最新江西省2015年中等学校统一考试数学模拟试卷一(扫描版)
2015年江西省南昌市中考数学试卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江西省南昌市2015年初中毕业暨中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算0(1)的结果为 ( )A .1B .1-C .0D .无意义 2.2015年初,一列CRH5型高速车组进行了“300000千米正线运营考核”,标志着中国高铁车从“中国制造”到“中国创新”的飞跃.将数300000用科学记数法表示为( ) A .6310⨯ B .5310⨯ C .60.310⨯ D .43010⨯3.下列运算正确的是 ( ) A .236(2)6a a =B .2232533a b ab a b -=-C .21111a a a -=-+D .1b a a b b a +=--- 4.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化.下列判断错误的是 ( ) A .四边形ABCD 由矩形变为平行四边形 B .BD 的长度增大C .四边形ABCD 的面积不变 D .四边形ABCD 的周长不变6.已知抛物线2(0)y ax bx c a =++>过(2,0),(2,3)-两点,那么抛物线的对称轴 ( ) A .只能是1x =- B .可能是y 轴C .在y 轴右侧且在直线2x =的左侧D .在y 轴左侧且在直线2x =-的右侧第Ⅱ卷(非选择题 共102分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 7.一个角的度数是20,则它的补角的度数为 .8.不等式组11023x x ⎧-⎪⎨⎪-⎩≤<9的解集是 .9.如图,OP 平分MON ∠,PE OM ⊥于点E ,PE ON ⊥于点F ,OA OB =,则图中 有 对全等三角形.10.如图,点,,A B C 在O 上,CO 的延长线交AB 于点D ,50,30A B ∠=∠=则ADC ∠的度数为 .11.已知一元二次方程2430x x --=的两根为,m n ,则22m mn n -+= .12.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知15cm AB AC ==,40BAC ∠=,则点A 到BC 的距离为 cm (参考数据:sin200.342,cos200.940,sin400.643,cos400.766.≈≈≈≈结果精确到0.1cm ,可用科学计算器).13.两组数据:3,,2,5a b 与,6,a b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .14.如图,在ABC △中,4AB BC ==,AO BO =,P 是射线CO 上的一个动点,60AOC ∠=,则当PAB △为直角三角形时,AP的长为.AB C D 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分6分)先化简,再求值:22(2)(2)a a b a b +-+,其中1,a b =-=16.(本小题满分6分)如图,正方形ABCD 与正方形1111A B C D 关于某点中心对称.已知1,,A D D 三点的坐标分别是(0,4),(0,3),(0,2). (1)求对称中心的坐标;(2)写出顶点11,,,B C B C 的坐标.17.(本小题满分6分)O 为ABC △的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将ABC △分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC BC =;(2)如图2,直线l 与O 相切于点P ,且l BC ∥.18.(本小题满分6分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出() 1m m >个红球,再从袋子中随机摸出1个球.将“摸出黑球”记为事件(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m 的值.19.(本小题满分8分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息解答下列问题: (1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知学校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(本小题满分8分)(1)如图1,纸片□ABCD 中,5AD =,15ABCDS=.过点A 作AE BC ⊥,垂足为E ,沿AE 剪下ABE △,将它平移至DCE '△的位置,拼成四边形AEE D ',则四边形AEE D '的形状为 ( ) A .平行四边形 B .菱形 C .矩形 D .正方形(2)如图2,在(1)中的四边形纸片AEE D '中,在EE '上取一点F ,使4EF =,剪下AEF △,将它平移至DE F ''△的位置,拼成四边形AFF D '. ①求证:四边形AFF D '是菱形;②求四边形AFF D '的两条对角线的长.l图2图1AA类别严加干涉稍加询问从来不管从来不管 25%严加干涉稍加询问图2图1数学试卷 第5页(共6页) 数学试卷 第6页(共6页)21.(本小题满分8分)如图,已知直线y ax b =+与双曲线(0)ky x x=>交于1122(,)(,)A x y B x y ,两点(A 与 B 不重合),直线AB 与x 轴交于点0(,0)P x ,与y 轴交于点C . (1)若,A B 两点坐标分别为2(1,3),(3,)y ,求点P 的坐标; (2)若11b y =+,点P 的坐标为6,0(),且AB BP =,求,A B 两点的坐标; (3)结合(1)(2)中的结果,猜想并用等式表示120,,x x x 之间的关系(不要求证明).22.(本小题满分9分)甲、乙两人在100米直道AB 上练习匀速往返跑,若甲、乙分别在,A B 两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别5m /s 和4m /s . (1)在坐标系中,虚线表示乙离A 端的距离s (单位:m )与运动时间t (单位:s )之间的函数图象(0200)t ≤≤,请在同一坐标系中用实线画出甲离A 端的距离s 与运动时间t 之间的函数图象(0200)t ≤≤;t 的取值范围;②当390s t =时,他们此时相遇吗?若相遇,应是第几次?若不相遇,请通过计算说理由,并求此时甲离A 端的距离.23.(本小题满分9分)如图,已知二次函数21:23(0)L y ax ax a a =-++>和二次函数22:(1)1L y a x =-++(0)a >图象的顶点分别为M ,N ,与y 轴分别交于点E ,F .(1)函数223(0)y ax ax a a =-++>的最小值为 ;当二次函数12L L ,的y 值同时随着x 的增大而减小时,x 的取值范围是 ;(2)当EF MN =时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明); (3)若二次函数2L的图象与x 轴的右交点为(,0)A m ,当AMN △为等腰三角形时,求方程2(1)10a x -++=的解.24.(本小题满分12分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,,AF BE 是ABC △的中线,AF BE ⊥,垂足为P ,像ABC △这样的三角形均为“中垂三角形”.设BC a =,AC b =,AB c =.特例探索(1)如图1,当45ABE ∠=,c =,a = ,b = ;如图2,当30ABE ∠=,4c =时,a =,b =;归纳证明(2)请你观察(1)中的计算结果,猜想222,,a b c 三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD 中,点,,E F G 分别是,,AD BC CD 的中点,BE EG ⊥,AD =,3AB =.求AF 的长.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2015江西中考数学模拟(解析+答案+word)
江西省2015年中考数学模拟试卷一、选择题:本大题共6个小题,每小题3分,共18分。
每小题只有一个正确选项。
1.化简的结果是()A. B.﹣ C.2015 D.﹣20152.下列计算正确的是()A.3m+2n=5mnB.(ab2)3=a3b5C.x5•x=x6D.y3÷y3=y3.如图,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.=B.∠B=∠DC.AD∥BCD.∠BAC=∠D4.如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25°,则∠AOC=()A.25°B.30°C.40°D.50°5.如图,顺次连接正方形ABCD各边的中点得到四边形EFGH,顺次连接四边形EFGH各边的中点得到四边形JKLM,若向正方形ABCD中随机撒一粒豆子,则它落在阴影部分的概率是()A. B. C. D.6.如图,点E是矩形ABCD边BC上一点,且cos∠DAE=,tan∠ADE=1,若△ABE的面积是2,那么△ECD的面积是()A.2B.4C.6D.12二、填空题:本大题共8小题,每小题3分,共24分。
7.(3分)(2015•岳阳)分解因式:x2﹣9= .8.等腰直角三角板如图所示放置在直尺上,若∠ABE=30°,则∠AHC=.9.已知三角形两边长分别为3cm,5cm,设第三边为xcm,则x的取值范围是.10.如图,已知AD是△ABC的角平分线,点E、F分别是边AC、AB的中点,连接DE、DF,要使四边形AEDF称为菱形,还需添加一个条件,这个条件可以是.11.如图是由棱长为1cm的小立方块组成的几何体的三视图,这个几何体的表面积是.12.已知一次函数y=﹣2x+a与y=x+b的图象如图所示,则关于x的不等式﹣2x+a≤x+b的解集是.13.今年六一儿童节,博雅学校六(1)班学生互赠贺卡(即每个同学要给班上的每位同学赠贺卡),共用去1560张贺卡,则六(1)班有名学生.14.如图,在直线上有A、B两点,AB=10cm,⊙A的半径是1cm,⊙B的半径是2cm,⊙A以3cm/s的速度向右运动,同时⊙B以1cm/s的速度向右运动.设运动时间为t秒,当⊙A与⊙B相切时,t的值是.三、本大题共4小题,每小题6分,共24分.15.(6分)已知△ABC,请用无刻度直尺画图.(1)在图1中,画一个与△ABC面积相等,且以BC为边的平行四边形;(2)在图2中,画一个与△ABC面积相等的正方形.16.(6分)计算:(2015﹣2016)0+()﹣2﹣+|﹣2|.17.(6分)在平面直角坐标系,点P(3n+2,4﹣2n)在第四象限,求实数n的取值范围.18.(6分)近两年房地产以开发电梯房为主,如图为某小区的电梯房,其中A楼为标志楼房,张华为测量A楼的高,站在距离A楼30米的B楼顶端,测得看A楼顶端的仰角为60°,看A楼底端的俯角为75°,请你帮张华求出A楼的高.(参考数据:sin75°=0.97,cos75°=0.26,tan75°=3.73,sin60°=0.87,cos60°=0.5,tan60°=1.73,结果精确到0.1米)四、本大题共4小题,每小题8分,共32分.19.(8分)某书店对一批数学活动书进行优惠销售,每本书定价15元,书店规定:当购买的数量小于30本时,每本书打7折;当购买数量不小于30本时,每本书打6折.(1)当购买量在30本以内时,超过多少本时比购买30本花钱还多?(2)某学校分两次购买了80本此书,共用去750元,问该校这两次分别购买了多少本书?20.我市准备对九年级学生的体育、物理实验操作、化学实验操作成绩实行等级制改革,成绩评定为A、B、C、D四个等级,现抽取这三种成绩共1000份数据进行统计分析,其中A、(2)我市共有50000名学生参加测试,试估计该市九年级学生化学实验操作合格及合格以上大约有多少人?(3)在这50000名学生中,体育成绩不合格的大约有多少人?21.(8分)如图,平行四边形ABCD与平行四边形ABEF有公共边AB,且∠D=∠F,BC=BE,连接AC、AE.(1)试说明AC=AE;(2)连接CE、DF,猜想四边形CDFE的形状,并说明理由.22.(8分)如图,点A、B是反比例函数第一象限图象上的两点,且坐标分别为(1,n),(n,),直线MN过点A且与x轴平行.(1)求该反比例函数的解析式;(2)以AB为对角线的正方形是否有一个顶点恰好落在直线MN上,若有请求出改点坐标;若没有请说明理由.五、本大题共1小题,每小题10分,共10分.23.(10分)如图,矩形ABCD的边长AB=2,BC=2+,正三角形EFG的边长是2.(1)如图1,当EF与AB重合时,求DG的长;(2)把正三角形EFG绕点F顺时针方向旋转度,点G落在BC上,如图2,求此时DE2的值;(3)在图2中,把正三角形EFG绕点G顺时针方向旋转度,点E落在DC上,请画出此时的△EFG,并求出在此旋转过程中线段DE的最小值.六、本大题1小题,共12分.24.(12分)如图,二次函数y=ax2﹣2amx﹣3am2(其中a、m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)直接写出关于此函数图象的两条性质;(2)用含m的代数式表示a;(3)试求AD:AE的值;(4)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.江西省2015年中考数学模拟试卷一、选择题:本大题共6个小题,每小题3分,共18分。
(高清版)2015年江西省南昌市中考数学试卷
D.四边形 ABCD 的周长不变
效
数学试卷 第 1页(共 24页)
11.已知一元二次方程 x2 4x 3 0 的两根为 m , n ,则 m2 mn n2 =
.
