四川省成都市高新区2015年九年级一诊数学试题及答案

合集下载

2015年四川省成都市中考数学试卷及答案

2015年四川省成都市中考数学试卷及答案

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前四川省成都2015年高中阶段教育学校统一招生考试数学 .................................................. 1 四川省成都2015年高中阶段教育学校统一招生考试数学答案解析 .. (5)四川省成都2015年高中阶段教育学校统一招生考试数学本试卷满分150分,考试时间120分钟.A 卷(共100分) 第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的倒数是( ) A .13-B .13C .3-D .3 2.如图所示的三棱柱的主视图是( )ABCD3.2015年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市.按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学计数法表示126万为( ) A .412610⨯B .51.2610⨯C .61.2610⨯ D .71.2610⨯ 4.下列计算正确的是( )A .2242a a a +=B .236a a a =C .224()a a -=D .22(1)1a a +=+5.如图,在ABC △中,DE BC ∥,6AD =,3DB =,4AE =,则EC 的长为( )A .1B .2C .3D .4 6.一次函数21y x =+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.实数,a b 在数轴上对应的点的位置如图所示,计算||a b -的结果为( )A .a b +B .a b -C .b a -D .a b -- 8.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k ->B .1k -≥C .0k ≠D .1k ->且0k ≠ 9.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--10.如图,正六边形ABCDEF 内接于O ,半径为4,则这个正六边形的边心距OM 和BC 的长分别为( )A .π2,3 B.π C2π3D.4π3第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上) 11.因式分解:29x -=.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-----------------------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效数学试卷 第3页(共24页) 数学试卷 第4页(共24页)12.如图,直线m n ∥,ABC △为等腰直角三角形,90BAC ∠=,则1∠= 度. 13.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是 小时.14.如图,在□ABCD 中,AB ,4AD =,将□ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为 .三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分,每题6分)(1)02(2015π)4cos45(3)--+-. (2)解方程组:25,32 1.x y x y +=⎧⎨-=-⎩①②16.(本小题满分6分) 化简:211()242a a a a a -+÷+-+.17.(本小题满分8分)如图,登山缆车从点A 出发,途经点B 后到达终点C .其中AB 段与BC 段的运行路程均为200m ,且AB 段的运行路线与水平面的夹角为30,BC 段的运行路线与水平面的夹角为42,求缆车从点A 运行到点C 的垂直上升的距离. (参考数据:sin 420.67,cos420.74,tan 420.90≈≈≈)18.(本小题满分8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革.为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)求获得一等奖的学生人数;(2)在本次知识竞赛活动中,,,,A B C D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛.请用画树状图或列表的方法求恰好选到,A B 两所学校的概率. 19.(本小题满分10分)如图,一次函数4y x =-+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象交于(1,)A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标及PAB △的面积.20.(本小题满分10分)如图,在Rt ABC △中,90ABC ∠=,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点,,D E F ,且BF BC =.O 是BEF △的外接圆,EBF ∠的平分线交EF 于点G ,交O 于点H ,连接,BD FH . (1)求证:ABC EBF △≌△;(2)试判断BD 与O 的位置关系,并说明理由;数学试卷 第5页(共24页) 数学试卷 第6页(共24页)(3)若1AB =,求HG HB 的值.B 卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上) 21.比较大小:12 58(填“>”“<”或“=”). 22.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1),122x x x x a +⎧⎪⎨--⎪⎩≥<有解的概率为 . 23.已知菱形1111A B C D 的边长为2,11160A B C ∠=,对角线11A C ,11B D 相交于点O .以点O 为坐标原点,分别以1OA ,1OB 所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以11B D 为对角线作菱形1212B C D A ∽菱形1111A B C D ,再以22A C 为对角线作菱形2222A B C D ∽菱形1212B C D A ,再以22B D 为对角线作菱形2323B C D A ∽菱形2222A B C D,……,按此规律继续作下去,在x 轴的正半轴上得到点1A ,2A ,3A ,,n A 则点n A 的坐标为 .24.如图,在半径为5的O 中,弦8AB =,P 是弦AB 所对的优弧上的动点,连接AP ,过点A 作AP于点C .当PAB △是等腰三角形时,线段BC 25.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是 (写出所有正确说法的序号). ①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若点(,)p q 在反比例函数2y x=的图象上,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54. 二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出.如果两批衬衫全部售完利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?27.(本小题满分10分)已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在ABC △内,90CAE CBE ∠+∠=.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF . (ⅰ)求证:CAE CBF △∽△;(ⅱ)若1BE =,2AE =,求CE 的长;(2)如图2,当四边形ABCD 和EFCG 均为矩形,且AB EFk BC FC==时,若1BE =,2AE =,3CE =,求k 的值;(3)如图3,当四边形ABCD 和EFCG 均为菱形,且45DAB GEF ∠=∠=时,设BE m =,AE n =,CE p =.试探究,,mn p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程) 28.(本小题满分12分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2015届成都一诊数学试题及答案(文科、理科)

2015届成都一诊数学试题及答案(文科、理科)

成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为54.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D )5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是 (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”y xOxyO x y Ox yOGFEHPACBDA B C D 6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12 (D 8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDDC 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是(A )21 (B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________.12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 1314.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C (2)分122436123(1)205⋅====C C P X C ………………………………………………………2分1(2)()5===P X P A ………………………………………………………………2分∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n .∴平面DEA 与平面ABC8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n (1)分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f .(Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a=a=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x .又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分∴函数)(x f 的单调递减区间是(0,1),(1e),单调递增区间是),(+∞e .………………2分∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m+∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e .∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m-∞上单调递增,2(,0)m 上单调递减.∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+.综上所述,存在这样的负数(,(21)∈-∞-+m e e 满足题意.……………………………1分成都市2015届高中毕业班第一次诊断性检测数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.命题“若22≥+x a b ,则2≥x ab ”的逆命题是(A )若22<+x a b ,则2<x ab (B )若22≥+x a b ,则2<x ab (C )若2<x ab ,则22<+x a b (D )若2≥x ab ,则22≥+x a b4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 5.复数5i(2i)(2i)=-+z (i 是虚数单位)的共轭复数为(A )5i 3- (B )5i 3(C )i - (D )i6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是y xOxyO x y Ox yO消费支出/元(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 7.已知53cos()25+=πα,02-<<πα,则sin 2α的值是 (A )2425 (B )1225 (C )1225- (D )2425-8.已知抛物线:C 28y x =,过点(2,0)P 的直线与抛物线交于A ,B 两点,O 为坐标原点,则OA OB ⋅的值为(A )16- (B )12- (C )4 (D )0 9.已知m ,n 是两条不同直线,α,β是两个不同的平面,且n ⊂β,则下列叙述正确的是(A )若//m n ,m ⊂α,则//αβ (B )若//αβ,m ⊂α,则//m n (C )若//m n ,m α⊥,则αβ⊥ (D )若//αβ,m n ⊥,则m α⊥10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.点E ,F 分别为棱11B C ,1C C 的中点,P 是侧面11BCC B 内一动点,且满足⊥PE PF .则当点P 运动时, 2HP 的最小值是 (A )72- (B )2762- (C )51142- (D )1422-二、填空题:本大题共5小题,每小题5分,共25分. 11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是________.12.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹A BCD1A 1B 1C 1D HPE F角的大小为__________.13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B .则边c 的长度为__________.14.已知关于x 的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 15.已知函数21()()2f x x a =+的图象在点n P (,())n f n (*n ∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且11y =-.给出以下结论: ①1a =-;②记函数()=n g n x (*n ∈N ),则函数()g n 的单调性是先减后增,且最小值为1;③当*n ∈N 时,1ln(1)2n n n y k k++<+; ④当*n ∈N 时,记数列的前n 项和为n S ,则n S <其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为,m n . (Ⅰ)求“5+=m n ”的概率; (Ⅱ)求“5≥mn ”的概率.17.(本小题满分12分)如图,在多面体ECABD 中,EC ⊥平面ABC ,//DB EC ,ABC ∆为正三角形,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ; (Ⅱ)求多面体ECABD 的体积. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且122+=-n n S ;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且过点(23,0).(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆Γ交于不同两点A 、B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分) 已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828=为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证: 101ea b c <<<<<.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(文科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.D ;8.B ;9.C ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.30 12.90︒ 13.4 14.[2,0]- 15.①②④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分)解:同时取出两个球,得到的编号,m n 可能为: (1,2),(1,3),(1,4),(1,5) (2,3),(2,4),(2,5) (3,4),(3,5)(4,5)…………………………………………………………………………………6分(Ⅰ)记“5+=m n ”为事件A ,则 21()105==P A .……………………………………………………………………………3分(Ⅱ)记“5≥mn ”为事件B ,则 37()11010=-=P B .…………………………………………………………………… 3分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 面ABC ,⊂OB 平面ABC .∴//DF 面ABC .………………………6分 (Ⅱ)据题意知,多面体ECABD 为四棱锥-A ECBD . 过点A 作⊥AH BC 于H .∵⊥EC 平面ABC ,⊂EC 平面ECBD , ∴平面⊥ECBD 平面ABC .又⊥AH BC ,⊂AH 平面ABC ,平面ECBD 平面=ABC BC ,∴⊥AH 面ECBD .∴在四棱锥-A ECBD 中,底面为直角梯形ECBD ,高3=AH .∴1(21)23332-+⨯=⨯⨯=A ECBD V . ∴多面体ECABD 的体积为3.……………………………………………6分 18.(本小题满分12分) 解:(Ⅰ)∵122+=-n n S ① 当2≥n 时,122-=-n n S ② ①-②得,2=n n a (2≥n ).∵当2≥n 时,11222--==nn n n a a ,且12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ……………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n (1)分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产)20.(本小题满分13分)(Ⅰ)由已知得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x ……………………………………………………………………1分由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ; ∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增. (2)分∴=极小值)(x f 11()ln 11ln 222f =+=-.…………………………………………………… 2分(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈ 由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e ∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m , ∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立, ∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减. ∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.……………………………………4分(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点, ∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c , 下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x mf x x x x -'=-=. 易知函数()f x 在(0,)2m 上单调递减,在(,)2m+∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m mf ,解得20<<m e ,∴122<<m e ,即(,2)2∈eme .…………………………………………………………3分 ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .…………………1分又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.……………………………………………………………1分。

成都市2015-2016学年度“一诊”数学模拟试题

成都市2015-2016学年度“一诊”数学模拟试题

一诊复习试题(一)一、选择题(共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}0232=+-=x x x A ,{}log 42x B x ==,则A B ⋂=( )A .{}2,1,2-B .{}2,1C .{}2,2-D .{}2 2.已知R a ∈,则“3=a ”是“复数i a z +-=32为纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.如图,函数)(x f y =的图像在点P (5,)5(f )处的切线方程为8+-=x y ,则(5)(5)f f '+=( )A .21B .1C .2D .04.设函数⎩⎨⎧<≥=0),(0,)(x x g x x x f ,若函数)(x f 是奇函数,则)4(-g 的值是( )A .2-,B .21-C .41- D .2 5.已知向量)4,3(-=OA ,)3,6(-=OB ,)1,(+=m m OC ,若AB ∥OC ,则实数m 的值为( ) A .23-B .41- C .21 D .236.某圆柱被一平面所截得到的几何体如图所示,若该几何的正视 图是等腰直角三角形,俯视图是圆,则它的侧视图是( )A .B .C .D .7.已知函数))(42sin()42sin(2)(R x x x x f ∈+⋅-=ππ,下面结论错误的是( ) A .函数)(x f 的最小正周期为π2 B .函数)(x f 在区间[0,]2π上是增函数C .函数)(x f 的图像关于直线0=x 对称D .函数)(x f 是奇函数8.圆C :822=+y x 上有两个相异的点到直线5-=x y 的距离都为d ,则d 的取值范围是( )A .)29,21(B .19[,]22C .)229,22(D .9.(理科做...)直线l与双曲线C:)0,0(12222>>=-babyax交于A、B两点,M是线段AB 的中点,若l与OM(O为坐标原点)的斜率的乘积等于1,则此双曲线的离心率为()A.2 B.2C.3 D.3(文.科做..)若a、b表示不同的直线,α、β表示两个不同的平面,给出如下四个命题:①“a、b不相交”是直线a、b是异面直线“的必要不充分条件”;②“α⊥a”的充要条件是“直线a垂直于平面α内的无数条直线”;③“a∥α”的充分不必要条件是“a 上存在两点到平面α的距离相等”;④“α∥β”的必要不充分条件是“存在aα⊂,bα⊂且a∥β,b∥β”.其中真命题是()A.①B.③④C.②D.①②10.给出四幅图像,则函数21()ln2f x x x=-的部分图像大致是()A.B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分。

