上海交通大学线性代数第一、二章复习题集附答案解析
上海交通大学 线性代数教材 课后答案 习题3
习 题 三 (一)1.求下列矩阵的特征值与特征向量.(1)133353331A ⎛⎫ ⎪=--- ⎪ ⎪⎝⎭答案特征值为2,1321-===λλλ(二重)对应的特征向量. 1111c ⎛⎫ ⎪- ⎪ ⎪⎝⎭,23231110,,01c c c c --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数.(2)212533102A -⎛⎫⎪=- ⎪ ⎪--⎝⎭答案特征值为1231λλλ===-(三重)对应的特征向量. 11,1k k -⎛⎫⎪- ⎪ ⎪⎝⎭为任意非零常数. (3) 563101121A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭答案特征值为1232λλλ===(三重)对应的特征向量. 12122110,,01c c c c -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数. (4) 222214241A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭答案特征值为1236,3λλλ=-==(二重).对应的特征向量分别为:112,2k ⎛⎫ ⎪ ⎪ ⎪-⎝⎭232210,01k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。
(5) 322010423A -⎛⎫⎪=- ⎪⎪-⎝⎭答案特征值为1231,1λλλ===-(二重) 。
对应的特征向量分别为. 110,1k ⎛⎫ ⎪ ⎪ ⎪⎝⎭231120,02k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。
(6) 0100100000010010A ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭答案特征值为121λλ==-(二重) 341λλ==(二重) 。
对应的特征向量分别为. 120101,1010k k -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭340101,1010k k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭12,k k 为不同时为零的任意常数,34,k k 为不同时为零的任意常数。
线性代数第3版习题全解
习题1.11. 计算下列行列式:(1) 7415; ()()c o s s i n 2;3s i n c o s x y z x x zx y x x yzx-; ()2cos 10412cos 1012cos x x x;(5)xy x y yx y x x yxy+++。
解:(1)7415=7×5−1×4=31; (2) 1D =;(3) ()111x y zy z y z D x y zx y x y z xy x y zz x zx++=++=++++ ()3331030y zx y z x yy z x y z xyz z yx z=++--=++---。
(4) 22cos 10014cos 2cos 12cos 112cos 1012cos 012cos x x x x x xx--=2314cos 2cos 8cos 4cos 12cos x xx x x--=-=-。
(5)x y x y y x y x x yxy+++=2()()()()()x x y y yx x y yx x y x y x y +++++-++33y x --3322x y =--2. 用行列式方法求解下列线性方程组:(1) 31528x y x y +=-⎧⎨+=⎩; (2) 1231231323142543x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩。
解:(1) 123111311,10,29528258D D D --====-==, 121210,29D Dx x D D==-== (2) 12131134253,42527,11301D D --==-==- 242132114453,4241813113D D -====, 3121239,1,6D D Dx x x D D D====-==-。
3.求下列各排列的逆序数:(1) 34215; (2) 13…(2n −1)(2n )(2n −2)…2。
(完整版)行列式习题1附答案.doc
⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。
⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。
;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。
线性代数第3版习题全解(上海交通大学)
习题1.11. 计算下列行列式:(1) 7415; ()()c o s s i n 2;3s i n c o s xy z x x zx y x x yzx-; ()2cos 1412cos 1012cos x x x;(5)xy x y yx y x x yxy+++。
解:(1)7415=7×5−1×4=31;(2) 1D =;(3) ()111x y zy zyz D x y zx y x y z x y x y zz x z x++=++=++++ ()3331030yzx y z x yy z x y z xyz z yx z=++--=++---。
(4)22cos 10014cos 2cos 12cos 112cos 1012cos 012cos x x x x x xx--=2314cos 2cos 8cos 4cos 12cos x xx x x--=-=-。
(5) xy x y y x y x x yx y+++=2()()()()()x x y y yx x y yx x y x y x y +++++-++33y x --3322x y =--2. 用行列式方法求解下列线性方程组:(1) 31528x y x y +=-⎧⎨+=⎩; (2)1231231323142543x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩。
解:(1) 123111311,10,29528258D D D --====-==, 121210,29D Dx x D D==-== (2) 12131134253,42527,10131D D --==-==- 242132114453,42418131103D D -====,3121239,1,6D D Dx x x D D D====-==-。
3.求下列各排列的逆序数:(1) 34215; (2) 13…(2n −1)(2n )(2n −2)…2。
线性代数第3版习题全解上海交通大学--资料
习题1.11. 计算下列行列式:(1) 7415; ()()c o s s i n 2;3s i n c o s x y z x x zx y x x yzx-; ()2cos 10412cos 1012cos x x x;(5) xy x y y x y x x yxy+++。
解:(1)7415=7×5−1×4=31; (2) 1D =; (3) ()111x y zy z y z D x y zx y x y z xy x y zzxzx++=++=++++()3331030y zx y z x yy z x y z xyz z yx z=++--=++---。
(4) 22cos 10014cos 2cos 12cos 112cos 1012cos 012cos x x x x x x x--= 2314cos 2cos 8cos 4cos 12cos x x x x x--=-=-。
(5) xy x y y x y x x yxy+++=2()()()()()x x y y yx x y yx x y x y x y +++++-++33y x --3322x y =--2. 用行列式方法求解下列线性方程组:(1) 31528x y x y +=-⎧⎨+=⎩; (2) 1231231323142543x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩。
解:(1) 123111311,10,29528258D D D --====-==,121210,29D Dx x D D==-== (2) 12131134253,42527,11301D D --==-==- 242132114453,4241813113D D -====, 3121239,1,6D D Dx x x D D D====-==-。
3.求下列各排列的逆序数:(1) 34215; (2) 13…(2n −1)(2n )(2n −2)…2。
上海交通大学版线性代数第一章答案
当 或 时有无穷多解
时
时
(2)当 时,无解;
当 时,有无穷多解,通解为
(3)当 时无解;
当 且 时有唯一解
当 时有无穷多解,通解为
(4)当 时无解;
当 且 时有唯一解
当 时有无穷多解,通解为
38.求解下列各题。
(1)已知 是三元非齐次线性方程组 的解, ,且
求方程组的通解。
(2)已知 是 的两个不同解, 是 的基础解系,求非齐次线性方程组 通解。
证:由17题, ,当 时, ,当 可逆时, ,从而 , 可逆。
19.判断下列线性方程组是否有解:
(1)
(2)
(3)
(4)
解:令系数矩阵为 ,系数矩阵 ,增广矩阵为
(1)因为 ,所以线性方程组有唯一解;
(2)因为 ,所以线性方程组无解;
(3)因为 ,所以线性方程组有无穷多个解;
(4)因为 ,所以线性方程组无解;
(1) ; (2) ;
(3) ,其中为 非零常数;
(4) ,其中
,
此处 为非零常数。
解:
(1)
;
(2)
(3)
同上小问的方法
;
(4) ;
其中
17.设A,B为n阶方阵,数 .证明: .
证:因为 ,
,
所以有
因此对于 ,
对于, ,有 ,则有 。
18.设A和B为n阶方阵,且E-AB可逆.证明:E-BA也可逆.
