簧1cm, 6cm, 1、练习:如果1N能拉长弹簧1cm,为了将弹簧拉长6cm,需做功( A 0.18J B 0.26J C 0.12J D 0.28J
x A
O
)
BC
x
五.归纳总结
、
总结: 总结:1、定积分的几何意义是: 定积分的几何意义是:
在区间[a , b]上的曲线 y = f ( x )与直线 x = a
x = b以及x 轴所围成的图形的面积的 代数和, 代数和,即
∫
b
a
f ( x )dx = S x轴上方-S x轴下方
因此求一些曲边图形的面积要可以利用定积分 的几何意义以及微积分基本定理, 的几何意义以及微积分基本定理,但要特别注 意图形面积与定积分不一定相等,如函数 意图形面积与定积分不一定相等, 的图像与 x 轴围成的图形的面积为4,而其定积分为0. 轴围成的图形的面积为4,而其定积分为0. 4,而其定积分为 2、求曲边梯形面积的方法与步骤: 求曲边梯形面积的方法与步骤: (1)画图 并将图形分割为若干个曲边梯形; 画图, (1)画图,并将图形分割为若干个曲边梯形; (2)对每个曲边梯形确定其存在的范围 对每个曲边梯形确定其存在的范围, (2)对每个曲边梯形确定其存在的范围,从而确 定积分的上、下限; 定积分的上、下限; (3)确定被积函数 确定被积函数; (3)确定被积函数; (4)求出各曲边梯形的面积和 求出各曲边梯形的面积和, (4)求出各曲边梯形的面积和,即各积分的绝对 值的和。 值的和。
几种常见的曲边梯形面积的计算方法: 3、几种常见的曲边梯形面积的计算方法: 型区域: x型区域:
定积分在物理上的简单应用
v /m/s
30
A
B
20
10
C t/s
oห้องสมุดไป่ตู้
10
20 30
40 50
60
图1.7 3
S 3tdt 30dt 1.5t 90dt
3 2 40 3 2 t 30t 10 t 90t 1350m. 2 0 4 40
10 60
答 汽车在这1min 行驶的路程是 1350m.
• 法二:由定积分的几何意义,直观的可以得出路程 即为如图所示的梯形的面积,即
30 60 s 30 1350 2
练习: 1. 物体以速度 v(t ) 3t 2 2t 3 (m/s) 作直线运动 , 它 在时刻 t 0 (s)到 t 3 (s)这段时间内的位移是( )m (A)9 (B)18 (C)27 (D)36
1.7.2 定积分在物理中的应用
1、变速直线运动的路程
设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
s v(t )dt
a
b
v
v v(t )
O
a
b
t
v /m/s
例: 一辆汽车的 速 度 时间曲 线 如图 1.7 3所示.求汽车在 这1min 行驶的路程 .
30
A
B
20
10
C t/s
o
10
20 30
40 50
60
图1.7 3
解 由速度 时间曲线可知 : 3t , 0 t 10 ; 10 t 40; vt 30 , 1.5t 90, 40 t 60. 因此汽车在这 1min 行驶的路 程是 :
1.7 定积分的简单应用(2)
1.7 定积分的简单 应用x)≤0),x∈[a,b], x=a, x=b(a<b)和x轴围成的曲边梯形的面积S b 等于______________. f ( x)dx
a
2.做直线运动的质点在任意位置x处,所受 的力F(x)=1+ex,则质点沿着F(x)相同的方 向,从点x1=0处运动到点x2=1处,力F(x)所 做的功是_____________. e
例1 求由抛物线y2=8x(y>0)与直线x+y-6=0 及y=0所围成的图形的面积.
例2 已知抛物线y=x2-2x及直线x=0,x=a,y=0 围成的平面图形的面积为4/3,求a的值.
若”面积为4/3”,改为”面积不超过4/3” 呢?
练习:
已知直线y=kx分抛物线y=x-x2与x轴所围 图形为面积相等的两部分,求k的值.
例3 一点在直线上从时刻t=0(s)开始以速 度v=t2-4t+3 (m/s)运动,求: (1)在t=4 s的位置;
(2)在t=4 s运动的路程.
例4 列车以72 km/h的速度行驶,当制动时列车 获得加速度a=-0.4 m/s2,问列车应在进站前多长 时间,以及离车站多远处开始制动?