2015成都中考数学真题及答案(word版)

2015成都中考数学真题及答案(word版)

成都市二〇一五年高中阶段教育学校统一招生考试数学A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)2.(2015成都)如图所示的三棱柱的主视图是(A)(B)(C)(D)5.(2015成都)如图,在ABC∆中,BCDE//,6=AD,3=DB,4=AE, 则EC的长为(A)1(B)2(C)3(D)410.(2015成都)如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM和弧BC的长分别为(A)2、3π(B)32、π(C)3、23π(D)32、43π12.(2015成都)如图,直线nm//,ABC∆为等腰直角三角形,︒=∠90BAC,则=∠1________度.mn1BAC14.(2015成都)如图,在平行四边形ABCD中,13=AB,4=AD,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为__________.17.(本小题满分8分)(2015成都)如图,登山缆车从点A出发,途经点B后到达终点C.其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67 ,cos42°≈0.74 ,tan42°≈0.90)200m200m30°42°BECDA20.(本小题满分10分)(2015成都)如图,在Rt ABC∆中,90ABC∠=︒,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且B F B C=.O是BEF∆的外接圆,EBF∠的平分线交EF于点G,交O于点H,连接BD,FH.(1)求证:ABC EBF∆≅∆;(2)试判断BD与O的位置关系,并说明理由;(3)若1AB=,求HG HB⋅的值.CMEDA OFBGHOEDAFCB23.(2015成都)已知菱形A 1B 1C 1D 1的边长为2,∠A 1B 1C 1=60°,对角线A 1C 1,B 1D 1相交于点O .以点O 为坐标原点,分别以OA 1,OB 1所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以B 1D 1为对角线作菱形B 1C 2D 1A 2∽菱形A 1B 1C 1D 1,再以A 2C 2为对角线作菱形A 2B 2C 2D 2∽菱形B 1C 2D 1A 2,再以B 2B 2为对角线作菱形B 2C 3D 2A 3∽菱形A 2B 2C 2D 2,…,按此规律继续作下去,在x 轴的正半轴上得到点A 1,A 2,A 3,…,A n ,则点A n 的坐标为____________.24.(2015成都)如图,在半径为5的O 中,弦8AB =,P 是弦AB 所对的优弧上的动点,连接AP ,过点A 作AP 的垂线交射线PB 于点C ,当PAB ∆是等腰三角形时,线段BC 的长为 .KHGOCCOCOBAPBAPBAP图(1) 图(2) 图(3)27、(本小题满分10分)(2015成都)已知,AC EC 分别为四边形ABCD 和EFCG 的对角线,点E 在ABC ∆内,90CAE CBE ∠+∠=。

四川省成都市2015届第一次诊断适应性考试数学理科试题含答案

四川省成都市2015届第一次诊断适应性考试数学理科试题含答案

2015届成都市第一次诊断适应性考试数 学(理)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,44、执行上图所示的程序框图,则输出的结果是( )A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( )A 、若m α⊥,//m n ,//n β,则αβ⊥B 、若αβ⊥,m α⊄,m β⊥,则//m αC 、若m β⊥,m α⊂,则αβ⊥D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥ 6、二项式102)2(xx +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM +的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( )A 、54B 、53C 、43D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.) 11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。

2015年四川省成都市中考数学试卷及答案

2015年四川省成都市中考数学试卷及答案
(3)如图③,当四边形 ABCD 和 EFCG 均为菱形,且 DAB GEF 45o 时,设 BE m, AE n, CE p ,试探究 m, n, p 三者之间满
足的等量关系。(直接写出结果,不必写出解答过程)
D
C
D
C
G
G
F
F
E
A
B
一①
A
E
B
A
一②
D
C
G
p
E
F
n
m
B
H
一③
28.(本小题满分 12 分) 如图,在平面直角坐标系 xOy 中,抛物线 y=ax2-2ax-3a(a<0)与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),经过点 A 的直线 l:y=kx+b 与 y 轴负半轴交于点 C,与抛物线的另一个交点为 D,且 CD=4AC. (1)直接写出点 A 的坐标,并求直线 l 的函数表达式(其中 k、b 用含 a 的式子表示);
2
8
4x 3 x 1
22.有
9
张卡片,分别写有1
~
9
这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为
a,则关于
x
的不等式组
2
x
x
1 2
a

解的概率为_________.
23.已知菱形 A1B1C1D1 的边长为 2,∠A1B1C1=60°,对角线 A1C1,B1D1 相交于点 O.以点 O 为坐标原点,分别以 OA1,OB1 所在直线为 x 轴、y 轴, 建立如图所示的直角坐标系.以 B1D1 为对角线作菱形 B1C2D1A2∽菱形 A1B1C1D1,再以 A2C2 为对角线作菱形 A2B2C2D2∽菱形 B1C2D1A2,再以 B2B2

2015年初中升学考试数学试题(成都卷)

2015年初中升学考试数学试题(成都卷)