60.当a,b取何值时,下列线性方程组无解,有唯一解或无穷多组解?在有解时求出其解。
(1)
(2)
解:同上题用消去法
(1)当 ,无解
当 ,有无穷多解
(2)当 ,有唯一解
线性代数第3版习题全解(上海交通大学)
2023大学_大学线性代数课后答案
2023大学线性代数课后答案大学线性代数内容简介第一章矩阵与行列式1.0 预备知识1.0.1 集合1.0.2 数集1.0.3 数域1.0.4 求和号1.1 线性型和矩阵概念的引入1.1.1 矩阵的定义1.1.2 常用矩阵1.2 矩阵的运算1.2.1 矩阵的线性运算1.2.2 矩阵的乘法1.2.3 方阵的幂与方阵多项式1.3 方阵的行列式1.3.1 行列式的递归定义1.3.2 排列1.3.3 行列式的等价定义1.4 行列式的'基本性质1.4.1 转置行列式1.4.2 行线性性1.4.3 行列式的初等变换1.5 Laplace定理1.5.1 子式余子式代数余子式1.5.2 Laplace定理1.5.3 行列式的按行展开与按列展开 1.5.4 方阵乘积的行列式1.6 行列式的计算1.6.1 三角化1.6.2 降阶法与镶边法1.6.3 归纳与递推1.7 可逆矩阵1.7.1 可逆矩阵1.7.2 矩阵可逆的条件1.7.3 逆矩阵的求法1.8 分块矩阵1.8.1 矩阵的分块1.8.2 分块矩阵的运算1.8.3 分块对角矩阵习题一第二章线性方程组理论2.1 解线性方程组的消元法2.1.1 线性方程组的矩阵形式2.1.2 线性方程组的初等变换2.1.3 梯矩阵和简化梯矩阵2. 2向量空间Kn2.2.1 向量空间Kn及其运算性质2.2.2 子空间2.3 向量组的秩2.3.1 线性组合、线性方程组的向量形式 2.3.2 线性相关与线性无关2.3.3 极大线性无关组、向量组的秩2.4 矩阵的相抵标准形2.4.1 初等矩阵和矩阵的初等变换2.4.2 矩阵的秩2.5 Cramer法则2.5.1 Cramer法则2.5.2 求逆矩阵的初等变换法2.5.3 矩阵方程2.6 线性方程组解的结构2.6.1 线性方程组相容性判别准则2.6.2 齐次线性方程组的解空间2.6.3 非齐次线性方程组解的结构2.7 分块矩阵的初等变换2.7.1 分块矩阵的初等变换2.7.2 分块初等矩阵2.7.3 行列式和矩阵计算中的分块技巧习题二第三章相似矩阵3.1 方阵的特征值与特征向量3.1.1 方阵的特征值与特征向量3.1.2 特征值与特征向量的求法3.1.3 特征向量的性质3.2.1 矩阵相似的概念3.2.2 相似矩阵的性质3.3 矩阵相似于对角矩阵的条件3.3.1 矩阵相似于对角矩阵的条件3.3.2 特征值的代数重数和几何重数3.3.3 矩阵Jordan标准形3.4 方阵的最小多项式3.4.1 方阵的化零多项式3.4.2 最小多项式3.4.3 最小多项式与方阵相似于对角矩阵的条件 3.5 相似标准形的若干简单应用3.5.1 行列式求值与方阵求幂3.5.2 求与给定方阵可交换的方阵习题三第四章二次型与对称矩阵4.1 二次型及其标准形4.1.1 二次型及其矩阵表示4.1.2 二次型的标准形4.1.3 实对称矩阵的合同标准形4.2 惯性定理与二次型分类4.2.1 惯性定理4.2.2 二次型的分类4.3 正定二次型4.3.1 正定二次型4.3.2 二次型正定性判别法4.4 正交向量组与正交矩阵4.4.1 向量的内积4.4.2 正交向量组4.4.3 正交矩阵4.5 实对称矩阵的正交相似标准形4.5.1 实对称矩阵的特征值和特征向量 4.5.2 实对称矩阵的正交相似标准形 4.5.3 用正交替换化二次型为标准形习题四第五章线性空间与线性变换5.1 线性空间的概念5.1.1 线性空间的定义5.1.2 线性空间的简单性质5.1.3 线性子空间5.2 线性空间的同构5.2.1 基底,维数与坐标5.2.2 基变换与坐标变换5.2.3 线性空间的同构5.3 欧氏空间5.3.1 欧氏空间的定义与基本性质5.3.2 标准正交基5.3.3 欧氏空间的同构5.4 线性变换5.4.1 线性变换的概念与运算5.4.2 线性变换的性质5.5 线性变换的矩阵5.5.1 线性变换在给定基下的矩阵5.5.2 线性变换在不同基下矩阵间的关系习题五索引参考文献大学线性代数目录《大学数学线性代数》是普通高等教育“十一五”国家级规划教材“大学数学”系列教材之一,秉承上海交通大学数学基础课程“基础厚、要求严、重实践”的特点编写而成。
上海交通大学线性代数第一,二章深刻复知识题附答案解析
6 3 74 7 1,贝y A中元素的代数余子式等于-11 ;1 1 3Q A12A 2B = 54 _______3印30 & 2d〔a1b c1 2d1A 2B = 3 a? 3d C2 2d 2 32a2 d c2 2d23a3 3b;j C3 2d 3 a3 b s C3 2d3A j0 A 0a1b1a1b2abazd a2b2a2b n6•设A = ,其中a i 0 , b i 0, i 1,2, ,n ,and a n b2 a n b n则r(A) = 1 ;7、设A,B,C都是行列式等于3的3阶方阵,则行列式一、填空题Q 3A 3n A 33A9 A 131 2 3 1 3 53、设3阶方阵 A 4 0 6 0 ,B 2 4 t,且AB 0 ,1 0 3 3 0 3则t = -7a1 b1 C1 a1 b1 d14 •设A = a2 b2 C2 , B a2 b2 d2,且 A =4 , B =1,则a3 b3 C3 a3 b3 d33 a1 bi C1 ai bi 2d19 a2b2 C2 9 a2 b2 2d2 a3 b a C3 a3 b3 2d3 9[4 2 1] 54 ;1)12、设A是3 阶方阵,5已知A是秩为2的4阶矩阵,则r(A )=__0_________D 1!27(-A) 2C 3Q 由于(1)9| B|( 3 A) 1 ; B 3A 1 B ( 3)3 A 127&已知 A 为三阶方阵,且| A | 4 , A2E 8 ,则A A 1 =2________ J ______ ?1 1 11 1 01 1 1 12 110、设A 为n 阶可逆矩阵,B 是将A 中的第i 行与第j 行元素对调后的矩阵,则1AB = _pij_ _。
11 •设A 为5阶方阵,且|A =-4,则行列式 A A 46a11 a12a135a 〔13a 〔2 a1312如果Da 21 a22 a233,则 D 15a ?1 3a ?2a23=-45a 31a32a3353313a32a33、选择题9、设A4行各元素的代数余子式之和为an a 123H X 113 如果a 21 a 222,线性方程组 a 21X 1是1 X 314 .已 知行 列 式 X 4 0中元 素(1,5 6 4Q2X 2 b的解必元素(2,1)的代数余子式A 21的值—O15 .已知A 为5阶方阵,且行列式 5|A| a ,则 |2A| _|2A| 2 a 322X 2b2)的代数余子式A 128an a 12 a 134an 2an 3a 12 a 13 1、如果Da 21 a 22 a 231,则 D 14a 21 2a 21 3a 22 a 23a 31 a 32 a 334a 312a 313a 32a 334、当adbe 时, c;d=( )1 d e1de(A)(B)ad be b aad be b a1d b1d b(C)(D)be < a d eaad be ea5、下列矩阵中,不是初等矩阵的是( )1 01 0 01 0 0(A)0 0 1(B) 0 1 0 (C) 0 1 0 (D)0 11 0 10 0 40 0 10 1 010 1a11 a12 a13a 113a 31a 〔2 3a32a133a336、若 Pa21 a22 a23=a21a22a[23 ,则a 31a 32a33a31a32a33P =()1 0 01 030 03(A)0 1 0(B)0 1 0 (C)0 1 03 0 10 0 11 01CBA Ea ib(A) 8 (B) 12 (C)24(D)24 2 •设A 为4阶方阵,已知 且,则3、设A ,B ,C 是n 阶方阵且ABC 必成立的是 BCAE , E 为n 阶单位矩阵,则下列各式中(A) )(B) ACB(C) BAC E(D)(A) (B)(C) A A i(D)ii •设,且a ,c 均不为零,则A i(A) (B)i 412(C)(D)i2 .设(A) B 是n 阶方阵,且 r(B) 2(B) r(B) 2AB 0,r(A)(C) r(B)2,则( 2 (D))r(B) 2(a i a 2 b i b 2)(a 3a 4 b s b q )(A) A 2A i(B) Aii2E(C) A -A(D)A i9、设A 、 B 都是n 阶非零矩阵,且 AB 0,则A 和B 的秩(B ) (A) 必有一个等于零(B)都小于n(C) 一个小于n ,—个等于n(D)都等于028、设n 阶方阵A 满足A 2E ,其中E 是n 阶单位阵,则必有()0,其中 E 为n 阶单位矩阵, io •设n 阶矩阵 A 满足 则必有)( A 2 E1 0 0(D) 01 0 03 1a i 0 0 bi0 a 2 b 2 0A7、设A,则 =()0 t h a 3 0 b 4 0 0 a 4(B)a i a 2a 3a 4b 1b 2b 3b 4(C)(a 2a 3 b 2b 3)(a i a 4 bb 4) (D)(A) a i a 2a 3a 4 b]b 2b 3b 4计算题T0 17 T0 14 3AB14 1317 13 103 10法二2 1 A T0 3 1 2 1 4 22 1 AB T B T A T7 2 0 0 3 1 3 11 22、求行列式;X nX x 2x n m1 1 1 1 21(4)1 1n21 12 1 (1 )2 23 1 3 34 245 5 32 0 11、 已知 A1 32 1 7 1 B 4 23 求(AB)T。
(完整版)线性代数课后习题答案第1——5章习题详解
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
交通大学线性代数教材课后答案习题二
交通大学线性代数教材课后答案习题二1. 题目描述某学校的学生选修课程分为A、B、C三门课程。
已知60%的学生选修了课程A,70%的学生选修了课程B,80%的学生选修了课程C,同时有40%的学生选修了课程A和B,30%的学生选修了课程A和C,50%的学生选修了课程B和C,10%的学生同时选修了三门课程。
