华东理工大学化工原理ppt(内部绝密)(1)
合集下载
华东理工化工原理第一章01
第一章 流体流动
1 概述 1.1 流体流动的考察方法 1.1.1 连续性假定 固体力学:考察对象--单个固体,离散介质 流体力学:考察对象--无数质点,连续介质 例如 点压强的考察 p (正压力/面积)
质点 — 含有大量分子的流体微团,其尺寸 远小于设备尺寸、远大于分子平均自由程
可能性: 1mm3常温常压气体含2.5×1015个分 子,分子平均自由程为0.1μm量级
= Hg ( ρi – ρ ) ∴ R = H
∵ρi > ρ
PA – PB = Hg ( ρi – ρ ) > 0 PA > PB
pA +zAρg > pB +zBρg
pA > pB +(zB –zA)ρg > pB
∴ pA > pB
重点总结
1、质点、连续性假定、流体流动的两种考察 方法(拉格朗日法、欧拉法)、轨线与流线、 定态、系统与控制体 2、流体的作用力 – 体积(质量)力、表面力、 牛顿黏性定律、黏度 3、流体流动的机械能 – 动能、位能、压强能
重点总结
4、流体静力学 - 静止流体受力平衡的研究方 法;欧拉平衡方程、压强和势能的分布、平 衡方程在重力场中的应用 5、静力学方程应用条件、虚拟压强的物理意 义、静力学方程三种表达方式 6、压强的表示方法和单位换算、压强的基准 (绝对压强、表压,真空度) 7、静力学方程应用、压强的测量 (简单测 压管、U形测压管 、U形压差计)
② 牛顿型流体与非牛顿型流体的区别 μ= f (物性,温度) t↑, μ气↑,μ液↓
常识: 常温常压下,μ水=1mPa⋅s,μ气=0.018mPa⋅s。 数量级: μ液≈100μ气 换算关系: 1cP = 10-3 Pa.s = 1mPa.s
1 概述 1.1 流体流动的考察方法 1.1.1 连续性假定 固体力学:考察对象--单个固体,离散介质 流体力学:考察对象--无数质点,连续介质 例如 点压强的考察 p (正压力/面积)
质点 — 含有大量分子的流体微团,其尺寸 远小于设备尺寸、远大于分子平均自由程
可能性: 1mm3常温常压气体含2.5×1015个分 子,分子平均自由程为0.1μm量级
= Hg ( ρi – ρ ) ∴ R = H
∵ρi > ρ
PA – PB = Hg ( ρi – ρ ) > 0 PA > PB
pA +zAρg > pB +zBρg
pA > pB +(zB –zA)ρg > pB
∴ pA > pB
重点总结
1、质点、连续性假定、流体流动的两种考察 方法(拉格朗日法、欧拉法)、轨线与流线、 定态、系统与控制体 2、流体的作用力 – 体积(质量)力、表面力、 牛顿黏性定律、黏度 3、流体流动的机械能 – 动能、位能、压强能
重点总结
4、流体静力学 - 静止流体受力平衡的研究方 法;欧拉平衡方程、压强和势能的分布、平 衡方程在重力场中的应用 5、静力学方程应用条件、虚拟压强的物理意 义、静力学方程三种表达方式 6、压强的表示方法和单位换算、压强的基准 (绝对压强、表压,真空度) 7、静力学方程应用、压强的测量 (简单测 压管、U形测压管 、U形压差计)
② 牛顿型流体与非牛顿型流体的区别 μ= f (物性,温度) t↑, μ气↑,μ液↓
常识: 常温常压下,μ水=1mPa⋅s,μ气=0.018mPa⋅s。 数量级: μ液≈100μ气 换算关系: 1cP = 10-3 Pa.s = 1mPa.s
化工原理 第三版 陈敏恒 课件 华东理工内部1
积分得 p+ρgz=常数 或 p1 p2 gz1 gz 2 等高等压,等压面
p2 pa g( z1 z2 ) pa gh
讨论: 1)p2=p1+ρg h 适用条件:静止流体,重力场,不可压缩流体 2)如上底面取在容器的液面上,其压力为p0 下底面取在容器的任意面上,其压力为p 则p =p0+ρg h 3)当p1有变化时,p2也发生同样大小的变化。 p还与ρ, h有关 ρ↑ p↑ h↑ p↑ 4)等压面——在静止的、连续的、同一流体内,处 于同一水平面上各点的压强相等。
解:从1至2截面排柏努利方程 2 u 任一瞬时 h g ∴ u 2 gh
2
对桶内液体作质量衡算 输入+生成=输出+积累
π π dh 00 d u D 4 4 dt
2 2
D dh u 2 gh d dt
2 2
D dh dt d 2g h
2 2
D dh dt 200s d 2g h
1.1.3 流体受力 体积力 作用于体积中的各个部位,力的大小与体积 (质量)有关。如:重力,惯性力,离心力。 表面力 分解成:垂直于作用面,压力 p ; 平行于作用面,剪切力τ 。
1.1.4 流体黏性 (录像)
黏性的物理本质:分子间引力和分子热运动、碰撞。 牛顿黏性定律 τ —剪应力N/m2(Pa),μ —粘度 N∙s/m2(Pa∙s ) 表明①流体受剪切力必运动。 ②牛顿型流体与非牛顿型流体的区别。 μ =f(温度,压强) ,压强不高,可以忽略。 对液体,温度升高,黏度下降(内聚力为主) 对气体,温度升高,黏度上升(热运动为主) 理想流体: 假定μ =0
=
u dA u A
化工原理完整教材精品PPT课件
图1-1 煤气洗涤装置
1.1 概述
确定流体输送管路的直径, 计算流动过程产生的阻力和 输送流体所需的动力。
根据阻力与流量等参数 选择输送设备的类型和型号, 以及测定流体的流量和压强 等。