12.如图 1 是小志同学书桌上的一个电子相框,将其侧面抽象为如图 2 所示的几何图形,
已知 AB AC 15 cm , BAC 40 ,则点 A 到 BC 的距离为
则这组新数据的中位数为
.
14. 如 图 , 在 △ABC 中 , AB BC 4 , AO BO , P 是 射 线 CO 上 的 一 个 动
点, AOC 60 ,则当 △PAB 为直角三角形时, AP 的长为
.
三、解答题(本大题共 10 小题,共 78 分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分 6 分)
根据以上信息解答下列问题:
(1)回收的问卷数为
为
;
份,“严加干涉”部分对应扇形的圆心角度数
第Ⅰ卷(选择题 共 18 分)
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分.在每小题给出的四个选项中,只
有一项是符合题目要求的)
卷
1.计算 (-1)0 的结果为
()
A.只能是 x 1 C.在 y 轴右侧且在直线 x 2 的左侧
() B.可能是 y 轴 D.在 y 轴左侧且在直线 x 2 的右侧
18.(本小题满分 6 分) 在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6 个.
(1)先从袋子中取出 m m 1 个红球,再从袋子中随机摸出 1 个球.将“摸出黑球”
数学试卷 第 3页(共 24页)
记为事件 A .请完成下列表格:
2015年中考第一次模拟考试数学试卷附答案
九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。
江西省2015年中等学校招生考试数学模拟试题(含答案)
江西省2015年中等学校招生考试数学模拟试题一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确选项.1.下列各数中,是无理数的是( ) A .31-B .0(π)-C . ︒60sinD .38 答案:选C .命题思路:考查实数与无理数的概念的了解.2.一圆柱体被斜截去一部分后的物体如图所示,其左视图大致是( )答案:选C .命题思路:考查简单物体的三视图画法与判断. 3.下列运算正确的是( )A .222()a b a b -=- B .2(1)(1)1a a a -+--=- C .21()12--= D .2224(2)4ab a b --=答案:选B .命题思路:考查整式的相关运算法则的掌握. 4.已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=+-.54,23y x y x 的解,则b a 2+的值为( ) A . 4 B . 5 C . 6 D . 7答案:选D .命题思路:考查二元一次方程组的解法与消元、整体思想的运用.5.如图所示,正三角形ABC 中,边AC 渐变成»AC ,其它两边长度不变,则ABC Ð的度数的大小由60 变为( ) A .180p B . 120p C . 90p D . 60pA主视方向A BCD第3题答案:选A .命题思路:考查弧长的计算公式的运用.6.若二次涵数2(0)y ax bx c a =++≠的图象上有两点,坐标分别为),(11y x ,),(22y x ,其中12x x <,120y y <,则下列判断正确的是( )A .0a <B .24b ac -的值可能为0 C .方程20ax bx c ++=必有一根0x 满足102x x x <<D .12y y <答案:C .命题思路:考查二次函数的图象性质与一元二次方程的关系的理解,以及数形结合思想的运用.二、填空题(本大题共8小题,每小题3分,共24分)7.2015_______.-= 答案:2015.命题思路:考查绝对值的含义的理解.8.据有关媒体披露,2014年全国高校毕业生人数达727万人,创历史新高,将727万用科学记数法表示 应为 .答案:67.2710.⨯命题思路:考查科学记数法表示数.9.不等式组⎪⎩⎪⎨⎧≥+<--x xx 1222的解集是 . 答案:1 2.x -<≤命题思路:考查一元一次不等式组的解法.10.请写出一个函数,使其满足以下条件:①图象过点(2,-2);②当1x >时,y 随x 增大而增大; 它的解析式可以是 .答案:4y x =-或4y x=-或22(1)4y x =--等,只要符合题意即可,答案不唯一. 命题思路:考查一次函数、反比例函数、二次函数的图象性质的理解.11.在一次大型考试中,某考点设有60个考场,考场号设为01~60号,相应的有60个监考组,组数序号记为1~60号,每场考前在监考组号1~60中随机抽取一个,被抽到的号对应的监考组就到01考场监考,其他监考组就依次按序号往后类推,例如:某次抽取到的号码为8号,则第8监考组到01号考场第4题监考,第9监考组到02号考场监考,...,依次按序类推.现抽得的号码为22号,试问第)211(≤≤a a 监考组应到 号考场监考.(用含a 的代数式表示) 答案:39.a +命题思路:考查代数式的实际运用.12.如图,在凸四边形中ABCD 中,BD BC AB ==,︒=∠80ABC ,则ADC ∠等于 .答案:100.︒命题思路:考查四边形内角和与整体思想的运用.13.如图,在平面直角坐标系中,点A 的坐标为(4,0),点B 为y 轴正半轴上一点,点C 是第一象限内一动点,且AC 的长始终为2,则BOC ∠的大小的取值范围为 . 答案:6090BOC ︒≤∠≤︒.命题思路:考查圆的定义与圆的切线性质的运用,培养用动态的眼光分析数学问题的能力. 14.有一直角三角形纸片ACB ,30A ∠=︒,90ACB ∠=︒,2BC =,点D 是AC 边上一动点,过点D沿直线DE 方向折叠三角形纸片,使点A 落在射线AB 上的点F 处,当以点F 、B 、C 为顶点的三角形为等腰三角形时,AD 的长为 .或1分,填对两个给3分,多填或错填不给分) 命题思路:渗透分类讨论思想,考查空间想象能力.三、(本大题共4小题,每小题6分,共24分)15.已知,12,12+=-=y x ,求22222y x y xy x -+-的值.解:yx yx y x y x y x y x y xy x +-=-+-=-+-))(()(222222, ………………3分第12题第13题第14题当12,12+=-=y x 时,原式.2221222)12()12()12()12(-=-=-=++-+--=………………6分命题思路:考查分式的约分化简运算与二次根式运算与化简.16.如图是某教室里日光灯的四个控制开关(分别记为A 、B 、C 、D ),每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)王老师按下第一个开关恰好能打开第一排日光灯是 事件,概率为 . (2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请列表格或画树形图加以 分析.解:(1)随机,41; ………………2分 (2)列表格如下:………………4分 或画树状图如下:………………4分 所有可能结果有12种;其中按下两个开关恰好能打开第一排与第三排的情况有2种(不妨设为开关A 控制第一排, 开关C 控制第三排,则符合条件的情况为AC 、CA 两种),∴P (打开第一排与第三排)21.126==ABCDB ACDC ABDD ABCA B C 第16题D………………6分命题思路:考查运用列举法计算简单等可能事件发生的概率.17.如图,是以两个大小不同的正方形为基本图案镶嵌而成的图形,请仅用无刻度...的直尺按不同的方法分别在图1、图2中各画一个正方形,使它的面积等于这两个大小不同的正方形的面积之和.要求:1、用虚线连线;2、要标注你所画正方形的顶点字母.解:如图所示,答案不唯一: ………………6分(每画对一个3分)命题思路:考查勾股定理的几何背景与学生的作图能力. 18.如图所示是反比例函数)0(>=x xky 与正比例函数)0(≥=x x y 的图象,点)4,1(A 与点'B 均在反比例函数的图象上,点B 在直线x y =上,点'A 是点A 关于直线x y =的对称点,四边形B B AA ''是平行四边形.(1)试说明点'A 在反比例函数图象上;(2)设点B 的横坐标为m ,试用m 表示出点'B 的坐标并求出m 的值.图1图2第17题解:(1) )4,1(A 在xky =上,441=⨯=∴k , ………………1分 点'A 是点A 关于直线x y =的对称点,∴点'A 为)1,4(, ………………2分 当4=x 时,代入xy 4=中,1=y ,∴点)1,4('A 在反比例函数图象上; ………………3分 (2) 点B 在直线x y =上,又点B 的横坐标为m ,∴ 点B 的坐标为 ),(m m , 四边形B B AA ''是平行四边形, ………………4分 ∴'AA 与'BB 平行且相等,∴'B 可由),(m m B 沿'AA 方向平移而得, 由点的坐标的平移规律,可知点'B 的坐标为)3,3(-+m m , ………………5分 点'B 在反比例函数的图象上,∴4)3()3(=-⨯+m m ,解得13±=m ,0>m ,13=∴m . ………………6分 命题思路:考查用待定系数法确定函数的解析式与点的坐标的平移规律的综合运用.四、(本大题共3小题,每小题8分,共24分)19.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若某市中心城区约有90万人口,请你估计该市中心城区最关注教育问题的人数约为多少万人?网民关注的热点问题情况统计图人数第19题(3)据统计,2012年网民最关注教育问题的人数所占百分比约为10%,则从2012年到2014年的年平均增长率约为多少?(已知16.310≈)解:(1)补全条形统计图如图; ………………2分(2)90×25%=22.5万人; ………………4分(3)设年平均增长率为x ,则可列方程:%25)1%(102=+x , ………………5分58.12101±≈±=+x ,………………6分 解得%5858.01==x , ………………7分 58.22-=x (不合题意,舍去),所以年平均增长率约为58%.……………8分命题思路:考查用统计图表示数据与利用样本估计总体思想进行近似计算、一元二次方程的实际应 用等知识.20.如图,AB =AC=8,∠BAC =90 ,直线l 与以AB 为直径的⊙O 相切于点B ,点D 是直线l 上任意一动点,连结DA 交⊙O 点E .(1)当点D 在AB 上方且6BD =时,求AE 的长;(2)当点D 在什么位置时,CE 恰好与⊙O 相切?请说明理由;解:(1)如图,连接BE , 直线l 与以AB 为直径的⊙O 相切于点B , ∴BD AB ⊥,AD BE ⊥, 6BD =,AB =8,………………1分 ∴10=AD ,8.4=∴BE ,4.6=∴AE ;………………3分 (2)当点D 在AB 上方且DB =4时,CE 恰好与⊙O 相切;理由如下: 连接OE , ∠BAC =∠AEB=90 ,∴∠CAE +∠BAE=90 ,∠ABE +∠BAE=90 ,∴∠CAE =∠ABE ,………………5分人数第20题又2184==CA OB ,2184tan ====∠AB DB AE BE DAB ,……………6分 ∴A C E ∆∽BOE ∆,∴∠CEA =∠OEB ,………………7分又∠AEB=90 ,∴∠OEC=90 ,∴此时CE 与⊙O 相切.