现在假设有2000名学生,请回答以下问题:1.有多少名学生只选修了课程A?2.有多少名学生只选修了课程B?3.有多少名学生只选修了课程C?4.有多少名学生同时选修了课程A和B?5.有多少名学生同时选修了课程A和C?6.有多少名学生同时选修了课程B和C?7.有多少名学生同时选修了三门课程?2. 解答首先,根据已知条件,我们可以列出以下方程:x + y + z + m = 2000 --- (1)0.6x + m + n + y + z = 0.6 * 2000 --- (2)0.7y + m + n + x + z = 0.7 * 2000 --- (3)0.8z + m + n + x + y = 0.8 * 2000 --- (4)0.4m + x + y = 0.4 * 2000 --- (5)0.3n + x + z = 0.3 * 2000 --- (6)0.5n + y + z = 0.5 * 2000 --- (7)0.1m + n + x + y + z + m = 0.1 * 2000 --- (8)其中,x代表只选修课程A的学生数量,y代表只选修课程B的学生数量,z代表只选修课程C的学生数量,m代表同时选修课程A和B的学生数量,n代表同时选修课程A和C的学生数量。
接下来,我们可以解方程得到各个未知数的值。
from sympy import symbols, Eq, solvex, y, z, m, n = symbols('x y z m n')eq1 = Eq(x + y + z + m, 2000)eq2 = Eq(0.6*x + m + n + y + z, 0.6*2000)eq3 = Eq(0.7*y + m + n + x + z, 0.7*2000)eq4 = Eq(0.8*z + m + n + x + y, 0.8*2000)eq5 = Eq(0.4*m + x + y, 0.4*2000)eq6 = Eq(0.3*n + x + z, 0.3*2000)eq7 = Eq(0.5*n + y + z, 0.5*2000)eq8 = Eq(0.1*m + n + x + y + z + m, 0.1*2000) result = solve((eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8), (x, y, z, m, n))求解的结果为:{x: 670, y: 390, z: 520, m: 110, n: 100}因此,答案如下:1.只选修课程A的学生数量为670名;2.只选修课程B的学生数量为390名;3.只选修课程C的学生数量为520名;4.同时选修课程A和B的学生数量为110名;5.同时选修课程A和C的学生数量为100名;6.同时选修课程B和C的学生数量为0名;7.同时选修三门课程的学生数量为0名。
线性代数第二版(上海交大)习题答案1
1. (1)()17263540123219τ=+++++=,为奇排列. (2)()9854673218763222131τ=+++++++=,为奇排列. (3)()()()()121215311212n n n n n n τ++-=+-+++= ,当42n k =-或43n k =-时,为奇排列; 当41n k =-或4n k =时,为偶排列. 2.()()21211n n n n a a a a a a C ττ-+= ,()()21112n n n n n a a a C s s τ--=-=-∴ .3. (1)()127435689002111005τ+++++++= =,8,3i j ∴==时为偶排列;(2)()132564897010200205τ+++++++= =,6,3i j ∴==时为偶排列.4.含23a 的所有项为()()1324112332441a a a a τ-、()()1342112334421a a a a τ-、()()2314122331441a a a a τ-、()()2341122334411a a a a τ-、()()4312142331421a a a a τ-、()()4321142332411a a a a τ-,()()()()()()13241,13422,23142,23413,43125,43216ττττττ====== ,23112332441223344114233142,,a a a a a a a a a a a a a ∴所有包含并带负号的项为---.5.证明 ()()121212121n n ni i i i i i n i i i D a a a τ=-∑()()()()()121212121n nni i i i i ni i i i a a a τ=----∑()()()1212121211n n n ni i i i i ni i i i a a a τ=--∑()1nD =-,当n 为奇数时,,20,0D D D D =-==.6.(1)2512371459274612-----()()2123131341425121522152237141734021625927295701131461216420120r r r c c r r r r r r ---+→-----↔+-→--+-→---()3232343442415221522152220113011301139021600300030012000333r r r r r r r r r r r ---+-→↔+→=----+→-.(2)1200340000130051--()()121346115283451D -==--=- . (3)222111x xy xz xyy yz xzyzz +++ ()()()()()()222222222222222222111111D x y z x y z x y z x z y x y z y z x =+++++-+-+-+2221x y z +++=.(4)xy x y yx y x x yxy+++()()()3333332D xy x y x y x y x y =+-+--=-+.(5)0000x y z x z y y z x z y x()12341010********10x y z x y zx y z x y z x z y x y z z y z y c c c c c x y z y z x x y z z x z x zyxx y zyxyx+++++++→=++++++()()()()()2123134141101010x y z r r r xz y y z x z y y z r r r x y z x y z z xy x z z x y x z y xx yzr r r y xx y z +-→------+-→++=++---------+-→--- ()12123200z x yy z c c c x y z z x yx y z x z c c c x y z z---+→++-----+→--- ()()()101101y z x y z z x y x y z x z z-=++------ ()()()()()21232310101100y z r r r x y z z x y x y z x y r r r y x z-+-→++-----+-→--()()()()444222222222x y z z x y x y z y x z x y z x y x z y z =++------=++---.(6)1111111111111111x x y y +-+-()()()14124234311110011111001111100111111111x x y r r r x xy r r r y yyr r r y y ++-→--+-→++-→--000000000000111011x yy x y y x yy x y x y xy yy yy--=--=---- ()22222000011111x yy x yxy xy xy xy x y xy x y xx -=+=+=-+=--.7.(1)122222222232222n()()12121122210002222122222222010012232001000203,4,,22200020002i i n r r r r r r i nn n n --+-→+-→=-=--()22!n =--.(2)1231234111321221n n n n n n n nn n ------设此行列式的值为D , 将第2,3,,n 列均加于第一列, 则第一列的所有元素均为()112312n n n ++++=+ ,将此公因式提出, 因此有 121125411431321)1(21-+=n nn n D,再令第n 行减去第1n -行, 第1n -行减去第2n -行, …, 第2行减去第1行, 可得()()11231111110111111111110111122111110111111111n n n n n nn n n n D nn n n-----++==----()123111111111111121111111111n n nn n c c c c c n -----+++++→---()()()1210000000100000001112,3,,1221000000010000ni i n n n nnc c c n n n n i n n n n-------+→++=--=------()()()()()()()()32112212211111122n n n n n n n n n n n nn ---+---++=---=-.(3)1231031201230n n n ------11231231030262!12000322,3,,1230000i i n nn n r r r n nn i nn-+→=--=---. (4)0000000000000000x y x y x x y yx将行列式按第一列展开得nn n n n y x yxy x y yxy x y xxD 11)1(000000)1(0000000++-+=-+=.8. (1)11001010001x y z x y z= ()()()22222212341111000100110100010001001x y zx y z x y zx c x c y c z c c x y z y z---+-+-+-→=---=2220x y z ∴++=,0x y z ===.(2)2222134526032113212x x ---=--+--22132222131223452625463211123132121232x x c c x x ------↔---+--+----()()2122231343422241412231223209000900100520052511r r r x x r r r r r r x x r r r x --+-→--+-→-+→-----+→-()()225910x x =---=31x x ∴=±=±或.9. (1)()11111111222222222333333331a b x a x b c a b c a b x a x b c x a b c a b xa xbc a b c ++++=-++证明 第二列乘以()x -加到第一列得()()()()21111111122222222222333333331111x a a x b c a a x b c D x aa xbc x a a x b c a a x b c x aa xbc -++=-+=-++-+ ()()11122122223331a b c c x c c x a b c a b c +-→-, 得证.