流体流动将影响过程系 统中的传热、传质过程等, 是其他单元操作的主要基础。
图1-1 煤气洗涤装置
1.1.1 流体的分类和特性
变,可视为不可压缩流体。 纯液体的密度可由实验测定或用查找手册计算的方
法获取。 混合液体的密度,在忽略混合体积变化条件下,
可用下式估算(以1kg混合液为基准),即
(1-2)
式中ρi ---液体混合物中各纯组分的密度,kg/m3; αi ---液体混合物中各纯组分的质量分率。
1.2.1 流体的密度
1.2.1.2 气体的密度 气体是可压缩的流体,其密度随压强和温度而变化。
2 本章应掌握的内容 (1) 流体静力学基本方程式的应用; (2) 连续性方程、柏努利方程的物理意义、适用 条件、解题要点;
(3) 两种流型的比较和工程处理方法; (4) 流动阻力的计算; (5) 管路计算。 3. 本章学时安排
授课14学时,习题课4学时。
1.1 概述
流体流动规律是本门课程的重要基础,主要原因有 以下三个方面:
气体的密度必须标明其状态。 纯气体的密度一般可从手册中查取或计算得到。当压
强不太高、温度不太低时,可按理想气体来换算:
(1-3)
式中
p ── 气体的绝对压强, Pa(或采用其它单位); M ── 气体的摩尔质量, kg/kmol;
R ──气体常数,其值为8.315;
1.2.1 流体的密度
单位体积流体所具有的质量称为流体的密度。以ρ表
示,单位为kg/m3。
化工原理完整教材课件
实验原理理解
深入理解实验的基本原理,为实验操作和结果分析提供理论依据。
实验数据处理与分析方法
数据记录与整理
掌握实验数据的记录方法,以及如何整理和筛选有效数据 。
误差分析
了解误差的来源和其对实验结果的影响,掌握误差分析和 减小误差的方法。
数据分析与处理
掌握常用的数据处理和分析方法,如平均值、中位数、标 准差等。
物质从高浓度区域向低浓度区域 的转移过程。
传质速率
表示物质转移快慢的物理量,与 扩散系数、浓度差和传质面积成
正比。
扩散系数
表示物质在介质中扩散快慢的物 理量,与物质的性质、温度和压
力有关。
吸收
吸收过程
利用混合气体中各组分在液体溶剂中的溶解度差异,使气体混合 物中的有害组分或杂质组分被吸收除去的过程。
在制药工业和食品工业中,化工原理 涉及药物的合成、分离和提纯,以及 食品的加工和保藏等环节。
02
流体流动
流体静力学
总结词
描述流体在静止状态下的压力、密度和重力等特性。
详细描述
流体静力学主要研究流体在静止状态下的压力分布、流体对容器壁的压力以及 流体与固体之间的作用力。它涉及到流体的平衡性质和流体静压力的基本规律 。
利用气体在液体中的溶解度差异,通过鼓入空气或通入其他气体 产生泡沫而实现分离的方法。
05
化学反应工程
化学反应动力学基础
1 2 3
反应速率与反应机理
介绍反应速率的定义、计算方法以及反应机理的 基本概念,阐述反应速率的测定和影响因素。
反应动力学方程
介绍反应动力学方程的建立、求解及其在化学反 应工程中的应用,包括速率常数、活化能等参数 的确定方法。
对流传热速率方程
深入理解实验的基本原理,为实验操作和结果分析提供理论依据。
实验数据处理与分析方法
数据记录与整理
掌握实验数据的记录方法,以及如何整理和筛选有效数据 。
误差分析
了解误差的来源和其对实验结果的影响,掌握误差分析和 减小误差的方法。
数据分析与处理
掌握常用的数据处理和分析方法,如平均值、中位数、标 准差等。
物质从高浓度区域向低浓度区域 的转移过程。
传质速率
表示物质转移快慢的物理量,与 扩散系数、浓度差和传质面积成
正比。
扩散系数
表示物质在介质中扩散快慢的物 理量,与物质的性质、温度和压
力有关。
吸收
吸收过程
利用混合气体中各组分在液体溶剂中的溶解度差异,使气体混合 物中的有害组分或杂质组分被吸收除去的过程。
在制药工业和食品工业中,化工原理 涉及药物的合成、分离和提纯,以及 食品的加工和保藏等环节。
02
流体流动
流体静力学
总结词
描述流体在静止状态下的压力、密度和重力等特性。
详细描述
流体静力学主要研究流体在静止状态下的压力分布、流体对容器壁的压力以及 流体与固体之间的作用力。它涉及到流体的平衡性质和流体静压力的基本规律 。
利用气体在液体中的溶解度差异,通过鼓入空气或通入其他气体 产生泡沫而实现分离的方法。
05
化学反应工程
化学反应动力学基础
1 2 3
反应速率与反应机理
介绍反应速率的定义、计算方法以及反应机理的 基本概念,阐述反应速率的测定和影响因素。
反应动力学方程
介绍反应动力学方程的建立、求解及其在化学反 应工程中的应用,包括速率常数、活化能等参数 的确定方法。
对流传热速率方程
化工原理第1章课件PPT
贾绍义 《化工原理》(下册)授课课件 在本课件制作过程中,得到天津大学化工学院化工系的有关教师的 指导和帮助,在此致以诚挚的感谢!由于制作者水平所限, 本课件不妥之处甚至错误在所难免,恳请用户批评指正。 制作者 2008年12月
1
学时安排
总学时48
绪论 第1章 流体流动 第2章 流体输送机械
1学时 13学时 8学时
m pM V RT
T0 pM 22.4Tp0
24
流体的密度
(2)混合物的密度 液体混合物,混合前后体积不变
1
组分的 质量分 数 组分的体 积分数
m
x wA
A
x wB
B
...
