数学分析 高等数学 微积分 英语课件 上海交通大学Chapter5a
合集下载
微积分教学资料-chapter 5 25页PPT文档
Solution
By solving the system of equations
y 2 2 x We find that the points of intersection
y
x
4
are(2, -2) and (8, 4).So
y
yx4
A 4(y41y2)dy
2
oa x b x
2.The volume of the solid obtained by rotating
the region bounded by yf(x)y , g(x),f(x)g(x)
xa, and x b, about the xaxis
The cross-sectional area is
2
y2 2x
(8,4)
(y2 4yy3)
4 18
o
x
2
6 2
(2,2)
or
2
A20 2xdx
8
2[ 2x(x4)]dx
y
yx4
4 y2 2x
(8,4)
o
x
-2 (2,2)
18
Volumes
Definition of volume Let s be a solid that lies between
y
大学课程《微积分》PPT课件:微积分6章5节
例12 求函数u xyz 在附加条件 1/ x 1/ y 1/ z 1/ a(x 0, y 0, z 0, a 0)
(1)
fx (x0, y0) 0, fy (x0, y0) 0.
(6.1)
与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的 点称为函数的驻点.
定理2 (充分条件) 设函数 z f (x, y) 在点 (x0, y0) 的某邻域内有直到二阶的 连续偏导数,又 fx (x0, y0 ) 0, f y (x0, y0 ) 0. 令 fxx (x0, y0 ) A, fxy (x0, y0 ) B, f yy (x0, y0 ) C.
取 x 4 ,则 y 37.5 4 300 450 ,即是2005年得估计销售额。
四、数学建模举例 例题选讲:
二元函数极值的概念 例1(讲义例1) 函数 z 2x2 3y2 在点(0, 0)处有极小值. 从几何上看,
z 2x2 3y2 表示一开口向上的椭圆抛物面,点 (0,0,0) 是它的顶点.(图7-6-1).
例2(讲义例2)函数 z x2 y2 在点(0,0)处有极大值. 从几何上看,
z x2 y2 表示一开口向下的半圆锥面,点 (0,0,0) 是它的顶点.(图7-6-2).
例3(讲义例3)函数 z y2 x2 在点(0,0)处无极值. 从几何上看, 它表示双曲抛物面(马鞍面)(图7-6-3)
高等数学_及其教学软件.上册(上海交通大学,集美大学编)PPT模板
02
1.2.2函数 的四则运算
04
1.2.4反函 数
03
1.2.3函数 的复合
第一章函数与模型
1.3简单数学模型举例
习题1.3
第一章函数与模型
1.4演示与实验
习题1.4
第 二 与章 连函 续数 极 限
第二章函数极限与 连续
2.1极限 2.2两个重要极限 2.3无穷小量与无穷大量 2.4函数的连续性 2.5演示与实验
01 1 . 1 . 1 函数的概 念
03 1 . 1 . 3 函数的几 种特
性
02 1 . 1 . 2 函数的表 示法
04 1 . 1 . 4 基本初等 函数
及其特性
05 习 题 1 .1
第一章函数 与模型
1.2由已知函数产生新的函 数
06
习题1.2
01
1.2.1平移 与伸缩
05
1.2.5初等 函数
02
6.1.2平 面图形
面积
03
习题6.1
第六章定积分的应用
6.2体积
03 习题6.2
02
6.2.2旋转体的体积
01
6.2.1平行截面面积
为已知的立体体积
第六章定积分的应用
6.3平面曲线的弧长
习题6.3
第六章定积分的应用
6.4旋转曲面的表面积
数学分析高等数学微积分英语上海交通大学
divergence of an.
Example
Ex. Determine whether the following series converges.
(1)
2n2 3n
n1 5 n5
1
(2) n1 ln2 (n 1)
(3) sin p
n1
n
Sol. (1) diverge. choose bn 1/ n1/2
The comparison tests
Theorem Suppose that an and bn are series with positive terms, then
(i) If bn is convergent and an bn for all n, then an is
also convergent.
(1)n1
Fwohrileexathmepallet,erthneatsinergiehsanrm1 onni3c/
2 is series
absolutely is not.
convergent
A series an is called conditionally convergent if it is convergent but not absolutely convergent.
