高二数学 第二章 随机变量及其分布单元综合检测 新人教A版选修2-3
高中数学 第二章 随机变量及其分布章末检测试卷 新人教A版选修23
第二章 随机变量及其分布章末检测试卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设由“0”“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( ) A.25 B.34 C.12 D.18 考点 条件概率题点 直接利用公式求条件概率 答案 C解析 ∵P (B )=1×2×22×2×2=12,P (AB )=1×1×22×2×2=14,∴P (A |B )=P (AB )P (B )=12. 2.10张奖券中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为( ) A.310 B.112 C.12 D.1112 考点 排列与组合的应用 题点 排列、组合在概率中的应用 答案 D解析 设事件A 为“无人中奖”,即P (A )=C 57C 510=112,则至少有1个人中奖的概率P =1-P (A )=1-112=1112.3.张老师上数学课时,给班里同学出了两道选择题,他预估做对第一道题的概率是0.80,做对两道题的概率是0.60,则预估做对第二道题的概率是( ) A .0.80 B .0.75 C .0.60 D .0.48 考点 相互独立事件的性质及应用 题点 独立事件与互斥事件的综合应用 答案 B解析 设事件A i (i =1,2)表示“做对第i 道题”,A 1,A 2相互独立, 由已知得:P (A 1)=0.8,P (A 1A 2)=0.6,由P (A 1A 2)=P (A 1)·P (A 2)=0.8×P (A 2)=0.6, 解得P (A 2)=0.60.8=0.75.4.设随机变量X 等可能地取值1,2,3,…,10.又设随机变量Y =2X -1,则P (Y <6)的值为( ) A .0.3 B .0.5 C .0.1 D .0.2 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由Y =2X -1<6,得X <3.5,∴P (Y <6)=P (X <3.5)=P (X =1)+P (X =2)+P (X =3)=0.3. 5.设随机变量X ~N (μ,σ2)且P (X <1)=12,P (X >2)=p ,则P (0<X <1)的值为( )A.12p B .1-p C .1-2pD.12-p 考点 正态分布的概念及性质 题点 求正态分布的均值或方差 答案 D解析 由正态曲线的对称性知P (X <1)=12,故μ=1,即正态曲线关于直线x =1对称,于是P (X <0)=P (X >2),所以P (0<X <1)=P (X <1)-P (X <0)=P (X <1)-P (X >2)=12-p .6.已知离散型随机变量X 的分布列如下:则均值E (X )与方差D (X )分别为( ) A .1.4,0.2 B .0.44,1.4 C .1.4,0.44D .0.44,0.2考点 均值、方差的综合应用 题点 求随机变量的均值与方差 答案 C解析 由离散型随机变量的性质知a +4a +5a =1,∴a =0.1.∴P (X =0)=0.1,P (X =1)=0.4,P (X =2)=0.5,∴均值E (X )=0×0.1+1×0.4+2×0.5=1.4;方差D (X )=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.196+0.064+0.18=0.44.7.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里各任意取出1个球,设取出的白球个数为X ,则下列概率中等于C 18C 16+C 14C 16C 112C 112的是( )A .P (X ≤1)B .P (X ≤2)C .P (X =1)D .P (X =2)考点 超几何分布题点 利用超几何分布求概率 答案 C解析 P (X =1)=C 18C 16+C 14C 16C 112C 112.8.某人一周晚上值2次班,在已知他周日一定值班的条件下,他在周六晚上值班的概率为( )A.16B.13C.12D.635考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率 答案 A解析 设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16. 9.设随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132 考点 二项分布的计算及应用 题点 利用二项分布求概率 答案 D解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴方程x 2+4x +X =0存在实数根, ∴Δ=16-4X ≥0,∴X ≤4,∵随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫5,12,∴P (X ≤4)=1-P (X =5)=1-125=3132,故选D.10.一头猪服用某药品后被治愈的概率是90%,则服用这种药的5头猪中恰有3头被治愈的概率为( )A .0.93B .1-(1-0.9)3C .C 35×0.93×0.12D .C 35×0.13×0.92考点 二项分布的计算及应用 题点 利用二项分布求概率 答案 C解析 5头猪中恰有3头被治愈的概率为C 35×0.93×0.12.11.排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( )A.49B.1927C.1127D.4081考点 相互独立事件的性质及应用 题点 独立事件与互斥事件的综合应用 答案 B解析 最后乙队获胜事件含3种情况:(1)第三局乙胜;(2)第三局甲胜,第四局乙胜;(3)第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P =13+23×13+⎝ ⎛⎭⎪⎫232×13=1927,故选B.12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的面上的数之积的均值是( ) A.19 B.29 C.13 .D.49 考点 常见的几种均值 题点 相互独立事件的均值 答案 D解析 将小正方体抛掷1次,向上的面上可能出现的数有0,1,2,概率分别为12,13,16,将这个小正方体抛掷2次,可以表示为下表:令ξ为小正方体抛掷2次后向上的面上的数之积,则积为0的概率P (ξ=0)=12×12+12×13+12×16+12×13+12×16=34.积为1的概率P (ξ=1)=13×13=19.积为2的概率P (ξ=2)=13×16+13×16=19.积为4的概率P (ξ=4)=16×16=136,所以向上的面上的数之积的均值E (ξ)=0×34+1×19+2×19+4×136=49.二、填空题(本大题共4小题,每小题5分,共20分)13.已知随机变量ξ~B (n ,p ),若E (ξ)=4,η=2ξ+3,D (η)=3.2,则P (ξ=2)=________.考点 二项分布的计算及应用 题点 利用二项分布的分布列求概率 答案32625解析 由已知np =4,4np (1-p )=3.2,∴n =5,p =0.8,∴P (ξ=2)=C 25p 2(1-p )3=32625.14.某处有水龙头5个,调查表示每个水龙头被打开的可能性均为110,则3个水龙头同时被打开的概率为________. 考点 独立重复试验的计算题点 用独立重复试验的概率公式求概率 答案 0.008 1解析 对5个水龙头的处理可视为做5次独立重复试验,每次试验有2种可能结果:打开或不打开,相应的概率为0.1或0.9,根据题意得3个水龙头同时被打开的概率为C 35×0.13×0.92=0.008 1.15.设随机变量ξ服从正态分布N (μ,σ2),向量a =(1,2)与向量b =(ξ,-1)的夹角为锐角的概率是12,则μ=______.考点 正态分布的概念及性质 题点 求正态分布的均值或方差 答案 2解析 由向量a =(1,2)与向量b =(ξ,-1)的夹角是锐角,得a ·b >0,即ξ-2>0,解得ξ>2,则P (ξ>2)=12.根据正态分布密度曲线的对称性,可知μ=2.16.一射手对靶射击,直到第一次中靶或用光子弹为止.若他每次射击中靶的概率是0.9,他有3颗子弹,则射击结束后剩余子弹的数目X 的均值E (X )=________. 考点 常见的几种均值 题点 相互独立事件的均值 答案 1.89解析 由题意知,X 的可能取值是0,1,2,对应的概率分别为P (X =2)=0.9,P (X =1)=0.1×0.9=0.09,P (X =0)=0.13+0.12×0.9=0.01, 由此可得均值E (X )=2×0.9+1×0.09+0×0.01=1.89. 三、解答题(本大题共6小题,共70分)17.(10分)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分,100分,200分,答错得0分.假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响. (1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率. 考点 互斥、对立、独立重复试验的综合应用 题点 互斥事件、对立事件、独立事件的概率问题解 记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率P 1=P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (2)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)·P (A 2)·P (A 3)=0.228+0.8×0.7×0.6=0.564.18.(12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间. (1)求ξ的分布列; (2)求ξ的均值.考点 均值与方差的综合应用题点 离散型随机变量的分布列及均值 解 (1)ξ的所有可能取值为1,3,4,6.P (ξ=1)=13, P (ξ=3)=13×12=16, P (ξ=4)=13×12=16,P (ξ=6)=2×⎝ ⎛⎭⎪⎫13×12×1=13,ξ的分布列为(2)E (ξ)=1×13+3×16+4×16+6×13=72.19.(12分)从1,2,3,…,9这9个自然数中,任取3个数. (1)求这3个数恰有1个偶数的概率;(2)记X 为3个数中两数相邻的组数,例如取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时X 的值为2,求随机变量X 的分布列及均值E (X ). 考点 均值与方差的综合应用 题点 离散型随机变量的分布列及均值解 (1)设Y 表示“任取的3个数中偶数的个数”, 则Y 服从N =9,M =4,n =3的超几何分布, ∴P (Y =1)=C 14C 25C 39=1021.(2)X 的取值为0,1,2,P (X =1)=2×6+6×5C 39=12, P (X =2)=7C 39=112,P (X =0)=1-P (X =1)-P (X =2)=512.∴X 的分布列为∴E(X)=0×512+1×12+2×112=23.20.(12分)某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的分布列如下表:(1)求a的值和ξ的均值;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.考点互斥、对立、独立重复试验的概率问题题点互斥事件、对立事件、独立事件的概率问题解(1)由分布列的性质得0.1+0.3+2a+a=1,解得a=0.2,∴ξ的分布列为∴E(ξ)=0×0.1+1×0.3+2×0.4+3×0.2=1.7.(2)设事件A表示“两个月内共被投诉2次”;事件A1表示“两个月内有一个月被投诉2次,另一个月被投诉0次”;事件A2表示“两个月均被投诉1次”.则由事件的独立性得P(A1)=C12P(ξ=2)P(ξ=0)=2×0.4×0.1=0.08,P(A2)=[P(ξ=1)]2=0.32=0.09.∴P(A)=P(A1)+P(A2)=0.08+0.09=0.17.故该企业在这两个月内共被消费者投诉2次的概率为0.17.21.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值.考点 均值与方差的应用题点 离散型随机变量的分布列及均值解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A . P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610=35.故X 的分布列为E (X )=200×110+300×310+400×35=350.22.(12分)某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有(n +m )道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类型试题的数量. (1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值.解 以A i 表示第i 次调题调用到A 类型试题,i =1,2. (1)P (X =n +2)=P (A 1A 2)=nm +n ·n +1m +n +2=n (n +1)(m +n )(m +n +2).(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1A 2)=n n +n ·n n +n =14,P (X =n +1)=P (A 1A 2)+P (A 1A 2)=nn +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14.从而X 的分布列为所以E (X )=n ×14+(n +1)×12+(n +2)×14=n +1.。
高中数学 第二章 随机变量及其分布 章末综合检测(二)(含解析)新人教A版高二选修2-3数学试题