………………8分 命题思路:考查直径所对圆周角的特征、圆的切线的判定方法的理解运用.21.如图1是一个某物体的支架实物图,图2是其右侧部分抽象后的几何图形,其中点C 是支杆PD 上一 可转动点,点P 是中间竖杆BA 上的一动点,当点P 沿BA 滑动时,点D 随之在地面上滑动,点A 是动点P 能到达的最顶端位置,当P 运动到点A 时,PC 与BC 重合于竖杆BA ,经测量PC =BC =50cm ,CD =60cm ,设AP =x cm ,竖杆BA 的最下端B 到地面的距离BO =y cm . (1)求AB 的长;(2)当90PCB ︒∠=时,求y的值;(参考数据: 1.414,结果精确到0.1 cm ,可使用科学计算器)(3)当点P 运动时,试求出y 与x 的函数关系式.解:(1)由题意PC =BC =50cm ,∴AB cm 100=+=BC PC ; ………………2分(2)如图,过点E 作PB CE ⊥于点E , 90PCB ︒∠=,PC =BC =50cm ,∴︒=∠=∠45CBP CPB ,∴22545cos 50=︒=PE , PB CE ⊥,DO PO ⊥∴PCE ∆∽PDO ∆, ………………3分 ∴PE PC PO PD =,即505060PO =+,∴PO =………………4分∴27.1cm y BO ===≈; ………………5分 (3)由(2)可知,在运动过程中始终有:PCE ∆∽PDO ∆,∴PE PC PO PD =,∴100502100110x x y -=-+,OPDBA 图1图2第21题∴10101+-=x y . ………………8分 命题思路:考查解直角三角形、相似三角形等知识,通过简单的数学建模发展应用意识和能力.五、(本大题共2小题,每小题9分,共18分)22.如图1,我们定义:在四边形ABCD 中,若AD BC =,且︒=∠+∠180BCA ADB ,则把四边形ABCD 叫做互补等对边四边形.(1)如图2,在等腰ABE ∆中,四边形ABCD 是互补等对边四边形,求证:12ABD BAC AEB ∠=∠=∠; (2)如图3,在非等腰ABE ∆中,若四边形ABCD 仍是互补等对边四边形,试问12ABD BAC AEB ∠=∠=∠是否仍然成立,若成立,请加以证明;若不成立,请说明理由.解:(1) ABE ∆是等腰三角形,∴BE AE =,EBA EAB ∠=∠∴, 又四边形ABCD 是互补等对边四边形,∴AD BC =,A B B A =,∴ABD ∆≌()BAC SAS ∆,∴BCA ADB ∠=∠, ………………1分 又 ︒=∠+∠180BCA ADB ,∴︒=∠=∠90BCA ADB , ………………2分 在ABE ∆中, AEB AEB EBA EAB ∠-︒=∠-︒=∠=∠21902180, ………………3分∴119090(90)22ABD EAB AEB AEB ∠=︒-∠=︒-︒-∠=∠, 同理: 12BAC AEB ∠=∠,12ABD BAC AEB ∴∠=∠=∠; ………………4分 (2)如图,过点A 、B 分别作BD 的延长线与AC 的垂线于点G 、F ,四边形ABCD 是互补等对边四边形,∴AD BC =,︒=∠+∠180BCA ADB , 又︒=∠+∠180ADG ADB ,∴ADG BCA ∠=∠, ……………5分 又 ,AG BD BF AC ⊥⊥,∴︒=∠=∠90BFC AGD ,∴AGD ∆≌()BFC AAS ∆, ………………6分图1图2图3第20题∴AG BF =,又AB BA =∴ABG ∆≌()BAF HL ∆, ………………7分 ∴ABD BAC ∠=∠, ︒=∠+∠180BCA ADB ,∴︒=∠+∠180ECA EDB ,∴︒=∠+∠180DHC AEB ,︒=∠+∠180HC B DHC ,∴BHC AEB ∠=∠,………………8分又 ABD BAC BHC ∠+∠=∠,ABD BAC ∠=∠, 12ABD BAC AEB ∴∠=∠=∠. ………………9分命题思路:通过数学新定义考查等腰三角形的性质、三角形内角和与外角和、三角形全等等知识,增强推理论证能力,渗透特殊到一般、变中不变的数学思想.23.如图,在平面直角坐标系中,抛物线211y x =-与x 轴交于点A 和点B (点A 在点B 的右侧),抛物线2y 的解析式为:221()11y x n n n=-+--(1≠n ),直线3y 的解析式为:223-=x y . (1)试通过计算说明抛物线2y 与3y 均过点A ;(2)若抛物线2y 与x 轴的另一交点为C ,且有BC =2AB ,请求出此时2y 的解析式;(3)当0≤n 时,已知对于x 的任意同一个值,所对应的函数值为1y 、2y 、3y ,请画出它们的大致图象后猜想1y 、2y 、3y 的大小关系并给出证明.解:(1)在211y x =-中,设01=y ,得012=-x ,解得:1,121-==x x , 点A 在点B 的右侧,∴点A 的坐标为)0,1(, ………………1分把1=x 代入221()11y x n n n=-+--与223-=x y 中, 可得0,032==y y ,∴抛物线2y 与3y 均过点A ; ………………3分 (2)在221()11y x n n n=-+--中,其对称轴为:直线n x =, 由(1):抛物线2y 过点A )0,1(,∴点C为)0,12(-n ,BC =2AB ,2=AB ,∴4)1(12=---n ,解得:2=n 或2-=n , ………4分 此时2y 的解析式为:22(2)1y x =--+或221(2)33y x =+-;……………5分 (3)如图,对于任意x ,当0≤n 时,猜想:321y y y ≥≥,理由: ……………6分1)1(1)(11122221--=+-----=-n x n n n x n x y y ,0≤n ,∴021≥-y y ,∴21y y ≥; ………………7分同理nx x n n x n y y --=+--+--=-1)1(221)(112232 0≤n ,∴032≥-y y ,∴32y y ≥; ………………8分∴对于任意x ,当0≤n 时,均有321y y y ≥≥. ………………9分命题思路:考查二次函数的图象和性质、用待定系数法求解析式、函数与方程的关系等知识,发展归纳总结能力,体悟数形结合思想、合情推理,积累观察、发现、猜想、分析、证明的活动经验.六、(本大题共1小题,共12分)24.数学活动课上,小颖同学用两块完全一样的透明等腰直角三角形板ABC 、DEF 进行探究活动. 操作:使点D 落在线段AB 中点处并使DF 过点C (如图1),然后绕点D 顺时针旋转,直至点E 落在AC 的延长线上时结束操作,在此过程中,线段DE 与AC 或其延长线交于点K ,线段BC 与DF 的交于点G (如图2、3).探究1:在图2中,求证:ADK ∆∽BGD ∆; 探究2:在图2中,求证:线段KD 平分AKG ∠;探究3:①在图3中,线段KD 仍平分AKG ∠吗?若平分,请加以证明;若不平分,请说明理由. ②在以上操作过程中,若设8==BC AC ,x KG =,DKG ∆的面积为y ,请求出y 与x的函数关系式,并直接写出x 的取值范围.解:探究1: ︒=∠=∠=∠45DBG KDG KAD ,∴︒=∠+∠135BDG KDA , ︒=∠+∠135BGD BDG , ………………2分 ∴BGD KDA ∠=∠,∴ADK ∆∽BGD ∆; ………………3分 探究2: ADK ∆∽BGD ∆,∴AK KDBD DG=,又点D 是线段AB 中点, ∴BD AD =,∴AK KD AD DG =,∴AK ADKD DG=, ………………4分又︒=∠=∠45KDG KAD , ∴ADK ∆∽DKG ∆, ………………5分 ∴D K G A K D ∠=∠, ∴线段KD 平分AKG ∠; ………………6分 探究3:①线段KD 仍平分AKG ∠,理由如下: 同探究1可知仍有:ADK ∆∽BGD ∆,同探究2可知仍有:ADK ∆∽DKG ∆, ………………7分 ∴仍有DKG AKD ∠=∠,∴线段KD 仍会平分AKG ∠; ………………8分 ②如图,过点D 作AC DM ⊥于M ,KG DN ⊥于点N , 由①:线段KD 平分AKG ∠,∴DN DM =,又8==BC AC , ………………9分第24题图1 图2图3点D 是线段AB 中点,︒=∠45KAD ,∴4==DN DM ,又x KG =, ∴DKG ∆的面积为x x y 2421=⨯⨯=, 对于图形3情况,同理可得x y 2=, ………………10分综上所述:x y 2=,其中838828-≤≤-x . ………………12分命题思路:考查等腰直角三角形、角平分线性质、相似三角形的判定与性质等知识的综合运用,在操作中不断发现、提出、建立几何模型解决数学问题,积累研究问题的方法与活动经验,提升数学的综合学习能力.2015年江西省中等学校招生考试数学模拟试题参考答案及评分意见一、选择题(本大题共6小题,每小题3分,共18分) 每小题只有一个正确选项. 1.C ; 2.C ; 3.B ; 4.D ; 5.A ; 6.C . 1.命题思路:考查实数与无理数的概念的了解. 2.命题思路:考查简单物体的三视图画法与判断. 3.命题思路:考查整式的相关运算法则的掌握.4.命题思路:考查二元一次方程组的解法与消元、整体思想的运用.5.命题思路:考查弧长的计算公式的运用.6.命题思路:考查二次函数的图象性质与一元二次方程的关系的理解,以及数形结合思想的运用. 二、填空题 (本大题共8小题,每小题3分,共24分)7.2015; 8.67.2710⨯; 9.12x -<≤;10. 4y x =-或4y x=-或22(1)4y x =--等,只要符合题意即可,答案不唯一; 11. 39a +; 12.100︒; 13. 6090BOC ︒≤∠≤︒;14.3或1分,填对两个给3分,多填或错填不给分). 7.命题思路:考查绝对值的含义的理解. 8.命题思路:考查科学记数法表示数. 9.命题思路:考查一元一次不等式组的解法.10.命题思路:考查一次函数、反比例函数、二次函数的图象性质的理解. 11.命题思路:考查代数式的实际运用.12.命题思路:考查四边形内角和与整体思想的运用.13.命题思路:考查圆的定义与圆的切线性质的运用,培养用动态的眼光分析数学问题的能力.14.命题思路:渗透分类讨论思想,考查空间想象能力. 三、 (本大题共4小题, 每小题6分,共24分)15.解:yx yx y x y x y x y x y xy x +-=-+-=-+-))(()(222222, ………………3分 当12,12+=-=y x 时,原式.2221222)12()12()12()12(-=-=-=++-+--=………………6分15.命题思路:考查分式的约分化简运算与二次根式运算与化简. 16.解:(1)随机,41; ………………2分 (2)列表格如下:………………4分 或画树状图如下:………………4分 所有可能结果有12种;其中按下两个开关恰好能打开第一排与第三排的情况有2种(不妨设为开关A 控制第一排, 开关C 控制第三排,则符合条件的情况为AC 、CA 两种),∴P (打开第一排与第三排)21.126== ………………6分 16.命题思路:考查运用列举法计算简单等可能事件发生的概率.17. 解:如图所示,答案不唯一: ………………6分(每画对一个3分)ABCDBA C D CA B D DA B C17.