x wn
n
气体混合物,混合前后质量不变
m A x VA B xVB ... n x Vn
29
一、牛顿黏性定律
牛顿型流体(Newtonian fluid)
遵循牛顿黏性定律的流体为牛顿型流体。
所有气体和大多数低分子量液体均属牛顿 型流体,如水、空气等。
30
一、牛顿黏性定律
非牛顿型流体(non-Newtonian fluid)
凡不遵循牛顿黏性定律的流体为非牛顿型 流体(non-Newtonian fluid)。
13
三、课程的学习要求
①单元操作设备的选择能力。 ②工程设计能力。
③操作和调节生产过程的能力。
④过程开发或科学研究能力。
14
绪 论
0.1 化工原理课程的性质和基本内容 0.2 单位制和单位换算
15
一、 物理量的单位
1.基本单位和导出单位 基本单位:质量、长度、时间和温度。 导出单位:速度、密度、加速度。 2.绝对单位制和重力单位制 绝对单位制:长度、质量、时间。 重力单位制:长度、时间和力。
华东理工化工原理课程设计ppt
(塔径定后及流体力学校核时可调整)
计算两相流动参数
F LV Ls Vs ρL ρV
Vs——气相流率,m3/s Ls——液相流率,m3/s
查图4-9得气相负荷因子C20 计算液泛速度uf
u f C 20 (
20
)
0 .2
(
L V V
)
0 .5
溶液的表面张力 手算参考文献[1]p25
2.3.4负荷性能图 参考[1]p135 要详细计算 V ①液相下限线 ②液相上限线 ③漏液线 ④过量液沫夹带线 ⑤溢流液泛线 ⑥精馏线和提馏线
m /s 1
3
A 精馏线 4
●
B 提馏线 5
●
2 3
3 L m /s
(精馏段与提馏段负荷应在负荷性能图内)
①液相下限线 由how=6mm计算
V 4
●
A 精馏线 B 提馏线 5
2.3.2塔板详细设计
参考[1]p117
参考表4-11取hw 取ho
(为保证液封ho<hw或用凹受液盘折降液板)
由塔径取WS WC 参考[1]p119
由Lw/D查图 4-21得Wd
计算鼓泡区面积Aa
取筛孔直径d0 (3-8;10-25mm )及t/d0(2.5~4)
计算开孔率φ及筛孔面积A0
2.3.3塔板流体力学校核 参考[1]p133 ①板压降校核 干板压降+液层阻力 △p总<△p允许 ②液沫夹带量校核 eV<0.1kg液/kg汽 ③溢流液泛条件校核 降液管内泡沫层高度 Hfd<HT+hw ④液体在降液管内停留时间校核 τ=Af Hd /LS>3~5s ⑤漏液点的校核(需试差) k=uo /uow>1.5~2
化工原理完整教材课件 PPT
基本原理及其流动规律解决关问题。以
图1-1为煤气洗涤装置为例来说明: 流体动力学问题:流体(水和煤气)
在泵(或鼓风机)、流量计以及管道中 流动等;
流体静力学问题:压差计中流体、 水封箱中的水
图1-1 煤气洗涤装置
1.1 概述
确定流体输送管路的直径, 计算流动过程产生的阻力和 输送流体所需的动力。
根据阻力与流量等参数 选择输送设备的类型和型号, 以及测定流体的流量和压强 等。
流体流动将影响过程系 统中的传热、传质过程等, 是其他单元操作的主要基础。
图1-1 煤气洗涤装置
1.1.1 流体的分类和特性
气体和流体统称流体。流体有多种分类方法: (1)按状态分为气体、液体和超临界流体等; (2)按可压缩性分为不可压流体和可压缩流体; (3)按是否可忽略分子之间作用力分为理想流体与粘
化工原理完整教材课件
第一章 流体流动
Fluid Flow
--内容提要--
流体的基本概念 静力学方程及其应用 机械能衡算式及柏努 利方程 流体流动的现象 流动阻力的计算、管路计算
1. 本章学习目的
通过本章学习,重点掌握流体流动的基本原理、管 内流动的规律,并运用这些原理和规律去分析和解决流 体流动过程的有关问题,诸如:
气体的密度必须标明其状态。 纯气体的密度一般可从手册中查取或计算得到。当压
强不太高、温度不太低时,可按理想气体来换算:
(1-3)
式中
p ── 气体的绝对压强, Pa(或采用其它单位); M ── 气体的摩尔质量, kg/kmol;
性流体(或实际流体); (4)按流变特性可分为牛顿型和非牛倾型流体;
流体区别于固体的主要特征是具有流动性,其形状随容器形状 而变化;受外力作用时内部产生相对运动。流动时产生内摩擦从而 构成了流体力学原理研究的复杂内容之一
《化工原理第一讲》ppt课件
•单元操作特点: •1〕.都是物理操作。 •2〕.都是化工消费过程中共有的操作。 •3〕.用于不同化工消费过程的同一单元操作,其原理一 样,所用设备亦通用。
化工单元操作的目的是:
①物料的保送;
②物料物理形状的改动;
③混合物料的分别。
三传实际:动量;热量;质量