章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.4个高尔夫球中有3个合格、1个不合格,每次任取一个,不放回地取两次,若第一次取到合格的高尔夫球,则第二次取到合格高尔夫球的概率为( )A.12 B .23 C.34D .45解析:选B.法一:记事件A ={第一次取到合格的高尔夫球}, 事件B ={}第二次取到合格的高尔夫球.由题意可得P (AB )=3×24×3=12,P (A )=3×34×3=34,所以P (B |A )=P (AB )P (A )=1234=23.法二:记事件A ={}第一次取到合格的高尔夫球,事件B ={}第二次取到合格的高尔夫球,由题意可得事件B 发生所包含的基本事件数n (AB )=3×2=6,事件A 发生所包含的基本事件数n (A )=3×3=9.所以P (B |A )=n (AB )n (A ) =69 =23.2.设随机变量X 的分布列为P (X =i )=a (13)i(i =1,2,3),则a 的值为( )A .1B .913 C.1113D .2713解析:选D.因为P (X =1)=a 3,P (X =2)=a 9,P (X =3)=a 27.所以a 3+a 9+a 27=1,所以a =2713.3.甲、乙两颗卫星同时独立的监测台风.在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为( )A .0.95B .0.6C .0.05D .0.4解析:选A.法一:在同一时刻至少有一颗卫星预报准确可分为:①甲预报准确,乙预报不准确;②甲预报不准确,乙预报准确;③甲预报准确,乙预报准确.这三个事件彼此互斥,故至少有一颗卫星预报准确的概率为0.8×(1-0.75)+(1-0.8)×0.75+0.8×0.75=0.95.法二:“在同一时刻至少有一颗卫星预报准确”的对立事件是“在同一时刻两颗卫星预报都不准确”,故至少有一颗卫星预报准确的概率为1-(1-0.8)×(1-0.75)=0.95.4.已知随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则D (2X +1)等于( ) A .6 B .4 C .3D .9解析:选A.因为D (2X +1)=D (X )×22=4D (X ),D (X )=6×12×⎝ ⎛⎭⎪⎫1-12=32,所以D (2X +1)=4×32=6.5.如果随机变量X 表示抛掷一个各面分别标有1,2,3,4,5,6的均匀的正方体向上面的数字,则随机变量X 的均值为( )A .2.5B .3C .3.5D .4解析:选C.P (X =k )=16(k =1,2,3,…,6),所以E (X )=1×16+2×16+…+6×16=16(1+2+…+6)=16×6×(1+6)2=3.5.6.若随机变量X 服从正态分布,其正态曲线上的最高点的坐标是(10,12),则该随机变量的方差等于( )A .10B .100 C.2πD .2π解析:选C.由正态分布密度曲线上的最高点⎝ ⎛⎭⎪⎫10,12知12π·σ=12,即σ=2π,所以D (X )=σ2=2π.7.已知随机变量ξ的分布列如下:若E (ξ)=2,则D (ξ)A .0 B .2 C .1D .12解析:选A.由题意得a =1-13=23,所以E (ξ)=13m +23n =2,即m +2n =6.又D (ξ)=13×(m -2)2+23(n -2)2=2(n -2)2,所以当n =2时,D (ξ)取最小值为0.8.设随机变量X ~N (μ,σ2)且P (X <1)=12,P (X >2)=p ,则P (0<X <1)的值为( )A .12pB .1-pC .1-2pD .12-p 解析:选D.由正态曲线的对称性知P (X <1)=12,故μ=1,即正态曲线关于直线x =1对称,于是P (X <0)=P (X >2),所以P (0<X <1)=P (X <1)-P (X <0)=P (X <1)-P (X >2)=12-p .9.排球比赛的规则是5局3胜制(无平局),在某排球比赛中,甲队在每局比赛中获胜的概率都相等,为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( )A .49B .827C .1927D .4081解析:选C.最后乙队获胜的概率含3种情况:(1)第三局乙胜;(2)第三局甲胜,第四局乙胜;(3)第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P =13+23×13+⎝ ⎛⎭⎪⎫23×13=1927,故选C. 10.节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X 服从如表所示的分布列若进这种鲜花500A .706元 B .690元 C .754元D .720元解析:选A.因为E (X )=200×0.2+300×0.35+400×0.3+500×0.15=340, 所以利润的均值为340×(5-2.5)-(500-340)×(2.5-1.6)=706元,故选A. 11.某个游戏中,一个珠子按如图所示的通道,由上至下滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为( )A .516B .532C .16D .以上都不对解析:选A.由于珠子在每个叉口处有“向左”和“向右”两种走法,因而基本事件个数为25.而从出口3出来的每条线路中有2个“向右”和3个“向左”,即共C 25条路线,故所求的概率为C 2525=516.12.某商家进行促销活动,促销方案是顾客每消费1 000元,便可以获得奖券1X ,每X 奖券中奖的概率为15,若中奖,则商家返还中奖的顾客现金1 000元.小王购买一套价格为2 400元的西服,只能得到2X 奖券,于是小王补偿50元给一同事购买一件价格为600元的便服,这样小王就得到了3X 奖券.设小王这次消费的实际支出为ξ元,则E (ξ)=( )A .1 850B .1 720C .1 560D .1 480解析:选A.根据题意知,ξ的可能取值为2 450,1 450,450,-550,且P (ξ=2 450)=⎝ ⎛⎭⎪⎫45=64125,P (ξ=1 450)=C 13⎝ ⎛⎭⎪⎫15⎝ ⎛⎭⎪⎫45=48125,P (ξ=450)=C 23⎝ ⎛⎭⎪⎫15·⎝ ⎛⎭⎪⎫45=12125,P (ξ=-550)=C 33⎝ ⎛⎭⎪⎫15=1125,所以E (ξ)=2 450×64125+1 450×48125+450×12125+(-550)×1125=1 850.二、填空题:本题共4小题,每小题5分.13.邮局工作人员整理,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果P (X <10)=0.3,P (10≤X ≤30)=0.4,那么P (X >30)等于________.解析:根据随机变量的概率分布的性质,可知P (X <10)+P (10≤X ≤30)+P (X >30)=1,故P (X >30)=1-0.3-0.4=0.3.答案:0.314.一批产品的二等品概率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数, 则D (X )=________.解析:X ~B (100,0.02),所以D (X )=np (1-p )=100×0.02×0.98=1.96. 答案:1.9615.一个均匀小正方体的6个面中,三个面上标注数字0,两个面上标注数字1,一个面上标注数字2.将这个小正方体抛掷2次,则向上的数字之积的数学期望是________.解析:设ξ表示两次向上的数字之积, 则P (ξ=1)=13×13=19,P (ξ=2)=C 12×13×16=19,P (ξ=4)=16×16=136,P (ξ=0)=34,所以E (ξ)=1×19+2×19+4×136=49.答案:4916.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23⎝ ⎛⎭⎪⎫25⎝ ⎛⎭⎪⎫12=625. 答案:625三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某一射手射击所得环数X 的分布列如下:(1)求m (2)求此射手“射击一次命中的环数≥7”的概率.解:(1)由分布列的性质得m =1-(0.02+0.04+0.06+0.09+0.29+0.22)=0.28. (2)P (射击一次命中的环数≥7)=0.09+0.28+0.29+0.22=0.88.18.(本小题满分12分)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.解:记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率P 1=P (A 1A —2A 3)+P (A —1A 2A 3)=P (A 1)P (A —2)P (A 3)+P (A —1)P (A 2)P (A 3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228. (2)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)·P (A 2)·P (A 3)=0.228+0.8×0.7×0.6=0.564.19.(本小题满分12分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望; (ii)设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.解:(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)(i)随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k4·C 3-k3C 37(k =0,1,2,3). 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×435=127.(ii)设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥.由(i)知,P (B )=P (X =2),P (C )=P (X =1),故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以,事件A 发生的概率为67.20.(本小题满分12分)进货商当天以每份1元的进价从报社购进某种报纸,以每份2元的价格售出.若当天卖不完,剩余报纸以每份0.5元的价格被报社回收.根据市场统计,得到这个月的日销售量X (单位:份)的频率分布直方图(如图所示),将频率视为概率.(1)求频率分布直方图中a 的值;(2)若进货量为n (单位:份),当n ≥X 时,求利润Y 的表达式; (3)若当天进货量n =400,求利润Y 的分布列和数学期望E (Y ).解:(1)由题图可得,100a +0.002×100+0.003×100+0.003 5×100=1,解得a =0.001 5.(2)因为n ≥X ,所以Y =(2-1)X -0.5(n -X )=1.5X -0.5n .(3)销售量X 的所有可能取值为200,300,400,500,由第二问知对应的Y 分别为100,250,400.由频率分布直方图可得P (Y =100)=P (X =200)=0.20, P (Y =250)=P (X =300)=0.35, P (Y =400)=P (X ≥400)=0.45.利润Y 的分布列为Y 100 250 400 P0.200.350.45所以E (Y )21.(本小题满分12分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X 、Y 分别表示这4个人去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解:(1)依题意,这4人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i .这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能的取值为0,2,4.由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781,所以ξ的分布列是22.(本小题满分12分)该店铺中的A ,B ,C 三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买A ,B ,C 商品的概率分别为23,p 1,p 2(p 1<p 2),至少购买一种的概率为2324,最多购买两种的概率为34.假设该网民是否购买这三种商品相互独立.(1)求该网民分别购买B ,C 两种商品的概率;(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,求X 的分布列和数学期望. 解:(1)由题意可知至少购买一种的概率为2324,所以一种都不买的概率为1-2324=124,即⎝ ⎛⎭⎪⎫1-23(1-p 1)(1-p 2)=124.① 又因为最多购买两种商品的概率为34,所以三种都买的概率为1-34=14,即23p 1p 2=14.② 联立①②,解得⎩⎪⎨⎪⎧p 1=12,p 2=34或⎩⎪⎨⎪⎧p 1=34,p 2=12.因为p 1<p 2,所以某网民购买B ,C 两种商品的概率分别为p 1=12,p 2=34.(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,由题意可得X 的所有可能取值为0,5,10,15.则P (X =0)=124,P (X =5)=23×12×14+13×12×14+13×12×34=14,P (X =10)=23×12×14+23×12×34+13×12×34=1124, P (X =15)=23×12×34=14.所以X 的分布列为则E (X )=0×124+5×14+10×24+15×4=12.。
高二数学第二章随机变量及其分布单元综合检测新人教A版选修2-3
一、选择题 ( 本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中只有
一个是符合题目要求的 )
1.设随机变量 ξ 等可能取值 1、 2、 3、…、 n,如果 P( ξ<4) = 0.3 ,那么 n 的值为 ( )
A. 3
B. 4
[ 点评 ]
a= 1 或 2 是充要条件, a= 2 是充分不必要条件,
a=3-2
5 是既不充分也不必
要条件. 5.如果随机变量 ξ~ B( n, p) ,且 E( ξ) = 7,D( ξ) = 6,则 p 等于 ( )
1
1
1
A. 7 B . 6 C .5
1 D. 4
[ 答案 ] A [ 解析 ] 如果随机变量 ξ~ B( n,p) ,则 Eξ= np,Dξ = np(1 - p) ,
[ 答案 ] C [ 解析 ] X= k 表示取出的螺丝钉恰有
C Ck 4-k 73
k 只为好的, 则 P( X= k) =
C4 10
( k= 1、2、3、4) .
1
3
1
1
∴ P( X= 1) = , P( X= 2) = , P( X= 3) = , P( X= 4) = ,∴选 C.Βιβλιοθήκη 301026
[ 答案 ] D
111
1
[ 解析 ]
小球落入 B 袋中的概率为
P1=
(
2×
2×
) 2
×
2=
4,∴小球落入
A
3 袋中的概率为 P= 1- P1= 4.