练习: A 、B两站相距7.2km,一辆电车从A站开 往B站,电车开出t s后到达途中C点,这一 段速度为1.2t (m/s),到C点速度达24 m/s, 从C点到B站前的D点以等速行驶,从D点 开始刹车,经过t s后,速度为(24-1.2t)m/s, 在B点恰好停车,试求: (1)A、C间的距离; (2) B、D间的距离; (3)电车从A站到B站所需的时间.
1.7定积分的简单应用(zi用)
22 3
3
x2
|80
( 1 2
x2
4 x) |84
40 3
法2:s 8 2xdx 1 4 (8 4)
0
2
22 3
3
x2
|80
8
X型求解法
2 2 16 2 8 40
3
3
法3:s
4
[(4
y)
1
y2 ]dy
0
2
(4
y
1 2
y2
1 6
y3
)
|04
x 1 y2 2
x 4 y
4 4 1 42 1 43 40
4
(0 ≤ x ≤ 2) (单位:N)的作用下,沿着 ( x 2)
与力 F 相同的方向,从 x=0 处运动到 x=4 处(单位:m),则力 F(x)所
作的功为( )J
(A)44 (B)46 (C)48 (D)50
B
析:W
4
F ( x)dx
2
10dx
4
(3x 4)dx
0
0
2
10 x
|02
的交点坐标是(-1,0),(1,0).所求面积
如图阴影所示:
所以:
S 2 (x2 1)dx 1 (x2 1)dx
1
1
x
( x3 x) 2 ( x3 x) 1 8
3
13
1 3
类型2:由两条曲线y=f(x)和y=g(x),直线 x=a,x=b(a<b)所围成平面图形的面积S
y f (x)
1.7定积分的简单应用
定积分在几何和物理中的应用
1.7.1 定积分的简单应用
定积分在几何中的应用
1.7 定积分的简单应用(1)
W F ( x)dx
0
L
L
0
1 2 L 1 2 kxdx kx |0 kL 2 2
练习
1.一物体沿直线以v=2t+3(t的单位为s,v的 单位为m/s)的速度运动,求该物体在3~5s 间行进的路程.
S (2t 3)dt 22m
3 5
2.一物体在力F(x)=3x+4(单位:N)的作用下, 沿着与力F相同的方向,从x=0处运动到 x=4处(单位:m),求F(x)所作的功. 40
3 2
(2)S (e e x )dx 1
0
1
定积分在物理中的应用
一辆汽车的速度一时间曲线如图所示,求 汽车在这 1 min 行驶的路程。
3t vt 30 - 1.5t 90 (0 t 10) (10 t 40) (40 t 60)
的图形的面积.
解 两曲线的交点
y x 6x (0,0), ( 2,4), ( 3,9). 2 y x
3
y x2
A1
0
2
(x 6 x x )dx
3 2
y x3 6x
A2 ( x x 6 x)dx
2 3 0
3
于是所求面积
0 3
A A1 A2
2
4 2 3 2 2 2 3 1 2 16 64 26 8 2 2 x |0 ( x x 4 x) |2 18 3 3 2 3 3 3
练习
求下列曲线所围成的图形的面积:
(1)y=x2,y=2x+3;
(2)y=ex,y=e,x=0.
32 (1) S ((2 x 3) x )dx 1 3
定积分的简单应用09447
定积分在物理上的应用!
1:已知速度的变化规律,如何求任意时间段内的 位移?
匀速直线运动: S vt
匀加速直线运动: vv0at
任意直线运动: v ( t )
Sv0t1 2at2
b
S a v(t)dt
例1:一辆汽车的速度在一段时间内如图所示,求 汽车在这1min行驶的路程。
v/m/s 30
v/m/s
力对它所作的功。
计 算 y 2 x x 2 与 y 2 x 2 4 x 所 围 图 形 的 面 积 .
( 2) yex,ye,x0 ( 3 ) y x 2 2 ,y 3 x ,x 0 ,x 2
谢 谢!
图1
图2
图3
想一想:上图中(2)、(3)满足上面的公式吗?