(1)
n1
(1)n1 n
( 0)
Example
Ex. Determine whether the following series converges.
(1)
2n2 3n
n1 5 n5
1
(2) n1 ln2 (n 1)
(3) sin p
n1
n
Sol. (1) diverge. choose bn 1/ n1/2
The comparison tests
Theorem Suppose that an and bn are series with positive terms, then
(i) If bn is convergent and an bn for all n, then an is
also convergent.
(1)n1
Fwohrileexathmepallet,erthneatsinergiehsanrm1 onni3c/
2 is series
absolutely is not.
convergent
A series an is called conditionally convergent if it is convergent but not absolutely convergent.
(1)
n1
(1)n1 n
( 0)
《微积分英文版》课件
Develop analytical thinking: Learning calculus requires learners to use analytical thinking to solve problems This can help develop learners' thinking ability and problem-solving skills
Properties: Continuity, differentiation, integrity, etc
Limits and continuity
Definition: A limit is the value that a function approaches as the input approaches a certain point Continuity means that the function doesn't have any breaks or jumps at any point
Acceleration and Kinetic Energy
Calculus is used to analyze acceleration, which is the rate of change in velocity It also helps in understanding the concept of kinetic energy, which is the energy of motion
Properties: Continuity, differentiation, integrity, etc
Limits and continuity
Definition: A limit is the value that a function approaches as the input approaches a certain point Continuity means that the function doesn't have any breaks or jumps at any point
Acceleration and Kinetic Energy
Calculus is used to analyze acceleration, which is the rate of change in velocity It also helps in understanding the concept of kinetic energy, which is the energy of motion
高等数学英文版课件PPT 05 Integrals
b
b
b
a f (x)dx a f (t)dt a f (r)dr
n
Note 3: The sum
sum.
f (xi )xi is usually called a Riemann
i 1
Note 4: Geometric interpretations
For the special case where f(x)>0, b
Step 3: Taking limit—Notice that the approximation appears
to become better and better as the strips become thinner and
thinner. So we define the area of the region as the limit value
Example 1 Find the area under the parabola y=x2 from 0 to 1.
Solution: We start by dividing the interval [0, 1] into n-subintervals with equal length, and consider the rectangles whose bases are these subintervals and whose heights are the values of the function at the right-hand endpoints.
微积分英文版课件
Discover the concept of double
and triple integrals and how they extend calculus to multiple dimensions.
5
Line Integrals and Green's Theorem
Learn about line integrals and Green's theorem in the context of multivariable calculus.
3
Differential Equations
Discover the application of integration in solving differential equations.
Multivariable Calculus
1
Partial Derivatives
Uncover the concept of partial
between differentiability and
3
Basic Rules of Differentiation
continuity of a function.
Master the basic rules of
differentiation and apply them to
Chain Rule and Power Rule
高等数学英文版课件PPT 03 The mean value theorem and curve sketching.ppt
Chapter 3
The mean value theorem and curve sketching
3.3 MONOTONIC FUNCTIONS AND THE FIRST DERIVATIVE TEST
In sketching the graph of a function it is very useful to know where it rises and where it falls. The graph shown in Figure1 rises from A to B, falls from B to C, and rises again from C to D.
x
Example 3 Find the local and absolute extreme values of the function f(x)= x3(x -2)2, -1 3. Sketch its graph.
f(6/5)=1.20592 is a local maximum; f(2)=0 is a local minimum; absolute maximum value is f(3)=27; absolute minimum value is f(-1)=-9. The sketched in Figure 6.
THE TEST FOR CONCAVITY Suppose f is twice differentiable on an interval I. (a) If f "(x) > 0 for all x in I, then the graph of f is concave
The mean value theorem and curve sketching
3.3 MONOTONIC FUNCTIONS AND THE FIRST DERIVATIVE TEST
In sketching the graph of a function it is very useful to know where it rises and where it falls. The graph shown in Figure1 rises from A to B, falls from B to C, and rises again from C to D.
x
Example 3 Find the local and absolute extreme values of the function f(x)= x3(x -2)2, -1 3. Sketch its graph.
f(6/5)=1.20592 is a local maximum; f(2)=0 is a local minimum; absolute maximum value is f(3)=27; absolute minimum value is f(-1)=-9. The sketched in Figure 6.