8.已知随机变量 ξ 服从正态分布 N(3,4) ,则 E(2 ξ+ 1) 与 D(2 ξ+ 1) 的值分别为 ( )
人教A版选修2-3第二章随机变量及其分布基础测试题
人教A 版选修2-3第二章随机变量及其分布基础测试题一、单选题1.已知1()2P B A =∣,3()8P AB =,则()P A 等于( ) A .316 B .1316 C .34D .142.随机变量X 的分布列如下表,其中2b a c =+,且1c ab =,则(2)P X ==( ) A .47B .45C .14D .2213.已知随机变量X 服从二项分布,即(),X B n p ,且()2E X =,() 1.6D X =,则二项分布的参数n ,p 的值为( ) A .4n =,12p =B .6n =,13p =C .8n =,14p =D .10n =,15p =4.设随机变量()~01X N ,,则()0P X ≤=( )A .0B .1C . 12D .1 45.某批数量很大的产品的次品率为p ,从中任意取出4件,则其中恰好含有3件次品的概率是( ) A .3pB .3(1)p p -C .334(1)C p p -D .334C p6.某射手每次射击击中目标的概率都是45,则这名射手在3次射击中恰有2次击中目标的概率为( ) A .12125B .16125C .32125D .481257.若随机变量X 的分布列为则X 的数学期望()EX 是( )A .14B .12C .1D .328.已知随机变量ξ服从正态分布()5,9N ,若(2)(2)p c p c ξξ>+=<-,则c 的值为( ) A .4B .5C .6D .79.已知甲盒子有6个不同的小球,编号分别为1,2,3,4,5,6,从甲盒子中取出一个球,记随机变量X 是取出球的编号,数学期望为()E X ,乙盒子有5个不同的小球,编号分别为1,2,3,4,5,从乙盒子中取出一个球,记随机变量Y 是取出球的编号,数学期望为()E Y ,则( ) A .(3)(3)P X P Y =>=且()()E X E Y > B .(3)(3)P X P Y =>=且()()E X E Y < C .(3)(3)P X P Y =<=且()()E X E Y > D .(3)(3)P X P Y =<=且()()E X E Y <10.若随机变量ξ服从正态分布()22020,σN ,则()2020ξ<=P ( )A .12B .11010C .14D .1202011.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在下雨条件下吹东风的概率为( )A .25B .89C .811D .91112.袋中有3个白球、5个黑球,从中任取2个,则可以作为随机变量的是( ) A .至少取到1个白球 B .取到白球的个数 C .至多取到1个白球 D .取到的球的个数二、填空题13.已知,A B 独立,若()0.66P AB =∣,则()P A =_____. 14.某保险公司把被保险人分为3类:“谨慎的”“一般的”“冒失的”.统计资料表明,这3类人在一年内发生事故的概率依次为0.05,0.15和0.30.如果“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则一个被保险人在一年内出事故的概率是_________. 15.已知随机变量X 的分布列如下:若23YX =-,则(5)P Y =的值为________.16.某地有A ,B ,C ,D 四人先后感染了传染性肺炎,其中只有A 到过疫区,B 确实是由A 感染的.对于C 难以判断是由A 或是由B 感染的,于是假定他是由A 和B 感染的概率都是12.同样也假定D 由A ,B 和C 感染的概率都是13.在这种假定下,B ,C ,D 中都是由A 感染的概率是______.三、解答题17.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金. (1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少? 18.某运动员射击一次所得环数X 的分布如下:现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ. (Ⅰ)求该运动员两次都命中7环的概率. (Ⅱ)求ξ的分布列及其数学期望.19.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望.20.一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球.如果不放回地依次取出2个球,回答下列问题: (1)第一次取出的是黑球的概率;(2)第一次取出的是黑球,且第二次取出的是白球的概率.21.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表: 甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率; (2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X (单位:元),求X 的分布列和数学期望;②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由. 22.设离散型随机变量X 的分布列为求:(1)21X +的分布列; (2)求(14)P X <≤的值.参考答案1.C 【分析】根据条件概率公式计算. 【详解】由()()()P AB P BA P A =∣,可得()3()()4P AB P A P B A ==∣.故选:C. 2.A 【分析】由概率的性质可得1a b c ++=,结合已知条件求出a 的值,即可求解. 【详解】由概率的性质可得1a b c ++=,由2,1,21b a c c ab a b c =+⎧⎪⎪=⎨⎪++=⎪⎩得4,71,32,21a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩则4(2)7P X ==, 故选:A 3.D 【分析】利用离散型随机变量的期望与方差公式,转化求解即可. 【详解】解:随机变量X 服从二项分布,即(),XB n p ,且()2E X =,() 1.6D X =,可得2np =,()1 1.6np p -=,解得0.2p =,10n =, 故选:D. 【点睛】此题考查离散型随机变量的期望与方差公式的应用,考查二项分布的性质,属于基础题4.C 【分析】根据正态分布曲线的对称性得结论. 【详解】因为随机变量()~01X N ,,所以正态曲线关于X 0=对称,所以()0P X ≤=12. 5.C 【分析】根据独立重复试验的概率计算公式,由题中条件,可直接得出结果. 【详解】由题意,从这批产品中任取4件,所得次品数记作X , 则X 服从二项分布,即()4,XB p ,所以从中任意取出4件,则其中恰好含有3件次品的概率是()3343(1)P X C p p ==-. 故选:C. 【点睛】本题主要考查求独立重复试验对应的概率,属于基础题型. 6.D 【分析】利用n 次独立重复实验恰好发生k 次的概率公式计算,即可求解. 【详解】这名射手在3次射击中有2次击中目标,有1次没有击中目标,所以概率为:223414855125C ⎛⎫⨯⨯=⎪⎝⎭,故选:D 【点睛】本题主要考查了独立重复事件的概率公式,属于基础题. 7.C 【分析】由数学期望的计算公式直接求解即可 【详解】解:由题意得()1110121424E X =⨯+⨯+⨯=,故选:C 【点睛】此题考查由离散型随机变量的分布列求数学期望,属于基础题 8.B 【分析】随机变量ξ服从正态分布()5,9N ,得到曲线关于5x =对称,根据(2)(2)P c P c ξξ>+=<-,结合曲线的对称性列方程,从而解出常数c 的值得到结果.【详解】随机变量ξ服从正态分布()5,9N ,∴曲线关于5x =对称,(2)(2)P c P c ξξ>+=<-,2210c c ∴++-=, 5c ∴=,故选:B . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题. 9.C 【分析】求出(3),(3)P X P Y ==,(),()E X E Y ,即得解. 【详解】 由题1(3)6P X ==,1(3)5P Y ==, 1111117()1234566666662E X =⨯+⨯+⨯+⨯+⨯+⨯=,11111()12345355555E Y =⨯+⨯+⨯+⨯+⨯=.故选:C 【点睛】本题主要考查概率的计算和随机变量的期望的计算,意在考查学生对这些知识的理解掌握水平. 10.A 【分析】根据正态分布的对称性可得选项. 【详解】因为随机变量ξ服从正态分布()22020,σN ,所以2020u =,根据正态分布图象的对称性可知,图象关于2020x =对称,所以1(2020)2P ξ<=, 故选:A. 【点睛】本题考查正态分布的性质,属于基础题. 11.C 【分析】在下雨条件下吹东风的概率=既吹东风又下雨的概率÷ 下雨的概率 【详解】在下雨条件下吹东风的概率为8830=111130,选C【点睛】本题考查条件概率的计算,属于简单题. 12.B 【分析】根据随机变量的定义,即可求解. 【详解】根据离散型随机变量的定义可得选项B 是随机变量,其可以一一列出, 其中随机变量X 的取值0,1,2. 故选:B. 【点睛】本题主要考查了随机变量的定义及其应用,准确理解随机变量的概念是解答的关键,属于基础题. 13.0.34 【分析】根据,A B 独立,由()()1()P AB P A P A ==-∣求解. 【详解】 因为,A B 独立,所以()()1()0.66P AB P A P A ==-=∣, 所以()0.34P A =. 故答案为:0.34 14.0.175 【分析】设1B =“他是谨慎的”,2B =“他是一般的”,3B =“他是冒失的”,事件A =“出事故”,由全概率公式求解. 【详解】设1B =“他是谨慎的”,2B =“他是一般的”,3B =“他是冒失的”, 则123,,B B B 构成了Ω的一个划分,设事件A =“出事故”, 由全概率公式得,()()31()(1,2,3)0.0520%0.1550%0.3030%0.175i i i P A P B P A B i ====⨯+⨯+⨯=∑∣.故答案为:0.175 15.0.2 【分析】 利用23YX =-,求出X 的值,观察表格即可.【详解】 当5Y =时,由235X -=得4X =, 所以(5)(4)0.2P Y P X ====.故答案为:0.2. 16.16【分析】利用相互独立事件概率乘法公式,即可求得答案 【详解】在这种假定下,B ,C ,D 中都是由A 感染的概率为:1211136P =⨯⨯=. 故答案为:16. 17.(1)分布列如图,34E ξ=;(2)143144D η= 【详解】试题分析:本题主要考查生活中的概率知识,离散型随机变量的分布列和数学期望以及二项分布的方差问题,考查学生的分析能力和计算能力.第一问,10个球中摸3个,所以基本事件总数为310C ,ξ的可能取值为4种,分别数出每一种情况符合题意的种数,与基本事件总数相除求出4个概率值,列出分布列,利用1122n n E x p x p x p ξ=+++求期望;第二问,利用第一问分布列的结论,用间接法先求出乙一次抽奖中奖的概率,通过分析题意,可得中奖次数η符合二项分布,利用(1)D np p η=-的公式计算方差.试题解析:(1)甲抽奖一次,基本事件的总数为310=120C ,奖金ξ的所有可能取值为0,30,60,240.一等奖的情况只有一种,所有奖金为120元的概率为1(240)120P ξ==, 三球连号的情况有1,2,3;2,3,4;……8,9,10共8种,得60元的概率为81(60)12015P ξ===, 仅有两球连号中,对应1,2与9,10的各有7种:对应2,3;3,4;……8,9各有6种. 得奖金30元的概率为72677(30)12015P ξ⨯+⨯===,得奖金0元的概率为11711(0)1120151524P ξ==---=, ξ的分布列为:117110306024034 241515120Eξ=⨯+⨯+⨯+⨯= (2)由(1)可得乙一次抽奖中中奖的概率为四次抽奖是相互独立的,所以中奖次数故131114342424144 Dη=⨯⨯=.考点:1.离散型随机变量的分布列和数学期望;2.二项分布;3.方差.18.(I) 0.04(II)(III) 9.07【解析】本试题主要考查了独立事件概率的乘法公式好分布列的求解,以及期望公式的的综合运用.(1)中,利用两次都命中事件同时发生的概率乘法公式得到(2)中,因为由题意可知ξ可能取值为7、8、9、10,那么分别得到各个取值的概率值,得到分布列.(3)利用期望公式求解期望值.解:(I)由题意知运动员两次射击是相互独立的,根据相互独立事件同时发生的概率得到,该运动员两次都命中7环的概率为P=0.2×0.2=0.04(II)ξ可能取值为7、8、9、10P(ξ=7)=0.04 P(ξ=8)=2×0.2×0.3+0.32=0.21P(ξ=9)=2×0.2×0.3+2×0.3×0.3+0.32=0.39P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36∴ξ的分布列为∴ξ的数学期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.0719.(1)67(2)见解析【解析】(1)设取出的4张卡片中,含有编号为3的卡片为事件A,则P(A)==所以,取出的4张卡片中,含有编号为3的卡片的概率为(2)随机变量X的所有可能取值为1,2,3,4P(X=1)=P(X=2)=P(X=3)==P(X=4)==X的分布列为EX==20.(1)35(2)310【分析】(1)利用古典概率的求解方法进行求解;(2)利用独立事件同时发生的概率公式求解. 【详解】依题意,设事件A 表示“第一次取出的是黑球”,事件B 表示“第二次取出的是白球”. (1)黑球有3个,球的总数为5个,所以()35P A =. (2)第一次取出的是黑球,且第二次取出的是白球的概率为()3235410P AB ⨯==⨯. 【点睛】本题主要考查古典概率模型和独立事件的概率求解,题目较为简单,侧重考查数学运算的核心素养. 21.(1)23196.(2)见解析 【解析】试题分析:(1)为古典概型,利用组合数公式计算基本事件的总数和随机事件中含有的基本事件的总数即可.(2)为计算离散型随机变量的分布列和数学期望,利用公式计算即可.(1)记抽取的3天送餐单数都不小于40为事件M ,则()32535023196C P M C ==.(2)①设乙公司送餐员送餐单数为a ,则当38a =时,386228X =⨯=,当39a =时,396234X =⨯=,当40a =时,406240X =⨯=,当41a =时,40617247X =⨯+⨯=,当42a =时,40627254X =⨯+⨯=.所以X 的所有可能取值为228,234,240,247,254.故X 的分布列为:所以()11121228234240247254241.81055510E x =⨯+⨯+⨯+⨯+⨯= ②依题意,甲公司送餐员日平均送餐单数为380.2390.3400.2410.2420.139.7⨯+⨯+⨯+⨯+⨯=所以甲公司送餐员日平均工资为80439.7238.8+⨯=元.由①得乙公司送餐员日平均工资为241.8元.因为238.8241.8<,故推荐小王去乙公司应聘.22.(1)见解析;(2)0.7 【分析】根据概率和为1列方程,求得m 的值.(1)根据分布列的知识,求得21X +对应的分布列.(2)利用(14)(2)(3)(4)P X P X P X P X <≤==+=+=求得(14)P X <≤的值. 【详解】由分布列的性质知:0.20.10.10.31m ++++=,解得0.3m = (1)由题意可知(211)(0)0.2P X P X +====,(213)(1)0.1P X P X +====,(215)(2)0.1P X P X +====(217)(3)0.3P X P X +====,(219)(4)0.3P X P X +====所以21X +的分布列为:(2)(14)(2)(3)(4)0.10.30.30.7P X P X P X P X <≤==+=+==++= 【点睛】本小题主要考查分布列的计算,属于基础题.。
【数学(人教A版)选修2-3:第二章-随机变量及其分布-单元测试题
第二章_随机变量及其分布_单元测试题一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1.已知随机变量ξ的概率分布列如下:A。
错误! B.错误!C。
错误!D。
错误!答案 C解析P(ξ=10)=1-P(ξ=1)-P(ξ=2)-P(ξ=3)-…-P(ξ=9)=1-错误!-错误!-…-错误!=错误!。
2.某产品40件,其中有次品数3件,现从中任取2件,则其中至少有一件次品的概率是()A.0.146 2 B.0。
153 8C.0.996 2 D.0。
853 8答案 A解析所求的概率为1-错误!=1-错误!=0.146 2.3.已知离散型随机变量ξ的概率分布如下:则其数学期望E(ξ)A.1 B.0.6C.2+3m D.2.4答案 D解析 ∵0。
5+m +0.2=1,∴m =0.3.∴E (ξ)=1×0.5+3×0.3+5×0。
2=2。
4.4.已知随机变量X 服从二项分布X ~B (6,错误!),则P (X =2)等于( )A 。
错误!B 。
错误! C.错误!D 。
错误!答案 D解析 P (X =2)=C 错误!·(错误!)4·(错误!)2=错误!。
5.投掷3枚硬币,至少有一枚出现正面的概率是( )A.38B.错误! C 。