2015年初中升学考试数学试题(成都卷)1.3-的倒数是( )A .13-B .13C .3D .3 2.如图所示的三棱柱的主视图是( )A .B .C .D .3.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为既北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示126万为( )A .412610⨯B .31.2610⨯C .61.2610⨯D .71.2610⨯4.下列计算正确的是( )A .2242a a a +=B .236a a a ⋅=C .224()a a -=D .22(1)1a a +=+5.如图,在△ABC 中,DE//BC ,AD=6,BD=3,AE=4,则EC 的长为( )A .1B .2C .3D .46.一次函数21y x =+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.实数a ,b 在数轴上对应的点的位置如图所示,计算a b -的结果为( )A .a b +B .a b -C .b a -D .a b --8.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠9.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--10.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3π B .πC 23πD .43π11.因式分解:29x -=____ ____.12.如图,直线m ∥n ,△ABC 为等腰直角三角形,∠BAC=90°,则∠1=________度.13.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.14.如图,在平行四边形ABCD 中,AD=4,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为________.15__ __58(填“>”、“<”或“=”). 16.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为__ __. 17.已知菱形1111A B C D 的边长为2,111A B C ∠=60°,对角线11AC ,11B D 相交于点O .以点O 为坐标原点,分别以1OA ,1OB 所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以11B D 为对角线作菱形1212B C D A ∽菱形1111A B C D ,再以22A C 为对角线作菱形2222A B C D ∽菱形1212B C D A ,再以22B D 为对角线作菱形2323B C D A ∽菱形2222A B C D ,…,按此规律继续作下去,在x 轴的正半轴上得到点1A ,2A ,3A ,......,n A ,则点n A 的坐标为___ _____.18.如图,在半径为5的⊙O 中,弦AB=8,P 是弦AB 所对的优弧上的动点,连接AP ,过点A 作AP 的垂线交射线PB 于点C .当△PAB 是等腰三角形时,线段BC 的长为_____ ___.19.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是__ ____.(写出所有正确说法的序号).①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=; ③若点()p q ,在反比例函数2y x=的图像上,则关于x 的方程230px x q ++=是倍根方程; ④若方程20ax bx c ++=是倍根方程,且相异两点(1)M t s +,,N(4)t s -,都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54.20.(本小题满分12分,每题6分)(102(2015)4cos45(3)π--+- .(2)解方程组:⎩⎨⎧-=-=+12352y x y x .21.(本小题满分6分)化简:211()242a a a a a -+÷+-+.22.(本小题满分8分)如图,登山缆车从点A 出发,途经点B 后到达终点C ,其中AB 段与BC 段的运行路程均为200m ,且AB 段的运行路线与水平面的夹角为30°,BC 段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C 的垂直上升的距离.(参考数据:sin42°≈0.67 ,cos42°≈0.74 , tan42°≈0.90)23.(本小题满人8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步晋及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)求获得一等奖的学生人数;(2)在本次知识竞赛活动中,A ,B ,C ,D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用树状图或列表的方法求恰好达到A ,B 两所学校的概率.24.(本小题满分10分)如图,一次函数4y x =-+的图象与反比例函数k y x=(k为常数,且0k ≠)的图象交于A (1,a )、B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标及△PAB的面积.25.(本小题满分10分)如图,在Rt △ABC 中,∠ABC=90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF=BC .⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交于点H ,连接BD 、FH .(1)求证:△ABC ≌△EBF ;(2)试判断BD 与⊙O 的位置关系,并说明理由;(3)若AB=1,求HG •HB 的值.26.(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?27.(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)28.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线223y ax ax a =--(0a <)与x 轴交于A ,B 两点(点A 在点B 的左侧),经过点A 的直线l :y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD=4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k ,b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.参考答案1.A .【解析】 试题分析:∵1(3)()13-⨯-=,∴3-的倒数是13-,故选A . 考点:倒数.2.B .【解析】试题分析:从正面看易得三棱柱的一条棱位于三棱柱的主视图内,故选B .考点:简单几何体的三视图.3.C .【解析】试题分析:126万用科学记数法表示61.2610⨯元,故选C .考点:科学记数法—表示较大的数.4.C .【解析】试题分析:A .2a 与 2a 是同类项,能合并,2222a a a +=.故本选项错误. B .235a a a =.故本选项错误. C .根据幂的乘方法则.422)(a a =-.故本选项正确.D . 22(1)12a a a +=++.故本选项错误.故选C .考点:1.合并同类项;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.5.B .【解析】试题分析: 根据平行线段的比例关系,AD AE DB EC=,即643EC =,2EC =,故选B . 考点:平行线分线段成比例.6.D .【解析】试题分析:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .考点:一次函数的图象.7.C .【解析】试题分析:根根据数轴上两数的特点判断出a 、b 的符号及绝对值的大小,再对a b -进行分析即可.由图可知a <0, b >0.所以a-b <0.a b -为a b -的相反数,故选C .考点:1.数轴;2.绝对值.8.D .【解析】试题分析:∵是一元二次方程,∴0k ≠,∵有两个不想等的实数根,则0∆>,则有224(1)0k ∆=-⨯->,∴1k >-,∴1k >-且0k ≠,故选D .考点:根的判别式.9.A .【解析】试题分析:由函数的平移规律:左加右减,上加下减.向左平移2个单位得到:2(2)y x =+,再向下平移3个单位得到:2(2)3y x =+-,故选A .考点:二次函数图象与几何变换.10.D .【解析】试题分析:在正六边形中,连接OB 、OC 可以得到△OBC 为等边三角形,边长等于半径4.因为OM 为边心距,所以OM ⊥BC ,所以,在边长为4的等边三角形中,边上的高OM=BC 所对的圆心角为60°,由弧长计算公式:604243603BC l ππ︒=⨯⨯= ,故选D . 考点:1.正多边形和圆;2.弧长的计算.11.()()33x x +-.【解析】试题分析:()()2933x x x -=+-.故答案为:()()33x x +-. 考点:因式分解-运用公式法.12.45°.【解析】试题分析:∵△ABC 为等腰直角三角形,∴∠ABC=45°,又∵m ∥n ,∴∠1=∠ABC=45°.故答案为:45°.考点:1.等腰三角形的性质;2.平行线的性质.13.1.【解析】试题分析:把40个数据按从小到大的数序排列后,在中间的两个数字为1,1,平均值为1,故中位数是1.故答案为:1.考点:中位数.14.3.【解析】试题分析:点B 恰好与点C 重合,且四边形ABCD 是平行四边形,根据翻折的性质, 则AE⊥BC ,BE=CE=2,在Rt △ABE 中,由勾股定理得3AE ==.故答案为:3.考点:1.翻折变换(折叠问题);2.勾股定理;3.平行四边形的性质.15.<.【解析】为黄金数,约等于0.618,50.6258=,显然前者小于后者.或者作差法:58-==<,所以,前者小于后者.故答案为:<.考点:1.实数大小比较;2.估算无理数的大小.16.49.【解析】试题分析:设不等式有解,则不等式组()431122x xxx a≥+⎧⎪⎨--<⎪⎩的解为2133ax-≤<,那么必须满足条件,2133a->,∴5a>,∴满足条件的a的值为6,7,8,9,∴有解的概率为49P=.故答案为:49.考点:1.解一元一次不等式组;2.含字母系数的不等式;3.概率公式.17.(3n-1,0).【解析】试题分析:∵菱形1111A B C D的边长为2,111A B C∠=60°,∴11AC=2,∴1OA=1,∴点A1的坐标为(1,0),∵1OA=1,∴1OB2OA=3,点A2的坐标为(3,0),即(32-1,0),同理可得:点A3的坐标为(9,0),即(33-1,0),点A4的坐标为(27,0),即(34-1,0),………∴点A n的坐标为(3n-1,0).故答案为:(3n-1,0).考点:1.相似多边形;2.菱形的性质;3.规律型.18.8BC=或5615或3.【解析】试题分析:(1)当AB=AP 时,如图(1),作OH ⊥AB 于点H ,延长AO 交PB 于点G ;∵AB=AP ,∴ AP AB =,∵AO 过圆心,∴AG ⊥PB ,∴PG=BG ,∠OAH=∠PAG ,∵OH ⊥AB ,∴∠AOH=∠BOH ,AH=BH=4,∵∠AOB=2∠P ,∴∠AOH=∠P ,∵OA=5,AH=4,∴OH=3,∵∠OAH=∠PAG ,∴sin∠OAH=sin ∠PAG ,∴358PG =,∴PG=245,∵∠AOH=∠P ,∴cos ∠AOH=cos ∠P ,AP OH PC AO=,∴54033PC AP ==,∴BC=PC -2PG=4048563515-=; (2)当PA=PB 时,如图(2),延长PO 交AB 于点K ,类似(1)可知OK=3,PK=8,∠APC=∠AOK ,∴PB=PA==,∵∠APC=∠AOK ,∴cos ∠APC=cos ∠AOK ,∴A P O K P C A O =,∴53PC AP ==,∴BC=PC -; (3)当BA=BP 时,如图(3),∵BA=BP ,∴∠P=∠BAP ,∵∠P+∠C=90°,∠CAB+∠BAP=90°,∴∠C=∠CAB ,∴BC=AB=8.故答案为:8BC =或5615.考点:1.等腰三角形的性质;2.解直角三角形.19.②③.【解析】试题分析:研究一元二次方程20ax bx c ++=是倍根方程的一般性结论,设其中一根为t ,则另一个根为2t ,因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+,所以有2902b ac -=;我们记292K b ac =-,即0K =时,方程20ax bx c ++=为倍根方程;下面我们根据此结论来解决问题: 对于①,29102K b ac =-=,因此本选项错误; 对于②,2(2)20mx n m x n +--=,而29K (2)(2)02n m m n =---=,∴22450m mn n ++=,因此本选项正确;对于③,显然2pq =,而29K 302pq =-=,因此本选项正确; 对于④,由(1)M t s +,,N(4)t s -,知145222b t t a ++--==,∴5b a =-,由倍根方程的结论知2902b ac -=,从而有509c a =,所以方程变为:250509ax ax a -+=,∴2945500x x -+=,∴1103x =,253x =,因此本选项错误. 故答案为:②③.考点:1.新定义;2.根与系数的关系.20.(1)8;(2)12x y =⎧⎨=⎩.【解析】试题分析:(1)根据二次根式的性质,零次幂的意义,特殊角的三角函数值和乘方的意义计算;(2)用加减消元法解答即可.试题解析:(1)原式=19-=8;(2)两式相加得44=x ,解得1=x ,将1=x 代入第一个式子,解得2=y ,所以方程组的解为12x y =⎧⎨=⎩. 考点:1.实数的运算;2.解二元一次方程. 21.12a a --. 【解析】试题分析:括号内先通分,同时把除法转化为乘法,再用分式乘法法则计算机即可.试题解析:原式=()()()22221212214412212a a a a a a a a a a a a a -⎛⎫-++-+⨯=⨯= ⎪---+---⎝⎭. 考点:分式的加减法.22.234m . 【解析】 试题分析:缆车从点A 运行到点C 的垂直上升的距离为BD+CE ,在Rt △ABD 和Rt △△BCE 中,解直角三角形即可得到结论.试题解析:如图所示,缆车从点A 运行到点C 的垂直上升的距离为BD+CE ,又∵△ABD 和△BCE 均为直角三角形,∴()sin30sin422000.50.67234BD CE AB BC m +=⋅︒+⋅︒=⨯+=.考点:解直角三角形.23.(1)30人;(2)16. 【解析】 试题分析:(1)先由三等奖求出总人数,再求出一等奖人数所占的比例,即可得到获得一等奖的学生人数;(2)用列表法求出概率.试题解析:(1)由图可知三等奖占总的25%,总人数为5025%200÷=人,一等奖占120%25%40%15%---=,所以,一等奖的学生为20015%30⨯=人;(2)列表:从表中我们可以看到总的有12种情况,而AB 分到一组的情况有2种,故总的情况为21126P ==. 考点:1.扇形统计图;2.列表法与树状图法. 24.(1)3y x =,()3,1B ;(2)P 5,02⎛⎫ ⎪⎝⎭,32PAB S ∆=. 【解析】试题分析:(1)把A 的坐标代入一次函数可得到a 的值,从而得到k 的值,联立一次函数和反比例函数成方程组,解方程组即可得到点B 的坐标;(2)作B 关于x 轴的对称点()'3,1B -,连接'AB 交x 轴于点'P ,连接'P B ,则有,''PA PB PA PB AB +=+≥,当P 点和'P 点重合时取到等号.求得直线'AB 的解析式,进而求出5',02P ⎛⎫ ⎪⎝⎭,即满足条件的P 的坐标为5,02⎛⎫⎪⎝⎭,设4y x =-+交x 轴于点C ,则()4,0C ,由PAB APC BPC S S S ∆∆∆=-,即可得到结论.试题解析:(1)由已知可得,143a =-+=,1133k a =⨯=⨯=,∴反比例函数的表达式为3y x =,联立43y x y x =-+⎧⎪⎨=⎪⎩,解得13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,所以()3,1B ;(2)如答图所示,把B 点关于x 轴对称,得到()'3,1B -,连接'AB 交x 轴于点'P ,连接'P B ,则有, ''PA PB PA PB AB +=+≥,当P 点和'P 点重合时取到等号.易得直线'AB :25y x =-+,令0y =,得52x =,∴5',02P ⎛⎫⎪⎝⎭,即满足条件的P 的坐标为5,02⎛⎫ ⎪⎝⎭,设4y x =-+交x 轴于点C ,则()4,0C ,∴()12PAB APC BPC A B S S S PC y y ∆∆∆=-=⨯⨯-,即()153431222PAB S ∆⎛⎫=⨯-⨯-= ⎪⎝⎭.考点:反比例函数与一次函数的交点问题.25.(1)证明见试题解析;(2)相切,理由见试题解析;(3)2【解析】试题分析:(1)由∠ABC=90°和FD ⊥AC ,得到∠ABF=∠EBF ,由∠DEC=∠BEF ,得到∠DCE=∠EFB ,从而得到△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.连接OB ,只需证明∠DBE+∠OBE=90°,即可得到OB ⊥BD ,从而有BD 与⊙O 相切; (3)连接EA ,EH ,由DF 为线段AC 的垂直平分线,得到AE=CE ,由△ABC ≌△EBF ,得到AB=BE=1,进而得到=1BF BC ==24EF =+又因为BH 为角平分线,易证△EHF 为等腰直角三角形,故222EF HF =,得到22122HF EF ==+GHF ∽△FHB ,得到2HG HB HF ⋅=. 试题解析:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD ⊥AC ,∴∠CDE=90°,∴∠ABF=∠EBF ,∵∠DEC=∠BEF ,∴∠DCE=∠EFB ,∵BC=BF ,∴△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.理由:连接OB ,∵DF 是AC 的垂直平分线,∴AD=DC ,∴BD=CD ,∴∠DCE=∠DBE ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠DCE=∠EFB ,∴∠DBE=∠OBF ,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB ⊥BD ,∴BD 与⊙O 相切;(3)连接EA ,EH ,∵DF 为线段AC 的垂直平分线,∴AE=CE ,∵△ABC ≌△EBF ,∴AB=BE=1,∴CE=AE==,∴1BF BC ==,∴(2222114EF BE BF =+=+=+BH 为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF 为等腰直角三角形,∴222EF HF =,∴22122HF EF ==HFG=∠FBG=45°,∠GHF=∠GHF ,∴△GHF ∽△FHB ,∴HF HGHB HF=,∴2HG HB HF ⋅=,∴22HG HB HF ⋅==.考点:1.全等三角形的判定与性质;2.相似三角形的判定与性质;3.圆周角定理. 26.(1)120件;(2)150元. 【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件,根据等量关系:“所购数量是第一批购进量的2倍,但单价贵了10元”列方程,解方程即可;(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元/件),由“两批衬衫全部售完后利润率不低于25%”列不等式即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件,由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元/件),由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯,解得35052500a ≥,所以150a ≥,即每件衬衫的标价至少是150元.考点:1.分式方程;2.一元一次不等式的应用.27.(1)i )证明见试题解析;ii ;(2(3)222(2p n m -=. 【解析】 试题分析:(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于AC CE==CAE ∽△CBF ;=,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=90°,从而有222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=90°,由AB EFk BC FC==,得到::1:BC AB AC k =::1:CF EF EC k =,故A C A EB C B F=,从而BF =,得到2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=90°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =,222::1:1:(2EF FC EC =,故22222222(2(2)(2(2p EF BE BF m m n ==++==+,从而有222(2p n m -=.试题解析:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵AC CE==CAE ∽△CBF ;=∴,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即∠EBF=90°,∴222222()6C E E F B E B F ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=90°,∵AB EFk BC FC==,∴::1::B C A B A C k k=::1:CF EF EC k =∴A C A EB C B F==∴BF =2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得4k =; (3)连接BF ,同理可得:∠EBF=90°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =,222::1:1:(2EF FC EC =,∴22222222(2(2)(2(2p EF BE BF m m n ==++==+,∴222(2p n m -=.考点:1.相似三角形的判定与性质;2.正方形的性质;3.矩形的性质;4.菱形的性质.28.(1)A (-1,0),y a x a =+;(2)25a =-;(3)P 的坐标为(1,)或(1,-4). 【解析】试题分析:(1)在223y ax ax a =--中,令y=0,得到11x =-,23x =,得到A (-1,0),B (3,0),由直线l 经过点A ,得到b k =,故y kx k =+,令223ax ax a kx k --=+,即2(2)30ax a k x a k -+--=,由于CD =4AC ,故点D 的横坐标为4,即有314ka--=-⨯,得到k a =,从而得出直线l 的函数表达式;(2)过点E 作EF ∥y 轴,交直线l 于点F ,设E (x ,223ax ax a --),则F (x ,ax a +), EF =223()ax ax a ax a ---+=234ax ax a --,S △ACE =S △AFE - S △CFE =21(34)2ax ax a --=21325()228a x a --,故△ACE 的面积的最大值为258a -,而△ACE 的面积的最大值为54,所以25584a -= ,解得25a =-;(3)令223ax ax a ax a --=+,即2340ax ax a --=,解得11x =-,24x =,得到D(4,5a ),因为抛物线的对称轴为1x =,设P (1,m ),然后分两种情况讨论:①若AD 是矩形的一条边,②若AD 是矩形的一条对角线.试题解析:(1)∵223y ax ax a =--=(1)(3)a x x +-,令y=0,得到11x =-,23x =,∴A (-1,0),B (3,0),∵直线l 经过点A ,∴0k b =-+,b k =,∴y kx k =+,令223ax ax a kx k --=+,即2(2)30ax a k x a k -+--=,∵CD =4AC ,∴点D 的横坐标为4,∴314ka--=-⨯,∴k a =,∴直线l 的函数表达式为y ax a =+; (2)过点E 作EF ∥y 轴,交直线l 于点F ,设E (x ,223ax ax a --),则F (x ,ax a +),EF =223()ax ax a ax a ---+=234ax ax a --,S △ACE =S △AFE - S △CFE =2211(34)(1)(34)22ax ax a x ax ax a x --+--- =21(34)2ax ax a --=21325()228a x a --, ∴△ACE 的面积的最大值为258a -,∵△ACE 的面积的最大值为54,∴25584a -= ,解得25a =-;(3)令223ax ax a ax a --=+,即2340ax ax a --=,解得11x =-,24x =,∴D (4,5a ),∵223y ax ax a =--,∴抛物线的对称轴为1x =,设P (1,m ),①若AD 是矩形的一条边,则Q (-4,21a ),m =21a +5a =26a ,则P (1,26a ),∵四边形ADPQ为矩形,∴∠ADP =90°,∴22A D P DA P +=,∴2222225(5)(14)(265)(11)(26)a a a a ++-+-=--+,即217a =,∵0a <,∴a =,∴P 1(1,);②若AD 是矩形的一条对角线,则线段AD 的中点坐标为(32 ,52a),Q (2,3a -),m =5(3)8a a a --=,则P (1,8a ),∵四边形APDQ 为矩形,∴∠APD =90°,∴222A P P D A D +=,∴222222(11)(8)(14)(85)5(5)a a a a --++-+-=+,即214a =,∵0a <,∴12a =-,∴P 2(1,-4).综上所述,以点A 、D 、P 、Q 为顶点的四边形能成为矩形,点P 的坐标为(1,)或(1,-4).考点:二次函数综合题.。