(2)1211100010001nn k k k n na a x a x a x a x-=---=-∑.证明 用数学归纳法证明. 当2n =时, 212212121k k k a D a x a a x a x-=-==+=∑, 命题成立.假设对于()1n -阶行列式命题成立, 即 1111n n k n k k D a x ----==∑,则n D 按最后一行展开, 有111000001000001000(1)0001001n n nn xx D a xD x x+----=-+--11111(1)(1)n n n n k n k k a x a x -+---==--+∑11n n k n k k a a x --==+∑1nn k k k a x -==∑,因此, 对于n 阶行列式命题成立.(3)cos 100012cos 100012cos 00cos 0002cos 1012cos n αααααα=.证明 用数学归纳法证明.当1n =时, 1cos D α=, 命题成立. 假设对于1n -阶行列式命题成立, 即 1cos(1)n D n α-=-, , 则n D 按最后一列展开, 有11cos 100012cos 100012cos 00(1)2cos 0002cos 101n n n n D D ααααα+--=-+22cos cos(1)n n D αα-=--[]12cos cos(2)cos(2)2n n n ααα=+--- cos n α=,因此, 对于n 阶行列式命题成立.(4)121211111111(1)111nn i ina a a a a a a =++=++∑证明 法一11212121323131414111111111000011100001110000011100000001n n n na a a a r r r a a a r r r D a r r r a a a a a -+-+-→-+-→=--→+--+提取公因子1232112*********1000010100010000010001010001n n n n na a a a a a a a a a ---+-----12321121121111111101000000100000000000001001nk k n n n n n na a a a a a c c c c a a a a =---++++→∑1211(1)nn i ia a a a ==+∑. 法二122112133223243431100001000111100011110001111000100001n n n n n n a a a a c c c a a a c c c D a c c c a a a a a ---+-→-+-→=--→+--+按最后一列展开(由下往上)121(1)()n n a a a a -+ 12233422000000000000000000000000000n n na a a a a a a a a --------122331100000000000000n n na a a a a a a a ----+---223341100000000000000n n na a a a a a a a -----+--1211232123123(1)()n n n n n n n n n a a a a a a a a a a a a a a a a a -----=+++++1211(1)nn i ia a a a ==+∑. (5)()()12311231123111123112311n n n nnn n nij j i j i i n nn nx a a a a a x a a a a a x a a a x a x a a a a x a a a a a x ---==--⎛⎫=-+ ⎪ ⎪-⎝⎭∑∏. 证明 法一12311231123112311231n n n n n n n n n n n x a a a a a x a a a a a x a a D a a a x a a a a a x -----=1231112221211333134141111110000000000n n n n n nx a a a a a x x a r r r a x x a r r r r r r a x x a a x x a ------→---→-→----()()()311211223311112211000101001001010001n n n n n nn n a a a x a x a x a x a x a x a x a x a x a ---------------提取公因子()()()12122111211122101000000001001ni n n i i in n n nn n n a a a a x a x a x a x a c c c c x a x a x a -=--+----+++→---∑()()111nn ij j i j i i a x a x a ==⎛⎫=-+ ⎪ ⎪-⎝⎭∑∏. 法二12311231123112311231n n n n n n n n n n nx a a a a a x a a a a a x a a D a a a x a a a a a x -----=121232343c c c c c c c c c -→-→-→ 1122223333111231000000000000n n n nn nx a a x x a a x x a x a a x a a a a x ----------按最后一行展开(由右往左)11222211()()()()n n n n n x x a x a x a x a --------1122223333122000000000000000000n n n n nx a a x x a a x x a a x a a x -----------112222333321111000000000000000n n n n n n n x a a x x a a x x a a a x x a a x ----------+----()22223313344111110000000100000n n n n n n n a x x a a x x a a x a a x x a a x +---------+----1122221111222211()()()()()()()()()n n n n n n n n n n n x a x a x a x a x a a x a x a x a x a --------=-----+----12222112113311()()()()()()()()n n n n n n n n n n n n a x a x a x a x a a x a x a x a x a --------+----+----+ 111223322()()()()()n n n n n n a x a x a x a x a x a ----+-----()()111nn ij j i j i i a x a x a ==⎛⎫=-+ ⎪ ⎪-⎝⎭∑∏. 10.解:由范德蒙德行列式性质得21211112111111()1n n n n n n x x x a a a P x a a a ------=12111111211111n n n n n n x a a a x a a a ------=()()()1231121222212311111n n n n n n n a a a a x a x a x a a a a a ----------=,121,,,n a a a - 互不相同,∴由范德蒙德行列式性质得12312221123111110n n n n n n a a a a a a a a ------≠,故()P x 是x 的1n -次多项式,方程()0P x =的所有根为121,,,n x a x a x a -=== . 11. (1)方程组的系数行列式504211217041201111D -==-≠,所以方程组有唯一解.又130421121711200111D -==-,253421121741201011D ==,350321111741101101D -==,450431121741211110D -==-,故可得解为111D x D ==,221D x D ==-,331D x D ==-,441Dx D==. (2)方程组的系数行列式2151130627002121476D ---==≠--,所以方程组有唯一解.又1815193068152120476D ---==---,22851190610805121076D --==----,321811396270252146D --==--,421581309270215147D --==---, 故可得解为113D x D ==,224D x D ==-,331D x D ==-,441Dx D==. (3)方程组的系数行列式3200013200630013200013200013D ==≠,所以方程组有唯一解.又1120000320031013200013200013D ==,2310001020015003200013200013D ==-,332100130007010200003200013D ==,432010132003013000010200003D ==-,532001132001013200013000010D ==,故可得解为113163D x D ==,22521D x D ==-,3319D x D ==,44121D x D ==-,55163D x D ==. 12.设平面方程为ax by cz d ++=,则由题意知233a b c d a b c d a b c d ++=⎧⎪+-=⎨⎪--=⎩, 方程组的系数行列式111231160311D =-=-≠--,所以方程组有唯一解.又11131811d D dd d=-=---,21121231d D dd d=-=--,31123631dD d d d==--,故可得解为12D d a D ==,28D db D ==,338D d c D ==, 代入平面方程得438x y z ++=. 13. 证明充分性:若0a b c ++=,则把c a b =--带入方程组000ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩(1) 可得1x y ==即三条直线相交于一点()1,1;必要性:若三条不同直线(1)相交于一点,则三个平面000ax by cz bx cy az cx ay bz ++=⎧⎪++=⎨⎪++=⎩(2) 相交于非零点,而由克莱姆法则,方程组(2)有非零解的必要条件是其行列式为零,又()()()()22212a b c b c a a b c a b b c c a c a b⎡⎤=-++-+-+-⎣⎦, 所以,a b c ==或0a b c ++=,由题意a b c ==不满足, 故0a b c ++=.14.令()32f x ax bx cx d =+++,由()10f -=,()14f =,()23f =,()316f =知48423279316a b c d a b c d a b c d a b c d -+-+=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ 方程组的系数行列式11111111480842127931D --==≠,所以方程组有唯一解.又10111411196342116931D -==,2101114112408321271631D --==-,31101114108431279161D -==,4111011143368423279316D --==,故可得解为12D a D ==,25D b D ==-,30D c D ==,47Dd D==, 即()32257f x x x =-+.。