错误!D.错误! 答案 D解析 P (至少有一枚正面)=1-P (三枚均为反面)=1-(错误!)3=错误!。
6.在比赛中,如果运动员A 胜运动员B 的概率是错误!,那么在五次比赛中运动员A 恰有三次获胜的概率是( )A 。
40243B 。
错误!C 。
错误!D.错误! 答案 B解析 所求概率为C 错误!(错误!)3×(1-错误!)2=错误!。
7.如果随机变量ξ表示抛掷一个各面分别有1,2,3,4,5,6的均匀的正方体向上面的数字,那么随机变量ξ的均值为( )A .2。
5B .3C .3。
5D .4解析P(ξ=k)=错误!(k=1,2,3,…,6),∴E(ξ)=1×错误!+2×错误!+...+6×错误!=错误!(1+2+ (6)=错误!×[错误!]=3.5。
高中数学(人教版A版选修2-3)配套单元检测:第2章 随机变量及其分布 2.2-2.2.2学业分层测
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.这三个问题中,M,N是相互独立事件的有()A.3个B.2个C.1个D.0个2.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23表示()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()A.34 B.23C.35 D.124.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2-2-2所示.假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是()图2-2-2A.13 B.29C.49 D.8275.如图2-2-3所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()图2-2-3A.49 B.29C.23 D.13二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.7.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为________. 【导学号:97270041】8.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是________.三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.[能力提升]1.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.29 B.118C.13 D.232.三个元件T1,T2,T3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2-2-4的电路中,电路不发生故障的概率是()图2-2-4A.1532 B.932C.732 D.17323.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别是12,14,两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________. 【导学号:97270042】4.在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.这三个问题中,M,N是相互独立事件的有()A.3个B.2个C.1个D.0个【解析】①中,M,N是互斥事件;②中,P(M)=3 5,P(N)=12.即事件M的结果对事件N的结果有影响,所以M,N不是相互独立事件;③中,P(M)=1 2,P(N)=12,P(MN)=14,P(MN)=P(M)P(N),因此M,N是相互独立事件.【答案】 C2.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23表示()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率【解析】分别记从甲、乙袋中摸出一个红球为事件A,B,则P(A)=13,P(B)=12,由于A,B相互独立,所以1-P(A)P(B)=1-23×12=23.根据互斥事件可知C 正确.【答案】 C3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.34B.23C.35D.12【解析】 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.【答案】 A4.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2-2-2所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )图2-2-2A.13B.29C.49D.827【解析】 青蛙跳三次要回到A 只有两条途径: 第一条:按A →B →C →A , P 1=23×23×23=827; 第二条,按A →C →B →A , P 2=13×13×13=127.所以跳三次之后停在A叶上的概率为P=P1+P2=827+127=13.【答案】 A5.如图2-2-3所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()图2-2-3A.49 B.29C.23 D.13【解析】“左边圆盘指针落在奇数区域”记为事件A,则P(A)=46=23,“右边圆盘指针落在奇数区域”记为事件B,则P(B)=23,事件A,B相互独立,所以两个指针同时落在奇数区域的概率为23×23=49,故选A.【答案】 A二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.【解析】“从200个螺杆中,任取一个是A型”记为事件 B.“从240个螺母中任取一个是A型”记为事件C,则P(B)=C1160C1200,P(C)=C1180C1240.∴P(A)=P(BC)=P(B)·P(C)=C1160C1200·C1180C1240=35.【答案】3 57.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为________. 【导学号:97270041】【解析】用A,B,C分别表示“甲、乙、丙三人能破译出密码”,则P(A)=15,P(B)=13,P(C)=14,且P(A B C)=P(A)P(B)P(C)=45×23×34=25.所以此密码被破译的概率为1-25=35.【答案】358.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是________.【解析】设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为A,B,C,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P(A)=0.2,P(B)=0.3,P(C)=0.1,至少两颗预报准确的事件有AB C,A B C,A BC,ABC,这四个事件两两互斥且独立.所以至少两颗预报准确的概率为P=P(AB C)+P(A B C)+P(A BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.【答案】0.902三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【解】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.【解】设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以ξ的可能取值为1,3.则P(ξ=3)=P(A1·A2·A3)+P(A1·A2·A3)=P(A1)·P(A2)·P(A3)+P(A1)·P(A2)·P(A3)=2×0.4×0.5×0.6=0.24.P(ξ=1)=1-0.24=0.76.所以分布列为:1.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.29 B.118C.13 D.23【解析】 由P (A B )=P (B A ),得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )],∴P (A )=P (B ).又P (A B )=19, ∴P (A )=P (B )=13,∴P (A )=23. 【答案】 D2.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2-2-4的电路中,电路不发生故障的概率是( )图2-2-4A.1532B.932C.732D.1732【解析】 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34.不发生故障的事件为(A 2∪A 3)A 1, ∴不发生故障的概率为 P =P [(A 2∪A 3)A 1]=[1-P (A 2)·P (A 3)]·P (A 1) =⎝ ⎛⎭⎪⎫1-14×14×12=1532.故选A. 【答案】 A3.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别是12,14,两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________. 【导学号:97270042】【解析】 由题意可知,甲、乙在三小时以上且不超过四个小时还车的概率分别为14,14,设甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付的租车费用相同的概率为516.【答案】 5164.在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.【解】 如图所示,分别记这段时间内开关J A ,J B ,J C 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P (A -B -C -)=P (A )P (B )P (C )=[1-P (A )][1-P (B )][1-P (C )]=(1-0.7)×(1-0.7)×(1-0.7)=0.027.于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A -B -C -)=1-0.027=0.973.即在这段时间内线路正常工作的概率是0.973.。
高中数学 第二章 随机变量及其分布学业质量标准检测练习(含解析)新人教A版高二选修2-3数学试题
第二章 学业质量标准检测时间120分钟,满分150分.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是( C )A .某辆汽车一年中发生事故的次数是一个离散型随机变量B .正态分布随机变量等于一个特定实数的概率为0C .公式E (X )=np 可以用来计算离散型随机变量的均值D .从一副扑克牌中随机抽取5X ,其中梅花的X 数服从超几何分布[解析] 公式E (X )=np 并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C .2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X ,则下列概率中等于C 18C 15+C 14C 16C 112C 111的是( C )A .P (X =0)B .P (X ≤2)C .P (X =1)D .P (X =2)[解析] 由已知易知P (X =1)=C 18C 15+C 14C 16C 112C 111.3.已知10件产品中有3件是次品,任取2件,若X 表示取到次品的件数,则E (X )等于( A )A .35 B .815 C .1415D .1[解析] 由题意知,随机变量X 的分布列为∴E (X )=0×715+1×715+2×15=15=5.4.(2018·全国卷Ⅱ理,8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( C )A .112B .114C .115 D .118[解析] 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C .5.甲、乙、丙三人参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( C )A .0.16B .0.24C .0.96D .0.04[解析] 三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.6.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( C )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的[解析]X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k3C 410(k =1、2、3、4).∴P (X =1)=130,P (X =2)=310, P (X =3)=12, P (X =4)=16,∴选C .7.(2020·全国卷Ⅲ)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( C )A .0.01B .0.1C .1D .10[解析] 因为数据ax i +b i (i =1,2,…,n )的方差是数据x i (i =1,2,…,n )的方差的a 2倍,所以所求数据方差为102×0.01=1.故选C .8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( B )A .0.7B .0.6C .0.4D .0.3[解析] 由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B (10,p ),所以DX =10p (1-p )=2.4,所以p =0.4或0.6.又因为P (X =4)<P (X =6),所以C 410p 4·(1-p )6<C 610p 6(1-p )4,所以p >0.5,所以p =0.6.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.指出下列随机变量是离散型随机变量的是( AB ) A .小明回答20道选择题,答对的题数 B .某超市5月份每天的销售额C .某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差XD .某某某某市长江水位监测站所测水位在(0,29]这一X 围内变化,该水位站所测水位X [解析] A 项,小明回答的题数X 的取值可以一一列出,故X 为离散型随机变量;B 项,某超市5月份每天销售额可以一一列出,故为离散型随机变量;C 项,实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量,D 项,不是离散型随机变量,水位在(0,29]这一X 围内变化,不能按次序一一列举.故选AB .10.把一条正态曲线C 1沿着横轴方向向右移动2个单位,得到一条新的曲线C 2,下列说法中正确的是( ABC )A .曲线C 2仍然是正态曲线B .曲线C 1和曲线C 2的最高点的纵坐标相等C .以曲线C 2为概率密度曲线的总体的期望比以曲线C 1为概率密度曲线的总体的期望大2D .以曲线C 2为概率密度曲线的总体的方差比以曲线C 1为概率密度曲线的总体的方差大2 [解析] 正态曲线沿着横轴方向水平移动只改变对称轴位置,曲线的形状没有改变,所得的曲线依然是正态曲线.在正态曲线沿着横轴方向水平移动的过程中,σ始终保持不变,所以曲线的最高点的纵坐标(即正态密⎭⎪⎫度函数的最大值12πσ不变,方差σ2也没有变化.设曲线C 1的对称轴为x =μ,那么曲线C 2的对称轴为x =μ+2,说明期望从μ变到了μ+2,增大了2.11.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ACD )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12[解析] 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2, 则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,2个球都是红球为A 1A 2,其概率为16,A 正确;在B 中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,2个球中至少有1个红球的概率为1-P (A )P (B )=1-23×12=23,C 正确;在D中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .12.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以A 1,A 2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是( AD )A .P (B )=2330B .事件B 与事件A 1相互独立C .