一反:化学反响
2 单位制与单位换算
•1〕 单位制
结晶器
II
I
P kg/h
96%KNO3
R kg/h 37.5%KNO3
• 4.列算式: • 方框I:总物料:1000=W+P • KNO3组
方分框:1I0I0:0×总0物.2料=W:×S=0+PP+×R 0.96
KNO3组分:S×0.5=P×0.96+R×0.375
W=791.7 kg/h P=208.3 kg/h S=974.8 kg/h R=766.5 kg/h
解:1.绘简图 0.095kg/s
25℃溶液 1.0kg/s
换热器
80℃溶液 1.0kg/s
2.定基准:1s,0℃,液体 3.划范围:以换热器为衡算范围
120℃饱和水 0.095kg/s
120℃饱和水蒸汽 0.095kg/s
25℃溶液 1.0kg/s
换热器
80℃溶液 1.0kg/s
120℃饱和水 0.095kg/s
• 阅历公式的单位换算,也可采用换算因数将规定单位换 算成所要求单位。
• 例0-2:水蒸汽在空气中分散系数为:
1.46104
5
T2
D
P T441
式中:D-分散系数,ft2/h;
P-压强,atm;
T-兰氏温度,oR。
试将式中各符号单位换算成 D:m2/s;P:Pa;T:K
华东理工大学化工原理讲稿和ppt
+
xD R+1
②提馏段操作方程
V yn+1 = Lxn + DxD − FxF
yn
=
L V
xn−1
+
DxD − V
FxF
yn
=
(R
RD + 1)D
+ −
qF (1 −
q)F
xn−1
+
(R
DxD − FxF + 1)D − (1 − q)F
③操作线
精馏段过(xD, xD)点,截距
提馏段过(xW, xW)点, 斜率
⑷由上往下按平衡关系、操作关系依次交替作阶 梯
④最优加料位置的确定 xm−1 < xq < xm 为最佳加料位置, 过前或过后N↑
5.2 设计型计算命题
已知:F, xF, xD, xW 选择:P, q, R
求:N, m
①总压 P 的选择与加热、冷凝温度、α有关
②回流比的选择
经济上,R↑, 能耗↑
f (P,t)
道尔顿分压定律
yA
=
pA P
=
PA0 ( P
t
)
x
A
相∴平K衡A常= 数PA0定,义注为意KKAA并= 非xyAA常数
①泡点线(液相线)
xA
=
P − PB0 (t ) PA0 (t ) − PB0 (t )
②露点线(汽相线)
yA
=
PA0 P
P− PA0 (t )
PB0 (t ) − PB0 (t )
= α1α 2 Λ
αN
xN 1− xN
由y1=xD,xN=xW(塔釜)
且记 α = N α1α 2 Λ α N ,N=Nmin
化工原理_第三版_陈敏恒_课件_华东理工内部第03章
3.2 混合机理 3.2.1 搅拌器的两个功能 (1)总体流动 将流体输送到搅拌釜内各处 大尺度宏观混合。
(2)强剪切或高度湍动 产生剪切力场或旋涡 小尺度宏观混合,促进微观混合。 注意:流体不是靠桨叶直接打碎的,而是靠高剪 切力场撕碎的。
射流现象
作用 ①夹带 ②剪切, 脉动
3.2.2 均相液体的混合机理 (1)低黏度液体的混合 总体流动+高度湍动 最小液团尺寸为10μm量级 (2)高黏度及非牛顿流体的混合 多处于层流状态——混合机理主要依赖于 充分的总体流动。 3.2.3 非均相物系的混合机理 (1)液滴或气泡的分散
(3) 偏心安装 ——破坏循环回路 的对称性 (录像)
(4) 装导流筒——避免短路及死区
3.4 搅拌功率 3.4.1 混合效果与功率消耗 功率消耗 P =ρgHqV 增加功率——改善混合效果 能量合理有效利用——与桨形、尺寸选择有关 大尺度:qv大;小尺度:H大;→P大 对搅拌器,要求能消耗更多的功率(如设置挡 板),以获得较好的搅拌效果。(与泵不同) 搅拌器设计:不是设法提高效率η,而是设法增 加功率P。尽管如此,搅拌装置仍存在能量的有 效利用。 如需要快速分布,要有大流量; 如需要高破碎度,要有高湍动。
(3)气泡尺度的分布 原理基本相同,但气液界面张力比液液界面 张力为大,气液密度差大,大气泡易浮升到液 面,因此分散更加困难。
(3)搅拌器的性能 3.3.1 常用搅拌器的性能 (1) 旋桨式搅拌器(录像) qV大,H小,轴向流出 叶片端速度5~15m/s 适于低黏度液体 μ<10Pa· s (2) 涡轮式搅拌器(录像) qV小,H大,径向流出 叶片端速度3~8m/s 适于中等黏度液体 μ<50Pa· s
1
3.4.3 搅拌功率的分配
化工原理课件PPT
物理量的基本量的量纲为其本身。
SI量制中7个基本量的量纲符号:
L(长度) 、 M(质量) 、 T(时间) 、 I(电流) 、 (热力学温度) 、N(物质的量) 、J(发光强度) 。