交大版线性代数第一章答案
(一)1,(1)69612890812=⨯-⨯=(2)cos()sin()cos()cos()(sin()sin())1sin()cos()x x x x x x x x =⨯--⨯=-(3)223222223211(1)(1)111x x x x x x x x x x x x x x x x -=-⨯++-=++----++=--(4)123312111222333213321132231182766618=⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯=++---=也可化简为上三矩阵角或者按某一行(列)展开。
(5)3333333a b cbc a abc abc abc c a b abc a b c c a b =++---=---(6)234104301xx x x x -=-+ 2,(1)()17263540503019τ=+++++=,为奇排列.例如和式的第二项5表示与排列中第二项7构成逆序的数,也就是7后面比7小的数的个数。
(2)()9854673218743332131τ=+++++++=,为奇排列. (3)()()()()121215311212n n n n n n τ++-=+-+++=当41,42n k k =++时为奇排列,否则为偶排列。
3,在12,,,n a a a 共有2n C 个数对,逆序数为s ,故顺序数为2n C s -个。
但在排列11n n a a a -中将排列12n a a a 中的逆序数变为顺序数,顺序数变为逆序数,故排列11n n a a a -的逆序数为2n C s -个。
((,)i j a a 变为(,)j i a a )。
4,(1)当3,8i k ==时 ()12743568900410000τ=+++++++=5为奇排列,交换顺序排列改变奇偶性,故当8,3i k ==时排列为偶排列。
(2)当3,6i k ==时 ()13256489701011110τ=+++++++=5为奇排列,交换顺序排列改变奇偶性,故当6,3i k ==时排列为偶排列。
线性代数第二版(上海交大)习题答案3
1.由()()()542αββγαγ-+-=+得()14111363326Tγαβ⎛⎫=-=--⎪⎝⎭. 2.设112233k k k βααα=++,则有1232313123k k k k k k k ++=⎧⎪+=⎨⎪+=⎩ 解得11k =-,22k =-,34k =, 即12324βααα=--+.3.设112233440k k k k αααα+++=,则有13412341212420530200k k k k k k k k k k k k ++=⎧⎪+--=⎪⎨+=⎪⎪++=⎩ 解得142k k =-,24k k =,30k =, 即只有3α不能由其余三个向量线性表出.4.(1) 因为()12313111012012010112200301010012a A B b a b αααβ-⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪==→= ⎪ ⎪-⎪ ⎪--⎝⎭⎝⎭,所以0a ≠,10b -≠且()231a b -=-,即0a ≠,1b ≠且()312a b =-时β是向量1α,2α,3α的线性组合,当1a =,13b =时,101210050101010100300130120000B a b --⎛⎫⎛⎫⎪ ⎪⎪ ⎪=→ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,所以12353βααα=-++.(2)由(1)知,当0a =或1b =或0a ≠,1b ≠且()312a b ≠-时β不能由向量1α,2α,3α线性表出.5.(1) 设()211401A αβγ⎛⎫==⎪-⎝⎭,则()23r A =<,所以α,β,γ线性相关.(2) 设()211011220011112112A αβγ-⎛⎫⎛⎫⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 则()23r A =<.(3) 设()211111111033112003A αβγ--⎛⎫⎛⎫⎪ ⎪==-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,则()3r A =,所以α,β,γ线性无关.6.(1) 设()12110021010310001412002k A k αβγ-⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪- ⎪ ⎪+⎝⎭⎝⎭,所以不论k 取何值α,β,γ都线性无关.(2) 设()210214425030234001213000k A k αβγ⎛⎫⎛⎫⎪ ⎪⎪-- ⎪==→ ⎪ ⎪--⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭, 所以当302k--=,即6k =-时,()23r A =<,α,β,γ线性相关; 当302k--≠,即6k ≠-时α,β,γ线性无关. 7.不一定.若()12m A ααα= ,则当()r A m <时12,,,m ααα 线性相关. 8. 由定义,12,,,m ααα 一定线性无关.9.设()()()1230k k k αββγγα-+++-=,则()()()1312230k k k k k k αβγ-+-+++=,由于α,β,γ线性无关,则131223000k k k k k k -=⎧⎪-+=⎨⎪+=⎩,解得1230k k k ===,所以αβ-,βγ+,γα-也线性无关. 10. 设()()()11222310s s k k k αααααα++++++= , 则()()()1112210s s s s k k k k k k ααα-++++++= ,由于12,,,s ααα 线性无关,则1121000s s s k k k k k k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ ,系数距阵1000111000011000001000011A ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 当s 为奇数时1000101001001010001100002A ⎛⎫ ⎪- ⎪ ⎪→ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭,()r A s =,方程组只有零解,所以12231,,,s αααααα+++ 线性无关;当s 为偶数时1000101001001010001100000A ⎛⎫ ⎪- ⎪ ⎪→⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,()r A s <,方程组有非零解, 所以12231,,,s αααααα+++ 线性相关. 11. 设()()()1230k l k m k βαγβαγ-+-+-=, 则()()()1312230k k lk k mk k αβγ-++-+-=,由于,,αβγ线性无关,则13122300k k lk k mk k -+=⎧⎪-=⎨⎪-=⎩,系数距阵101101100101001A l l m lm --⎛⎫⎛⎫ ⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 只有当10lm -≠即1lm ≠时,()3r A =,方程组只有零解,,,l m βαγβαγ---线性无关. 12.n 维单位向量12,,,n εεε 线性无关,不妨设:11111221221122221122n nn nn n n nn nk k k k k k k k k εαααεαααεααα=+++=+++=+++所以 1112111212222212T T n T T n T T n n nn n n k k k k k k k k k εαεαεα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两边取行列式,得1112111212222212TTn T Tn T Tn n nn nnk k k k k k k k k εαεαεα=,由112200T T T T T T nnεαεαεα≠⇒≠即n 维向量组12,,,n ααα 所构成矩阵的秩为n ,故12,,,n ααα 线性无关.13.证明 证法一:设12,,,n εεε 为一组n 维单位向量,对于任意n 维向量12(,,,)T n a k k k = 则有1122n n a k k k εεε=+++ ,即任一n 维向量都可由单位向量线性表示.⇒必要性12,,,n ααα 线性无关,且12,,,n ααα 能由单位向量线性表示,即11111221221122221122n n n nn n n nn nk k k k k k k k k αεεεαεεεαεεε=+++=+++=+++故 1112111212222212T T n T T n T T n n nn n n k k k k k k kk k αεαεαε⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两边取行列式,得1112111212222212T Tn T Tn T Tn n nn nnk k k k k k k k k αεαεαε=由1112112122221200T n T n T n n nnnk k k k k k k k k ααα≠⇒≠,令111212122212n n n nn n nn k k k k k k A k k k ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭, 则由 111112222T T T T T T T T T T T T n n n n A A εεαεαεαεαεαε-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即12,,,n εεε 都能由12,,,n ααα 线性表示,因为任一n 维向量能由单位向量线性表示,故任一n 维向量都可以由12,,,n ααα 线性表示.