事件B 与A 2事件相互独立D .A 1,A 2互斥[解析] 由题意知P (A 1)=35,P (A 2)=25,P (B )=P (B |A 1)+P (B |A 2)=35×56+25×46==2330,A 正确;又P (A 1B )=12,因此P (A 1B )≠P (A 1)P (B ),B 错误;同理,C 错误;A 1,A 2不可能同时发生,故彼此互斥,故D 正确,故选AD .三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知随机变量ξ的分布列如下表,则a =__0.2__,E (ξ)=__1.8__.[解析] ;E (ξ)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.14.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=__23__.[解析] 由条件知,P (A )=34,P (AB )=C 23C 24=12,∴P (B |A )=P AB P A =23.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1、A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是__②④__(写出所有正确结论的序号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.[解析] 从甲罐中取出一球放入乙罐,则A 1、A 2、A 3中任意两个事件不可能同时发生,即A 1、A 2、A 3两两互斥,故④正确,易知P (A 1)=12,P (A 2)=15,P (A 3)=310,又P (B |A 1)=511,P (B |A 2)=411,P (B |A 3)=411,故②对③错;∴P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)·P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)=12×511+15×411+310×411=922,故①⑤错误.综上知,正确结论的序号为②④.16.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__625__.(用数字作答)[解析] 由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23(25)2(12)1=625.四、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球; 事件B :从1号箱中取出的是红球.P (B )=42+4=23. P (B )=1-P (B )=13.(1)P (A |B )=3+18+1=49.(2)∵P (A |B )=38+1=13,∴P (A )=P (A ∩B )+P (A ∩B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=1127. 18.(本题满分12分)(2019·全国Ⅱ卷理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.[解析] (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.19.(本题满分12分)甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X ,Y ,X 和Y 的分布列如下表.试对这两名工人的技术水平进行比较.[解析]E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的数学期望和方差分别为E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.20.(本题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ). [解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4, 则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 的数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2. 21.(本题满分12分)某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考查得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是23,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为X ,Y . (1)写出X 的概率分布列(不要求计算过程),并求出E (X ),E (Y );(2)求D (X ),D (Y ).请你根据得到的数据,建议该单位派哪个选手参加竞赛. [解析] (1)X 的分布列为所以E (X )=1×15+2×35+3×5=2.由题意得,Y ~B (3,23),E (Y )=3×23=2.(2)由(1)得E (X )=E (Y ).D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.∵Y ~B (3,23),∴D (Y )=3×23×13=23.∴D (X )<D (Y ).因此,建议该单位派甲参加竞赛.22.(本题满分12分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.[解析] (1)令A 表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有 P (A )=C 12C 13C 15C 310=14.(2)X 的可能取值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115综上知,X 的分布列为:故E (X )=0×715+1×15+2×15=5.。
高中数学 第2章 随机变量及其分布阶段性测试题二 新人教A版高二选修2-3数学试题
第二章 随机变量及其分布(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若随机变量ξ的分布列如下表所示,则p 1的值为( )A .0B .215C .115D .1解析:由分布列的性质得15+23+p 1=1,得p 1=215.答案:B2.某校举行安全知识测试,约有2 000人参加,其测试成绩ξ~N (80,σ2)(σ>0,试卷满分100分),统计结果显示P (ξ≤65)=0.3,则此次安全知识测试成绩达到优秀(不低于95分)的学生人数约为( )A .200B .300C .400D .600解析:由正态分布密度曲线的对称性,可得P (ξ≥95)=P (ξ≤65)=0.3,所以测试成绩达到优秀的学生人数约为0.3×2 000=600,故选D.答案:D3.某射手射击所得的环数X 的分布列如下,如果命中8( ) A .0.3 B .0.4 C .0.5D .0.6解析:P =P (X =8)+P (X =9)+P (X =10)=0.3+0.25+0.05=0.6. 答案:D4.已知随机变量X 的分布列如下:X 1 2 3P0.20.5m若随机变量η=3X -1,则E (η)为( ) A .4.2 B .18.9C .5.3D .随m 变化而变化解析:因为0.2+0.5+m =1,所以m =0.3,所以E (X )=1×0.2+2×0.5+3×0.3=2.1.又η=3X -1,所以E (η)=3E (X )-1=3×2.1-1=5.3.答案:C5.设整数m 是从不等式x 2-2x -8≤0的整数解的集合S 中随机抽取的一个元素,记随机变量ξ=m ,则ξ的数学期望E (ξ)=( )A .1B .5C.147D.167解析:由x 2-2x -8≤0得,-2≤x ≤4,∴S ={-2,-1,0,1,2,3,4},∴ξ的分布列为ξ -2 -1 0 1 2 3 4 P17171717171717∴E (ξ)=-27-17+0+17+27+37+47=1,故选A.答案:A6.如图所示,在边长为1的正方形OABC 内任取一点P ,用M 表示事件“点P 恰好取自曲线y =x 2与直线y =1及y 轴所围成的曲边梯形内”,N 表示事件“点P 恰好取自阴影部分内”,则P (N |M )等于( )A.14B.15 C.16D.17解析:曲线y =x 2与直线y =1及y 轴所围成的曲边梯形的面积S M =⎠⎛01(1-x 2)d x =⎝⎛⎪⎪⎪x -⎭⎪⎫13x 310=1-13=23, 直线y =x 与曲线y =x 2围成的阴影部分的面积S N =⎠⎛01(x -x 2)d x =⎪⎪⎪⎝⎛⎭⎪⎫12x 2-13x 310=12-13=16, ∴P (M )=S MS 正方形OABC =23,P (MN )=S N S 正方形OABC =16,∴P (N |M )=P (MN )P (M )=1623=14,故选A.答案:A7.已知随机变量X ~N (μ,σ2),且P (μ-2σ<X <μ+2σ)=0.954 5,P (μ-σ<X <μ+σ)=0.682 7,若μ=4,σ=1,则P (5<X <6)=( )A .0.135 9B .0.135 8C .0.271 8D .0.271 6解析:P (5<X <6)=12[P (2<X <6)-P (3<X <5)]=12(0.954 5-0.682 7)=0.135 9.答案:A8.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6解析:由已知得E (ξ)=6,D(ξ)=2.4,所以E (η)=8-E (ξ)=2,D (η)=(-1)2D (ξ)=2.4.答案:B9.口袋中有n 个白球,3个红球,依次从口袋中任取一球,若取到红球,则继续取球,且取出的红球不放回;若取到白球,则停止取球.记取球的次数为X ,若P (X =2)=730,则下列结论错误的是( )A .n =7B .P (X =3)=7120C .E (X )=118D .D (X )=12解析:由P (X =2)=730,得C 13C 1n C 1n +3C 1n +2=730,即3n (n +3)(n +2)=730,整理得90n =7(n +2)(n+3),解得n =7⎝ ⎛⎭⎪⎫n =67舍去.X 的所有可能取值为1,2,3,4,P (X =1)=C 17C 110=710,P (X =3)=C 13C 12C 17C 110C 19C 18=7120,P (X =4)=C 13C 12C 11C 17C 110C 19C 18C 17=1120,所以E (X )=1×710+2×730+3×7120+4×1120=118,D (X )=⎝⎛⎭⎪⎫1-1182×710+⎝⎛⎭⎪⎫2-1182×730+⎝⎛⎭⎪⎫3-1182×7120+⎝⎛⎭⎪⎫4-1182×1120=77192.答案:D10.已知随机变量X 服从正态分布N (2,σ2),其正态分布密度曲线为函数ƒ(x )的图象,且⎠⎛02ƒ(x )d x =13,则P (x >4)=( )A.16B.14 C.13D.12解析:∵X ~N (2,σ2),∴ƒ(x )的图象关于x =2对称,由⎠⎛02ƒ(x )d x =13得P (0<X ≤2)=13,P (X >4)=12-P (0<X ≤2)=12-13=16,故选A. 答案:A11.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击6次,有3次命中且恰有2次连续命中的概率为( )A .C 36⎝ ⎛⎭⎪⎫126B .A 24⎝ ⎛⎭⎪⎫126C .C 24⎝ ⎛⎭⎪⎫126D .C 14⎝ ⎛⎭⎪⎫126解析:先排3次未命中结果只有一种,产生四个空位,选两个空位插入2次连续命中和1次命中,所以3次命中且恰有2次连续命中的概率为A 24⎝ ⎛⎭⎪⎫126,故选B.答案:B12.(2019·某某浙南名校联盟期末)已知随机变量X 的分布列如下表:其中a ,b ,c >0.若X 的方差D (X )≤3对所有a ∈(0,1-b )都成立,则( )A .0<b ≤13B .0<b ≤23C.13≤b <1D.23≤b <1 解析:由X 的分布列可得X 的期望为E (X )=-a +c ,又a +b +c =1, 所以X 的方差D (X )=(-1+a -c )2a +(a -c )2b +(1+a -c )2c=(a -c )2(a +b +c )-2(a -c )2+a +c =-(a -c )2+a +c=-(2a -1+b )2+1-b =-4⎝ ⎛⎭⎪⎫a -1-b 22+1-b , 因为a ∈(0,1-b ),所以当且仅当a =1-b2时,D (X )取最大值1-b .又D (X )≤13对所有a ∈(0,1-b )都成立,所以只需1-b ≤13,解得b ≥23,所以23≤b <1.故选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.(2019·某某一中高二期末)已知有一匀速转动的圆盘,其中心有一个固定的小目标M ,甲、乙两人站在距离圆盘边缘2 m 处的地方向圆盘中心抛掷小圆环,他们抛掷的小圆环能套上小目标M 的概率分别为14与15,现甲、乙两人分别用小圆环向圆盘中心各抛掷一次,则小目标M 被套上的概率为________.解析:小目标M 被套上包括甲抛掷的小圆环套上、乙抛掷的小圆环没有套上;乙抛掷的小圆环套上、甲抛掷的小圆环没有套上;甲、乙抛掷的小圆环都套上,所以小目标M 被套上的概率P =14×⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫1-14×15+14×15=25.答案:2514.若A ={1,2,3,-1,-2},且a∈A,b∈A,c∈A,则a ,b ,c 这三数中恰有两个正数一个负数的概率为________.解析:P =C 23×32×253=54125. 答案:5412515.若A ,B ,C 相互独立,且P (AB )=16,P (B C )=18,P (AB C )=18,则P (A )=________,P (B )=________,P (C )=________.解析:设P (A )=x ,P (B )=y ,P (C )=z ,由题意得⎩⎪⎨⎪⎧ xy =16,(1-y )z =18,xy (1-z )=18,得⎩⎪⎨⎪⎧z =14,y =12,x =13.答案:13121416.有10道数学单项选择题,每题选对得4分,不选或选错得0分,已知某考生能正确答对其中的7道题,余下的3道题每题能正确答对的概率为13.假设每题答对与否相互独立,记ξ为该考生答对的题数,η为该考生的得分,则P (ξ=9)=________,E (η)=________(用数字作答).解析:P (ξ=9)=C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-13=29.依题意,ξ的可能取值为7,8,9,10,η=4ξ.P (ξ=7)=C 03⎝⎛⎭⎪⎫1-133=827, P (ξ=8)=C 13×13×⎝⎛⎭⎪⎫1-132=49,P (ξ=9)=29, P (ξ=10)=⎝ ⎛⎭⎪⎫133=127,∴E (ξ)=7×827+8×49+9×29+10×127=8,E (η)=E (4ξ)=4E (ξ)=32.答案:2932三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)设随机变量ξ的分布列为P (ξ=k )=15(k =1,2,3,4,5).求:(1)E (ξ+2)2;(2)D (2ξ-1).解:(1)∵E (ξ)=1×15+2×15+3×15+4×15+5×15=3,E (ξ2)=1×15+22×15+32×15+42×15+52×15=11,E (ξ+2)2=E (ξ2+4ξ+4)=E (ξ2)+4E (ξ)+4=11+12+4=27.(2)D (ξ)=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15+(5-3)2×15=2,D (2ξ-1)=22×D (ξ)=8.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表)和样本方差s 2;(2)由直方图可以认为,这种产品的质量指标值Z 分布服从N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E (X ).附:150≈12.2,若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 7,P (μ-2σ<Z <μ+2σ)=0.954 5.解:(1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 7,依题意知X ~B (100,0.682 7),所以E (X )=100×0.682 7=68.27.19.(12分)(2019·某某省部分重点中学高三起点考试)为了研究学生的数学核心素养与抽象能力(指标x )、推理能力(指标y )、建模能力(指标z )的相关性,将它们各自量化为1、2、3三个等级,再用综合指标w =x +y +z 的值评定学生的数学核心素养,若w ≥7,则数学核心素养为一级;若5≤w ≤6,则数学核心素养为二级;若3≤w ≤4,则数学核心素养为三级.为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:的概率;(2)从这10名学生中任取3人,其中数学核心素养等级是一级的学生人数记为X ,求随机变量X 的分布列及数学期望.