利用定积分求图形面积步骤
①画出大致图形; ②求出交点坐标; ③写出面积所对应的积分; ④计算出最终结果。
思 考 : 如 图 直 线 ykx 分 抛 物 线 yx x2 与 x 轴 所 围 成 图 形 为 面 积 相 等 的 两 部 分 , 求 k 的 值 。
y 3 x2 10
30
10
40
60
t/s
10
40
60
t/s
2:作功问题 恒力作功:W=FS
变力作功: F ( x )
b
W a F(x)dx
一物体在变力F(x)的作用下做直线运动,从x=a,移 动到x=b,问如何求弹性范围内,将一弹簧从平衡位置拉
到距离平衡位置 l m处,求克服弹力所作的功。
抽象概括:
一般地,设由曲线y=f(x),y=g(x)以及直线x=a,x=b所围成的平
面图形(如图1)的面积S,则
b
b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
求两曲线围成的平面图形的面积的一般步骤: (1)作出示意图;(弄清相对位置关系) (2)求交点坐标;(确定积分的上限,下限) (3)确定积分变量及被积函数; (4)列式求解.
例 2.计算由曲线 y 2x , 直线 y x 4以及 x 轴所围 成的图形的面积.
解:作出y=x-4, y 2x 的图象 如图所示: y 2x x=8 解方程组 得 :{y=4 , y x 4 直线y=x-4与x轴交点为(4,0)
y
y
C o
y 2 xx B
即两曲线的交点为(0,0),(1,1)
y x2
2 y xx
S = S曲边梯形OABC - S曲边梯形OABD
1 0
D
O
A
xdx x 2 dx
0
1
2 32 x3 1 1 S = ( x - x )dx ( x ) |0 . 0 3 3 3
练习: 1.如果 1N 力能拉长弹簧 1cm,为了将弹簧拉长 6cm, 克服弹力所作的功为( A ) (A)0.18J (B)0.26J (C)0.12J (D)0.28J (0 ≤ x ≤2) 10 2. 一物体在力 F ( x ) (单位:N) 3 x 4 ( x 2) 的作用下,沿着与力 F 相同的方向,从 x=0 处运动到 x=4 处(单位:m),则力 F(x)所作的功为(B )J (A)44 (B)46 (C)48 (D)50 3. 一物体以速度 v(t ) 2t 2 (m/s)作直线运动,媒质的 阻力 F(N)与速度 v(m/s)的关系为 F 0.7v 2 ,试求在 时刻 t 0 (s)到 t 2 (s)这段时间内阻力做的功. 102.4J
10 40 60 0 10 40
v /m/s
30
A
B
20
10
C t/s
o
10
20 30
40 50
60
图1.7 3
S 3tdt 30dt 1.5t 90dt
3 2 40 3 2 t 30t 10 t 90t 1350m. 2 0 4 40
S S1 S2
4 0
y 2x
S2
S1
y x4
8
2 xdx [
8
8
4
2 xdx ( x 4)dx]
4
(
4
0
2 xdx
4
2 xdx) ( x 4)dx
4
8
8
0
2 xdx ( x 4)dx
4
8
2 2 3 8 1 2 40 8 2 x |0 ( x 4 x) |4 3 2 3
变力所做的功:
物体在变力F(x)的作用下做直线运动,并 且物体沿着与F(x)相同的方向从x=a移动到 x=b(a<b),那么变力F(x)所作的功
W F ( x)dx
a
b
F
y F ( x)
O
a
x
b
例1: 如图1.7 4, 在弹性限 度内 , 将一弹簧从平衡位置 拉到离平衡位置 l m 处, 求弹 力所作的功. 解 在弹性限度内拉伸(或 , 压缩) 弹簧所需的力 x 与 F 弹簧拉伸或压缩 的长度x 成正比, 即Fx kx, 其中常 数k是比例系数 .
2 1 1
2
1
x x 8 ( x) ( x) 3 3 3 1 1
3
2
3
1
类型2:由两条曲线y=f(x)和y=g(x),直线 x=a,x=b(a<b)所围成平面图形的面积S
y f (x)
y g (x)
y
y f (x)
o
a
y g (x)
b x
(2)
(1)
总结: x∈[a, f(x)>g(x)时, 当 b]有 由直线 x=a, x=b(a≠b) 和曲线 y=f(x),y=g(x)围成的平面图形的面积 S=
2 3
A 2 ( x 6 x x )dx 0 ( x 2 x 3 6 x )dx
253 . 12
y x2
说明:
A1
A2
y x3 6x
注意各积分区间上被积函数的形式.