2015年成都市中考数学试题及答案

2015年成都市中考数学试题及答案

锐地卓越模拟试题A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,) 1.3-的倒数是( ) (A )31-(B )31 (C )3- (D )32。

如图所示的三棱柱的主视图是( )(A ) (B ) (C ) (D )3.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相。

新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划, 新机场将新建的4个航站楼的总面积约为126万平方米,用科学计数法表示126万为( )(A )410126⨯ (B )51026.1⨯ (C )61026.1⨯ (D)71026.1⨯ 4。

下列计算正确的是( )(A)4222a a a =+ (B )632a a a =⋅ ( C )422)(a a =- (D )1)1(22+=+a a5.如图,在ABC ∆中,BC DE //,6=AD ,3=DB ,4=AE , 则EC 的长为( )(A )1 (B )2 (C )3 (D )4 6.一次函数12+=x y 的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 7.实数a 、b 在数轴上对应的点的位置如图所示,计算b a -的结果为( ) (A)b a + (B )b a - (C )a b - (D)b a --8.关于x 的一元二次方程0122=-+x kx 有两个不相等实数根,则k 的取值范围是( )(A)1->k (B )1-≥k (C )0≠k (D )1->k 且0≠k9.将抛物线2x y =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( ) A 、3)2(2-+=x y B 、3)2(2++=x y C 、3)2(2+-=x y D 、3)2(2--=x y 10。

如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边 形的边心距OM 和弧BC 的长分别为( )(A)2、3π(B )32、π EDOF(C )3、23π (D )32、43π 二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11、因式分解:=-92x __________。

高新区2015年初三数学一模试卷及答案

高新区2015年初三数学一模试卷及答案

高薪区2015初三数学一模试卷2015.04本卷分试卷和答题卡两部分.共3大题、29小题,满分130分,考试用时120分钟.注意事项:1.答卷前请将姓名、学校、考试号填写在答题卡上相应位置,同时考试号用2B 铅笔填涂.2.选择题答案用2B 铅笔填涂在答题卡指定位置,其他题目用0.5毫米黑色签字笔答题,答案填在答题卡指定的方框内.3.考试结束,请将试卷保留,答题卡上交,一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有只有一个是正确的,请将答案填涂在答题卡上.)1.如图,数轴上点A 所表示的数的倒数是A .-2B .2C .12D .-122.下面是一位同学做的四道题:①(ab)3=a 3b ;②1a b a b --=-+;③a 6÷a 2=a 3;④(a +b)2=a 2+b 2其中做对了几道题A .0B .1C .2D .3 3.某市轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿用科学记数法表示为A .253.7×108B .25.37×109C .2.537×1010D .2.537×10114.如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为A .115°B .125°C .155°D .165°5.已知点A(-1,y 1)、B(2,y 2)都在双曲线32m y x +=上,且y 1>y 2,则m 的取值范围是 A .m<0 B .m>0 C .m>-32 D .m<-326.如图,有一锐角为30°的直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则∠BCD 的度数为A .27°B .54°C .63°D .36°7.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是A.12B.23C.14D.258.如图,D为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为A.12y x=B.13y x=C.12y x=+2 D.23y x=9.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为A.(3,0) B.(7,4) C.(8,1) D.((1,4)10.如图,已知抛物线y1=-x2+4x和直线y2=2x,我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有A.①②B.①②③C.②③ D.②③④二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卡相应横线上.)11.函数yx的取值范围是.12.分解因式x3-2x2y+xy2=.13.若一元二次方程x2-(a+l)x+a=0的两个实数根分别是2、b,则a-b=.14.若干名同学制作迎世乒卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为.(从大到小的顺序)15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为cm.16.将正三角形、正四边形、正五边形按如图所示的位置摆放,如果∠3=32°,那么∠1+∠2= 度.17.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价 元商店老板才能出售.18.已知点A(0,-4),B(8,0)和C(a ,a),以线段AB 的中点为圆心的圆过点C ,则这个圆的半径的最小值等于 .三、解答题(本大题共11小题,共76分,解答应写出必要的计算过程、推演步骤或文字说明.)19.(本题满分5分)计算:()2015112cos30---+︒20.(本题满分5分)解不等式组:()33121318x x x x -⎧+≥+⎪⎨⎪--<-⎩21.(本题满分5分)先化简,再求值:2221111x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中x 是方程x 2+x -6=0的根.22.(本题满分5分)解方程:228224x x x x x +-=+--23.(本题满分7分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 为AB 边上的一点,(1)求证:△ACE ∽△BCD ;(2)若DE =13,BD =12,求线段AB 的长.24.(本题满分7分)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过桥DC ,沿折线A→D→C→B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知BC =12km ,∠A=45°,∠B =37°.桥DC 和AB 平行且等长,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km.,sin37°≈0.60,cos37°≈0.80)25.(本题满分7分)某学校准备成立男女校足球队,为了解全校学生对足球的喜爱程度,该校设计了一个调查问卷,将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢),D(很不喜欢)四种类型,并派学生会会员进行市场调查,其中一名学生会会员小丽在校门口对上学学生进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图,请结合统计图所给信息解答下列问题:(1)在扇形统计图中C所占的百分比是;小丽本次抽样调查的人数共有人;请将折线统计图补充完整;(2)为了解少数学生很不喜欢足球的原因,小丽决定在上述调查结果中从“很不喜欢”足球的学生里随机选出两位进行回访,请你用列表法或画树状图的方法,求所选出的两位学生恰好是一男一女的概率.26.(本题满分8分)如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴,B(2,0),tan∠AOBA的双曲线为y=kx,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的对应线段O'B'.(1)当点O'与点A重合时,求直线l的解析式:(2)当点B'落在双曲线上时,求出点P的坐标.27.(本题满分8分)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.(1)试判断BF与⊙O的位置关系,并说明理由;(2)若BF=5,cos∠C=45,求⊙O的直径;(3)若cos∠F=35,则ACEABESSVV.(直接填写结果)28.(本题满分9分)已知直角坐标系中菱形ABCD的位置如图所示,C、D两点的坐标分别为(4,0)、(0,3).现有两动点P、Q分别从A、C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为ts.(1)菱形ABCD的边长是,面积是,高BE的长是.(直接填写结果)(2)探究下列问题:①若点P的速度为1cm/s,点Q的速度为2 cm/s..当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;②若点P的速度为1cm/s,点Q的速度变为kcm/s,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形,请探究当t =4s时的情形,并求出k的值.29.(本题满分10分)已知抛物线的顶点是C(0,m)(m>0,m为常数),并经过点(2m,2m),点D(0,2m)为一定点.(1)求抛物线的解析式;(用含字母m的代数式表示)(2)设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,试探究PD与PH的大小关系,并说明理由;(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD=m的值.。

2015年九年级阶段检测(一模)数学试题附答案

2015年九年级阶段检测(一模)数学试题附答案

2015年九年级阶段检测(一模)数学试题本试题分第I 卷(选择题)和第II 卷(非选择题)两部分,共6页,满分120分。

考试用时120分钟。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考号填写在答题卡和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2 B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡上各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题 共45分)一、单项选择题(本大题共15小题,每小题3分,共45分) 1.5的相反数是A .5B .-5C .51D .51- 2.下列各运算中,计算正确的是A.x 2y÷y=x 2B.(2x 2)3=6x 5C.(-π)0=0D.a 6÷a 3=a 2 3.如右图,已知AB ∥CD ,与∠1是同位角的角是A .∠2B .∠3C .∠4D .∠54.化简(2x-3y)-3(4x-2y)结果为A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y5.如右图,△ABC 与△DEF 关于y 轴对称,已知A (-4,6),B (-6,2),E (2,1),则点D 的坐标为A .(4,6)B .(-4,6)C .(-2,1)D .(6,2)6.一元二次方程022=--x x 的解是A. 11-=x ,22=xB. 11=x ,22-=xC. 11-=x ,22-=xD. 11=x ,22=x5题图3题图7.不等式组⎩⎨⎧≥-<-048213x x 的解集在数轴上表示为A. B. C. D. 8.已知⊙1O 的半径是5cm,⊙2O 的半径是3cm,21O O =2cm,则⊙1O 和⊙2O 的位置关系是A .外离B .外切C .内切D .相交9.关于二次函数y=-(x+2)2-3,下列说法正确的是A.抛物线开口向上B.抛物线的对称轴是x=2C.当x =-2时,有最大值-3D.抛物线的顶点坐标是(2,-3)10.右图是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B 在围成的正方体 的距离是 A .0B .1C .2D .311.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,矩形ABCD 内的一个动点P 落在阴影部分的概率是 A .103B .31 C .41 D .5112.如图,AB 是⊙O 的直径,AC 、BC 是⊙O 的弦,PC 是⊙O 的 切线,切点为C ,若∠ACP =55°,那么∠BAC 等于A.35°B.45°C.55°D.65°13.如图,在△ABC 中,AC=BC ,有一动点P 从点A 出发,沿A→C→B→A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是A. B. C. D.14.已知⊙O 的半径r=3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的 个数为m ,给出下列命题:10题图11题图12题图①若d >5,则m=0;②若d=5,则m=1;③若1<d <5,则m=2;④若d=1,则m=3;⑤若d <1,则m=4.其中正确命题的个数是A.5B.4C.3D.215.定义新运算:a ⊕b=例如:4⊕5=,4⊕(-5)=.则函数y=2⊕x(x≠0)的图象大致是A.B. C. D.第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分) 16. 因式分解:329x xy -= .17. 据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市接受义务教育,这个数字用科学记数法表示为 . 18. 如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm.19.如图,点D(0,3),O(0,0),C(4,0),B 在⊙A 上,BD 是⊙A 的一条弦.则sin ∠OBD= . 20.分式方程xx 321=-的解是. 21.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2015次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2015的 位置,则P 2015的横坐标x 2015=18题图 19题图 20题图三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤) 22.(本小题满分7分)(1)化简:()()()2122x x x +-+-(2)计算:+1)21(--+(﹣5)0﹣cos30°.23.(本小题满分7分) (1)如图,已知:在△AFD 和△CEB 中,点A 、E 、F 、C 在同一直线上,AE=CF ,∠B=∠D ,AD ∥BC .求证:AD=BC .(2)如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,求EB′的长24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜 共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字﹣1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p 的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q 值,两次结果记为(p ,q ).(1)请你帮他们用树状图或列表法表示(p ,q )所有可能出现的结果; (2)求满足关于x 的方程x2+px+q=0没有实数解的概率.23题 1小题图23题 2小题图26.(本小题满分9分)如图,一次函数y=kx+b 的图象与反比例函数xmy(x >0)的图象交于点P (4,2),与x 轴交于点A (﹣4,0),与y 轴交于点C ,PB ⊥x 轴于点B . (1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.27.(本小题满分9分)在一个边长为6cm 的正方形ABCD 中,点E 、M 分别是线段AC ,CD 上的动点,连结DE 并延长交正方形的边于点F ,过点M 作MN ⊥DF 于H ,交AD 于N . (1)如图1,当点M 与点C 重合,求证:DF=MN ;(2)如图2,假设点M 从点C 出发,以1cm/s 的速度沿CD 向点D 运动,点E 同时从点A 出发,以2cm/s 速度沿AC 向点C 运动,运动时间为t (t >0);①当点F 是边AB 中点时,求CM 的长度.②在点E ,M 的运动过程中,除正方形的边长外,图中是否还存在始终相等的线段,若存在,请找出来,并加以证明;若不存在,请说明理由。