导出量 的量纲表达式:
dQ im L M T I N J
dim—量纲符号 ,; ,—量纲指数或因次。
华东交大化工原理电子课件
表0-1 国际单位制的基本单位
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
华东交大化工原理电子课件
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
华东交大化工原理电子课件
一、物质的量浓度与物质的量分数
1.物质的量浓度
ci
ni V
2.物质的量分数
对于液体混合物: 其中,
xi
ni n
nn 1n 2 n i
x 1x2 xi 1
华东交大化工原理电子课件
二、物质的质量浓度与物质的质量分数
1.物质的质量浓度 2.物质的质量分数
i
mi V
对于液体混合物:
i
mi m
其中,
最终状态就是体系的平衡状态。
四、传递速率
传递速率
推动力 阻力
五、 经济核算
为生产定量的某种产品所需要的设备,根据设备的型式和
材料的不同,可以有若干设计方案。对同一台设备,所选用
的操作参数不同,会影响到设备费与操作费。因此,要用经
济核算确定最经济的设计方案。
SI量制中7个基本量的量纲符号:
L(长度) 、 M(质量) 、 T(时间) 、 I(电流) 、 (热力学温度) 、N(物质的量) 、J(发光强度) 。
导出量 的量纲表达式:
dQ im L M T I N J
dim—量纲符号 ,; ,—量纲指数或因次。
华东交大化工原理电子课件
表0-1 国际单位制的基本单位
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
华东交大化工原理电子课件
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
华东交大化工原理电子课件
一、物质的量浓度与物质的量分数
1.物质的量浓度
ci
ni V
2.物质的量分数
对于液体混合物: 其中,
xi
ni n
nn 1n 2 n i
x 1x2 xi 1
华东交大化工原理电子课件
二、物质的质量浓度与物质的质量分数
1.物质的质量浓度 2.物质的质量分数
i
mi V
对于液体混合物:
i
mi m
其中,
最终状态就是体系的平衡状态。
四、传递速率
传递速率
推动力 阻力
五、 经济核算
为生产定量的某种产品所需要的设备,根据设备的型式和
材料的不同,可以有若干设计方案。对同一台设备,所选用
的操作参数不同,会影响到设备费与操作费。因此,要用经
济核算确定最经济的设计方案。
化工原理第三版陈敏恒课件华东理工内部资料
通常,泵设计点(额定流量下)α1=90° qV 流量 qV A2 w2 sin 2 或 w2
u c cos u u H q ctg g g gA
2 2 2 2 2 2 T V 2 2
A2 sin 2
2.2.1.4 理论压头的影响因素 (1)叶片弯角β2和流量qV
(2)叶轮转速n u2=nπD2 如果qV∝n,那么HT∝n2 (3)液体密度不出现 Δp∝ρgHT , 气缚现象(录像) 灌泵——吸入管装单向阀, 泵启动前:灌泵排气
2.2.1.3 理论压头 P c2 以静止系考察:势能 ,动能 g 2g c绝对速度 总机械能变化
2 2 2 2 P2 P1 c2 c12 u2 c2 w2 u12 c12 w12 HT g 2g 2g 2g u2 c2 cos 2 u1 c1 cos 1 g
w Xdx Ydy Zdz d( ) 2
2
dp
X 2x ,Y 2 y , Z g u r
得 或
2 2 p1 u12 w12 p2 u2 w2 z1 z2 g 2 g 2 g g 2g 2g 2 2 P2 P1 u2 u12 w12 w2 g 2g 2g
②管路特性曲线下移,
2.2.3.2 流量调节 (1)出口阀开度 优点:调节简便、灵活 缺点:能耗 (2)改变转速n 节能,但不方便
新老泵特性曲线关系 2 2 q'V n' H ' n' q'V 时,
qV n
H n qV
H 2 H ' 2 q'V ∴ qV
(等效率点)
2.1.3 流体输送机械分类 按作用原理分: 动力式(叶轮式):离心式,轴流式; 容积式(正位移式):往复式,旋转式; 其它类型:喷射式,流体作用式等。 按流体可压缩性分: 液体输送机械:统称为泵; 气体输送机械:通风机 鼓风机 压缩机 真空泵
化工原理ppt课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案全套电子讲义完整版ppt
二、压力、流速和流量的测量