命题思路:考查勾股定理的几何背景与学生的作图能力. 18.解:(1) )4,1(A 在xky =上,441=⨯=∴k , ………………1分 点'A 是点A 关于直线x y =的对称点,∴点'A 为)1,4(, ………………2分 当4=x 时,代入xy 4=中,1=y ,∴点)1,4('A 在反比例函数图象上; ………………3分 (2) 点B 在直线x y =上,又点B 的横坐标为m ,∴ 点B 的坐标为 ),(m m , 四边形B B AA ''是平行四边形, ………………4分 ∴'AA 与'BB 平行且相等,∴'B 可由),(m m B 沿'AA 方向平移而得, 由点的坐标的平移规律,可知点'B 的坐标为)3,3(-+m m , ………………5分 点'B 在反比例函数的图象上,∴4)3()3(=-⨯+m m ,解得13±=m ,0>m ,13=∴m . ………………6分 18.命题思路:考查用待定系数法确定函数的解析式与点的坐标的平移规律的综合运用.四. (本大题共3小题, 每小题8分,共24分)19.解:(1)补全条形统计图如图; ………………2分(2)90×25%=22.5万人; ………………4分(3)设年平均增长率为x ,则可列方程:%25)1%(102=+x , ………………5分58.12101±≈±=+x , ………………6分 解得%5858.01==x , ………………7分人数58.22-=x (不合题意,舍去),所以年平均增长率约为58%.……………8分19.命题思路:考查用统计图表示数据与利用样本估计总体思想进行近似计算、一元二次方程的实际应用 等知识.20.解:(1)如图,连接BE , 直线l 与以AB 为直径的⊙O 相切于点B , ∴BD AB ⊥,AD BE ⊥, 6BD =,AB =8,………………1分 ∴10=AD ,8.4=∴BE ,4.6=∴AE ;………………3分 (2)当点D 在AB 上方且DB =4时,CE 恰好与⊙O 相切;理由如下: 连接OE , ∠BAC =∠AEB=90 ,∴∠CAE +∠BAE=90 ,∠ABE +∠BAE=90 ,∴∠CAE =∠ABE ,………………5分又2184==CA OB ,2184tan ====∠AB DB AE BE DAB , ……………6分 ∴A C E ∆∽BOE ∆,∴∠CEA =∠OEB , ………………7分 又∠AEB=90 ,∴∠OEC=90 ,∴CE 与⊙O 相切. ………………8分 20. 命题思路:考查直径所对圆周角的特征、圆的切线的判定方法的理解运用. 21.解:(1)由题意PC =BC =50cm ,∴AB cm 100=+=BC PC ;………………2分(2)如图,过点E 作PB CE ⊥于点E , 90PCB ︒∠=,PC =BC =50cm ,∴︒=∠=∠45CBP CPB ,∴22545cos 50=︒=PE ,PB CE ⊥,DO PO ⊥∴PCE ∆∽PDO ∆, ………………3分 ∴PE PC PO PD =505060=+,∴PO = ………………4分∴27.1cm y BO ===≈; ………………5分 (3)由(2)可知,在运动过程中始终有:PCE ∆∽PDO ∆,∴PE PC PO PD =,∴100502100110x x y -=-+, ∴10101+-=x y . ………………8分 21. 命题思路:考查解直角三角形、相似三角形等知识,通过简单的数学建模发展应用意识和能力.五、(本大题共2小题, 每小题9分,共18分)22.解:(1) ABE ∆是等腰三角形,∴BE AE =,EBA EAB ∠=∠∴,又四边形ABCD 是互补等对边四边形,∴AD BC =,A B B A =,∴ABD ∆≌()BAC SAS ∆,∴BCA ADB ∠=∠, ………………1分 又 ︒=∠+∠180BCA ADB ,∴︒=∠=∠90BCA ADB , ………………2分 在ABE ∆中, AEB AEB EBA EAB ∠-︒=∠-︒=∠=∠21902180, ………………3分∴119090(90)22ABD EAB AEB AEB ∠=︒-∠=︒-︒-∠=∠, 同理:12BAC AEB ∠=∠,12ABD BAC AEB ∴∠=∠=∠; ………………4分 (2)如图,过点A 、B 分别作BD 的延长线与AC 的垂线于点G 、F ,四边形ABCD 是互补等对边四边形,∴AD BC =,︒=∠+∠180BCA ADB , 又︒=∠+∠180ADG ADB ,∴ADG BCA ∠=∠, ……………5分 又 ,AG BD BF AC ⊥⊥,∴︒=∠=∠90BFC AGD ,∴AGD ∆≌()BFC AAS ∆, ………………6分 ∴AG BF =,又AB BA =∴ABG ∆≌()BAF HL ∆, ………………7分 ∴ABD BAC ∠=∠, ︒=∠+∠180BCA ADB ,∴︒=∠+∠180ECA EDB ,∴︒=∠+∠180DHC AEB ,︒=∠+∠180HC B DHC ,∴BHC AEB ∠=∠,………………8分又 ABD BAC BHC ∠+∠=∠,ABD BAC ∠=∠, 12ABD BAC AEB ∴∠=∠=∠. ………………9分22.命题思路:通过数学新定义考查等腰三角形的性质、三角形内角和与外角和、三角形全等等知识,增强推理论证能力,渗透特殊到一般、变中不变的数学思想.23.解:(1)在211y x =-中,设01=y ,得012=-x ,解得:1,121-==x x , 点A 在点B 的右侧,∴点A 的坐标为)0,1(, ………………1分把1=x 代入221()11y x n n n=-+--与223-=x y 中,可得0,032==y y ,∴抛物线2y 与3y 均过点A ; ………………3分 (2)在221()11y x n n n=-+--中,其对称轴为:直线n x =, 由(1):抛物线2y 过点A )0,1(,∴点C为)0,12(-n ,BC =2AB ,2=AB ,∴4)1(12=---n ,解得:2=n 或2-=n , ………4分 此时2y 的解析式为:22(2)1y x =--+或221(2)33y x =+-; ……………5分(3)如图,对于任意x ,当0≤n 时,猜想:321y y y ≥≥,理由: ……………6分1)1(1)(11122221--=+-----=-n x n n n x n x y y ,0≤n ,∴021≥-y y ,∴21y y ≥; ………………7分同理nx x n n x n y y --=+--+--=-1)1(221)(112232 0≤n ,∴032≥-y y ,∴32y y ≥; ………………8分∴对于任意x ,当0≤n 时,均有321y y y ≥≥. ………………9分23. 命题思路:考查二次函数的图象和性质、用待定系数法求解析式、函数与方程的关系等知识,发展归纳总结能力,体悟数形结合思想、合情推理,积累观察、发现、猜想、分析、证明的活动经验. 六、(本大题共1小题, 每小题12分,共12分) 24.解:探究1: ︒=∠=∠=∠45DBG KDG KAD ,∴︒=∠+∠135BDG KDA , ︒=∠+∠135BGD BDG , ………………2分 ∴BGD KDA ∠=∠,∴ADK ∆∽BGD ∆; ………………3分 探究2: ADK ∆∽BGD ∆,∴AK KDBD DG=,又点D 是线段AB 中点, ∴BD AD =,∴AK KD AD DG =,∴AK ADKD DG=, ………………4分 又︒=∠=∠45KDG KAD , ∴ADK ∆∽DKG ∆, ………………5分 ∴D K G A K D ∠=∠, ∴线段KD 平分AKG ∠; ………………6分 探究3: 线段KD 仍平分AKG ∠,理由如下:同探究1可知仍有:ADK ∆∽BGD ∆,同探究2可知仍有:ADK ∆∽DKG ∆, ………………7分∴仍有DKG AKD ∠=∠,∴线段KD 仍会平分AKG ∠; ………………8分 ②如图,过点D 作AC DM ⊥于M ,KG DN ⊥于点N , 由①:线段KD 平分AKG ∠,∴DN DM =,又8==BC AC , ………………9分 点D 是线段AB 中点,︒=∠45KAD ,∴4==DN DM ,又x KG =, ∴DKG ∆的面积为x x y 2421=⨯⨯=, 对于图形3情况,同理可得x y 2=, ………………10分综上所述:x y 2=,其中838828-≤≤-x . ………………12分24.命题思路:考查等腰直角三角形、角平分线性质、相似三角形的判定与性质等知识的综合运用,在操作中不断发现、提出、建立几何模型解决数学问题,积累研究问题的方法与活动经验,提升数学的综合学习能力.。
江西省2015年中等学校招生考试数学试题解析
江西省2015年中等学校招生考试数学试题解析(word 版)说明:1.本卷共有6个大题,24个小题,全卷满分120分,考试时间120分钟;2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上答题,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.计算0(1)-的结果为( ).A.1B.-1C.0D.无意义 解析:选A. ∵除0外,任何数的0次方等于1. ∴选A.2.2015年初,一列CRH5型高速车组进行了“300 000公里正线运营考核”.标志着中国高铁车从“中 国制造”到“中国创新”的飞跃.将数300 000用科学记数法表示为( ).A.3×106B. 3×105C.0.3×106D. 30×104解析:选B. ∵科学记数法是:把一个数写成“10´na ,其中1≤a <10”. ∴选B. 3.如图所示的几何体的左视图为( ).D.C.B.A.(第3题)解析:选D. ∵根据光的正投影可知,几何体的左视图是图D. ∴选D. 4.下列运算正确的是( ).A.236(2)6a a =B.2232533a b ab a b -=-gC.1b a a b b a +=--- D.21111a a a -=-+g 解析:选C. ∵()1b a b a b a a b a b b a a b a b a b a b---+=-===------- . ∴选C. 5.如图,小贤同学为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误..的是( ).A. 四边形ABCD 由矩形变为平行四边形B. BD 的长度变大C. 四边形ABCD 的面积不变D. 四边形ABCD 的周长不变解析:选C. ∵向右扭动框架, 矩形变为平行四边形 ,底长不变,高变小,所以面积变小. ∴选C.第5题B6.已知抛物线2(0)y ax bx c a =++>过(-2,0),(2,3)两点,那么抛物线的对称轴( ). A .只能是1x =- B .可能是y 轴C .在y 轴右侧且在直线2x =的左侧D .在y 轴左侧且在直线2x =-的右侧解析:选D. ∵抛物线2(0)y ax bx c a =++>过(-2,0),(2,3)两点,∴420423a b c a b c ì-+=ïí++=ïî ,解得34b = ,∴对称轴3028b x a a=-=-<,又对称轴在(-2,2)之间, ∴选D.二、选择题(本大题共8小题,每小题3分,共24分)7.一个角的度数是20°,则它的补角的度数为 160° . 解析:∵两角互补,和为180°,∴它的补角=180°-20°=160°.8.