THE TEST FOR CONCAVITY Suppose f is twice differentiable on an interval I. (a) If f "(x) > 0 for all x in I, then the graph of f is concave
数学分析高等数学微积分英语课件上海交通大学chapter11b
p 1
bn 1/ np
Question
Ex. Determine whether the series converges or diverges.
ln 1 a n (a 0)
n 1
Sol.
an
ln1
a n
ln1lna
e n
1 nlna
divergefor 0ae
The n-th term2of a3 n alt4ernating nse1riesnis of the form
where
is aa n po s( it iv1 e)n n 1 ub mn beo rr . a n ( 1 )n b n
bn
The alternating series test
Theorem If the alternating series
Fra Baidu bibliotek
( 1 )n 1 b n b 1 b 2 b 3 b 4 b 5 b 6 (b n 0 )
satisfien s 1 (i)
for all n (ii)
Then the alternatibnng1serbiens is convergentln.im bn 0
convergefor ae
Alternating series
An alternating series is a series whose terms are alternatively positive and negative. For example,
微积分英文课件PPT (7)
Find the absolute maximum and minimum value
1
2
of the function f (x) x3 (1 x)3
x 1,2.
y' 1 3x 33 x2 (1 x)
解 Therefore, y 0 if 1 3x 0,
答
that is, x 1 , and y dose not exist 3
Example Find the absolute maximum and minimum values of the function
f (x) x3 3x2 1
1 x4
2
Solution: Since f is continuous on the given closed
interval, we can use the Closed Interval Method:
We have if
if
Therefore
Because Thus
exists,
Caution:
1) The condition is just sufficient. We cannot
expect to locate extreme values simply by setting
and solving for x.
f c f (x) when x is near c.[This mean that f c f (x) for all x in some open
上海交大版高等数学教材
上海交大版高等数学教材
高等数学是大学数学的重要组成部分,也是一门基础性的学科。在上海交通大学,高等数学课程采用上海交大版教材。本文将为您介绍上海交大版高等数学教材的特点和内容。
一、教材特点
上海交大版高等数学教材以理论与应用相结合为特点,注重培养学生的实际问题解决能力。教材的编写围绕“数学思维的培养、能力的提高和应用的拓宽”展开,旨在让学生真正理解数学的本质,并能将数学知识应用于实际情境中。
二、教材内容
1. 微分学
微分学是高等数学的重要组成部分,它研究的是函数的变化率和速率。在上海交大版高等数学教材中,微分学内容涵盖了函数、极限、导数等基本概念和性质,以及微分中值定理、导数的应用等内容。通过学习微分学,学生可以更好地理解函数的性质和变化规律。
2. 积分学
积分学是微分学的延伸,它研究的是函数的面积、曲线长度以及变化速度的累积。上海交大版高等数学教材中的积分学内容包括了不定积分、定积分、曲线的面积与弧长、定积分的应用等。通过学习积分
学,学生可以更好地理解函数的整体特性,并能应用积分解决实际问题。
3. 无穷级数与级数应用
无穷级数是高等数学中的重要内容,它是由无穷多项式相加或相乘而得到的集合。上海交大版高等数学教材中的无穷级数内容包括了级数的概念、级数的收敛性、常见级数的性质和求和公式等。通过学习无穷级数,学生可以更好地理解数列和函数的性质,并能应用级数解决实际问题。
4. 偏微分方程
偏微分方程是数学中的一类方程,它研究的是函数的偏导数之间的关系。上海交大版高等数学教材中的偏微分方程内容包括了偏导数、一阶偏微分方程、二阶线性偏微分方程等。通过学习偏微分方程,学生可以更好地理解多变量函数的性质,并能应用偏微分方程解决实际问题。
数学分析(上册)定积分9-5课件(高等教育出版社第四版)
b
在 [a , b], 使
a f ( x ) g( x )dx g(a )a
f ( x )dx .