为了了解和控制生产过程,需要测定管路或设备内的 压力、流速及流量等参数,以便合理地选用和安装测量仪 表。而这些测量仪表的工作原理又多以流体的静止或流动 规律为依据。
第二节 流体静力学
一、流体的压缩性
流体的特征是分子之间的内聚力极小,几乎有无限的 流动性,而且可以几乎毫无阻力地将其形状改变。当流速 低于声速时,气体和液体的流动具有相同的规律。
热力学基本方程式是以液体为例推导出来的,也适用 于气体。因在化工容器中,气体的密度也可认为是常数。 值得注意的是,静力学基本方程式只能用于静止的连通着 的同一种流体内部,因为他们是根据静止的同一种连续的 液柱导出的。
3、静力学基本方程的应用 流体静力学基本方程在化工生产过程中应用广泛,通 常用于测量流体的压力或压差、液体的液位高度等。
2、静力学基本方程的讨论
(1)在静止的液体中,液体任一点的压力与液体密度 和其深度有关。液体密度越大,深度越大,则该点的压力 越大。
(2)在静止的、连续的同一液体内,处于同一水平面 上各点的压力均相等。此压力相等的截面称为等压面。
第二节 流体静力学
(3) 当液体上方的压力或液体内部任一点的压p1 力 有变化时,液体内部各点的压力p2 也发生同样大小的变 化。
气压强为基准测得的流体 表压=绝对压强-(外界)大气压强
③真空度 当被测流体内的绝对压强小于当地(外界)大气压强 时,使用真空表进行测量时真空表上的读数称为真空度。即
真空度=(外界)大气压强-绝对压强
第二节 流体静力学
在这种条件下,真空度值相当于负的表压值。 图1-1 绝对压强、表压和真空度的关系 因此,由压力表或真空表上得出的读数必须根据当时、 当地的大气压强进行校正,才能得到测点的绝对压。 绝对压强、表压强与真空度之间的关系,可以用图11表示。 为了避免绝对压强、表压与真空度三者关系混淆,在 以后的讨论中规定,对表压和真空度均加以标注,如 2000Pa(表压)、600mmHg(真空度)。如果没有注明, 即为绝压。
为了了解和控制生产过程,需要测定管路或设备内的 压力、流速及流量等参数,以便合理地选用和安装测量仪 表。而这些测量仪表的工作原理又多以流体的静止或流动 规律为依据。
第二节 流体静力学
一、流体的压缩性
流体的特征是分子之间的内聚力极小,几乎有无限的 流动性,而且可以几乎毫无阻力地将其形状改变。当流速 低于声速时,气体和液体的流动具有相同的规律。
热力学基本方程式是以液体为例推导出来的,也适用 于气体。因在化工容器中,气体的密度也可认为是常数。 值得注意的是,静力学基本方程式只能用于静止的连通着 的同一种流体内部,因为他们是根据静止的同一种连续的 液柱导出的。
3、静力学基本方程的应用 流体静力学基本方程在化工生产过程中应用广泛,通 常用于测量流体的压力或压差、液体的液位高度等。
2、静力学基本方程的讨论
(1)在静止的液体中,液体任一点的压力与液体密度 和其深度有关。液体密度越大,深度越大,则该点的压力 越大。
(2)在静止的、连续的同一液体内,处于同一水平面 上各点的压力均相等。此压力相等的截面称为等压面。
第二节 流体静力学
(3) 当液体上方的压力或液体内部任一点的压p1 力 有变化时,液体内部各点的压力p2 也发生同样大小的变 化。
气压强为基准测得的流体 表压=绝对压强-(外界)大气压强
③真空度 当被测流体内的绝对压强小于当地(外界)大气压强 时,使用真空表进行测量时真空表上的读数称为真空度。即
真空度=(外界)大气压强-绝对压强
第二节 流体静力学
在这种条件下,真空度值相当于负的表压值。 图1-1 绝对压强、表压和真空度的关系 因此,由压力表或真空表上得出的读数必须根据当时、 当地的大气压强进行校正,才能得到测点的绝对压。 绝对压强、表压强与真空度之间的关系,可以用图11表示。 为了避免绝对压强、表压与真空度三者关系混淆,在 以后的讨论中规定,对表压和真空度均加以标注,如 2000Pa(表压)、600mmHg(真空度)。如果没有注明, 即为绝压。
化工原理多媒体教学课件
1 . 化学工程学科中的基本概念
化工单元操作的分类 根据单元操作的理论基础进行的分类
1)以动量传递(momentum transfer)理论为基础: 流体流动、流体输送机械、沉降、过滤、搅拌、固体流态化 等
2)以热量传递(heat transfer)理论为基础: 加热、冷却、蒸发 等 3)以质量传递(mass transfer)理论为基础: 吸收、精馏、萃取、干燥 等
产过程与设备计算的工程技术学科。
化学工程:研究以化学工业为代表的过程工业中有关化学过程 和物理过程的一般原理和共性规律,解决过程和装置的开发、 设计、操作及优化的理论和方法问题。