解:(1)9A 4,A 7,A 10;数学核心素养为一级的学生是A 1,A 2,A 3,A 5,A 6,A 8.记“所取的2人的建模能力指标相同”为事件A ,记“所取的2人的综合指标值相同”为事件B ,则P (B |A )=P (AB )P (A )=C 23+C 22C 24+C 25=416=14.(2)由题意可知,数学核心素养为一级的学生为A 1,A 2,A 3,A 5,A 6,A 8, 非一级的学生为余下的4人, ∴X 的可能值为0,1,2,3, P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16,∴随机变量X 的分布列为∴E (X )=0×130+1×310+2×2+3×6=5.20.(12分)(2019·某某市高三联考)现有两种投资方案,一年后投资盈亏的情况如下表:投资股市:购买基金:(1)当p =14时,求q 的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值X 围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?请说明理由.解:(1)∵“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,∴p +13+q =1.又p =14,∴q =512.(2)记事件A 为“甲投资股市且获利”,事件B 为“乙购买基金且获利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”,则C =A B ∪A B ∪AB ,且A ,B 独立.由题意可知,P (A )=12,P (B )=p ,∴P (C )=P (A B )+P (A B )+P (AB ) =12(1-p )+12p +12p =12+12p . ∵P (C )=12+12p >45,∴p >35.又p +13+q =1,q ≥0,∴p ≤23.∴p 的取值X 围为⎝ ⎛⎦⎥⎤35,23. (3)假设丙选择“投资股市”的方案进行投资,记X 为丙投资股市的获利金额(单位:万元),∴随机变量X 的分布列为则E (X )=4×12+0×18+(-2)×8=4.假设丙选择“购买基金”的方案进行投资,记Y 为丙购买基金的获利金额(单位:万元), ∴随机变量Y 的分布列为则E (Y )=2×12+0×13+(-1)×6=6.∵E (X )>E (Y ),∴丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.21.(12分)(2019·某某省五校协作体测试)食品安全问题越来越受到人们的重视,某超市在某种蔬菜进货前,要求食品安检部门对每箱蔬菜进行三轮各项指标的综合检测,只有三轮检测都合格,蔬菜才能在该超市销售.已知每箱这种蔬菜第一轮检测不合格的概率为17,第二轮检测不合格的概率为18,第三轮检测合格的概率为89,每轮检测只有合格与不合格两种情况,且各轮检测是否合格相互之间没有影响.(1)求每箱这种蔬菜不能在该超市销售的概率;(2)如果这种蔬菜能在该超市销售,则每箱可获利400元,如果不能在该超市销售,则每箱亏损200元,现有4箱这种蔬菜,求这4箱蔬菜总收益的分布列和数学期望.解:(1)记A i (i =1,2,3)分别为事件“第一、二、三轮检测合格”,A 为事件“每箱这种蔬菜不能在该超市销售”.由题设知P (A 1)=1-17=67,P (A 2)=1-18=78, P (A 3)=89,所以P (A )=1-P (A 1)P (A 2)P (A 3)=1-67×78×89=13.(2)设这4箱蔬菜的总收益为随机变量X ,则X 的所有可能取值为1 600,1 000,400,-200,-800,且P (X =1 600)=C 44×⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫130=1681,P (X =1 000)=C 34×⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫131=3281, P (X =400)=C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=2481, P (X =-200)=C 14×⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫133=881, P (X =-800)=C 04×⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫134=181. 故X 的分布列为X 的数学期望E (X )=1 600×81+1 000×81+400×81-200×81-800×181=800.22.(12分)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:(1)设顾客所获的奖励额为X . ①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×2+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案 1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×3+100×6=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003. 对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×3+80×6=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.。
人教新课标版数学高二-A版选修2-3 第二章 随机变量及其分布 阶段测评
阶段测评(二)时间:90分钟 满分:120分一、选择题(本大题共10小题,每小题5分,共50分) 1.若随机变量ξ的分布列如下表所示,则p 1=( )A .0 B.215 C.115D .1解析:由分布列性质 i =1np i =1,n =1,2,3,…,n ,得15+23+p 1=0.∴p 1=215.答案:B2.已知事件A 、B 发生的概率都大于零,则( ) A .如果A 、B 是互斥事件,那么A 与B -也是互斥事件 B .如果A 、B 不是相互独立事件,那么它们一定是互斥事件 C .如果A 、B 是相互独立事件,那么它们一定不是互斥事件 D .如果A ∪B 是必然事件,那么它们一定是对立事件解析:对A.若A 、B 互斥,则A 与B -不互斥;对B.若A 、B 不相互独立,则它们可能互斥,也可能不互斥;对C.是正确的.对D.当A ∪B 是必然事件,A ∩B 是不可能事件时,A 、B 才是对立事件.答案:C3.已知随机变量X 服从正态分布N (μ,σ2),且P (μ-2σ<X <μ+2σ)=0.954 4,P (μ-σ<X <μ+σ)=0.682 6.若μ=4,σ=1,则P (5<X <6)=( )A .0.135 9B .0.135 8C .0.271 8D .0.271 6解析:P (5<X <6)=12[P (2<X <6)-P (3<X <5)]=12(0.954 4-0.682 6)=0.135 9. 答案:A4.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位长度,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B .C 25⎝ ⎛⎭⎪⎫125 C .C 35⎝ ⎛⎭⎪⎫123 D .C 25C 35⎝ ⎛⎭⎪⎫125解析:由于质点每次移动一个单位长度,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动二次,向上移动三次,故其概率为C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125. 答案:B5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( )A .0.015B .0.005C .0.985D .0.995解析:三人都不合格的概率为(1-0.9)×(1-0.8)×(1-0.75)=0.005. ∴至少有一人合格的概率为1-0.005=0.995. 答案:D6.设由“0”“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )=( )A.25B.34C.12D.18解析:∵P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=14,∴P(A|B)=P(A∩B)P(B)=1 2.答案:C7.已知随机变量ξ~N(0,σ2),则下面四个式子中能表示图中阴影部分面积的个数为()①12-Φ(a)②Φ(-a)-12③Φ(a)④12[Φ(-a)-Φ(a)]其中Φ(a)=P(ξ≤a)A.1个B.2个C.3个D.4个解析:正态曲线与x轴之间的面积为1,且关于y轴对称,所以①是正确的;∵Φ(-a)=P(ξ≤-a),∴由对称性可知,②④也是正确的,故选C.答案:C8.一名篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A.148 B.124C.112 D.16解析:由已知,得3a+2b+0×c=2,即3a+2b=2,所以ab=16×3a×2b≤16⎝⎛⎭⎪⎫3a+2b22=16.答案:D9.两台相互独立工作的电脑,产生故障的概率分别为a,b,则产生故障的电脑台数的均值为()A.ab B.a+bC.1-ab D.1-a-b解析:设产生故障的电脑台数为随机变量X,则X的取值为0,1,2,其分布列为:∴E(X)=a(1-b)+(1-a)b+2ab=a-ab+b-ab+2ab=a+b,故选B.答案:B10.利用下列盈利表中的数据进行决策,应选择的方案是()A.A12C.A3D.A4解析:分别求出方案A1,A2,A3,A4盈利的均值,得E(A1)=43.7,E(A2)=32.5,E(A3)=45.7,E(A4)=44.6,故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.设随机变量ξ的分布列为P (ξ=k )=kn (k =1,2,3,4,5,6),则P (1.5<ξ<3.5)=________.解析:由概率和为1可求得n =21,则P (1.5<ξ<3.5)=P (ξ=2)+P (ξ=3)=521. 答案:52112.在等差数列{a n }中,a 4=2,a 7=-4.现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__________(用数字作答).解析:由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,…,10).由题意,三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23(25)2(12)1=625. 答案:62513.将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=________.解析:根据几何概型,得P (AB )=19,P (B )=49,所以P (A |B )=P (AB )P (B )=14.答案:1414.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.解析:①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B ⎝ ⎛⎭⎪⎫6,23,其方差为6×23×⎝ ⎛⎭⎪⎫1-23=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球}, 则P (A )=23,P (AB )=4×36×5=25,∴P (B |A )=P (AB )P (A )=35,故③错; ④每次取到红球的概率P =23, 所以至少有一次取到红球的概率为 1-⎝ ⎛⎭⎪⎫1-233=2627,故④正确.答案:①②④三、解答题(本大题共4小题,第15~17小题各12分,第18小题14分,共50分)15.一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.)解:(1)由古典概型中的概率计算公式知所求概率为p =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P(X=2)=C13C14C12+C23C16+C33C39=4384,P(X=3)=C22C17C39=112,故X的分布列为从而E(X)=1×1742+2×4384+3×112=4728.16.在一个暗箱中装有5个手感、材质、大小都相同的球,其中有3个黑球,2个白球.(1)如果不放回地依次抽取2个球,则在第1次抽到黑球的条件下,第2次抽到黑球的概率.(2)如果从暗箱中任取2球,求在已知其中一个球为黑球的条件下,另一个球也是黑球的概率.解:(1)方法一:设“第1次抽到黑球”为事件A,“第2次抽到黑球”为事件B,则n(A)=A13×A14=12,n(AB)=A23=6,所以P(B|A)=n(AB)n(A)=612=12.方法二:P(A)=35,P(AB)=35×24=310.所以P(B|A)=P(AB)P(A)=31035=12.(2)方法一:设事件A表示“2球中至少有一个黑球”,事件B表示“2球都是黑球”.则n(A)=C25-C22=9,n(AB)=C23=3,所以P(B|A)=n(AB)n(A)=39=13.方法二:P(A)=C25-C22C25=910,P(AB)=C23C25=310.所以P(B|A)=P(AB)P(A)=310910=13.17.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.分布列为因为X ~B )=3×0.6×(1-0.6)=0.72.18.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响. (1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率为P (X =2)=C 25×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. (3)设“第i 次射击击中目标”为事件A i (i =1,2,3).由题意可知ξ的所有可能取值为0,1,2,3,6.P (ξ=0)=P (A1A2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A2A 3)+P (A 1A 2A 3)+P (A1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29; P (ξ=2)=P (A 1A 2A 3)=23×13×23=427;P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.所以ξ的分布列为:。
高中数学 第二章 随机变量及其分布章末复习 新人教A版选修2-3
解 设顾客所获的奖励额为X,
依题意,得 P(X=60)=CC11·C24 13=12,
即顾客所获的奖励额为 60 元的概率为12.
解答
②顾客所获的奖励额的分布列及均值;
解 依题意得X的所有可能取值为20,60, P(X=20)=CC2423=12,P(X=60)=12,
即X的分布列为
X
20
60
P
1 2
1 2
所以这位顾客所获奖励额的均值为 E(X)=20×12+60×12=40.
解答
(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标 有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组 成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所 获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计, 并说明理由.
跟踪训练3 某产品按行业生产标准分成8个等级,等级系数X依次为 1,2,…,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产 该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零 售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准. (1)已知甲厂产品的等级系数X1的分布列如下表:
1 ③曲线在 x=μ 处达到峰值 σ 2π ; ④曲线与x轴之间的面积为 1 ; ⑤当σ一定时,曲线的位置由μ确定,曲线随着 μ 的变化而沿x轴平移, 如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ 越小 ,曲线越“瘦高”,表示总 体的分布越集中;σ 越,大曲线越“矮胖”,表示总体的分布越分散,如 图乙所示.
解答
反思与感悟 求离散型随机变量X的均值与方差的步骤 (1)理解X的意义,写出X可能的全部取值; (2)求X取每个值的概率或求出函数P(X=k); (3)写出X的分布列; (4)由分布列和均值的定义求出E(X); (5)由方差的定义,求D(X),若X~B(n,p),则可直接利用公式求,E(X)= np,D(X)=np(1-p).