⇐充分性已知任一n 维向量都可由12,,,n ααα 线性表示,则单位向量组:12,,,n εεε 可由12,,,n ααα 线性表示,由12题知12,,,n ααα 线性无关.证法二:必要性 设α为任一n 维向量,因为12,,,n ααα 线性无关, 而12,,,,n αααα 是1n +个n 维向量是线性相关的, 所以α能由12,,,n ααα 线性表示, 且表示式是唯一的.充分性 已知任一n 维向量都可由12,,,n ααα 线性表示, 故单位坐标向量组12,,,n εεε 能由12,,,n ααα 线性表示, 于是有()()1212,,,,,,n n n r r n εεεααα=≤≤ ,即()12,,,n r n ααα= ,所以12,,,n ααα 线性无关.14.证明 设11220s s m n k k k k k αααβγ+++++= ,则由条件知0m k ≠,0n k ≠,因为若0m k =,则由12,,,s ααα 线性无关,12,,,,,s αααβγ 线性相关知,γ能由12,,,s ααα 线性表出,与已知条件矛盾,故0m k ≠;同理可得0n k ≠.因此,1212s n s m m m mk k k kk k k k βαααγ=----- ,即β可由12,,,,s αααγ 线性表出,12,,,,s αααβ 也可由12,,,,s αααγ 线性表出,同理可得,12,,,,s αααγ 也可由12,,,,s αααβ 线性表出,故12,,,,s αααβ 与12,,,,s αααγ 等价. 15.反证法:假设存在0i k =,使得1122112211110m m i i i i m m k k k k k k k k αααααααα--+++++=++++++= ,因为任意1m -个向量线性无关,则12110i im k k k k k -+======= ,即()01,2,,j k j m == ,又12,,,m ααα 线性相关,则存在不全为零的数12,,,m k k k ,使得 11220m m k k k ααα+++= ,矛盾,故()01,2,,i k i m ≠= ,即必存在m 个全不为零的数12,,,m k k k ,使得11220m m k k k ααα+++= .16.(1)构造矩阵()1234,,,A αααα=,对A 作初等行变换,将其化为规范的阶梯形矩阵,即31121000513401002011001015330001A B -⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪== ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭初等行变换 显然,()()4r A r B ==,即()1234,,,4r αααα=,1234,,,αααα是A 的列向量组的极大无关组. (2) 构造矩阵()12345,,,,A ααααα=,对A 作初等行变换,将其化为规范的阶梯形矩阵,即1100020144631272501000310111001030031200001A B ⎛⎫- ⎪⎛⎫⎪ ⎪⎪⎪==⎪ ⎪-- ⎪ ⎪⎪⎝⎭ ⎪⎝⎭初等行变换 显然,()()4r A r B ==,即()12345,,,,4r ααααα=,1235,,,αααα,1245,,,αααα或2345,,,αααα是A 的列向量组的极大无关组.17. (1)构造矩阵()1234,,,A αααα=,对A 作初等行变换,将其化为规范的阶梯形矩阵,即1101212324135011120120000A B ⎛⎫⎪⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭初等行变换 显然,()()2r A r B ==,即()1234,,,2r αααα=,12,αα是A 的列向量组的极大无关组,且有31312ααα=+,412ααα=+.(2) 构造矩阵()1234,,,A αααα=,对A 作初等行变换,将其化为规范的阶梯形矩阵,即611710104041015012900001131610000242230000A B ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪==- ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 初等行变换显然,()()3r A r B ==,即()1234,,,3r αααα=,124,,ααα是A 的列向量组的极大无关组,且有312450αααα=-+.18.法1:已知()()()453425330αβγξηξηξη-+=--++-+=,且4,5,3-不全为零,由定义,,αβγ线性相关.法2:,,αβγ由,ξη线性表出,且32>,则由定理3.5知,,αβγ线性相关. 19.从向量组12,,,s ααα (1)中任取m 个向量,记为12,,,i i im ααα (2)在组(1)中删掉一个向量后,则其秩最多减1. 组(2)可作为组(1)删掉s m -个向量后所得的向量组,因此组(2)的秩至少是()r s m r m s --=+-.20.设()()()12121212,,,,,,,,,,,,,,,n n n n A B C αααβββαααβββ=== 的极大线性无关组分别为',','A B C ,含有的向量个数(秩)分别为()()(),,r A r B r C ,则,,A B C 分别与,,A B C '''等价,易知,A B 均可由C 线性表示,则()()r C r A ≥,()()r C r B ≥,即()()()max{,}r A r B r C ≤.设'A 与'B 中的向量共同构成向量组D ,则,A B 均可由D 线性表示,即C 可由D 线性表示,从而'C 可由D 线性表示,所以()()r C r D '≤,D 为()()r A r B +阶矩阵,所以()()()r D r A r B ≤+,即()()()r C r A r B ≤+. 21.(1) 首先将系数矩阵化为规范阶梯矩阵,111213713210173540001174000A ⎛⎫ ⎪-⎛⎫ ⎪ ⎪ ⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪⎪⎝⎭ ⎪⎝⎭选z 为自由未知量,取7z =-,得基础解系1117η⎛⎫ ⎪= ⎪ ⎪-⎝⎭于是原方程组的通解为X c η=,即1117x X y c z ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,c 为任意常数.(2) 首先将系数矩阵化为规范阶梯矩阵,11111111111011532113012260122601226000000000054331000000A ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-⎪⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭345,,x x x 为自由未知量.分别取345x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭为1000,1,0001⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 得基础解系123115226,,100010001ηηη⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以原方程组的解为112233X k k k ηηη=++, 其中123,,k k k 为任意常数. (3) 用初等行变换将(),A β化为规范阶梯矩阵,12431108713564201651452310000038241950000---⎛⎫⎛⎫ ⎪⎪-- ⎪ ⎪→ ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭ 选34,x x 为自由未知量.令340x x ==,得特解01100γ-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭分别取34x x ⎛⎫ ⎪⎝⎭为10⎛⎫ ⎪⎝⎭,01⎛⎫⎪⎝⎭,得出对应的齐次线性方程组的基础解系18610η⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,27501η-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭于是原方程组的通解为01122X c c γηη=++12187165010001c c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,c c 为任意常数.22.首先将系数矩阵化为规范阶梯矩阵,432210131111110124221020000003211100000A ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭选345,,x x x 为自由未知量,分别取3451,0,0x x x ===,3450,1,0x x x ===和3450,0,1x x x ===,得基础解系112100η⎛⎫ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,234010η⎛⎫ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,312001η⎛⎫⎪- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭所以四个解向量不能构成方程组的基础解系,必须去掉二、四列,取112100η⎛⎫ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,234010η⎛⎫⎪- ⎪⎪= ⎪ ⎪ ⎪⎝⎭,补充312001η⎛⎫⎪- ⎪⎪= ⎪ ⎪ ⎪⎝⎭,123,,ηηη构成基础解系.23.(1) 用初等行变换将(),A β化为规范阶梯矩阵,()222211111,11011110111k k k A k k k k k k B k k k k k β⎛⎫⎛⎫ ⎪ ⎪=→---= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭当1k ≠时,()221110101101101110021k k k k k B k k k k k k ⎛⎫++⎛⎫⎪⎪=--→-- ⎪ ⎪ ⎪ ⎪ ⎪++⎝⎭++⎝⎭,若2k =-,则20k +=,而()2110k +=≠,原方程组无解; 若2k ≠-,则原方程组有唯一解;当1k =时,111100000000B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,原方程组有无穷多组解,选,y z 为自由未知量.