化工单元操作:(unit operation of Chemical Engineering):
一物理性的化工基本操作过程。 任何一种化工过程(chemicals production process)均是由若干化工单 元操作及化学反应过程有机组合而成。
流体中发生的这三种传递现象(transport phenomena)都是由于
流体质点的运动和分子扩散运动所产生的结果。
流体流动: 研究流体流动的规律,完成流体输送的任务。
流体输送机械:研究流体输送机械的性能特点,进行正确的选用及安装。
沉降:利用密度差,从气体或液体中分离悬浮的固体颗粒、液滴或气泡。
过滤:根据尺寸不同的截留,从气体或液体中分离悬浮的固体颗粒。
随着新产品、新工艺的开发或为实现绿色化工生产,对物理过程提出了
一些特殊要求,又不断地发展出新的单元操作或化工技术,如膜分离、参数 泵分离、电磁分离、超临界技术等。同时,以节约能耗,提高效率或洁净无 污染生产的集成化工艺(如反应精馏、反应膜分离、萃取精馏、多塔精馏系 统的优化热集成等)将是未来的发展趋势。
化工原理1ppt课件
NH3+H2O====氨水
用水吸收二氧化氮制造硝酸、用水吸收甲醛以制备福尔马林溶液。
(等分子反向扩散加上总体流动)
NA=JA+NM
CA CM
N= NA= NM
N
=
B
0
气相:NA=RD TPP BmPA1- PA2
液相:NAL= D LC CS M mCA1- CA2L
精选PPT课件
10
漂流因子
▪ 定义式:
气相: P P Bm
PB
=
m
PB
-
2
PB
1
ln PB2
PB1
▪ 物理意义:
液相: C M C sm
化工原理总复习提纲
(适用于有机化工、环境工程、 应用化学、精细化工专业)
2004年4月5日
精选PPT课件
1
第八章 传质过程概论
第一节 概述 传质定义 分类 四个工具(传质速率方程)
第二节 扩散与单相传质 分子扩散与fick定律 等分子反向扩散、单向扩散 扩散系数 涡流扩散与对流传质
第三节 质量、热量和动量传递的类比
(双膜理论 传质系数) 第四节 吸收设计计算
(操作线方程、最小吸收剂用量、 低浓度气体吸收填料层高度计算) 第五节 传质系数和传质理论 第六节 其他条件下的吸收(非等温、多组分、化学)
精选PPT课件
18
第一节 概述
1.1 处理对象 1.2 定义 1.3 吸收剂的选择 1.4 吸收的类型与例子 1.5 吸收与精馏的比较
D= P
1/3
vA
1
MA
1 MB
vB
1/3 2
1.75
D=D0
p0 p
T T0
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.往复泵 3.1 主要构件:泵缸、活塞、活门 3.2 工作原理:直接提供压强能
3.3 流量特点: 1)正位移特性:流量由泵决定, 与管路特性无关 2)流量: qV = A L n ηV A泵缸截面, L活塞行程, n转速, ηV容积效率 3)不均匀性: 加气室, 双动, 多缸
4)流量调节: ①旁路阀 ②改变转速和行程 3.4扬程: 在电机功率范围内, 由管路特性决定 3.5操作: 一般无气缚,能自吸 3.6安装: 不装出口调节阀 也有汽蚀问题
3. 先变压后恒压 从τ =τ1, q=q1起开始恒压操作 2 2 (q q1 ) 2qe (q q1 ) K ( 1 ) 2 2 2 ( V V ) 2 V ( V V ) KA ( 1 ) 或 1 e 1 4.生产能力的优化 间歇过滤机恒压操作有优化问题
qV n
H n qV
H 2 ∴ H ' q 2 q'V V
(等效率点)
3.组合操作 ①串联组合 同样流量下,两泵压头相加 H单=φ(qV), H串=2φ(qV)
例如: H单=20-2qV2 2 H串=40-4qV 工作点 H’ ≠ 2H
②并联组合 同样压头下,两泵流量相加
qV H单=φ(qV), H 并 ( ) 2
5.气体输送机械 5.1气体输送机械分类 按结构分: 离心式 例:离心风机 往复式 往复式压缩机 旋转式 罗茨风机 流体作用式 喷射泵 一般按进出口压强差分 : 通风机:出口压强≤15kPa(表) 鼓风机:出口压强15kPa~0.3MPa(表) 压缩机:出口压强>0.3MPa(表) 真空泵:生成负压,进口<0.1MPa, 出口0.1MPa
3.回转真空过滤机 2 ΔP一定, q K qe qe K qe2 qe
2.2 离心泵的特性曲线 1.泵的有效压头 泵内损失: 容积损失:部分流体漏回入口处 水力损失:μ ≠0,叶片数目有限 机械损失:轴承、轴封的摩擦 2.泵的有效功率 Pe=ρgqVHe Pa基本上随流量qV单调上升 泵启动时关出口阀 3.泵的效率 Pe
Pa