高中数学(人教版A版选修2-3)配套单元检测:第2章 随机变量及其分布 2.3-2.3.1学业分层测
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设随机变量X~B(40,p),且E(X)=16,则p等于() A.0.1B.0.2C.0.3D.0.42.随机抛掷一枚骰子,则所得骰子点数ξ的期望为() A.0.6 B.1C.3.5 D.23.设ξ的分布列为ξ123 4P 16161313又设η=2ξ+5,则E(A.76 B.176C.173 D.3234.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min,这名学生在上学路上因遇到红灯停留的总时间Y的期望为()A.13B.1C.43 D.835.设随机变量X的分布列为P(X=k)=14,k=1,2,3,4,则E(X)的值为()A.2.5 B.3.5 C.0.25 D.2二、填空题6.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为X,则E(X)=________. 【导学号:97270049】7.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是________.8.如图2-3-2,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=________.图2-3-2三、解答题9.某俱乐部共有客户3 000人,若俱乐部准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问俱乐部能否向每一位客户都发出领奖邀请?10.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.[能力提升]1.甲、乙两台自动车床生产同种标准件,X表示甲车床生产1 000件产品中的次品数,Y表示乙车床生产1 000件产品中的次品数,经一段时间考察,X,Y的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙质量相同D.无法判定2.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望效益是()A.2 000元B.2 200元C.2 400元D.2 600元3.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数,若P(X=0)=112,则随机变量X的数学期望E(X)=________.4.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设随机变量X~B(40,p),且E(X)=16,则p等于() A.0.1B.0.2C.0.3D.0.4【解析】∵E(X)=16,∴40p=16,∴p=0.4.故选D.【答案】 D2.随机抛掷一枚骰子,则所得骰子点数ξ的期望为() A.0.6 B.1C.3.5 D.2【解析】抛掷骰子所得点数ξ的分布列为ξ12345 6P 161616161616所以E(ξ)=1×16+2×16+3×16+4×16+5×16+6×16=3.5.【答案】 C3.设ξ的分布列为ξ123 4P 16161313又设η=2ξ+5,则E(A.76B.176C.173D.323【解析】 E (ξ)=1×16+2×16+3×13+4×13=176,所以E (η)=E (2ξ+5)=2E (ξ)+5=2×176+5=323.【答案】 D4.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min ,这名学生在上学路上因遇到红灯停留的总时间Y 的期望为( )A.13 B .1 C.43D.83【解析】 遇到红灯的次数X ~B ⎝ ⎛⎭⎪⎫4,13,∴E (X )=43. ∴E (Y )=E (2X )=2×43=83. 【答案】 D5.设随机变量X 的分布列为P (X =k )=14,k =1,2,3,4,则E (X )的值为( ) A .2.5 B .3.5 C .0.25 D .2【解析】 E (X )=1×14+2×14+3×14+4×14=2.5. 【答案】 A 二、填空题6.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为X ,则E (X )=________. 【导学号:97270049】【解析】 X 可能的取值为0,1,2,P (X =0)=(1-0.9)×(1-0.85)=0.015,P (X =1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22,P (X =2)=0.9×0.85=0.765,所以E (X )=1×0.22+2×0.765=1.75.【答案】 1.757.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是________.【解析】 随机变量X 的取值为0,1,2,4,P (X =0)=34,P (X =1)=19,P (X =2)=19,P (X =4)=136,因此E (X )=49.【答案】 498.如图2-3-2,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=________.图2-3-2【解析】 依题意得X 的取值可能为0,1,2,3,且P (X =0)=33125=27125,P (X =1)=9×6125=54125,P (X =2)=3×12125=36125,P (X =3)=8125.故E (X )=0×27125+1×54125+2×36125+3×8125=65.【答案】 65 三、解答题9.某俱乐部共有客户3 000人,若俱乐部准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问俱乐部能否向每一位客户都发出领奖邀请?【解】 设来领奖的人数ξ=k (k =0,1,…,3 000),∴P (ξ=k )=C k 3 000(0.04)k (1-0.04)3 000-k, 则ξ~B (3 000,0.04),那么E (ξ)=3 000×0.04=120(人)>100(人). ∴俱乐部不能向每一位客户都发送领奖邀请.10.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.【解】(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35(个).[能力提升]1.甲、乙两台自动车床生产同种标准件,X表示甲车床生产1 000件产品中的次品数,Y表示乙车床生产1 000件产品中的次品数,经一段时间考察,X,Y 的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙质量相同D.无法判定【解析】E(X)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,E(Y)=0×0.5+1×0.3+2×0.2+3×0=0.7.由于E (Y )>E (X ), 故甲比乙质量好. 【答案】 A2.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望效益是( )A .2 000元B .2 200元C .2 400元D .2 600元【解析】 出海的期望效益E (ξ)=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).【答案】 B3.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.【解析】 ∵P (X =0)=112=(1-p )2×13,∴p =12.随机变量X 的可能值为0,1,2,3,因此P (X =0)=112,P (X =1)=23×⎝ ⎛⎭⎪⎫122+2×13×⎝ ⎛⎭⎪⎫122=13,P (X =2)=23×⎝ ⎛⎭⎪⎫122×2+13×⎝ ⎛⎭⎪⎫122=512,P (X =3)=23×⎝ ⎛⎭⎪⎫122=16,因此E (X )=1×13+2×512+3×16=53. 【答案】 534.(2015·山东高考)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).【解】(1)个位数字是5的“三位递增数”有125,135,145,235,245,345.(2)由题意知,全部“三位递增数”的个数为C39=84,随机变量X的取值为:0,-1,1,因此,P(X=0)=C38C39=23,P(X=-1)=C24C39=114,P(X=1)=1-114-23=1142.所以X的分布列为则E(X)=0×23+(-1)×114+1×1142=421.。
高中数学(人教版A版选修2-3)配套单元检测:第2章 随机变量及其分布 2.2-2.2.1学业分层测
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.18 B.14C.25 D.122.下列说法正确的是()A.P(B|A)<P(AB) B.P(B|A)=P(B)P(A)是可能的C.0<P(B|A)<1 D.P(A|A)=03.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.454.从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则P(B|A)等于()A.18 B.14C.25 D.125.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是()A.13 B.118C.16D.19二、填空题6.已知P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________.7.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________. 【导学号:97270038】8.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n 个.从一个袋子中任取两个球,取到的标号都是2的概率是110.(1)求n 的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.10.任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少?(2)在(1)的条件下,求该点落在⎝ ⎛⎭⎪⎫15,1内的概率.[能力提升]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是()A.14 B.23 C.12 D.132.将3颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于()A.91216 B.518 C.6091 D.123.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.4.如图2-2-1,三行三列的方阵有9个数a ij(i=1,2,3,j=1,2,3),从中任取三个数,已知取到a22的条件下,求至少有两个数位于同行或同列的概率.()a11a12a13a21a22a23a31a32a33图2-2-1学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.18 B.14C.25 D.12【解析】∵P(A)=C22+C23C25=410,P(AB)=C22C25=110,∴P(B|A)=P(AB)P(A)=14.【答案】 B2.下列说法正确的是()A.P(B|A)<P(AB) B.P(B|A)=P(B)P(A)是可能的C.0<P(B|A)<1 D.P(A|A)=0【解析】由条件概率公式P(B|A)=P(AB)P(A)及0≤P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=P(B)P(A),故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选 B.【答案】 B3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P=0.60.75=0.8.【答案】 A4.从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则P(B|A)等于()A.18 B.14C.25 D.12【解析】法一:P(A)=C23+C22C25=25,P(AB)=C22C25=110,P(B|A)=P(AB)P(A)=14.法二:事件A包含的基本事件数为C23+C22=4,在A发生的条件下事件B包含的基本事件为C22=1,因此P(B|A)=1 4.【答案】 B5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是()A.13 B.118C.16 D.19【解析】设“至少有一枚出现6点”为事件A,“两枚骰子的点数不同”为事件B,则n(B)=6×5=30,n(AB)=10,所以P(A|B)=n(AB)n(B)=1030=13.【答案】 A二、填空题6.已知P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.【解析】P(A|B)=P(AB)P(B)=0.120.18=23;P(B|A)=P(AB)P(A)=0.120.2=35.【答案】23357.设A,B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为________. 【导学号:97270038】【解析】由题意知,P(AB)=310,P(B|A)=12.由P(B|A)=P(AB)P(A),得P(A)=P(AB)P(B|A)=35.【答案】3 58.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,则D=B∪C,且B与C互斥,又P(A)=C12C13+C22C25=710,P(AB)=C12·C11C25=15,P(AC)=C12C12C25=25,故P(D|A)=P(B∪C|A) =P(B|A)+P(C|A)=P(AB)P(A)+P(AC)P(A)=67.【答案】6 7三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是1 10.(1)求n的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】 (1)由题意得:C 2n C 2n +3=n (n -1)(n +3)(n +2)=110,解得n =2.(2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=n (AB )n (A )=C 22C 25-C 23=17. 10.任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少? (2)在(1)的条件下,求该点落在⎝ ⎛⎭⎪⎫15,1内的概率.【解】 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A =⎩⎨⎧⎭⎬⎫x |0<x <13,由几何概率的计算公式可知. (1)P (A )=131=13. (2)令B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪15<x <1,则AB =⎩⎨⎧⎭⎬⎫x |15<x <13, P (AB )=13-151=215.故在A 的条件下B 发生的概率为 P (B |A )=P (AB )P (A )=21513=25.[能力提升]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A.14B.23C.12D.13【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A为“其中一个是女孩”,事件B为“另一个是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.于是可知P(A)=34,P(AB)=14.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)=1434=13.【答案】 D2.将3颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于()A.91216 B.518 C.6091 D.12【解析】事件B发生的基本事件个数是n(B)=6×6×6-5×5×5=91,事件A,B同时发生的基本事件个数为n(AB)=3×5×4=60.所以P(A|B)=n(AB)n(B)=6091.【答案】 C3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.【解析】记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,“第二次才取到黄球”为事件C,所以P(C)=P(AB)=P(A)P(B|A)=410×69=415.【答案】4 154.如图2-2-1,三行三列的方阵有9个数a ij(i=1,2,3,j=1,2,3),从中任取三个数,已知取到a22的条件下,求至少有两个数位于同行或同列的概率.()a11a12a13a21a22a23a31a32a33图2-2-1【解】事件A={任取的三个数中有a22},事件B={三个数至少有两个数位于同行或同列},则B={三个数互不同行且不同列},依题意得n(A)=C28=28,n(A B)=2,故P(B|A)=n(A B)n(A)=228=114,则P(B|A)=1-P(B|A)=1-114=1314.即已知取到a22的条件下,至少有两个数位于同行或同列的概率为1314.。
人教A版数学高二选修2-3第二章《随机变量分布列》单元测试
一、选择题:
1.在用样本频率估计总体分布的过程中,下列说法正确的是()
A.总体容量越大,估计越精确;B.总体容量越小,估计越精确;
C.样本容量越大,估计越精确D.样本容量越小,估计越精确
2袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是()
A.取到球的个数B.取到红球的个数
C.至少取到一个红球D.至少取得一个红球的概率
投资成功
投资失败
192次
8次
则该公司一年后估计可获收益的期望是___________(元).
三、解答题:
15.盒子中装有卡号为1,2,3,4,5的五张卡片,现从中取出3张,以 表示取出的最大号码;
①写出 的分布列;②求 ;
16一批灯泡的使用时间 (单位:小时)服从正态分布 ,求这批灯泡中“使用时间超过10800小时”的灯泡的概率.
A. B. C. D.
9.一个家庭中有两个小孩,已知其中有一个是女孩,问这时另一个小孩也是女孩的概率为()(假定一个小孩是男孩还是女孩是等可能的)
A. B. C. D.
10.某种灯泡的耐用时间超过1000小时的概率为0.2,有3个相互独立的灯泡在使用1000小时以后,最多只有1个损坏的概率是()
A.0.008B.0.488C.0.096D.0.104
3.若随机变量 服从两点分布,且成功的概率 ,则 和 分别为()
A.0.5和0.25B.0.5和0.75C.1和0.25D.1和0.75
4.如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()