四川省成都市2015年高中阶段教育学校统一招生考试数字试题(附答案)

四川省成都市2015年高中阶段教育学校统一招生考试数字试题(附答案)

成都市2015年高中阶段教育学校统一招生考试数学(本试卷满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的倒数是()A.B.C.-3 D.3答案:A 【解析】本题考查倒数的定义,难度较小.根据互为倒数的两数的乘积是1,得-3的倒数是,故选A.2.如图所示的三棱柱的主视图是()A B C D答案:B 【解析】本题考查三视图,难度较小.主视图是从物体的正面看得到的视图,找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中,从正面看易得三棱柱的一条棱位于三棱柱的主视图内,故选B.3.2015年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市.按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为()A.126×104B.1.26×105C.1.26×106D.1.26×107答案:C 【解析】本题考查用科学记数法表示较大的数,难度较小.科学记数法是将一个数写成a×10n的形式,其中1≤|a|<10,n为整数.当原数的绝对值大于等于10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值小于1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).即126万=1260000=1.26×106,故选C.4.下列计算正确的是()A.a2+a2=2a4B.a2·a3=a6C.(-a2)2=a4D.(a+1)2=a2+1答案:C 【解析】本题考查幂的运算,难度较小.a2与a2是同类项,能合并,a2+a2=2a2,故A错误;a2与a3是同底数幂,根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,a2·a3=a2+3=a5,故B错误;根据幂的乘方,底数不变,指数相乘,(-a2)2=a2×2=a4,故C正确;根据完全平方公式(a+b)2=a2+2ab+b2,得(a+1)2=a2+2a+1,故D错误,综上,故选C.5.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2C.3 D.4答案:B 【解析】本题考查平行线分线段成比例,难度较小.根据平行线段的比例关系,,即,解得EC=2,故选B.6.一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:D 【解析】本题考查一次函数的图象与性质,难度较小.∵k=2>0,b=1>0,根据一次函数的图象即可判断函数图象经过第一、二、三象限,不经过第四象限,故选D.7.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为()A.a+b B.a-bC.b-a D.-a-b答案:C 【解析】本题考查绝对值的化简,难度较小.根据数轴上两数的特点判断出a,b 的符号及绝对值的大小,再对|a-b|进行分析即可.由图可知a<0,b>0,所以a-b<0,|a-b|为a-b的相反数,故选C.8.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1 B.k≥-1C.k≠0 D.k>-1且k≠0答案:D 【解析】本题考查一元二次方程根的判别式,难度中等.因为方程是一元二次方程,则二次项系数k≠0,又方程有两个不相等的实数根,则Δ>0,即Δ=22-4×(-1)k>0,解得k>-1,所以k>-1且k≠0,故选D.9.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y=(x+2)2-3 B.y=(x+2)2+3C.y=(x-2)2+3 D.y=(x-2)2-3答案:A 【解析】本题考查抛物线的平移,难度中等.根据函数的平移原则“左加右减,上加下减”即可作答.向左平移2个单位得y=(x+2)2,再向下平移3个单位得y=(x+2)2-3,故选A.10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.,πC.,D.,答案:D 【解析】本题考查正多边形的性质、弧长公式,难度中等.在正六边形中,连接OB,OC,可以得到△OBC为等边三角形,边长等于半径4.因为OM为边心距,所以OM⊥BC,所以在边长为4的等边三角形中,边上的高.弧BC所对的圆心角为60°,由弧长计算公式知的长为,故选D.第Ⅱ卷(非选择题共70分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上)11.因式分解:x2-9=_________.答案:(x+3)(x-3) 【解析】本题考查分解因式,难度较小.根据平方差公式a2-b2=(a +b)(a-b),得x2-9=(x+3)(x-3).12.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=_______度.答案:45 【解析】本题考查平行线的性质、等腰三角形性质,难度较小.因为△ABC为等腰直角三角形,所以∠ABC=45°,又m∥n,根据“两直线平行,同位角相等”,所以∠1=∠ABC=45°.13.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是_________小时.答案:1 【解析】本题考查中位数计算,难度中等.把一组数据按从小到大(或从大到小)的顺序排列,最中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.此题由条形统计图可知40个数据按从小到大顺序排列,最中间有两个数,分别是第20和第21个数,它们都是1,故中位数是1(小时).14.如图,在□ABCD中,,AD=4,将□ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_________.答案:3 【解析】本题考查折叠的性质、勾股定理,难度中等.点B恰好与点C重合,且四边形ABCD是平行四边形,根据折叠的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,由勾股定理得.三、解答题(本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:.(2)解方程组:答案:(1)本题考查实数的计算,难度较小.涉及知识点有二次根式、特殊角三角函数值、0次幂、平方计算等.解:(4分)=8.(6分)(2)本题考查解二元一次方程组,难度较小.解:①+②得4x=4,x=1.(3分)将x=1代入①得1+2y=5,y=2.(5分)所以原方程组的解是(6分)16.(本小题满分6分)化简:.答案:本题考查分式的化简,难度较小.解:(3分)(5分).(6分)17.(本小题满分8分)如图,登山缆车从点A出发,途经点B后到达终点C.其中AB段与BC段的运行路程均为200 m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)答案:本题考查解直角三角形的应用,难度中等.解:根据题意可知∠BAD=30°,∠CBE=42°,AB=BC=200 m.在Rt△ABD中,.(3分)在Rt△BCE中,CE=BC·sin42°≈200×0.67=134(m),(6分)∴BD+CE≈100+134=234(m),因此,缆车从点A运行到点C的垂直上升的距离约为234 m.(8分)18.(本小题满分8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革.为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)求获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛.请用画树状图或列表的方法求恰好选到A,B两所学校的概率.答案:本题考查扇形统计图的运用、列表法或画树状图求概率,难度中等.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.解:(1)获奖学生总人数为(名),(1分)获一等奖学生人数为200×(1-20%-25%-40%)=30(名).(3分)(2)列表如下:或画树状图如下:(6分)由表(或树状图)可知,共有12种可能的结果,每种结果出现的可能性相同,其中选到A,B两所学校的结果有2种:(A,B),(B,A),所以P(选到A,B两所学校).(8分)19.(本小题满分10分)如图,一次函数y=-x+4的图象与反比例函数(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.答案:本题考查待定系数法求反比例函数解析式、求点的坐标、最值问题、三角形面积等,难度中等.解:(1)∵点A(1,a)在一次函数y=-x+4的图象上,∴a=-1+4=3,∴点A的坐标为(1,3).(1分)将点A(1,3)代入中,得k=3,∴反比例函数的表达式为.(2分)由解得∴点B的坐标为(3,1).(4分)(2)如图,作点B关于x轴的对称点B′,连接AB′交x轴于点P,则点P即为所求的点.由B(3,1)得点B′的坐标为(3,-1).(5分)设直线AB′的函数表达式为y=k′x+b,则有解得∴直线AB′的函数表达式为y=-2x+5.(7分)令y=0,得,∴点P的坐标为,(8分)∴S△PAB=S△ABB′-S△BPB′.(10分)20.(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG·HB的值.答案:本题是几何综合题,难度较大.考查的知识点有全等三角形的判定、圆的切线的判定、相似三角形的运用等,主要考查考生的逻辑推理能力.解:(1)证明:∵Rt△ABC中,∠ACB+∠A=90°,Rt△ADF中,∠AFD+∠A=90°,∴∠ACB=∠AFD.(1分)又∵BC=BF,∠ABC=∠EBF=90°,∴△ABC≌△EBF.(3分)(2)BD与⊙O相切.(4分)理由如下:连接OB.∵⊙O是Rt△EBF的外接圆,∴O是EF的中点,OB=OF,∴∠OBF=∠OFB.又∵∠C=∠OFB,∴∠C=∠OBF.∵∠ABC=90°,D是AC的中点,∴DB=DC,∴∠DBC=∠C,∴∠DBC=∠OBF,(5分)∴∠OBD=∠OBE+∠DBC=∠OBE+∠OBF=∠EBF=90°,∴BD与⊙O相切.(6分)(3)连接AE,OH.∵△EBF≌△ABC,∴BE=AB=1,∴Rt△ABE中,.∵DF垂直平分AC,∴,(7分)∴.在Rt△BEF中,.(8分)∵BH平分∠EBF,∴∠EBH=∠HBF=45°,∠HOF=2∠HBF=90°.又∵∠HFE=∠EBH,∴∠HFE=∠HBF.而∠FHG=∠BHF,∴△FHG∽△BHF,∴,即HG·HB=HF2.(9分)∵Rt△HOF中,,∴,∴.(10分)B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)21.比较大小:_________(填“>”“<”或“=”).答案:<【解析】本题考查实数的大小比较,难度中等.比较方法(1)取近似值比较:为黄金分割比,约等于0.618,,显然前者小于后者;(2)作差比较:,所以前者小于后者.22.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为_________.答案:【解析】本题考查解不等式组的应用、概率计算,难度中等.不等式组即解不等式①得x≥3,解不等式②得,若不等式组有解,则解为,那么必须满足,∴满足条件的a的值为6,7,8,9,∴有解的概率为.23.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,……,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为_________.答案:(3n-1,0) 【解析】本题考查菱形的性质、求点的坐标、规律探究,难度较大.由题意得OA1=1,点A1的坐标为(1,0),,,点A2的坐标为(3,0),即(32-1,0),,点A3的坐标为(9,0),即(33-1,0),同理点A4的坐标为(27,0),即(34-1,0),…,∴点A n的坐标为(3n-1,0).24.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C.当△PAB是等腰三角形时,线段BC的长为_________.答案:8或或【解析】本题考查圆的有关性质及计算、等腰三角形的判定和性质,难度较大.解题时应注意分情况讨论:(1)当AB=AP=8时,如图1,作OH⊥AB于点H,则,由勾股定理得OH=3,延长AO交PB于点G,连接BO,易知,由射影定理知;(2)当PA=PB时,如图2,连接PO并延长交AB于点K,易知OK=3,PK=8,,易证△APC∽△KOA,故,即,解得,所以;(3)当BA=BP=8时,如图3,由∠C=90°-∠P=90°-∠PAB=∠CAB BC=AB =8.综上,BC=8或或.25.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是_________(写出所有正确说法的序号).①方程x2-x-2=0是倍根方程;②若(x-2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数的图象上,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4-t,s)都在抛物线y =ax2+bx+c上,则方程ax2+bx+c=0的一个根为.答案:②③【解析】本题考查新定义的理解和运用、一元二次方程的解法、反比例函数及二次函数的图象和性质,难度较大.研究一元二次方程ax2+bx+c=0(a≠0)是倍根方程的一般性结论,设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x-t)(x-2t)=ax2-3atx +2t2a,所以,记,即K=0时,方程ax2+bx+c=0为倍根方程.下面我们根据此结论来解决问题:对于①,,因此①错误;对于②,mx2+(n-2m)x-2n=0,令,因此②正确;对于③,显然pq=2,且,因此③正确;对于④,由M(1+t,s),N(4-t,s)知,由倍根方程的结论知,则,原方程可变形为,因此④错误.综上可知,正确的选项有②③.【关键点】根据方程两根之间的两倍关系设ax2+bx+c=a(x-t)(x-2t)=ax2-3atx+2t2a,从而得出是解决本题的关键.二、解答题(本大题共3小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出.如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?答案:本题考查分式方程及不等式在实际生活中的应用,难度中等.解:(1)设该商家购进的第一批衬衫为x件,由题意得,(2分)解这个方程得:x=120,经检验,x=120是所列方程的根.所以,该商家购进的第一批衬衫是120件.(4分)(2)设每件衬衫的标价是y元,由题意得(3×120-50)·y+50·0.8y≥(13200+28800)(1+25%),(6分)解这个不等式得y≥150,因此,每件衬衫的标价至少是150元.(8分)27.(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE =90°.(1)如图1,当四边形ABCD和EFCG均为正方形时,连接BF.(ⅰ)求证:△CAE∽△CBF;(ⅱ)若BE=1,AE=2,求CE的长;(2)如图2,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;(3)如图3,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE =m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)答案:本题是四边形的综合题,难度较大.考查特殊平行四边形性质、相似三角形的判定和性质、勾股定理等.解:(1)(ⅰ)证明:∵正方形ABCD中,,∠ACB=45°,正方形EFCG中,,∠ECF=45°,∴,∠ACE=∠BCF,∴△CAE∽△CBF.(2分)(ⅱ)∵△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠EBF=∠CBE+∠CBF=∠CBE+∠CAE=90°,,∴,∴.(4分)(2)连接BF.∵,∠ABC=∠EFC=90°,∴△CAB∽△CEF,∴,∠ACB=∠ECF,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠EBF=∠CBE+∠CBF=∠CBE+∠CAE=90°.(5分)∵Rt△ABC中,,∴,∴,则.由△CEF∽△CAB得,则.(6分)在Rt△EBF中,由勾股定理得,(7分)∴.(8分)(3).(10分)28.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.答案:本题是二次函数的综合题,难度较大.考查待定系数法求解析式、三角形的面积、动点问题、二次函数最值问题、点的存在性等,综合性较强.解题时注意数形结合、逻辑推理及分类讨论等数学方法.解:(1)点A的坐标为(-1,0).(1分)过点D作DH⊥x轴于点H,则DH∥y轴.于是,,即OH=4AO=4,∴点D的横坐标为4.又∵点D在抛物线y=ax2-2ax-3a上,∴点D的坐标为(4,5a).(2分)把A(-1,0),D(4,5a)代入l:y=kx+b,得解得∴直线l的函数表达式为y=ax+a.(3分)(2)过点E作y轴的平行线交x轴于点F,交直线l于点G,再作CK⊥EG于点K,则设E(x,ax2-2ax-3a),则G(x,ax+a),∴EG=ax2-3ax-4a.又AO=1,∴∴当时,.(6分)∵△ACE的面积的最大值为,∴,解得.(7分)(3)分类讨论如下:①当AD为矩形的一边时,显然点P只能在直线l的下方.此时,设四边形ADP1Q1为矩形,过点D作抛物线的对称轴的垂线,垂足为L,则有△P1DL∽△ADH,,即,∴点P1的坐标为.由P1Q1AD,可得点Q1的坐标为.把代入抛物线的表达式得,∴,此时,点P1的坐标为.(9分)②当AD为矩形的一条对角线时,显然点P只能在直线l下方.此时,设四边形AP2DQ2为矩形,分别过A,D两点作过点P2且平行于x轴的直线的垂线,垂足为M,N.设点P2的坐标为(1,m),=6.①又由AD,P2Q2互相平分得点Q2的坐标为(2,5a-m).把Q2(2,5a-m)代入抛物线的表达式得4a-4a-3a=5a-m,即m=8a.②由①②得,m=-4,此时,点P2的坐标为(1,-4).综上所述,以点A,D,P,Q为顶点的四边形可能成为矩形,当该四边形为矩形时,点P的坐标为或(1,-4).(12分)综评:本套试卷难度较大,对考生思维能力的训练有所突破,既考查了大多数考生解决数学问题的基本能力,也对优秀考生的选拔有较明显的区分.如第25题知识点的融合度较高,第27,28题,考生在解答过程中,不仅要经历推理、猜想的过程,而且还需要对结论进行证明,强调了对演绎推理能力的考查,使考生经历了数学发现的全过程,体会到了合情推理的重要性和证明的必要性.。