前页 后页 返回
(ii) 若函数 g 在 [a, b] 上单调增, 且 g( x ) 0, 则存
在 [a , b], 使
a
b
f ( x ) g( x )dx g (b ) f ( x )dx .
a a a
g(a ) f ( x )d x g(b) f ( x )d x .
a
b
前页 后页 返回
二、 换元积分法与分部积分法
定理9.12(定积分换元积分法)若 f ( x ) 在 [a , b] 上
连续, ( t ) 在 [ , ] 上连续可微,且
( ) a , ( ) b, a ( t ) b, t [ , ],
则
b
a
f ( x )dx f ( (t )) (t )dt .
证 设 F ( x ) 是 f ( x ) 在 [a, b] 上的一个原函数,则
F ( ( t )) 是 f ( ( t )) ( t ) 的一个原函数. 因此
f ( ( t )) ( t )d t F ( ( t )) F ( x ) a f ( x ) d x .
在 [a , b], 使
a f ( x ) g( x )dx g(a )a
f ( x )dx .
前页 后页 返回
(ii) 若函数 g 在 [a, b] 上单调增, 且 g( x ) 0, 则存
在 [a , b], 使
a
b
f ( x ) g( x )dx g (b ) f ( x )dx .
a a a
g(a ) f ( x )d x g(b) f ( x )d x .
a
b
前页 后页 返回
二、 换元积分法与分部积分法
定理9.12(定积分换元积分法)若 f ( x ) 在 [a , b] 上
连续, ( t ) 在 [ , ] 上连续可微,且
( ) a , ( ) b, a ( t ) b, t [ , ],
则
b
a
f ( x )dx f ( (t )) (t )dt .
证 设 F ( x ) 是 f ( x ) 在 [a, b] 上的一个原函数,则
F ( ( t )) 是 f ( ( t )) ( t ) 的一个原函数. 因此
f ( ( t )) ( t )d t F ( ( t )) F ( x ) a f ( x ) d x .
高等数学英文版课件 15 Differential equations
机动 目录 上页 下页 返回 结束
15.5 Second-Order Linear Equations
A second-order linear differential equation has the form
(1) P(x) d 2 y Q(x) dy R(x) y G(x)
dx 2
dx
(4)Theorem If y1 and y2 are linearly independent
solutions of Equation 2 , then the general solution is given by
where c1 and c2 are arbitrary constants.
is also a solution of Equation 2.
Thus
is a solution of Equation 2.
y c1y1 c2 y2
0 c1 0 c2 0 c1[P(x) y1 Q(x) y1 R(x) y1] c2[P(x) y2 Q(x) y2 R(x) y2 ] P(x)(c1 y1 c2 y2) Q(x)(c1 y1 c2 y2 ) R(x)(c1 y1 c2 y2 ) P(x)(c1 y1 c2 y2 ) Q(x)(c1 y1 c2 y2 ) R(x)(c1 y1 c2 y2 )
where P, Q, R, and G are continuous functions.
微积分.ppt课件
同学们要注意抓好学习的六个环节
高等数学这门课是同学们进入大学后的一门最 重要的基础课. 由于在教学方法上、在对学生能力 的培养目标上与中学时有很大的不同,因此,同学 们在一开始可能会感到有些不适应. 为了尽快适应 新的学习环境,要注意抓好以下六个学习环节.
(1)预习 为了提高听课效果,每次上课前应对教师要讲
数学教研室 王学顺
绪论
高等数学是高等院校中理工类、经济类专业学 生必修的重要基础理论课.
随着科学技术的发展,人们越来越深刻地认识 到:没有数学,就难于创造出当代的科学成就. 科 学技术发展越快,对数学的需求就越多.
如今,伴随着计算机技术的迅速发展、自然科 学各学科数字化的趋势、社会科学各部门定量化的 要求,使许多学科都在直接或间接地,或先或后地 经历了一场数学化的进程——在基础科学和工程建 设研究方面,在人事管理和军事指挥方面,在经济
(4) 复习
学习包括“学”与“习”两个方面. “学”是为 了获取知识,“习”是为了消化、掌握、巩固知识. 每次课后的当天都应结合课堂笔记和教材及时复习课 上所讲的内容. 但是,在翻开教材与笔记之前,应先 回顾一下课上所讲的主要内容. 另外,应该经常地、 反复地复习前面所讲过的内容, 这样一方面是为了避 免边学边忘,另一方面可以加深对以前所学内容的理 解,使知识水平上升到更高的层次.