A. B. C. D.
5.设随机变量 的分布列为 ,则 ()
二、填空题:
高中数学 第二章 随机变量及其分布单元测评2(含解析)新人教A版选修2-3(2021年最新整理)
2017年高中数学第二章随机变量及其分布单元测评2(含解析)新人教A 版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高中数学第二章随机变量及其分布单元测评2(含解析)新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高中数学第二章随机变量及其分布单元测评2(含解析)新人教A版选修2-3的全部内容。
随机变量及其分布(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.已知离散型随机变量X的分布列如下:X135P0.5m0.2则其数学期望E(X)等于(A.1 B.0.6 C.2+3m D.2.4解析:由分布列的性质得m=1-0。
5-0.2=0。
3,所以E(X)=1×0。
5+3×0。
3+5×0.2=2。
4.答案:D2.抛掷红、蓝两颗骰子,若已知蓝骰子的点数为3或6时,则两颗骰子点数之和大于8的概率为( )A.错误!B.错误!C。
536D.错误!解析:记事件A为“ 蓝骰子的点数为3或6”,A发生时红骰子的点数可以为1到6中任意一个,n(A)=12,记B:“两颗骰子点数之和大于8”,则AB包含(3,6),(6,3),(6,4),(6,5),(6,6)5种情况,所以P(B|A)=n ABn A=错误!.答案:D3.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,则第999次出现正面朝上的概率是()A。
错误! B.错误! C。
错误! D。
错误!解析:每一次抛掷硬币,正面朝上的概率都是错误!.答案:D4.两个实习生每人加工一个零件.加工为一等品的概率分别为错误!和错误!,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A。
高中数学 第二章 随机变量及其分布单元测评1(含解析)新人教A版选修2-3(2021年最新整理)
2017年高中数学第二章随机变量及其分布单元测评1(含解析)新人教A 版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高中数学第二章随机变量及其分布单元测评1(含解析)新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高中数学第二章随机变量及其分布单元测评1(含解析)新人教A版选修2-3的全部内容。
随机变量及其分布(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.若随机变量ξ的分布如下表所示,则p等于( )A.0B.错误!错误!解析:由分布列的性质可知,错误!+错误!+p=1,所以p=1-15-错误!=错误!.答案:B2.已知P(B|A)=错误!,P(A)=错误!,则P(AB)=( )A.错误!B。
错误!C.错误!D。
错误!解析:P(AB)=P(B|A)·P(A)=错误!×错误!=错误!。
答案:D3.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是() A.甲科总体的标准差最小B.乙科总体的标准差及平均数都居中C.丙科总体的平均数最小D.甲、乙、丙的总体的平均数不相同解析:由图易知三科的平均成绩相同,甲科总体的标准差最小.答案:A4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0。
8,0.6,0.5,则三人中至少有一人达标的概率是()A.0。
16 B.0。
24C.0。
96 D.0.04解析:三人都不达标的概率是(1-0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学 第二章 随机变量及其分布单元综合检测一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设随机变量ξ等可能取值1、2、3、…、n ,如果P (ξ<4)=0.3,那么n 的值为( ) A .3 B .4 C .9D .10[答案] D[解析] ∵P (ξ<4)=3n=0.3,∴n =10.2.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,,则这两个零件中恰有一个一等品的概率为( ) A .512 B .12 C .14D .16[答案] A[解析] 根据相互独立事件与互斥、对立事件的概率公式得P =23×(1-34)+(1-23)×34=512,故选A . 3.已知某离散型随机变量X 服从的分布列如图,则随机变量X 的方差D (X )等于( )A .19B .29C .13D .3[答案] B[解析] 由m +2m =1得,m =13,∴E (X )=0×13+1×23=23,D (X )=(0-23)2×13+(1-23)2×23=29,故选B . 4.设随机变量X 服从正态分布N (3,4),则P (X <1-3a )=P (X >a 2+7)成立的一个必要不充分条件是( )A .a =1或2B .a =±1或2C .a =2D .a =3-52[答案] B[解析] ∵X ~N (3,4),P (X <1-3a )=P (X >a 2+7), ∴(1-3a )+(a 2+7)=2×3,∴a =1或2.故选B .[点评] a =1或2是充要条件,a =2是充分不必要条件,a =3-52是既不充分也不必要条件.5.如果随机变量ξ~B (n ,p ),且E (ξ)=7,D (ξ)=6,则p 等于( ) A .17 B .16 C .15D .14[答案] A[解析] 如果随机变量ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ), 又E (ξ)=7,D (ξ)=6,∴np =7,np (1-p )=6,∴p =17.6.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的[答案] C[解析] X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k3C 410(k =1、2、3、4).∴P (X =1)=130,P (X =2)=310,P (X =3)=12,P (X =4)=16,∴选C .7.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为( )A .18B .14C .38D .34[答案] D[解析] 小球落入B 袋中的概率为P 1=(12×12×12)×2=14,∴小球落入A袋中的概率为P =1-P 1=34.8.已知随机变量ξ服从正态分布N (3,4),则E (2ξ+1)与D (2ξ+1)的值分别为( ) A .13,4 B .13,8 C .7,8D .7,16[答案] D[解析] 由已知E (ξ)=3,D (ξ)=4,得E (2ξ+1)=2E (ξ)+1=7,D (2ξ+1)=4D (ξ)=16.9.有编号分别为1、2、3、4、5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为( )A .521B .27C .13D .821[答案] D[解析] 从10个球中任取4个,有C 410=210种取法,取出的编号互不相同的取法有C 45·24=80种,∴所求概率P =80210=821.10.设随机变量ξ服从分布P (ξ=k )=k15,(k =1、2、3、4、5),E (3ξ-1)=m ,E (ξ2)=n ,则m -n =( ) A .-319 B .7 C .83D .-5[答案] D[解析] E (ξ)=1×115+2×215+3×315+4×415+5×515=113,∴E (3ξ-1)=3E (ξ)-1=10,又E (ξ2)=12×115+22×215+32×315+42×415+52×515=15,∴m -n =-5.11.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c (a 、b 、c ∈[0,1)),已知他比赛一局得分的数学期望为1,则ab 的最大值为( )A .13B .12C .112 D .16[答案] C[解析] 由条件知,3a +b =1,∴ab =13(3a )·b ≤13·⎝ ⎛⎭⎪⎫3a +b 22=112,等号在3a =b =12,即a =16,b =12时成立.12.一个盒子里装有6张卡片,上面分别写着如下6个定义域为R 的函数:f 1(x )=x ,f 2(x )=x 2,f 3(x )=x 3,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=2.现从盒子中逐一抽取卡片,且每次取出后不放回,若取到一张记有偶函数的卡片,则停止抽取,否则继续进行,则抽取次数ξ的数学期望为( )A .74B .7720C .34D .73[答案] A[解析] 由于f 2(x ),f 5(x ),f 6(x )为偶函数,f 1(x ),f 3(x ),f 4(x )为奇函数,所以随机变量ξ可取1,2,3,4.P (ξ=1)=C 13C 16=12,P (ξ=2)=C 13C 13C 16C 15=310,P (ξ=3)=C 13C 12C 13C 16C 15C 14=320,P (ξ=4)=C 13C 12C 11C 13C 16C 15C 14C 13=120.所以ξ的分布列为E (ξ)=1×12+2×310+3×20+4×20=4.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.若η=aξ-2,E (η)=1,则D (η)的值为________.[答案] 11[解析] 根据题意得出随机变量ξ的分布列:E (ξ)=0×12+1×20+2×10+3×20+4×5=2,∵η=aξ-2,E (η)=1, ∴1=a ×32-2,即a =2,∴η=2ξ-2,E (η)=1,D (ξ)=12×(0-32)2+120×(1-32)2+110×(2-32)2+320×(3-32)2+15×(4-32)2=114,∵D (η)=4D (ξ)=4×114=11.故答案为11.14.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=________.[答案] 23[解析] 由条件知,P (A )=34,P (AB )=C 23C 24=12,∴P (B |A )=P AB P A =23.15.将一颗骰子连掷100次,则点6出现次数X 的均值E (X )=________.[答案]503[解析] 这是100次独立重复试验,X ~B ⎝ ⎛⎭⎪⎫100,16, ∴E (X )=100×16=503.16.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1、A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________________(写出所有正确结论的序号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.[答案] ②④[解析] 从甲罐中取出一球放入乙罐,则A 1、A 2、A 3中任意两个事件不可能同时发生,即A 1、A 2、A 3两两互斥,故④正确,易知P (A 1)=12,P (A 2)=15,P (A 3)=310,又P (B |A 1)=511,P (B |A 2)=411,P (B |A 3)=411,故②对③错;∴P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)·P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)=12×511+15×411+310×411=922,故①⑤错误.综上知,正确结论的序号为②④.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率;(3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和E (ξ)的值.[解析] (1)记甲、乙两人同时到A 社区为事件M ,那么P (M )=A 22C 24A 33=118,即甲、乙两人同时到A 社区的概率是118.(2)记甲、乙两人在同一社区为事件E ,那么P (E )=A 33C 24A 33=16,所以,甲、乙两人不在同一社区的概率是P (E )=1-P (E )=56.(3)随机变量ξ可能取的值为1,2.事件“ξ=i (i =1,2)”是指有i 个同学到A 社区, 则p (ξ=2)=C 24A 22C 24A 33=13.所以p (ξ=1)=1-p (ξ=2)=23,ξ的分布列是:∴E (ξ)=1×23+2×13=43.18.(本题满分12分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.[分析] 考查了古典概型的概率以及分布列、数学期望,属于简单题型.(1)由古典概型概率公式计算;(2)从含有2个豆沙粽的10个粽子中取3个,据此可得出X 的可能取值及其概率,列出分布列求得期望.[解析] (1)令A 表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有 P (A )=C 12C 13C 15C 310=14.(2)X 的可能取值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115综上知,X 的分布列为:故E (X )=0×715+1×715+2×15=5(个)19.(本题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级,对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.(1)已知甲、乙两种产品每一道工序的加工结果为A 级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P 甲、P 乙;(2)在(1)的条件下,求ξ、η的分布列及E (ξ),E (η);可用资金60万元.设x 、y 分别表示生产甲、乙产品的数量,在(2)的条件下,x 、y 为何值时,z =xE (ξ)+yE (η)最大?最大值是多少?[甲P 乙=0.75×0.8=0.6.(2)随机变量ξ、η的分布列是P 0.680.32η 2.5 1.5P 0.60.4E(ξ)=5×0.68+2.5×0.32=4.2,E(η)=2.5×0.6+1.5×0.4=2.1.(3)由题设知⎩⎪⎨⎪⎧5x+10y≤60,8x+2y≤40,x≥0,y≥0.即⎩⎪⎨⎪⎧x+2y≤12,4x+y≤20,x≥0,y≥0.目标函数为z=xE(ξ)+yE(η)=4.2x+2.1y.作出可行域(如图):作直线l:4.2x+2.1y=0,将l向右上方平移至l1位置时,直线经过可行域上的点M,此时z=4.2x+2.1y取最大值.解方程组⎩⎪⎨⎪⎧x+2y=12,4x+y=20.得x=4,y=4,即x=4,y=4时,z取最大值,z的最大值为25.2.20.(本题满分12分)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B、丙对C各一盘,已知甲胜A、乙胜B、丙胜C的概率分别为0.6、0.5、0.5,假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).[解析](1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则D、E、F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5. 红队至少两人获胜的事件有:DE F -,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55. (2)由题意知ξ可能的取值为0、1、2、3.又由(1)知D E F 、D E F 、D E F 是两两互斥事件,且各盘比赛的结果相互独立, 因此P (ξ=0)=P (D E F )=0.4×0.5×0.5=0.1,P (ξ=1)=P (D E F )+P (D E F )+P (D E F )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35.P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:因此E (ξ)=1.6.21.(本题满分12分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望. [分析] (1)由表中所给出的数值,第三个顾客恰好等待4分钟开始办理业务应分三种情况,逐一列出后求出其概率.(2)从已知条件知,X 的值为0人,1人,2人三种情况,特别当x =1时要注意再进行分类讨论.[解析] 设Y 表示顾客办理业务所需的时间,用频率估计概率,得Y 的分布列如下:P 0.10.40.30.10.1(1)A A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)解法一:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;所以X的分布列为X 01 2P 0.50.490.01E(X)22.(本题满分14分)(2015·江西省质量监测)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:老板根据销售量给予店员奖励,具体奖励规定如下表销售量X个X<100100≤X<150150≤X<200X≥200奖励金额(元)050100150(2)记未来连续2天,店员获得奖励X元,求随机变量X的分布列及数学期望E(X).[解析](1)由频率分布直方图得店员一天获得50元、100元、150元的概率分别是0.3,0.2,0.1,不得奖励的概率是0.4,所以未来连续3天里,店员共获得奖励150元的概率P=0.33+A33×0.3×0.2×0.4+C13×0.42×0.1=0.219;(2)X可能取值有0,50,100,150,200,250,300.P(X=0)=0.42=0.16,P(X=50)=2×0.4×0.3=0.24.P(X=100)=0.32+2×0.4×0.2=0.25,P(X=150)=2×0.4×0.1+2×0.3×0.2=0.20.P(X=200)=0.22+2×0.3×0.1=0.10,P(X=250)=2×0.2×0.1=0.04,P(X=300)=0.12=0.01,所以随机变量X的分布列是:E(X)+300×0.01=100(或E(X)=2(0×0.4+50×0.3+100×0.2+150×0.1)=100)。