四川中考一模考试《数学卷》含答案解析

四川中考一模考试《数学卷》含答案解析

四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________A卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在实数2,2,﹣12,0.2中,无理数 ( )A. 2B. 2C. ﹣12D. 022. 用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A. B. C. D.3. 在成都市66个产业功能区中,青白江区欧洲产业城”最年轻”,但极具”天赋”和极其”努力”,仅用两年多的时间就实现了”平地立城”的愿望,集聚起总投资410亿元的重大产业化项目,请用科学记数法表示410亿为( )A. 41×102B. 4.1×108C. 4.1×109D. 4.1×10l04. 下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2,其中一次函数的个数是( )A. 1B. 2C. 3D. 45. 已知二元一次方程组2224x yx y+=⎧⎨+=⎩,则x+y=( )A. 2B. 3C. 6D. 86. 如图,在△ABC中,分别以点A,B为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是( )A. ∠A 的平分线B. AC 边的中线C. BC 边的高线D. AB 边的垂直平分线7. 如图,已知AC 是⊙O 的直径,过点C 的弦CD 平行于半径OB ,若∠C 的度数是40°,则∠B 的度数是( )A 15° B. 20° C. 30° D. 40°8. 如图,在Rt △ABC 中,直角边BC 的长为m ,∠A =40°,则斜边AB 的长是( )A. m sin40°B. m cos40°C. sin 40m ︒D. cos 40m ︒9. 在平面直角坐标系中,点P (﹣4,2)向右平移7个单位长度得到点P 1,则点P 1关于x 轴对称的点P 2的坐标是( )A. (﹣3,2)B. (﹣2,3)C. (3,﹣2)D. (2,﹣3)10. 如图,在平面直角坐标系中,有四个点A (﹣1,0),B (﹣2,0),点C (0,1),D (0,2)分别以A 、B 、C 、D 其中的任意两点与点O 为顶点作三角形,所作三角形是等腰直角三角形的概率是( )A. 12B. 13C. 23D. 34二、填空题(本大题共4个小题,每小题4分,共16分答案写在答题卡上)11. 分解因式:22a4a2-+=_____.12. 正五边形的内角和等于______度.13. 函数1xyx-=的自变量x的取值范围是______.14. 如图,已知∠AOB=72°,点C为∠AOB平分线上的一点,点D为OB上一点,OD=CD.则∠OCD 等于_____°.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (1)计算:6sin30°+(﹣13)﹣2﹣20200﹣|﹣6|.(2)先化简,再求值:21xx--÷(x+1﹣31x-),其中x=﹣3.16. 已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围;(2)当x1=1时,求另一个根x2的值.17. 垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了”垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图1中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.18. 青白江凤凰湖湿地公园是一处具有国际水准的旅游度假区,以生态、休闲、水景环境及具有多国风情的建筑为特色.如图为凤凰湖湿地公园三个景点A,B,C的平面示意图,景点C在B的正北方向4千米处,景点A在B的东北方向,在C的北偏东75°方向上,求景点A、B之间的距离.(结果保留根号)19. 如图,反比例函数y=kx(k≠0,x>0)的图象与直线y=4x相交于点C,过直线上点A(2,a)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=4BD.(1)求a的值;(2)求k的值;(3)连接OD,CD,求△OCD的面积.20. 如图,在△ABC中,AB=AC,以边AB为直径的⊙O交边BC于点D,交边AC于点E.过D点作DF⊥AC 于点F.(1)求证:DF是⊙O的切线;(2)求证:CF=EF;(3)延长FD交边AB的延长线于点G,若EF=3,BG=9时,求⊙O的半径及CD的长.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 比较大小:﹣2505_____3673-⨯.22. 下列四个图案中,具有一个共有的性质,那么在222,606,808,609下面四个数中,满足上述性质的一个是_____.23. 如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴的负半轴、y轴的正半轴上,点D在边BC上,将该矩形沿AD折叠,点B恰好落在边OC上的E处,且△CDE为等腰直角三角形,若OA=4,则点D的坐标是_____.24. 如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为_____.25. 已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①2a+b<0;②﹣1≤a≤﹣23;③对于任意实数m,a(m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c=n+1有两个不相等的实数根.其中结论正确的序号是_____.二、解答题(本小题共三个小题,共30分,答案写在答题卡上)26. 2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病? 27. 已知正方形ABCD ,过点B 有一条直线1与正方形ABCD 的对角线AC 所在直线相交于点G ,过点C 、A 分别作直线1的垂线段CE 、AF 于点E 、F ,对角线AC 、BD 相交于点O ,连接OE 、OF .(1)如图1,猜测OE 、OF 有怎样的数量关系和位置关系,并说明理由;(2)若正方形边长为10.①若直线1在如图1的位置,当2OE CE =时,求EG 的长; ②若直线1在如图2的位置,当22OE CE =时,请直接写出EG 的长. 28. 如图,抛物线y =ax 2+bx +c (a ≠0)与直线y =﹣x ﹣2相交于A (﹣2,0),B (m ,﹣6)两点,且抛物线经过点C (5,0).点P 是直线下方的抛物线上异于A 、B 的动点.过点P 作PD ⊥x 轴于点D ,交直线于点E .(1)求抛物线的解析式;(2)连结P A、PB、BD,当S△ADB23S△P AB时,求S△P AB;(3)是否存在点P,使得△PBE为直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.答案与解析A卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在实数2,2,﹣12,0.2中,无理数 ( )A. 2B. 2C. ﹣12D. 0.2【答案】A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A.2是无理数;B.2 是整数,属于有理数;C.12是分数,属于有理数;D.0.2是有限小数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2. 用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A. B. C. D.【答案】C【解析】【分析】根据主视图的定义,找到从正面看所得到的图形即可.【详解】从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选C.3. 在成都市66个产业功能区中,青白江区欧洲产业城”最年轻”,但极具”天赋”和极其”努力”,仅用两年多的时间就实现了”平地立城”的愿望,集聚起总投资410亿元的重大产业化项目,请用科学记数法表示410亿为( )A. 4.1×102B. 4.1×108C. 4.1×109D. 4.1×10l0【答案】D【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数-1.【详解】解:410亿=410 0000 0000=4.1×10l0,故选:D.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4. 下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2,其中一次函数的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:(1)y=﹣x是正比例函数,是特殊的一次函数,故正确;(2)y=x﹣1符合一次函数的定义,故正确;(3)y=1x属于反比例函数,故错误;(4)y=x2属于二次函数,故错误.综上所述,一次函数的个数是2个.故选:B.【点睛】本题主要考查了一次函数的定义.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.5. 已知二元一次方程组2224x yx y+=⎧⎨+=⎩,则x+y=( )A. 2B. 3C. 6D. 8 【答案】A【解析】【分析】将方程组①+②,然后化简求解.【详解】解:2224x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=6,则x+y=2.故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6. 如图,在△ABC中,分别以点A,B 为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是( )A. ∠A的平分线B. AC边的中线C. BC边的高线D. AB边的垂直平分线【答案】D【解析】由尺规作图的方法可知,线DE是AB边的垂直平分线.故选D7. 如图,已知AC是⊙O的直径,过点C的弦CD平行于半径OB,若∠C的度数是40°,则∠B的度数是( )A. 15°B. 20°C. 30°D. 40°【答案】B首先根据平行线的性质以及等边对等角证得∠BOC=∠C=40°,∠B=∠A ,利用三角形的外角的性质,得出答案.【详解】解:∵CD ∥BO ,∴∠BOC =∠C =40°,∵AO =BO ,∴∠A =∠B ,∵∠A+∠B =∠BOC =40°,∴∠A =∠B =20°.故选:B .【点睛】本题考查了等边对等角、以及三角形的外角的性质、平行线的性质定理,正确理解定理是关键. 8. 如图,在Rt △ABC 中,直角边BC 的长为m ,∠A =40°,则斜边AB 的长是( )A. m sin40°B. m cos40°C. sin 40m ︒D. cos 40m ︒【答案】C【解析】【分析】 利用三角函数的定义即可求解.【详解】解:∵sin A =BC AB , ∴AB =sin sin 40A BC π︒=, 故选:C .【点睛】本题考查了三角函数,正确理解三角函数的定义是关键.9. 在平面直角坐标系中,点P (﹣4,2)向右平移7个单位长度得到点P 1,则点P 1关于x 轴对称的点P 2的坐标是( )A. (﹣3,2)B. (﹣2,3)C. (3,﹣2)D. (2,﹣3)【答案】C先根据点P向右平移7个单位,横坐标加7,纵坐标不变,求出点P1的坐标;再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出点P2的坐标即可.【详解】因为点P(﹣4,2)向右平移7个单位长度得到点P1,所以P1的坐标为(﹣4+7,2),即P1(3,2);因为点P1关于x轴对称的点P2,所以P2的坐标为(3,﹣2),故选:C.【点睛】此题考查了坐标与图形变化-平移与对称,熟练掌握对称与平移性质是解本题的关键.10. 如图,在平面直角坐标系中,有四个点A(﹣1,0),B(﹣2,0),点C(0,1),D(0,2)分别以A、B、C、D其中的任意两点与点O为顶点作三角形,所作三角形是等腰直角三角形的概率是( )A. 12B.13C.23D.34【答案】B【解析】【分析】列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可. 【详解】列表得:A B C DA AB AC ADB BA BC BDC CA CB CD由列表可见,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中所作三角形是等腰直角三角形的有4种结果,所以所作三角形是等腰直角三角形的概率为412=13, 故选:B .【点睛】本题主要考查列表法与树状图法,列表的目的在于不重不漏地列出所有可能的结果,再从中选出符合事件A 或B 的结果数目,求出概率.当一个事件涉及三个或多个元素时,为不重不漏地列出所有结果,通常采用树状图. 二、填空题(本大题共4个小题,每小题4分,共16分答案写在答题卡上)11. 分解因式:22a 4a 2-+=_____.【答案】()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 12. 正五边形的内角和等于______度.【答案】540【解析】【详解】过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3180=540°13. 函数y=x 的取值范围是______. 【答案】x >0【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:根据题意得,x≥0且x≠0,解得x >0,故答案为x>0【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.14. 如图,已知∠AOB=72°,点C为∠AOB平分线上的一点,点D为OB上一点,OD=CD.则∠OCD 等于_____°.【答案】36.【解析】【分析】先根据角平分线的定义求出∠DOC的度数,再根据等腰三角形的性质得出∠OCD=∠DOC,即可得到结论.【详解】解:∵∠AOB=72°,点C为∠AOB平分线上的一点,∴∠DOC=12∠AOB=36°,∵OD=CD,∴∠OCD=∠DOC=36°,故答案为:36.【点睛】本题考查了等腰三角形的性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (1)计算:6sin30°+(﹣13)﹣2﹣20200﹣|﹣6|.(2)先化简,再求值:21xx--÷(x+1﹣31x-),其中x=﹣3.【答案】(1)5;(2)12x+,﹣1.【解析】【分析】(1)先根据特殊角的三角函数值,负整数指数幂的运算法则,零次幂的运算法则以及绝对值的意义进行化简,再进行加减运算即可;(2)先根据分式的运算法则进行化简,再将x的值代入计算即可.【详解】解:(1)6sin30°+(﹣13)﹣2﹣20200﹣|﹣6| =6×12+9﹣1﹣6 =3+9﹣1﹣6=5;(2)21x x --÷(x +1﹣31x -) =2(1)(1)311x x x x x -+--÷-- =22114x x x x --⋅-- =2(2)(2)x x x -+- =12x +, 当x =﹣3时,原式=132-+=﹣1. 【点睛】本题主要考查了特殊角的三角函数值,负整数指数幂,零次幂,含绝对值的混合运算以及分式的化简求值,掌握基本运算法则是解题的关键.16. 已知关于x 的一元二次方程x 2﹣2x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【答案】(1)m <1;(2)x 2=1.【解析】【分析】(1)根据题意可得根的判别式△>0,再代入可得4-4m>0,再解即可;(2) 根据根与系数的关系可得12b x x a+=-, 再代入可得答案. 【详解】(1)△=4﹣4m >0,∴m <1.(2)根据根与系数的关系可知:x 1+x 2=2,因为x 1=1,所以x 2=1.【点睛】本题考查根与系数的关系及根的判别式,解题的关键是掌握根与系数的关系及根的判别式. 