成立. 在数学中要证明一个定理,必须是从条件和 已有的数学公式出发,用严谨的逻辑推理方法导出 结论.
数学分析 高等数学 微积分 英语课件 上海交通大学Chapter7b
Example: reciprocal substitution
dx
Ex. Evaluate
.
x 3x2 2x 1
Sol. Let x 1, then t
dx
1 t2
dt.
x
dx 3x2
2x
1
dt 3 2t t2
dt 22 (t 1)2
1 2
dt arcsin t 1 C arcsin x 1 C.
1t 3
2 x3 x 2 x 2 ln(1 x) C. 3
Inverse substitution for definite integral
The Inverse Substitution Rule for definite integral: If
x=g(t) is differentiable, invertible and, when x is in between
x
dx.
2 2
sin2 x 1 ex
dx
2 0
ex sin2 1 ex
x
dx
2 0
sin2 x 1 ex
dx
2
sin2
xdx
.
0
4
Integration of rational functions
Any rational function can be integrated by the following two steps: a). express it as a sum of simpler fractions by partial fraction technique; b. integrate each partial fraction using the integration techniques we have learned.
《高数》第5章
极限存在,且极限值与区间[a,b]的分法和 ξi 的取 极限存在,且极限值与区间 的分法和 法无关, 在区间[a,b]上的定 法无关,则称该极限值为 f (x)在区间 在区间 上的定 积分, 积分,记为
∫
b
a
f ( x)d x = lim ∑ f (ξi )xi .
λ →0
i =1
n
其中, 称为积分号 称为积分变量, 积分号, 称为积分变量 称为被积 其中, 称为积分号,x称为积分变量, f (x)称为被积 称为 ∫ 函数, 称为积分表达式 称为积分区间 函数, f (x)dx称为积分表达式 称为积分表达式,[a,b]称为积分区间, 称为积分区间, a和b分别称为积分上限和下限 分别称为积分上限和下限 和 分别称为积分上限和下限. 关于定积分的定义的几点说明: 关于定积分的定义的几点说明: ( 1)定积分的值只与被积函数及积分区间有关,而 ) 定积分的值只与被积函数及积分区间有关, 与积分变量的记法无关, 与积分变量的记法无关,即
∫ x dx .
2 0
1
解 因为 2在区间 因为x 在区间[0,1]上可积,所以可取特殊的分点, 上可积, 上可积 所以可取特殊的分点, ξi 也可取特殊的点. 把区间[0,1]分成等分, 分点和小 分成等分, 也可取特殊的点 . 把区间 分成等分 区间长度记为: 区间长度记为:
i 1 xi = (i = 1,2,, n 1), xi = (i = 1,2,, n). n n i 作积分和: 取ξi = (i = 1,2,, n) ,作积分和: n
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xi i / n,i 0,1, , n. Then take xi xi i / n as the sample points. By taking limit to the Riemann sum, we have
1 x2dx lim
0
n
n i1
f (xi )xi
lim n
n ( i )2 i1 n
2. If
sin xdx 2, find
0
sin sin 2
lim( n n n n 1 n 1
2
sin n
n n 1
).
n
n n n
n
n
1 sin xdx 2 .
0
Exercise
1. Express the limits into definite integrals:
(1)
lim
1
1 2
(1 en
2 2
en
( n 1) 2
e n ).
n n
(2)
lim(
n
2 Hale Waihona Puke Baidun2 12
2 4n2 22
2 ). 4n2 n2
Idea: first, divide the region S into n subregions by partitioning [a,b] into n subintervals [xi-1,xi] (i=1,L,n)
with x0=a and xn=b; then, approximate each subregion Si by a rectangle since f(x) does not change much and can be
can be treated as a constant; last, make sum di and take
n
i 1
limit time
ilnnimteriv1ald[i a, ,bi]f
the
is d
limit exists, n
lim
n
i 1
di.