不等式组x x ì- ïíï-<9î11023的解集是 -3<x ≤2 .解析: 由112x -≤0得x ≤2 ,由-3x <9得x >-3,∴不等式组的解集是-3<x ≤2. 9.如图,OP 平分∠MON , PE ⊥OM 于E , PF ⊥ON 于F ,OA =OB , 则图中有 3 对全的三角形.第10题第9题O解析:∵∠POE=∠POF, ∠PEO=∠PFO=90°OP=OP,∴△POE ≌△POF(AAS), 又OA=OB,∠POA=∠POB,OP=OP,∴△POA ≌△POB(AAS), ∴PA=PB,∵PE=PF,∴Rt △PAE ≌Rt △PBF(HL). ∴图中共有3对全的三角形.10.如图,点A , B , C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°则∠ADC 的度数为 110° .解析:∵∠A=50°, ∴∠BOC=100°, ∴∠BOD=80°, ∴∠ADC=∠B+∠BOD=30°+ 80°=110° 11.已知一元二次方程2430x x --=的两根为m ,n ,则22m mn n -+= 25 . 解析:由一元二次方程根与系数关系得m +n =4,mn =﹣3,又()2223m mn n m n mn -+=+- ∴原式=()243325-?=.12.两组数据:3,a ,2b , 5与a ,6 ,b 的平均数都是6,若将这两组数据合并为一组数据,则这组 新数据的中位数为 6 .解析:由题意得32564663a b a b ì+++=ïïí++ï=ïî ,解得84a b ì=ïí=ïî,∴这组新数据是3,4,5,6,8,8,8,其中位数是6.13.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD=15cm , ∠CBD =40°,则点B 到CD 的距离为 14.1 cm (参考数据:sin20°≈ 0.342, com 20°≈0.940, sin 40°≈ 0.643, com 40°≈ 0.766.精确到0.1cm ,可用科学计算器).(第14题)(第13题)图2图1AB解析:如右图,作BE ⊥CD 于点E.∵BC=BD, BE ⊥CD, ∴∠CBE=∠DBE=20°,在Rt △BCD 中,cos ,BEDBE=BD Ð ∴cos BE 2015?, ∴BE ≈15×0.940=14.114.如图,在△ABC 中,AB =BC=4,AO=BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△P AB 为直角三角形时,AP 的长为解析:如图,分三种情况讨论:图(1)中,∠APB=90°,∵AO=BO, ∠APB=90°,∴PO=AO=BO=2, 又∠AOC=60°, ∴△APO 是等边三角形,∴AP=2;图(2)中,∠APB=90°,∵AO=BO, ∠APB=90°,∴PO=AO=BO=2,又∠AOC=60°, ∴∠BAP=30°,在Rt △ABP 中,AP=cos30°×4= .图(3)中,∠ABP=90°, ∵BO=AO=2 , ∠BOP=∠AOC=60°, ∴PB=∴= ∴AP 的长为2,(1)BA BA(3)A三、(本大题共4小题,每小题6分,共24分)15.先化简,再求值:()()2222a a b a b +-+,其中,1a =-b 解析:原式 ()[()]()()22222224a b a a b a b a b a b =+-+=+-=- 把,1a =-b=()221411--?-16.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称, 已知A, D 1 ,D 三点的坐标分别是(0,4),(0,3),(0,2). (1)对称中心的坐标;(2)写出顶点B, C, B 1 , C 1 的坐标.解析:(1)∵正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,∴A,A 1 是对应点,∴AA 1 的中点是对称中心, ∵A(0,4),D(2,0),∴AD=2, ∴A 1D 1 = AD=2, 又∵D 1(0,3) ,∴A 1(0,1), ∴对称中心的坐标为(0, 2.5);(2)∵正方形的边长为2, 点A,D 1 ,D ,A 1在y 轴上,∴B(-2,4), C(-2,2), B 1(2,1), C 1(2,3) .17.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺........,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法). (1) 如图1,AC=BC ;(2) 如图2,直线l 与⊙O 相切于点P ,且l ∥BC .l图2图1PAA解析:如右图所示.图1,∵AC=BC ,∴))AC BC =,∴点C 是)AB 的中点,连接CO ,交AB 于点E ,由垂径定理知, 点E 是AB 的中点, 延长CE 交⊙O 于点D , 则CD 为所求作的弦;图2,∵l 切⊙O 于点P, 作射线PO ,交BC 于点E ,则P O ⊥l , ∵l ∥BC , ∴PO ⊥BC, 由垂径定理知,点E 是BC 的中点,连接AE 交⊙O 于F ,则AF 为所求作的弦.xl图2图1PAA18.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1) 先从袋子中取出m (m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A . 请完成下列表格:(2) 先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出一个球是黑球的概率等于45,求m 的值.解析:(1)若事件A 为必然事件,则袋中应全为黑球,∴m=4, 若事件A 为随机事件,则袋中有红球, ∵m>1 ,∴m=2或3.(2)64105m +=, ∴m=2 .四、(本大题共4小题,每小题8分,共32分)19.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份 ,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图类别严加干涉稍加询问从来不管从来不管 25%严加干涉稍加询问根据以上信息解答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角的度数为 ; (2)把条形统计图补充完整; (3)若将:“稍加询问”和“从来不管”视为“管理不严”,已知学校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?解析:(1) 30÷25%=120 10÷120×360°=30° ∴回收的问卷数为120份,圆心角的度数为30° (2) 如下图:(3) (30+80)÷120×1500=1375 ∴对孩子使用手机“管理不严”的家长大约有1375人.类别严加干涉稍加询问从来不管20.(1)如图1,纸片□ABCD 中,AD =5,S □ABCD =15,过点A 作AE ⊥BC ,垂足为E ,沿AE 剪下△ABE ,将它平移至△DCE ′ 的位置,拼成四边形AEE′D ,则四边形AEE′D 的形状为( ) A .平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D 中,在EE′上取一点F ,使EF =4,剪下△AEF ,将它平移至△DE′F′ 的位置,拼成四边形AFF′D . ① 求证四边形AFF′D 是菱形;② 求四边形AFF′D 两条对角线的长.图2图1解析:(1) 由平移知:AE //DE′, ∴四边形AEE′D 是平行四边形,又AE ⊥BC , ∴∠AEE′=90°, ∴四边形AEE′D 是矩形,∴C 选项正确.(2) ① ∵AF //DF′, ∴四边形AFF ′D 是平行四边形,∵AE=3, EF=4 ,∠E=90°, ∴AF =5, ∵S □ABCD =AD·AE =15, ∴AD=5 , ∴AD=AF , ∴四边形AFF ′D是菱形. ② 如下图, 连接AF′, DF ,在Rt △AEF′中, AE=3, EF′=9, ∴AF′= 在Rt △DFE ′中, FE′=1,DE ′=AE=3, ∴ ∴四边形AFF′D 两条对角线的长分别是21.如图,已知直线y ax b =+与双曲线()0ky x x=>交于A (,11x y ),B (,22x y )两点(A 与B 不重合), 直线AB 与x 轴交于P (,00x ),与y 轴交于点C .(1) 若A ,B 两点的坐标分别为(1,3),(3,y 2).求点P 的坐标;(2)若11b y =+,点P 的坐标为(6,0),且AB BP =.求,A B 两点的坐标; (3)结合(1),(2)中的结果,猜想并用等式表示,,120x x x 之间的关系(不要求证明).x解析:(1) 把A(1,3)代入k y x =得:3k =, 把B (,)23y 代入3y x=得:21y =,∴B(3,1). 把A(1,3),B(3,1)分别代入y ax b =+得:331a b a b ì+=ïí+=ïî,解得:14a b ì=-ïí=ïî,∴4AB y x =-+ ,令0AB y =,得4x =, ∴(,)40P (2) ∵AB PB =, ∴B 是AP 的中点,由中点坐标公式知:,1122622x yx y +==, ∵,A B 两点都在双曲线上,∴1111622x y x y +=,解得12x =, ∴24x = . 作AD ⊥x 于点D (如右图), 则△PAD ∽△PDO , ∴AD PD CO PO =,即146y b =, 又11b y =+, ∴12y = ,∴21y =. ∴(,),(,)2241A B(3) 结论:120x x x +=.理由如下:∵A (,11x y ),B (,22x y ),∴1122ax b y ax b y ì+=ïí+=ïî, ∴2112212121y y x y x y y x x x x x --=--- 令0y =,得122121x y x y x y y -=- ,∵1122x y x y =, ∴()()122121122121x y x y y y x x x y y y y --+==-- =12x x + , 即120x x x +=x22.甲、乙两人在100米直道AB 上练习匀速往返跑,若甲、乙分别在A,B 两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别5 m/s 和4 m/s .(1)在坐标系中,虚线表示乙离A 端的距离S (单位:m )与运动时间t (单位:s )之间的函数图象 (0≤t ≤200),请在同一坐标系中用实线画出甲离A 端的距离S 与运动时间t 之间的函数图象 (0≤t ≤200);sS /m------(2)根据(1)中所画图象,完成下列表格:(3)①直接写出甲、乙两人分别在第一个100m 内,s 与t 的函数解析式,并指出自变量的取值范围; ②求甲、乙第六次相遇时t 的值. 解析:(1)如下图:t /ss /m(2(3) ① =5S t 甲 (0≤t ≤20) ,=-4100S t +乙 (0≤t ≤25).