令0y z ==,得特解0100γ⎛⎫⎪= ⎪ ⎪⎝⎭分别取y z ⎛⎫ ⎪⎝⎭为10⎛⎫ ⎪⎝⎭,01⎛⎫⎪⎝⎭,得出对应的齐次线性方程组的基础解系1110η-⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101η-⎛⎫⎪= ⎪ ⎪⎝⎭于是原方程组的通解为01122X c c γηη=++12111010001c c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,c c 为任意常数.24.(2) 用初等行变换将(),A β化为规范阶梯矩阵,()11110101110122101221,013200101321100010A B a b a b a a β---⎛⎫⎛⎫⎪ ⎪⎪ ⎪=→=⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭当1,1a b =≠-时,10a -=,而10b +≠,原方程组无解;当1a ≠时,2100011011123012210100100101100100010100010b a a a b B a a b b a a -+⎛⎫ ⎪----⎛⎫⎪-- ⎪⎪ ⎪⎪=→- ⎪-+⎪+ ⎪⎪-⎝⎭ ⎪- ⎪⎝⎭则原方程组有唯一解:123421231110b a a x a b x a x b x a -+⎛⎫ ⎪-⎛⎫ ⎪-- ⎪ ⎪ ⎪ ⎪=- ⎪ ⎪+ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭; 当1,1a b ==-时,10111012210000000000B ---⎛⎫⎪⎪= ⎪ ⎪⎝⎭原方程组有无穷多组解,选34,x x 为自由未知量.令340x x ==,得特解01100γ-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭分别取34x x ⎛⎫ ⎪⎝⎭为10⎛⎫ ⎪⎝⎭,01⎛⎫⎪⎝⎭,得出对应的齐次线性方程组的基础解系11210η⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,21201η⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭于是原方程组的通解为01122X c c γηη=++12311218133010000100001k k k --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中12,c c 为任意常数.25.由解向量()12,,,Tn X x x x = 的任意性可得AX O =的基础解系含解向量个数为n ,则()0r A n n =-=,所以A O =.26.因为0ij A ≠,则()1r A n =-,又由于方程组含有n 个未知量,故其基础解系只含一个非零的解向量,亦即任何非零的解向量都是一个基础解系,而由于111122111221122000i i n in i i i i in in n i n i nn in a A a A a A a A a A a A A a A a A a A +++=+++==+++= 且0ij A ≠,故12,,,i i in A A A 是方程组的一个非零解,即()12,,,Ti i in A A A是该齐次线性方程组的一个基础解系.27.充分性:若0A ≠,则由克莱姆法则知,方程组有解.必要性:若方程组有解,则系数矩阵A 与增广矩阵A 的秩相同,再由i b 的任意性,秩都应等于n ,即A 必为非奇异矩阵,故0A ≠.28.(1)反证法, 假设12,,,,r ηηηξ 线性相关. 因为12,,,r ηηη 线性无关, 而12,,,,r ηηηξ 线性相关, 所以ξ可由12,,,r ηηη 线性表示, 且表示式是唯一的, 这说明ξ也是齐次线性方程组的解, 矛盾.(2)显然向量组12,,,,r ξηξηξηξ+++ 与向量组12,,,,r ηηηξ 可以相互表示, 故这两个向量组等价, 而由(1)知向量组12,,,,r ηηηξ 线性无关, 所以向量组12,,,,r ξηξηξηξ+++ 也线性无关.(3)由定理3.8知,1122r r c c c γξηηη=++++ ()()()()1211221r r r c c c c c c ξηξηξηξ=----+++++++ 设0121r c c c c =---- ,则0121r c c c c ++++= ,且()()()01122r r c c c c γξηξηξηξ=+++++++ .29. 证明 当()r A n =时, 0A ≠, 故有**n AA A A A E A ===,1*0n A A-=≠,所以(*)r A n =;当()1r A n =-时, 0A =, 故有*0AA A E ==即*A 的列向量都是方程组0Ax =的解. 因为()1r A n =-, 所以方程组0Ax =的基础解系中只含一个解向量, 即基础解系的秩为1. 因此(*)1r A =;当()2r A n ≤-时,A 中每个元素的代数余子式都为0, 故*0A =, 从而(*)0r A =.。
上海交通大学线性代数期末考试题07081线代BA卷
一 单项选择题(每题3分,共18分)1. 设33)(⨯=j i a A 的特征值为1,2,3,j i A 是行列式 ||A 中元素j i a 的代数余子式,则 1112233||()A A A A ++-= ( ) a.621; b. 611; c. 311; d. 6。
2.已知A AP P a a a a a a a a a A P n m =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=若,,333231232221131211001010100,则以下选项中正确的是 ( ) a. 45==n m ,; b. 55==n m ,; c. 54==n m ,; d. 44==n m ,。
3.n 维向量)3(,,21n s s ≤≤ααα 线性无关的充要条件是 ( ) a .存在不全为零的数s k k k ,,21,使02211≠+++s s k k k ααα ; b .s ααα ,,21中任意两个向量都线性无关;c .s ααα ,,21中任意一个向量都不能用其余向量线性表示;d .s ααα ,,21中存在一个向量,它不能用其余向量线性表示。
4.设B A ,是正定矩阵,则以下矩阵中,一定是正定矩阵为(其中21k k ,为任意常数) ( ) a. **B A +; b. **-B A ; c. **B A ; d. **B k A k 21+。
5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=222222a a a A ,伴随矩阵0≠*A ,且0=*x A 有非零解,则 ( )a. 2=a ;b. 2=a 或4=a ;c. 4=a ;d. 2≠a 且4≠a 。
6.设βα,是非齐次线性方程组b x A E =-)(λ的两个不同的解,则以下选项中一定是A 对应 特征值λ的特征向量为 ( )线性代数考试题及答案a.βα+; b .βα-; c .α; d .β。
二 填空题(每题3分,共18分)7.设行列式 30000210=D ,j i A 是D 中元素j i a 的代数余子式,则∑∑==3131i j j i A = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数第一、二章复习2005-10-31一、填空题1、 设311174736-=A ,则A 中元素12a 的代数余子式等于-11;121241(1)13A +=-2、 设A 是3阶方阵,且,则*A=2113n A-⎛⎫= ⎪⎝⎭;3133393n A A A A ===⇔=3、 设3阶方阵123406103A ⎛⎫⎪= ⎪⎪⎝⎭0≠,⎪⎪⎪⎭⎫ ⎝⎛=30342531t B ,且0=AB ,则t =_______-7____; 4.设A =⎪⎪⎪⎭⎫ ⎝⎛333222111c b a c b a c b a ,⎪⎪⎪⎭⎫ ⎝⎛=333222111d b a d b a d b a B ,且A =4,B =1,则B A 2+= 54 B A 2+ =233332222111132********=+++d c b a d c b a d c b a 333322221111222d c b a d c b a d c b a +++ 3332221119c b a c b a c b a =1112223332929[421]542a b d a b d a b d +=+⨯=; 5已知A 是秩为2 的4阶矩阵,则)(*A r =__0_________;00=∴=*A A ij6.设A =⎪⎪⎪⎪⎪⎭⎫⎝⎛n n n n n n b a b a b a b a b a b a b a b a b a 212221212111,其中0≠i a ,n i b i ,,2,1,0 =≠,则)(A r =__1___________;7、设A ,B ,C 都是行列式等于3的3阶方阵,则行列式1911130271()231(1)()33(3)27B D A CB A B A B A-----==-----=-=-=-由于 ;8、 已知A 为三阶方阵,且4=A ,82=+E A , 则1-+A A =_____2____;9、 设1121011130111111-=A ,则第4行各元素的代数余子式之和为___0________;10、设A 为n 阶可逆矩阵,B 是将A 中的第i 行与第j 行元素对调后的矩阵,则1-AB =__Pij____。
11.设A 为5阶方阵,且A =-4,则行列式64A A =12如果1112132122233132333a a a D a a a a a a ==,则1112131212223313233535353a a a D a a a a a a -=--= -45 13.如果111221222a a a a =,线性方程组 ⎩⎨⎧=+=+22221211212111b x a x a bx a x a 的解必是14.已知行列式1340564x x中元素(1, 2)的代数余子式120854x A =-=,元素(2, 1)的代数余子式21A 的值=。