then
the
distance
in
the
1
n
1
1
n 1 f ( i ),
n1 n2
2n i1 n 1 i i1 n n
with f (x) 1 . Therefore,
n
1 x
lim( 1 1
n n 1 n 2
1 ) 1 1 dx. 2n 0 1 x
The other solution is 2 1 dx. 1x
Example
Example
Ex. Find 1 x2dx by definition of definite integral. 0
Sol. To evaluate the definite integral, we partition [0,1]
into n equally spaced subintervals with the nodal points
fxii stihneteRgireambalnenosnu[ma,bh]asanlidmIitislitmh0ei1def f(ixni )itexiintIe,gtrhaelnowf ef call
b
from a to b, which is denoted by I f (x)dx. a
Remark
Ex. If sin xdx 2, find the limit 0
lim 1 (sin sin 2 sin (n 1) ).
n n
n
n
n
Sol. lim 1 (sin sin 2 sin (n 1) )
n n
n
n
n
1 lim (sin sin 2 sin n )
Idea: first, divide the time interval [a,b] into n subintervals;
then, approximate the distance di in each subinterval [ti-1,ti]
by di¼(ti-ti-1)v(xi) since v(t) does not vary toonmuch and
the
region
has
area
lim
n
i1
Si.
Remark
In the above limit expression, there are two places of
significant randomness compared to the normal limit
expression: the first is that the nodal points {xi} are
1 n
lim
n
n(n
1)(2n 6n3
1)
1. 3
Example
11
1
Ex. Express the limit lim( ) into a
definite integral. n n 1 n 2
2n
Sol. Since 1 1 1 , we have
ni n 1 i
1
1
n
b
In the notation f (x)dx, a and b are called the limits of integration; a ias the lower limit and b is the upper limit;
f(x) is called the integrand.
treated as a constant in each subinterval [xi-1,xi], that is,
Ssui¼m(xi-nxiS-1i)fa(nxid),twakheelriemxiit
i 1
n
islnimanyin1pSoii,nitfinth[exli-i1m,xiit];exlaisstt,s,mthaekne
b
The definite integral f (x)dx is a number; it does not depend on x, that is, wae can use any letter in place of x:
b
b
b
a f (x)dx a f (t)dt a f (r)dr.
arbitrarily chosen, the second is that the sample points {xi}
are arbitrarily taken too. n
S
lim
n
i1
Si
means, no matter how {xi} and {xi} are
n
chosen,
the
limit
differentiation calculus. The area and distance problems are two typical
applications to introduce the definite integrals
The area problem
Problem: find the area of the region S with curved sides, which is bounded by x-axis, x=a, x=b and the curve y=f(x).
If f takes on both positive and negative values, then the b integral f (x)dx is the net area, that is, the algebraic sum of araeas
The distance traveled by an object with velocity v=v(t), b during the time period [a,b], is v(t)dt. a
lim
n
i1
Si
always exists and has same value.
The distance problem
Problem: find the distance traveled by an object during the time period [a,b], given the velocity function v=v(t).
Ex. Use the definition of definite integral to prove that b f (x) c is integrable on [a,b], and find cdx. a
Interpretation of definite integral
b
If f (x) 0, the integral f (x)dx is the area under the a curve y=f(x) from a to b
Definition of definite integral
We call p : a x0 x1 xn1 xn b a partition of the interval [a,b]. m1iaxn {xi} is called the size of the partition, where xi xi xi1n(i 1, , n). xi [xi1, xi ](i 1, , n) are called
Furthermore, the sample points are usually chosen by xi xi1 or xi xi thus the Riemann sum is given by
n1 b a f (a i(b a)) or n b a f (a i(b a))
The usual way of partition is the equally-spaced partition xi a ih, i 0,1, n; h (b a) / n
so the size of partition is h (b a) / n
In this case 0 is equivalent to n
Introduction to integrals
Integral, like limit and derivative, is another important concept in calculus
Integral is the inverse of differentiation in some sense There is a connection between integral calculus and
sample points. f (xi )xi is called Riemann sum.
Definition Supip1ose f is defined on [a,b]. If there exists a
constant I such that for any partition p and any sample points n
i0 n
n
i1 n
n
Example
Ex. Determine a region whose area is equal to the given
limit
(1) lim
n
2 (5 2i )10
n n i1
n
n i
(2) lim
tan
n i1 4n 4n
Definition of definite integral