② ()54100621t t +=创- , ∴ 11009t = , ∴第六次相遇t 的值是11009.x五、(本大题共10分)23.如图,已知二次函数L 1:()2230y ax ax a a =-++>和二次函数L 2:()211y a x =-++(0a >)图象的顶点分别为M ,N , 与y 轴分别交于点E, F .(1) 函数()2230y ax ax a a =-++>的最小值为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而减小时,x 的取值范围是 ;(2)当EF MN =时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明);(3)若二次函数L 2 的图象与x 轴的右交点为(,)0A m ,当△AMN 为等腰三角形时,求方程()2110a x -++=的解.解析:(1)∵()222313y ax ax a a x =-++=-+, ∴min =3y ;∵(,),(,)M N -1311 ,∴当x <1时,L 1的y 值随着x 的增大而减小,当x >-1时, L 2 的y 值随着x 的增大而减小, ∴x 的取值范围是x -<<11(2)∵(,),(,)M N-1311, ∴MN =,∵(,),(,)E a F a +-+0301,∴()EF a a a =+--=+3122, ∴a+=22,a 1如图,∵MN y x =+2, ∴(,)A 02,∴AM ANAM AN =∵a1,∴(,(,E F -0202∴AE AF ∴AE AF = ∴四边形ENFM 是平行四边形, 已知EF MN =,∴四边形ENFM 是矩形(对角线相等且互相平分的四边形是矩形) (3)∵(,),(,)M N -1311,(,)A m 0,∴MN AM AN =① 当AMMN ==()m -=-211,等式不成立;② 当AMAN =∴m =2;③ 当MN AN==,(m m =-1211舍去)x∴(,)A 20或,)A 10, ∵()y a x =-++211的对称轴为x =-1, ∴左交点坐标分别是(-4,0)或(1,0),∴方程()a x -++=2110的解为,,,x x x x ==-=12342411.x六、(本大题共12分)24.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF ,BE 是△ABC 的中线, AF ⊥BE , 垂足为P .像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC b =,AB c =. 特例探索(1)如图1,当∠ABE =45°,c =a = ,b = ; 如图2,当∠ABE =30°,c =4时, a = ,b = ;图3图2图1AA归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD 中,点E ,F ,G 分别是AD ,BC ,CD 的中点,BE ⊥EG , AD = AB =3. 求AF 的长EA解析:(1)如图1,连接EF,则EF 是△ABC 的中位线,∴EF=AB 12= ∵∠ABE=45°,AE ⊥EF ∴△ABP 是等腰直角三角形, ∵EF ∥AB ,∴△EFP 也是等腰直角三角形, ∴AP=BP=2 ,EP=FP=1, ∴∴a b ==如图2,连接EF,则EF 是△ABC 的中位线. ∵∠ABE=30°,AE ⊥BF,AB=4, ∴AP=2, BP=, ∵EF //AB 12, ∴∴∴a =, b =(2) a b c +=2225如图3,连接EF , 设AP=m ,BP=n .,则c AB m n ==+2222∵EF //AB 12, ∴PE=12BP=12n , PF=12AP=12m,∴AE m n =+22214 , BF n m =+22214,∴b AC AE m n ===+2222244, a BC BF n m ===+2222244∴()a b m n c +=+=2222255 (3)图1CA图2B图3A如上图,延长EG,BC 交于点Q, 延长QD,BA 交于点P,延长QE,BE 分别交PB ,PQ 于点M,N,连接EF. ∵四边形ABCD 是平行四边形,∴AD //BC, AB //CD,∵E,G 是分别是AD,CD 的中点,∴△EDG ≌△QCG ≌△EAM, ∴,∴BM=4.5.∵CD CQ BP BQ =,∴BP 3BP=9, ∴M 是BP 的中点; ∵AD //FQ, ∴四边形ADQF 是平行四边形,∴AF ∥PQ,∵E,F 分别是AD ,BC 的中点,∴AE //BF, ∴四边形ABFE 是平行四边形,∴OA=OF, 由AF ∥PQ 得:,OF BFQN BQ ===13OA BA PN BP ===3193, ∴OA OF PN QN =, ∴PN=QN, ∴N 是PQ 的中点;∴△BQP 是“中垂三角形”, ∴(PQ BQ BP =-=?=22222559144,∴PQ =12, ∴AF PQ ==143。
2015中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
江西省2015年中等学校招生考试数学试题及答案(word版)
江西省2015年中等学校招生考试数学试题及答案(word版)江西省2015年中等学校招生考试数学试题及答案(word版)准考证号姓名(在此卷上答题无效)机密★2015年6月19日江西省2015年中等学校招生考试数学试题卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.计算(-1)°的结果为()A.1 B.-1 C.0D.无意义2.2015年初,一列CRH5型高速车组进行了“300 000公里正线运营考核”,标志着中国高铁车从“中国制造”到“中国创新”的飞跃.将数300 000用科学计数法表示为()A.60.310⨯D.4⨯C.6⨯B.5310310⨯3010 3.如图所示的几何体的左视图为()4.下列运算正确的是()A .236(2)6a a =B .2232533a b ab a b -•=-C .1b a a b b a +=---D .21111a a a -•=-+ 5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化.下面判断错误..的是() A .四边形ABCD 由矩形变为平行四边形B .BD 的长度增大C .四边形ABCD 的面积不变D .四边形ABCD 的周长不变6.已知抛物线y =ax 2+bx +c (a >0)过(-2,0),(2,3)两点,那么抛物线的对称轴( )A .只能是x =-1B .可能是y 轴C .在y 轴右侧且在直线x =2的左侧D .在y 轴左侧且在直线x =-2的右侧二、填空题(本大题共8小题,每小题3分,共24分)7.一个角的度数为20°,则它的补角的度数为.8.不等式组110239x x ⎧-⎪⎨⎪-<⎩≤,的解集是.9.如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA =OB .则图中有对全等三角形.10.如图,点A ,B ,C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°,则∠ADC 的度数为.11.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则m 2-mn +n 2=.12.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.13.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD 的距离为cm(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.计算结果精确到0.1cm,可用科学计算器).14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三、(本大题共4小题,每小题6分,共24分) 15.先化简,再求值:2a=-,+-+,其中12(2)(2)a ab a bb=.316.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.17.⊙O为△ABC的外接圆,请仅用无刻度的......直尺..,根据下列条件分别在图1,图2中画出一条弦.,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切与点P,且l∥B C.18.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率等,求m的值.于45四、(本大题共4小题,每小题8分,共32分) 19.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(1)如图1,纸片□ABCD 中,AD =5,S □ABCD =15.过点A 作AE ⊥BC ,垂足为E ,沿AE 剪下△ABE ,将它平移至△DCE'的位置,拼成四边形AEE'D ,则四边形AEE'D 的形状为()A .平行四边形B .菱形C .矩形D .正方形(2)如图2,在(1)中的四边形纸片AEE'D 中,在EE'上取一点F ,使EF =4,剪下△AEF ,将它平移至△DE'F'的位置,拼成四边形AFF'D . ①求证:四边形AFF'D 是菱形;②求四边形AFF'D 的两条对角线的长.21.如图,已知直线y =ax +b 与双曲线(0)k y x x=>交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于点P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2).求点P的坐标;(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标;(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).22.甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点掉头,掉头时间不计,速度分别为5m/s和4m/s.(1)在坐标系中,虚线表示乙离..A.端.的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A 端的距离s与运动时间t之间的函数图象(0≤t≤200);(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1 2 3 4 …n 两人所跑路程之和(单位:m) 100 300 …(3)①直接写出甲、乙两人分别在第一个100m 内,s与t的函数解析式,并指出自变量t的取值范围;②求甲、乙第6此相遇时t的值.五、(本大题共10分)23.如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2-2ax+a+3(a>0)的最小值为;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.六、(本大题共12分)24.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE 是△ABC的中线,AF⊥BE,垂足为P,像△ABC 这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22a=,b=;如图2,当∠ABE=30°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25AB =3.求AF的长.。