定积分在物理中的应用
1、变速直线运动的路程
设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
3.定积分
b
a
f ( x)dx 的几何意义:
b a
当 f(x)0 时,积分 f ( x)dx 在几何上表示由 y=f (x)、
b
y
xa、xb与 x轴所围成的曲边梯形的面积。 f (x)dx =s
y
a
c
a
yf (x) O a yf (x) bx
O
a
b
b a
x
当f(x)0时 积分 f (x)dx 在几何上表示 由yf (x)、xa、
3.一物体以速度 v(t ) 2t 2 (m/s)作直线运动,媒质的 阻力 F(N)与速度 v(m/s)的关系为 F 0.7v 2 ,试求在 时刻 t 0 (s)到 t 2 (s)这段时间内阻力做的功.
解:媒质的阻力为 F 0.7v = 2.8t 取一小段时间 t , t △t
s
8
0
1 2 xdx 4 (8 4) 2
3 2 8 0
2 2 x | 8 3 2 2 40 16 2 8 3 3
1 2 s [(4 y ) y ]dy 0 2
4
1 2 1 3 4 (4 y y y ) |0 2 6
1 2 1 3 40 4 4 4 4 2 6 3
练习 1: 计算由曲线 y 2 2 x 和直线 y x 4所 围成的图形的面积.
解1 求两曲线的交点:
y 2x
S1 S1 2
y x4
8
y2 2 x
y2 2 x ( 2,2), (8,4). y x4
S 2S1 S2 2
2 0 2 8
解: 求两曲线的交点:
y x 6x (0,0),(2,4),(3,9). 2 y x
3
y x2
A1
0
2
(x 6 x x )dx
3 2
y x3 6x
A2 ( x x 6 x)dx
2 3 0
3
于是所求面积
0 3
A A1 A2
f x g x dx . a
b
注:
两曲线围成的平面图形的面积的计算
例 1. 计算由两条抛物线 y
2
x 和 y x 围成图形的面积.
2
解:作出y2=x,y=x2的图象如图所示:
y x x 0 x 1 解方程组 或 2 y x y 0 y 1
1 2 0
6 1 2
3
dx
分段函数定积分的求解:
3 若f x
1 1
x 1 x0
2
x 0 x 1
求 f x dx
1.7定积分的简单应用
定积分在几何中的应用
几种典型的平面图形面积的计算:
类型1.求由一条曲线y=f(x)和直线x=a,x=b(a<b)
确定,在该电场中,一个单位正电荷在电场力作
用下,沿着r轴方向从r=a到r=b(a<b),求电场
力对它所作的功。
解:
由题意,所求功为
q
o
b a r
b
1
r
w
b
a
kq kq 1 kq 1 1 . dr r 2 a b a r
s v(t )dt
a
b
v
v v(t )
O
a
b
t
v /m/s
例: 一辆汽车的 速 度 时间曲 线 如图 1.7 3所示.求汽车在 这1min 行驶的路程 .
30
A
B
20
10
C t/s
o
10
20 30
40 50
60
图1.7 3
解 由速度 时间曲线可知: 3t , 0 t 10 ; 10 t 40; vt 30 , 1.5t 90, 40 t 60. 因此汽车在这 min 行驶的路 1 程是 :
a c a c
c
b
c
b
由一条曲线和直线所围成平面图形的面积的求解
练习. 求抛物线y=x2-1,直线x=2,y=0所围成的 图形的面积。
解:如图:由x2-1=0得到抛物线与x轴 的交点坐标是(-1,0),(1,0).所求面积 如图阴影所示:
所以:
y
S ( x 1)dx ( x 2 1)dx
10 60
答 汽车在这 min 行驶的路程是 1 1350m.
• 法二:由定积分的几何意义,直观的可以得出路程 即为如图所示的梯形的面积,即
30 60 30 1350 s
2
2. 变力做功
一物体在恒力 单位 : N的作用下做直线运动如 F , 果物体沿着与力 相同的方向移动了 (单位 : m), F s 则力F所作的功为W Fs.
2
4
这一小段时间内阻力做的功为 △W Fv△t ∴在时刻 t 0 (s)到 t 2 (s)这段时间内阻力做的 功为 W Fvdt = 5.6t 6dt =102.4J