17. 垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了”垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图1中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.【答案】(1)50;32;(2)平均数为6.56元,众数为5元;中位数为5元;(3)该校本次活动捐款金额为5元的学生人数为672人.【解析】【分析】(1)根据条形图可得接受随机抽样调查的学生人数,用5元的人数除以总数可得m%,进而可得m的值;(2)根据平均数、众数和中位数定义进行计算即可;(3)利用样本估计总体的方法进行计算.详解】(1)接受随机抽样调查的学生人数为:4+12+16+10+8=50(人),m%=1650×100%=32%,则m=32,故答案为:50;32;(2)平均数:(4×1+12×2+16×5+10×10+15×8)÷50=6.56(元),众数:5元;中位数:5元;(3)2100×32%=672(人)答:该校本次活动捐款金额为5元的学生人数为672人.【点睛】此题主要考查了条形统计图和扇形统计图的综合应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.18. 青白江凤凰湖湿地公园是一处具有国际水准的旅游度假区,以生态、休闲、水景环境及具有多国风情的建筑为特色.如图为凤凰湖湿地公园三个景点A,B,C的平面示意图,景点C在B的正北方向4千米处,景点A在B的东北方向,在C的北偏东75°方向上,求景点A、B之间的距离.(结果保留根号)【答案】景点A,B的距离约为(22+26)千米.【解析】【分析】作CD⊥AB于D,则∠CDB=∠CDA=90°,∠BAC=75°﹣45°=30°,分别解Rt△BCD和Rt△ACD求得BD 和AD,即可求出景点A,B的距离.【详解】解:作CD⊥AB于D,如图所示,则∠CDB=∠CDA=90°,由三角形的外角性质得:∠BAC=75°﹣45°=30°,在Rt△BCD中,∵BC=5,∠B=45°,∴△BCD等腰直角三角形,∴BD=CD=22BC=2(千米),在Rt△ACD中,∵∠A=30°,∴AD3=6(千米),∴AB=BD+AD=(26)(千米),答:景点A,B的距离约为(26)千米.【点睛】本题主要考查解直角三角形问题,方位角等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19. 如图,反比例函数y=kx(k≠0,x>0)的图象与直线y=4x相交于点C,过直线上点A(2,a)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=4BD.(1)求a的值;(2)求k的值;(3)连接OD,CD,求△OCD的面积.【答案】(1)a=8;(2)k=4;(3)△OCD的面积=3.【解析】【分析】(1)根据A在直线y=4x上,即可求出a的值;(2)把A点的坐标代入反比例函数解析式y=kx(k≠0,x>0),即可求得k的值;(3)因为C是直线和双曲线的交点,联立成方程组,即可求出C点的坐标;再利用面积的割补法即可求出答案.【详解】(1)把A(2,a)代入y=4x得a=4×2=8;(2)∵AB=4BD,∴BD=2,AD=6∴D(2,2),把D(2,2)代入y=kx得k=2×2=4,∴反比例函数解析式为y=4x;(3)解方程组44 y x yx=⎧⎪⎨=⎪⎩得44xx=,得14xy=⎧⎨=⎩或14xy=-⎧⎨=-⎩(舍),则C(1,4),∴△OCD的面积=S△AOB﹣S△ACD﹣S△BOD=12×2×8﹣12×6×1﹣12×2×2=3.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也得考查了待定系数法求函数解析式.20. 如图,在△ABC中,AB=AC,以边AB为直径的⊙O交边BC于点D,交边AC于点E.过D点作DF⊥AC 于点F.(1)求证:DF是⊙O的切线;(2)求证:CF=EF;(3)延长FD交边AB的延长线于点G,若EF=3,BG=9时,求⊙O的半径及CD的长.【答案】(1)见解析;(2)见解析;(3)⊙O的半径是92,CD3【解析】【分析】(1)首先连接OD,通过等量互换,得出OD∥AC,进而得出DF⊥OD,即可得证;(2)首先根据圆内接四边形的性质得出∠CED=∠ABC,进而得出∠CED=∠C,CD=DE,然后根据等腰三角形的性质即可得出CF=EF;(3)首先根据圆和等腰三角形的性质得出CD=BD,然后根据平行判定△GOD∽△GAF,利用相似成比例构建方程即可得出⊙O的半径,利用△CED∽△CBA,即可得出CD.【详解】(1)证明:如图1,连接OD,∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠C=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)证明:如图2,连接DE,∵四边形AEDB为圆内接四边形,∴∠CED=∠ABC,∵∠ABC=∠C,∴∠CED=∠C,∴CD=DE,∵DF⊥CE,∴CF=EF;(3)解:如图3,连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OD∥AC,∴△GOD∽△GAF,∴OD OG AF AG=,∴设⊙O的半径是r,则AB=AC=2r,∴AF=2r﹣3,OG=9+r,AG=9+2r,∴9 2392r rr r+=-+,∴r=92,即⊙O的半径是92.∴AC=AB=9,∵∠CED=∠ABC,∠ECD=∠ACB,∴△CED∽△CBA,∴CD CE AC BC=,∴692CDCD=,∴CD3【点睛】此题主要考查圆性质的综合运用以及等腰三角形、相似三角形的性质,熟练掌握,即可解题.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 比较大小:﹣2505_____3673-⨯.【答案】<.【解析】【分析】先把根号外面数的变形根号里面,再根据两个负实数绝对值大的反而小进行比较即可.【详解】﹣2505=﹣2020,﹣3×673=﹣2019,因为2020>2019,所以﹣2020<﹣2019,即﹣2505<﹣3×673.故答案为:<.【点睛】本题考查了实数大小比较,解题的关键是掌握实数大小的比较方法:任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.22. 下列四个图案中,具有一个共有的性质,那么在222,606,808,609下面四个数中,满足上述性质的一个是_____.【答案】808.【解析】【分析】根据轴对称图形的概念解答即可.【详解】四个图案都是轴对称图形,在222,606,808,609四个数中,808是轴对称图形,故答案为:808.点睛】本题考查的是轴对称图形的概念,掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合是解题的关键.23. 如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴的负半轴、y轴的正半轴上,点D在边BC上,将该矩形沿AD折叠,点B恰好落在边OC上的E处,且△CDE为等腰直角三角形,若OA=4,则点D的坐标是_____.【答案】(﹣2,424).【解析】【分析】由题意根据勾股定理以及折叠的性质,即可得到CO和CD的长,进而即可得到点D的坐标.【详解】解:由折叠可得,∠B=∠AED=90°,∵△CDE是等腰直角三角形,∴∠DEC=45°,∴∠AEO=45°,又∵∠AOE=90°,∴∠EAO=∠AEO,∴AO=EO=4,∴AE=42由折叠可得,AB=AE=2∵四边形ABCO的矩形,∴CO=42∴CE=CO﹣EO=424,∴CD=424,∵点D在第二象限,∴D(﹣42424),故答案为:(﹣2,424).【点睛】本题主要考查折叠问题和矩形的性质以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.24. 如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为_____.【答案】2或72.【解析】【分析】需要分类讨论:①当AP=PD时,易得△ABP≌△PCD.②当AD=PD时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP时,点P与点B重合.【详解】①当AP=PD时,则△ABP≌△PCD,则PC=AB=6,故PB=2.②当AD=PD时,△ABC∽△DAP,∴APPD=ACBC=68,即PC=92,∴PB=72.③当AD=AP时,点P与点B重合,不合题意.综上所述,PB的长为2或72.故答案为:2或72.【点睛】此题考查了相似三角形的判定与性质、全等三角形的判定和性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.25. 已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①2a+b<0;②﹣1≤a≤﹣23;③对于任意实数m,a(m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c=n+1有两个不相等的实数根.其中结论正确的序号是_____.【答案】②③.【解析】【分析】由对称轴、顶点坐标和y轴交点坐标代入可得b=-2a,c=-3a可判断①②,对函数图像得最大值进行分析可以判断③④.【详解】如图,∵抛物线的顶点坐标为(1,n),∴抛物线的对称性为直线x=﹣b2a=1,∴b=﹣2a,∴2a+b=0,所以①错误;∵抛物线与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴c=b﹣a=﹣2a﹣a=﹣3a,∵抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,即2≤﹣3a≤3,∴﹣1≤a≤﹣23,所以②正确;∵当x=1时,y有最大值,∴a+b+c≥am2+bm+c(m为任意实数),即a(m2﹣1)+b(m﹣1)≤0,所以③正确;∵抛物线的顶点坐标为(1,n),∴直线y=n与抛物线只有一个交点,∴直线y=n+1与抛物线没有公共点,∴关于x的方程ax2+bx+c=n+1没有实数根,所以④错误.故答案为②③.【点睛】本题考查了函数的系数与对称轴,顶点坐标及与坐标轴的的关系.同时考查顶点与直线的比较来判断函数与直线交点的情况,代入特殊点和利用顶点坐标是解决本类题的常用方法.二、解答题(本小题共三个小题,共30分,答案写在答题卡上)26. 2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【答案】(1)每轮传染中平均每个人传染了15个人;(2)按照这样的传染速度,第三轮传染后,共有4096人患病.【解析】【分析】(1)设每轮传染中平均每个人传染了x个人,根据一人患病后经过两轮传染后共有256人患病,即可得出关于x的一元二次方程,解之即可得出结论;(2)根据经过三轮传染后患病人数=经过两轮传染后患病人数×(1+15),即可求出结论.【详解】(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=256,解得:x1=15,x2=﹣17(不合题意,舍去).答:每轮传染中平均每个人传染了15个人.(2)256×(1+15)=4096(人).答:按照这样的传染速度,第三轮传染后,共有4096人患病.【点睛】此题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.27. 已知正方形ABCD,过点B有一条直线1与正方形ABCD的对角线AC所在直线相交于点G,过点C、A分别作直线1的垂线段CE、AF于点E、F,对角线AC、BD相交于点O,连接OE、OF.(1)如图1,猜测OE 、OF 有怎样的数量关系和位置关系,并说明理由;(2)若正方形边长为10.①若直线1在如图1的位置,当2OE CE =时,求EG 的长; ②若直线1在如图2的位置,当22OE CE=时,请直接写出EG 的长. 【答案】(1)OE =OF ,OE ⊥OF .理由见解析;(2)①EG =102;②EG =210. 【解析】【分析】(1)根据题意设OB 交AF 于J .证明△AFB ≌△BEC (AAS ),可得结论OE=OF ,OE ⊥OF ;(2)①根据题意作OH ⊥BE 于H .想办法证明EH=EC=FH=OH ,设EC=a ,在Rt △EBC 中,利用勾股定理求出a ,再证明EG=GH 即可解决问题;②根据题意作OH ⊥BE 于H .首先证明OH-EH=HF=2EC ,设EC=m ,在Rt △BCE 中,利用勾股定理求出m ,再证明EG=EH 即可解决问题.【详解】解:(1)结论:OE =OF ,OE ⊥OF .理由:如图1中,设OB 交AF 于J .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,OB =OC =OD =OA ,∠ABC =90°,∴∠BOC =90°,∵CE ⊥BE ,AF ⊥BF ,∴∠CEB =∠AFB =90°,∴∠ABF+∠CBE =90°,∠CBE+∠ECB =90°,∴∠ABF =∠ECB ,∴△AFB ≌△BEC (AAS ),∴CE =BF ,∵EC ⊥BE ,AF ⊥BE ,∴EC ∥AF ,∴∠ECO =∠OAF ,∵∠OAF+∠AJO =90°,∠BJF+∠OBF =90°,∠AJO =∠BJF ,∴∠OAF =∠OBF =∠OCE ,∴△ECO ≌△FBO (SAS ),∴OE =OF ,∠EOC =∠FOB ,∴∠EOF =∠COB =90°,∴OE ⊥OF .(2)①如图1中,作OH ⊥BE 于H .∵OE =OF ,∠EOF =90°,∴EH =FH ,∴OH =EH =FH ,∴OE EH ,∵OE CE ,∴EC =FH =BF ,设EC =a ,则BE =3a ,在Rt △BCE 中,∵BC 2=CE 2+BE 2,∴10a 2=100,∴a ,∴EC =EH ,∵∠CEG =∠OHG =90°,∠EGC =∉OGH ,EC =OH ,∴△CEG ≌△OHG (AAS ),∴EG =GH =12EH =2. ②如图2中,作OH ⊥BE 于H .∵OE=OF,∠EOF=90°,∴EH=FH,∴OH=EH=FH,∴OE2EH,∵OE=2CE,∴EH=OH=FH=2CE,∵∠AFB=∠BEC=∠ABC=90°,∴∠ABF+∠CBE=90°,∠CBE+∠BCE=90°,∴∠ABF=∠BCE,∵AB=BC,∴△BEC≌△AFB(AAS),∴EC=BF,∴BF=BH,设EC=m,则BE=3m,在Rt△BCE中,∵BC2=CE2+BE2,∴10m2=100,∴m10,∴EC10,EH=10∵CE⊥OH,∴△GEC∽△GHO,∴EGGH=ECOH=12,∴EG=GH=10【点睛】本题属于四边形综合题,考查正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题.28. 如图,抛物线y=ax2+bx+c(a≠0)与直线y=﹣x﹣2相交于A(﹣2,0),B(m,﹣6)两点,且抛物线经过点C(5,0).点P是直线下方的抛物线上异于A、B的动点.过点P作PD⊥x轴于点D,交直线于点E.(1)求抛物线的解析式;(2)连结P A、PB、BD,当S△ADB23=S△P AB时,求S△P AB;(3)是否存在点P,使得△PBE为直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=x2﹣3x﹣10;(2)S△P AB=814;(3)存在,满足条件点P的坐标为(0,﹣10)或(﹣1,6).【解析】分析】(1)因为抛物线经过A(-2,0),C(5,0),可以假设抛物线的解析式y=a(x+2)(x-5),把B(4,-6)代入y=a(x+2)(x-5),可得a=1解决问题;(2)设P(x,x2-3x-10),根据S△ADB23=S△P AB,构建方程解决问题即可;(3)分两种情形:①∠PBE=90°.②∠BPE=90°.分别求解即可解决问题.【详解】(1)将B(m,﹣6)代入y=﹣x﹣2得-6=﹣m﹣2,解得m=4 ,∴B(4,﹣6),∵抛物线经过A(﹣2,0),C(5,0),∴可以假设抛物线的解析式y=a(x+2)(x﹣5),把B(4,﹣6)代入y=a(x+2)(x﹣5),可得a=1,∴抛物线的解析式为y=x2﹣3x﹣10.(2)设P(x,x2﹣3x﹣10),。