2015年江西省南昌市中考数学试卷(含详细答案)
数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前江西省南昌市2015年初中毕业暨中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算0(1)的结果为 ( )A .1B .1-C .0D .无意义 2.2015年初,一列CRH5型高速车组进行了“300000千米正线运营考核”,标志着中国高铁车从“中国制造”到“中国创新”的飞跃.将数300000用科学记数法表示为( ) A .6310⨯ B .5310⨯ C .60.310⨯ D .43010⨯3.下列运算正确的是 ( ) A .236(2)6a a =B .2232533a b ab a b -=-C .21111a a a -=-+D .1b a a b b a+=--- 4.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化.下列判断错误的是 ( ) A .四边形ABCD 由矩形变为平行四边形 B .BD 的长度增大C .四边形ABCD 的面积不变 D .四边形ABCD 的周长不变6.已知抛物线2(0)y ax bx c a =++>过(2,0),(2,3)-两点,那么抛物线的对称轴 ( ) A .只能是1x =- B .可能是y 轴C .在y 轴右侧且在直线2x =的左侧D .在y 轴左侧且在直线2x =-的右侧第Ⅱ卷(非选择题 共102分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 7.一个角的度数是20,则它的补角的度数为 .8.不等式组11023x x ⎧-⎪⎨⎪-⎩≤<9的解集是 .9.如图,OP 平分MON ∠,PE OM ⊥于点E ,PE ON ⊥于点F ,OA OB =,则图中 有 对全等三角形.10.如图,点,,A B C 在O 上,CO 的延长线交AB 于点D ,50,30A B ∠=∠=则ADC ∠的度数为 .11.已知一元二次方程2430x x --=的两根为,m n ,则22m mn n -+= .12.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知15cm AB AC ==,40BAC ∠=,则点A 到BC 的距离为 cm (参考数据:sin200.342,cos200.940,sin400.643,cos400.766.≈≈≈≈结果精确到0.1cm ,可用科学计算器).13.两组数据:3,,2,5a b 与,6,a b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .14.如图,在ABC △中,4AB BC ==,AO BO =,P 是射线CO 上的一个动点,60AOC ∠=,则当PAB △为直角三角形时,AP 的长为.AB C D 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分6分)先化简,再求值:22(2)(2)a a b a b +-+,其中1,3a b =-=.16.(本小题满分6分)如图,正方形ABCD 与正方形1111A B C D 关于某点中心对称.已知1,,A D D 三点的坐标分别是(0,4),(0,3),(0,2). (1)求对称中心的坐标;(2)写出顶点11,,,B C B C 的坐标.17.(本小题满分6分)O 为ABC △的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将ABC △分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC BC =;(2)如图2,直线l 与O 相切于点P ,且l BC ∥.18.(本小题满分6分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出() 1m m >个红球,再从袋子中随机摸出1个球.将“摸出黑球”记为事件事件A 必然事件随机事件m 的值(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m 的值.19.(本小题满分8分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息解答下列问题: (1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知学校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(本小题满分8分)(1)如图1,纸片□ABCD 中,5AD =,15ABCDS =.过点A 作AE BC ⊥,垂足为E ,沿AE 剪下ABE △,将它平移至DCE '△的位置,拼成四边形AEE D ',则四边形AEE D'的形状为 ( )A .平行四边形B .菱形C .矩形D .正方形(2)如图2,在(1)中的四边形纸片AEE D '中,在EE '上取一点F ,使4EF =,剪下AEF △,将它平移至DE F ''△的位置,拼成四边形AFF D '. ①求证:四边形AFF D '是菱形;②求四边形AFF D '的两条对角线的长.l图2图1AO OCBBCA类别问卷数严加干涉稍加询问从来不管从来不管 25%严加干涉稍加询问1090705030100806040020图2图1ADDA数学试卷 第5页(共34页) 数学试卷 第6页(共34页)21.(本小题满分8分)如图,已知直线y ax b =+与双曲线(0)ky x x=>交于1122(,)(,)A x y B x y ,两点(A 与 B 不重合),直线AB 与x 轴交于点0(,0)P x ,与y 轴交于点C . (1)若,A B 两点坐标分别为2(1,3),(3,)y ,求点P 的坐标; (2)若11b y =+,点P 的坐标为6,0(),且AB BP =,求,A B 两点的坐标; (3)结合(1)(2)中的结果,猜想并用等式表示120,,x x x 之间的关系(不要求证明).22.(本小题满分9分)甲、乙两人在100米直道AB 上练习匀速往返跑,若甲、乙分别在,A B 两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别5m /s 和4m /s . (1)在坐标系中,虚线表示乙离A 端的距离s (单位:m )与运动时间t (单位:s )之间的函数图象(0200)t ≤≤,请在同一坐标系中用实线画出甲离A 端的距离s 与运动时间t 之间的函数图象(0200)t ≤≤;两人相遇次数(单位:次)1234…n两人所跑路程之和(单位:m )100 300… t 的取值范围;②当390s t =时,他们此时相遇吗?若相遇,应是第几次?若不相遇,请通过计算说理由,并求此时甲离A 端的距离.23.(本小题满分9分)如图,已知二次函数21:23(0)L y ax ax a a =-++>和二次函数22:(1)1L y a x =-++(0)a >图象的顶点分别为M ,N ,与y 轴分别交于点E ,F .(1)函数223(0)y ax ax a a =-++>的最小值为 ;当二次函数12L L ,的y 值同时随着x 的增大而减小时,x 的取值范围是 ;(2)当EF MN =时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明); (3)若二次函数2L 的图象与x 轴的右交点为(,0)A m ,当AMN △为等腰三角形时,求方程2(1)10a x -++=的解.24.(本小题满分12分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,,AF BE 是ABC △的中线,AF BE ⊥,垂足为P ,像ABC △这样的三角形均为“中垂三角形”.设BC a =,AC b =,AB c =.特例探索(1)如图1,当45ABE ∠=,22c =,a = ,b = ; 如图2,当30ABE ∠=,4c =时,a = ,b = ;归纳证明(2)请你观察(1)中的计算结果,猜想222,,a b c 三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共34页) 数学试卷 第8页(共34页)拓展应用(3)如图4,在□ABCD 中,点,,E F G 分别是,,AD BC CD 的中点,BE EG ⊥,25AD =,3AB =.求AF 的长.5 / 17江西省南昌市2015年初中毕业暨中等学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】∵()011-=,∴()01-的结果为1,故选:A 。
2015年初三一模数学试卷及答案
2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。
分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。
江西省中考模拟数学试题及答案
2015年中考数学模拟卷(时间:120分 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分) 1.已知∠α=31°,求∠α的补角为( )A .59°B .69°C .149°D .169°2.小林家今年1﹣5月份的用电量情况如图所示,由图可知,相邻两个月中,用电量变化最大的 是( )A .1月至2月B .2月至3月C .3月至4月D .4月至5月3.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )4.在共有23人参加的“安全教育知识”竞赛中, 参赛选手要想知道自己是否能进入前12 名,只需要了解自己的成绩以及全部成绩的( )A .平均数B .众数C .中位数D .方差5.现有1角、5角硬币各10枚,从中取出16枚,共计4元,问1角、5角硬币各取多少枚?设1角、5角硬币各取x 枚、y 枚,可列方程 ( )A .⎩⎨⎧=+=+45y x 16y xB .⎩⎨⎧=+=+45y x 20y xC .⎩⎨⎧=+=+400.5y 0.1x 20y x D .⎩⎨⎧=+=+405y x 16y x6.下列选项中,可以用来证明命题“若1a ->1,则a >2”是假命题的反例是( ) A .a =2 B .a =1 C .a = 0 D .a =﹣1二、填空题 (本大题共8小题,每小题3分,共24分) 7.4的算术平方根是 .8.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为 千克.第2题 第3题第9题 第109.如图,数轴上的点P 表示的数是-2,将点P向右移动3个单位长度得到点P′,则点P′表示的数是.10.