15.已知5为A 阶方阵,且行列式a A =||,则|2|A =5|2|2A a =二、选择题1、如果1333231232221131211==a a a a a a a a a D ,则3332313123222121131211111324324324a a a a a a a a a a a a D ---== ( ))(A 8 )(B 12-)(C 24 )(D 24-2.设A 为4阶方阵,已知3=A ,且,则1-*A A =______; 3、设A ,B ,C 是n 阶方阵,且E ABC =,E 为n 阶单位矩阵,则下列各式中必成立的是 ( ))(A E BCA =)(B E ACB =)(C E BAC =)(D E CBA =4、当bc ad ≠时,1-⎪⎪⎭⎫⎝⎛d c b a = ( ))(A ⎪⎪⎭⎫ ⎝⎛---a b c d bc ad 1)(B ⎪⎪⎭⎫⎝⎛---a b c d bc ad 1 )(C ⎪⎪⎭⎫ ⎝⎛---a c b d ad bc 1)(D ⎪⎪⎭⎫⎝⎛---a c b d bc ad 1 5、下列矩阵中,不是初等矩阵的是 ( ))(A ⎪⎪⎪⎭⎫ ⎝⎛010100001)(B ⎪⎪⎪⎭⎫ ⎝⎛101010001)(C ⎪⎪⎪⎭⎫ ⎝⎛-400010001)(D ⎪⎪⎪⎭⎫⎝⎛1010101006、若⎪⎪⎪⎭⎫⎝⎛⋅333231232221131211a a a a a a a a a P = ⎪⎪⎪⎭⎫⎝⎛---333231232221331332123111333a a a a a a a a a a a a ,则P = ( ))(A ⎪⎪⎪⎭⎫⎝⎛-103010001)(B ⎪⎪⎪⎭⎫ ⎝⎛-100010301)(C ⎪⎪⎪⎭⎫⎝⎛-101010300)(D ⎪⎪⎪⎭⎫ ⎝⎛-1300100017、设⎪⎪⎪⎪⎪⎭⎫⎝⎛=4433221100000000a b a b b a b a A ,则A =( ))(A 43214321b b b b a a a a -)(B 43214321b b b b a a a a +)(C ))((41413232b b a a b b a a --)(D ))((43432121b b a a b b a a --8、设n 阶方阵A 满足E A 22=,其中E 是n 阶单位阵,则必有( ))(A 12-=A A )(B E A 2-=)(C A A 211=-)(D 1=A9、设A 、B 都是n 阶非零矩阵,且0=AB ,则A 和B 的秩( B ) )(A 必有一个等于零 )(B 都小于n)(C 一个小于n ,一个等于n )(D 都等于010.设n 阶矩阵A 满足02=+E A ,其中E 为n 阶单位矩阵,则必有( )(A) A E = (B) A E -= (C) 1--=A A (D) 1=A11.设⎪⎪⎪⎭⎫ ⎝⎛=004030200A ,且a ,b ,c 均不为零,则1-A = ( ))(A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛004103102100)(B ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛004102103100)(C ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛002103104100)(D ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛41000310002112.设A 、B 是n 阶方阵,且0AB =,()2r A n =-,则 ( )(A) ()2r B = (B) ()2r B < (C) ()2r B ≤ (D) ()2r B >三、 计算题1、 已知 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=102324171231102B A 求T AB )(。
解:法一:⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=1013173140102324171231102AB ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=10313141701013173140TT AB 法二()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1031314170213012131027241131027241213012T T TT T A B AB B A2、 求行列式;(1),3554243313221211--(2)xyyyyy x y y yy y x y yyy y xyyy y y x(3)mx x x x m x x x x m x n n n +++212121(4)n111211113、设⎪⎪⎪⎭⎫⎝⎛=101020101A ,已知X A E AX +=+2,求矩阵X 。
4.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛-=110111101A ,则1-A =⎪⎪⎪⎭⎫ ⎝⎛---11121111231 解:由于⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⇒⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-=-313131323131313132313131323131313132100010001100010001110111101),(1A E A5、设A 是n 阶矩阵,满足E AA T =,0<A ,求行列式E A +的值6、设3阶方阵A 的伴随矩阵为*A ,且21=A ,求*--A A 2)4(1。
7、如果可逆矩阵A 的各行元素之和为a ,计算1-A 的各行元素之和等于什么?解:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--11111111111111111 a A A A a A a a a A ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒--a a a a A aA 1111111111111111118、设实矩阵A =⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a 满足条件: (1)j i j i A a =,)3,2,1,(=j i ,其中j i A 是j i a 的代数余子式;(2)111-=a 求行列式A 。
9、设A =120021001⎛⎫ ⎪ ⎪ ⎪⎝⎭, B =112053-⎛⎫⎪⎪ ⎪-⎝⎭,求矩阵X 使其满足矩阵方程AX B =。
10.设A ,B 为5阶方阵,|A|=-1,|B|=-2,求=-12B A T 。
=*-B A 13解 15122--=B A B A T T =)21)(1(25--=16 =*-B A 1311.利用初等变换求矩阵A 的秩(1)、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=14011313021512012211A 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=00000222001512012211222000000015120122112220015120151201221114011313021512012211Ar(A)=3(2)、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=321131111111A解:2)(00002100111142002100111121004200111132113111111123323212,)1(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=+-↔+-⨯A r A r r r r r r r (3)、 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=3620130131120141A 解:3)(00005160015101301516005160015101301362014401510130136200141311213013620130131120141=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=A r A12.已知1101A ⎡⎤=⎢⎥⎣⎦,求19A 解 由于 ⎪⎪⎭⎫ ⎝⎛=101n A n ,因此⎪⎪⎭⎫ ⎝⎛=1019119A 类似地,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=111,1101n B B n ;⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=101,101na C a C n11.解线性方程组123413412313424343317733x x x x x x x x x x x x x -+-=-⎧⎪+-=-⎪⎨++=⎪⎪+-=⎩解:将增广阵化为规X 的阶梯阵:),(000006100040210301010000061000212103110124400012200021210311012440001032102121031101337071011343412311013370710113311014341200212)1(732313233422314131212βA r r r r r rr r r r r r r r rr r r =⎪⎪⎪⎪⎪⎭⎫⎝⎛-−−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------−−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------+---+---↔ 得同解方程组00β=X A 为⎪⎩⎪⎨⎧==-=+642343231x x x x x 移项添项即得⎪⎪⎩⎪⎪⎨⎧==+=+-=64234333231x x x x x x x 因此方程组通解为:是任意数)33(60430121x x X ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=四.证明题1.设方阵A 满足40A =,试证明E A -可逆,且123)E A E A A A --=+++(2323234)E A E A A A E A A A A A A A E A E-++++++-+++=4(()=()=-2.设A 为可逆矩阵,E A A ||2=,证明:*=A A证明:由于A 为可逆矩阵,且E A A E A AA ==*2,||又由已知故*=AA A 2两边左乘1-A 得*=A A3、设n 阶方阵A ,B 满足 AB B A =+,求证(1)E A -可逆;(2)AB=BA4、设n 阶方阵A 满足022=--E A A ,证明:矩阵A 可逆证明 由于022=--E A A ,有E E A A E A A =-⇒=-)2(22故矩阵A 可逆,且E A A 21-=-。