2015年 四川省成都市高新区年九年级一诊试题

2015年 四川省成都市高新区年九年级一诊试题

2014-2015学年上期期末综合素质测试九年级数学A 卷(满分100分)一、选择题:(本题共有10个小题,每小题3分,共30分) 1.方程x (x -2)+x -2=0的解是( )A .2B .-2,1C .-1D .2,-12.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加成都市“文明劝导活动”。

根据要求,该班从团员中随机抽取1名参加,则该班团员小亮被抽到的概率是( ) A .150 B .12 C .120 D . 253.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.如图,A B C 、、是半径为1的⊙O 上的三点,已知30C ∠=︒,则弦AB 的长为( )A .1B .2C .1.5D . 0.5 5.若关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则m 的取值范围是( ) A . 112m >- B .112m <- C .112m > D . 112m <6.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( ) A .100(1)121x += B . 100(1)121x -= C . 2100(1)121x += D . 2100(1)121x -= 7.在△ABC 中,∠90C = ,已知tan A =, 则cos B 的值等于 ( ) A.3 B .23 C.5D.28.已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (22,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )A .y 1=y 2B .y 1>y 2C .y 1<y 2D .无法确定9.把二次函数y=2x 2图像向左平移3个单位,再向下平移2个单位后,所得表达式是( ).A .y=2(x+3)2-2 B. y=2(x-3)2+2 C. y=2(x-3)2-2 D. y=2(x+3)2+2 10.如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个 动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当 点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).A .B .C .D .二、填空题:(每小题4分,共16分)11、为了估计不透明的袋子里装有多少小球,先从袋中摸出10个小球都做上标记,然后放回袋中去,充分摇匀后再摸出10个小球,发现其中有2个小球有标记,那么可估计袋中原来大约有______个小球.12、如图,⊙O 的弦CD 与直径AB 相交,若∠ACD =35°,则∠BAD =13、如图,矩形ABCD 中,∠DAE :∠BAE=2:1,AE ⊥BD ,OA=2cm,则AB= ,AD= .14.二次函数2y ax bx c =++的图象如图, 则点(,)a bc c在第 象限. 三、(第15题共2个小题, 每题6分,共12分) 15.解答下列各题:(1)计算: 3)1(2)160(sin 45tan 022-+----︒+︒-π(2)已知11=x 是关于x 的一元二次方程0)12(22=+-+m x m x 的一个根,求m 的值及方程的另一个根. 四、(第16题6分,第17题8分,共14分)ADBF16.先化简,再求值:2-35+2-3-6-2x x x x x ⎛⎫÷ ⎪⎝⎭, 其中满足一元二次方程2+3-1=0x x .17.如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,小华的眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果保留根号)五、(第18题8分,第19题10分,第20题10分,共28分)18.高中招生指标到校是我市中考招生考试制度改革的一项重要措施。

2015年成都高新区一诊试题.doc

2015年成都高新区一诊试题.doc

2014-2015 (下期)九年级化学一诊试题答题可能用到的相对原子质量:H-l C-12 0-16 S—32 C1-35.5 A1—27注意:1、木试卷分第I卷和第n卷。

第I卷为选择题,第II卷为.並选姪题I、II卷都请答在答题卡上,答在试卷上不能得分,只交答题卡,不交试题卷。

2、本试卷共五个大题,21个小题,总分100分,答题时间60分钟。

第I卷(选择题,共42分)一、选择题(本题包括14个小题,每小题3分,共42分。

每小题只有一个选项符合题意。

)1.下列各选项中的变化能用化学变化解释的是()A.石汕分离出汽汕、煤汕和柴汕等B.煤隔绝空气加强热,产生焦炭、煤焦油、焦炉气等C.工业上分离空气制取氧气、鉍气;膜法和热法淡化海水D.二氧化碳气体经加压、降溫得到干冰,石墨在一定条件下转化为金刚石2.在盛有水的烧杯中加入以K某种物质,形成溶液的过程中,温度上升。

这种物质是()①鉍氧化钠②氯化钠③浓硫酸④硝酸铵⑤生石灰⑥氯化铵⑦蔗糖A.④⑥B.②④⑥C.②D.①③⑤3.以下生产、生活中的做法不符合环保理念的是()A.开发使用新能源,如太阳能、核能B.生活用水、工业污水无耑净化直接排放或灌溉C.秸秆回收利用,不辦天焚烧D.外出时少开私家车,处地铁或公交车4.下列洗涤方法屮涉及到乳化作川的足()A.用氢氧化钠溶液清洗盛装过植物油的瓶子B.用酒精或汽油清洗掉衣服上的油污C.用稀盐酸清洗盛装过石灰水的试剂瓶D.加了餐具洗洁精的热水洗涤碗碟上的汕污5.下列处理方法不正确的是• • •A.炒菜吋汕锅屮的汕不慎着火,可川锅盖盂灭B.不慎碰倒泗精灯,泗精在桌面上燃烧起来,应立即用水浇灭C.遇到火灾时,可用湿毛巾捂住口箅,蹲下靠近地側或沿墙壁跑离着火区域D.扑火森林火灾的有效方法之一是将人火蔓延路线前的一片树木砍掉,形成隔离带6.掌握化学川语足学好化学的关键。

不列化学川语与所表述的意义相符合的足① FeCl 2—z M 化亚铁②2Ca 2+—2个钙离子③02—2个氣原子®N ! 一钠离子⑤H 20 — 1个水分子⑥2H —2个氢元素®N 2 一組气屮鉍元素的化合价为0A •①④⑤⑦ B.②③④⑥ C.①②⑤⑦D.②⑤⑥⑦7. 去年5月,南京某公司丢失一枚探伤用放射源铱一 192,经过多方寻找终于放回安全箱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 成都高新区2015年九年级数学试题
A 卷(共100分)
第Ⅰ卷(选择题,共30分)
一、选择题(每小题3分,共30分)
1、4的算术平方根是()
A .4
B .2
C .2
D .42、下面四个几何体中,俯视图为四边形的是(
)3、钓鱼岛是中国的固有领土,
位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A .44×105 B .0.44×10
5 C .4.4×10
6 D .4.4×105 4、下列运算中正确的是()A .3a -a=3
B .a 2 + a 3 = a 5
C .(—2a)3 = —6a 3
D .ab 2÷a = b 25、等腰三角形的一条边长为6,另一边长为13,则它的周长为()A .25
B .25或32
C .32
D .19 6、函数
1x y 自变量x 取值范围是()A. 1x B.1x C.1
x D.1x 7、如图,已知OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是(
)A .2 B .2C .3D .3
28、如图,菱形
ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是()A .24 B .16 C .134D .3
29、已知二次函数1)3(2x y .下列说法:①其图象的开口向下;②其图象的对称轴为直线
3x ;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有(
)A.1个 B.2个 C.3个 D.4个
A
B C D 第7题图
第8题图第10题图。

相关文档
最新文档