一副三角板如图所示叠放在一起,则图中∠α的度数是度.11.请写出一个无实数根的一元二次方程________ ______.12.两棵树植在倾角为24°36′的斜坡上,它们的坡面距离是4米,则它们之间的水平距离是米(可用计算器,精确到0.1米) .13.如图,反比例函数kyx=-(x>0)图象上有一点P,P A⊥x轴于A,点B在y轴的正半轴上,△P AB的面积是3,则k = .14.如图,已知A(-3,0)、B(0,3),半径为1 的⊙P在射线AB上运动,那么当⊙P与坐标轴相切时,圆心P的坐标是.三、(本大题共4小题, 每小题6分,共24分)15.解不等式组,2-53(-1),-1<1.32x xx x≥⎧⎪⎨-⎪⎩并把解集在数轴上表示出来.16.已知方程111ax x=-+的解为x=2,先化简22144(1)11a aa a-+-÷--,再求它的值.17.已知下面是3个5×5的正方形网格,小正方形边长都为1,A、B两点在小网格的顶点上,位置如图所示.现请你分别在三个网格中各画一个△ABC.要求:(1)顶点C在网格的顶点上;(2)工具只用无刻度的直尺;(3)所画的3个三角形互不全等,但面积都为2.第13第1418.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是15.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.四.(本大题共4小题,每小题8分,共32分)19. 如图,在对Rt△ABC依次进行轴对称(对称轴为y轴)、一次平移和以O位似中心在同侧缩小为原来的一半的变换后得到△OA′B′.(1)在坐标系中分别画出轴对称、平移变换后相应的二个图形;(2)设P(a ,b)为△ABC边上任意一点,依次分别....写出这三次变换后点P 对应点的坐标.20.如图,将△ABC绕点C旋转180°得到△DEC,过点B作AD的平行线,与ED的延长线交于点F.(1)求证:D是EF的中点;(2)连接BD,当△ABC满足什么条件时,BD⊥EF?并说明其理由.21.某体育用品商店为了解8月份的销售情况,对本月各类商品的销售情况进行调查,并将调查的结果绘制成如下的两幅不完整的统计图.(1)请根据图中提供的信息,将条形图补充完整;(2)该商店准备按8月份球类商品销量的数量购进球类商品,含篮球、足球、排球三种球,预计恰好用完货款共3600元.设购进篮球x 个,足球y 个,三种球的进价和售 价如下表:类别 篮球 足球 排球进价(单位:元/个)50 30 20 预售价(单位:元/个)70 45 25 求出y 与x 之间的函数关系式;(3)在(2)中的进价和售价的条件下,据实际情况,预计足球销售超过60个后,这种球就会产生滞销,①假设所购进篮球、足球、排球能全部售出,求出预估利润P (元)与x (个)的函数关系式;②求出预估利润的最大值,并写出此时购进三种球各多少个?22.如图2,边长为2的等边△ABC 内接于⊙O ,△ABC 绕圆心O 顺时针方向旋转得到△A B C ''',A′C′分别与AB 、AC 交于E 、D 点,设旋转角度为(0360)αα︒<<︒. (1)当α= ,△A′B ′C′与△ABC 出现旋转过程中的第一次完全重合; (2)当α=60°时(如图1),该图( )A .是中心对称图形但不是轴对称图形B .是轴对称图形但不是中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形也不是中心对称图形(3)如图2,当0120α︒<<︒,△ADE 的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.OCC ′B ′DOCAC ′′五、(本大题共1小题, 共10分)23.已知抛物线L 1:2165y x x k =++和抛物线L 2:2265y kx kx k =++,其中0k ≠,抛物线L 2与x 轴相交于A 、B 两点,其图像如图所示. (1)下列说法你认为正确的序号是 ;①抛物线L 1和L 2与y 轴交于同一点F (0,5)k ; ② 抛物线L 1和L 2开口都向上; ③抛物线L 1和L 2的对称轴是同一条直线; ④ A (-5,0), B (-1,0)(2)抛物线L 1和L 2相交于点E 、F ,当k 的值发生变化时,请判断线段EF 的长度是否发生变化,并说明理由;(3)在(2)中,若抛物线L 1的顶点为M ,抛物线L 2的顶点为N . 问是否存在实数k ,使MN =2EF ,如存在,求出实数k ,如不存在,请说明理由.六、(本大题共1小题,共12分)24.如图,已知正方形ABCD的边长为4,E是射线CB上的一个动点,过点D作DF⊥DE,交BA的延长线于点F,EF交对角线AC所在的直线..于点M,DE交AC于点N .(1)求证:CE=AF;(2)设CE=x,△AMF的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)随着点E在射线CB上运动,NA·MC的值是否会发生变化?若不变,请求出NA·MC的值;若变化,请说明理由.A CDFMN第24题ACDFMN备用图2015年中考数学模拟卷参考答案(时间:120分 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分) 1.C, 2.B, 3. B, 4.C, 5, D 6. D .二、填空题 (本大题共8小题,每小题3分,共24分)7. 2 8. 2.1×10﹣5 , 9. 3 -2, 10.105, 11. 答案不唯一,如:2x -x+3=0, 12. 3.6 13.6, 14. (-2,1) (-1,2) (1,4) 三、(本大题共4小题, 每小题6分,共24分)15.解:2-53(-1),-1<1.32x x x x ≥⎧⎪⎨-⎪⎩解不等式①,得x≤-2, 2分 解不等式②,得x >-3.∴原不等式组的解集为-3<x≤-2 4分 ∴原不等式组的解集在数轴上表示为……………………………………………6分16.解:把x=2代入111ax x =-+中得:a=3,……………………2分 原式=22(1)(1)1(2)a a a a a -+-•--………………….…………………3分 =12a a +-……………………………………………………………4分 当a=3时,原式=4.……………………………………………6分 17.解:所画三角形的位置不唯一(画对一个2分)18.解:(1)根据题意得:50×15=10,答:箱中装有标1的卡片10张.……………………………2分(2)设装有标3的卡片x张,则标2的卡片3x-8张根据题意得x+3x﹣8=40解得x=12.…………………………………………………5分所以摸出一张有标3的卡片的概率P= 1250=625;…………6分四、(本大题共4小题,每小题8分,共32分)五、19.解:(1)如图所示:………………………………………4分(2)点P(a,b)三次变换后点P对应点的坐标.依次分别为(-a,b)、(-a,b-4 )、…………………………………………………6分(-12a , 12b -2)……………………………8分20.解:(1)证明:由旋转得∠A=∠CDE ,∴AB ∥DE ,∴AB ∥DF.又∵AD ∥BF ,∴四边形ADFB 是平行四边形,∴AB=DF ,又∵AB=DE ,∴DE=DF ,∴D 是EF 的中点.……………………………4分 (2)当△ABC 满足AC=BC 时,B D ⊥EF ,理由:∵AC=BC ,∴AD=BE.∵四边形ADFB 是平行四边形,∴AD=BF ,∴BE=BF , ∵D 是EF 的中点,∴B D ⊥EF.……………………………………………………8分21.解:(1)球类120个…………………………………………2分(2)由题可知排球购进120-x-y 个,则50x+30y+20(120-x-y )=3600,整理得y=120-3x.………………………………………3分(3)①由题意,得P=20x+15y+5(120-x-y ),整理得P=1800-15x.……………4分 ②根据题意列不等式,得120-3x ≤60, 解得x ≥20,∴x 的范围为x ≥20,且x 为整数,∵P 是x 的一次函数,P=1800-15x.k=-15<0,∴P 随x 的增大而减小,∴当x 取最小值20时,P 有最大值,最大值为1500元.………………………7分 此时购进篮球20个,足球60个,球40个.……………………………………8分22.解:(1)120°.…………………………………………………3分 (2)C …………………………………………………………6分 (3)△ADE 的周长不变;理由如下:连接AA ′,∵'AB A C '=, ∴'AB A C '=, ∴'AC BA '=,∴'''BAA AA C ∠=∠,∴'EA EA =,同理,'DA DC =, ∴△ADE 的周长=EA ED DA ++.''2EA ED DC A C ''++==………………………8分五、(本大题共1小题, 共10分)23.解:(1)①③④ ……………………………………………………2分 (2)两条抛物线相交于点E 、F ,可知12y y =, 当1k =时,二次函数L 1和L 2重合,当1k ≠时, k 的值变化时,线段EF 的长度不会变化, 理由:∵抛物线L 1的对称轴和L 2的对称轴为x=66222b ka k-=-=-=-3, 又F (0,5k ),∴点F 关于直线x=-3对称的点E 的坐标为E (-6,5k ), 则EF 就等于0-(-6)=6.所以线段EF =6. ………………………………………………………6分(3).存在实数k ,使MN =2EF , ∵抛物线L 1 顶点M (-3,-9+5k ) 抛物线L 2 顶点N (-3,-4k ),由题意得NM=4(59)k k ---=2⨯6………9分 解得173k =,213k =-………………………10分六.(本大题共1小题, 共12分)24.解:(1)证明:在正方形ABCD 中,∠ADC=90°,∵∠FDE=∠ADC=90°,∴∠FDA=∠CDE ,DC=AD ,∠DCE=∠DAF=90°,∴△ADF ≌△CDE ,∴CE=AF ;…………………………………3分(2)当点E 在BC 上时,如答图1:过M 作MG ⊥AB 于G ,CB ⊥AB ,∴MG ∥BC. 设MG=h ,又∵∠GAM=45°,∴AG=MG=h ,FG MG FB BC =,44x h h x x+=+-, 42x h -=,2141224x y x x x -==-+(0<x ≤4).…………………………6分 当点E 在CB 的延长线上时,如答图2:过M 作MG ⊥BF 于G ,则MG ∥CE ,∴MG FG BE FB =,44h x h x x -=-+,42x h -=, 2141224x y x x x x -==-(x >4);…………………………………………9分 (3)如图3,过E 作EG ∥AB 交AC 于G ,连接DM ,又∵∠EGC=∠GCE=45°,∴EG=EC=AF ,∴∠FAM=∠MGE ,∠MFA=∠GEM ,∴△FAM ≌△EGM ,ME=FM ,由(1)可得△FDE 是等腰直角三角形,∴DM ⊥EF ,∴∠MDE=45°,则∠DNA=∠MDC=45°+∠CDN ,∠DAN=∠DCM=45°∴△AND ∽△CDM ,∴AN AD CD CM=,∴AN ·CM=AD ·CD=16.…………………………………………12分。