4.特性曲线的影响因素 ①密度: ρ对He~qV,η~qV无影响;对Pa~qV有影响 ②粘度: μ对He~qV,η~qV,Pa~qV都有影响 ③转速: 当n变化<20%时,比例定律:
Q V
dQ 令 0 可得τopt d 2 2 2 ( KA ( W D ) Ve ) Ve opt KA 2
W D
f ( )
叶滤机洗涤速率(面积,饼厚不变) PW dV dV d W P W d 终 当Ve=0时, P W 2VW W PW V 板框压滤机洗涤(面积减半,饼厚加倍) 1 PW dV dV d W 4 P W d 终 当Ve=0时 P W 8VW W PW V
化工原理复习 本科
第一章 流体流动
1 概述 1.1 流体流动的考察方法 质点---含有大量分子的流体微团,其尺寸 远小于设备尺寸、远大于分子平均自由程 连续性假定---流体是由无数质点组成的,彼此 间没有间隙,完全充满所占空间的连续介质 拉格朗日法---选定流体质点 欧拉法---选定空间位置 化工原理较多采用欧拉法
2 1 2 2
22 2 P2 P1 ( u1 u2 ) R ( i ) g 2( i ) g
P2 P1
(u u )
2 1 2 2
R与水平放、斜放、垂直放都无关
4 流体流动的内部结构 4.1 流动的型态 判断依据:雷诺数 Re du
层流和湍流的本质区别: 是否存在速度、压强的脉动性 4.1.2 流型判据 Re<2000 层流 2000<Re<4000 或为层流,或为湍流 Re>4000 湍流
' p'T pT
第四章 流体通过颗粒层的流动
1 概述 固定床—由许多固体颗粒堆积成的静止颗粒层 2 颗粒床层的特性 2.1 单颗粒的特性 非球形:定当量直径,目标不同结果不同 体积当量dev,
V
6
d
3 ev
球形度(形状系数)ψ
ψ≤1
2.2 颗粒群的特性 平均直径dm,准则:比表面相等
②
R= m
1 1 A. 0 ;B. C. ; 13.6 12.6
U形管指示的是什么? P A - P B= p A - p B pC = pA+ρgR pC = pB+ρigR PA - PB=R(ρi -ρ)g 指示的是虚拟压差,只有等高时才是压差
3.2 机械能守衡
u p2 u z1 g z2 g 2 2
粘性的物理本质--分子间引力和分子热运动、碰撞 牛顿粘性定律 μ =f(物性,温度) t↑, μ 气↑,μ 理想流体: 假定μ =0 2 流体静力学 静力学方程 p gz 常数 p1 p2 gz1 gz 2
液↓
等高等压 p2 pa g( z1 z2 ) pa gh 虚拟压强
q'V n' 如果 qV n
n' 则有 H 'e He n
3
2
P 'a n' Pa n
2.3 离心泵的流量调节和组合操作 1.工作点 工程处理方法:过程分解法
2.流量调节 ①出口阀开度 优点:调节简便、灵活 缺点:能耗 ②改变转速n 节能,但不方便 新老泵特性曲线关系 2 2 q'V n' 时,H ' n' q'V
w
p
5.2 过滤速率
dq K d 2(q qe )
qe为过滤介质当量滤液量
2 P K r
不可压缩滤饼,r=常数, K∝ΔP S 1-S P P , S为压缩指数 可压缩滤饼, r=r0 Δ , K∝Δ qe与介质性质、悬浮液性质有关 5.3过滤基本方程的应用 1.恒速过滤 K终 若τ=0, q=0则 q终 终 2(q终 qe ) 2. 恒压过滤 若τ=0, q=0则 q2+2qqe=Kτ 或 V2+2VVe=KA2τ 2 q K qe qe
,le---当量长度
实测的ζ和le已成图表,供设计使用 阻力的单位有三种: ①损失压降 Pa=N/m2 ②损失能量 J/kg ③损失压头 J/N=m
6.1.2 阻力损失压差—管路状况—流量三者关系
l u l 8q hf ( ) ( ) 2 4 d 2 d d
p1
2 1
2 2
,
J/kg
柏努利方程的物理意义:三项机械能之和为常数 或 2 2 p1 u1 p2 u2 z1 z2 , J/N=m
g 2 g
g 2 g
几何意义:位头、压头、速度头总高为常数
3.2.4 工程应用: (1)测风量 由1-1至2-2排方程
pa
u 2
结论:①管路状况一定,qV↑,hf↑ ②hf (ΔP)一定, ζ↑,qV↓ ③qV一定, ζ↑,hf↑ 图中,ζ↑,则hfAB____, pA____,pB____,为什么
P
2
2 V
6.2.1 串联管路计算
方程特点:hf总=hf1+hf2+hf3 qV=qV1=qV2=qV3
注意各段阻力计算的 u、l、d、λ的不同
例如: H单=20-2qV2 2 H并=20-0.5qV 工作点 q V’ ≠ 2 q V
2.4 离心泵的安装高度 1.汽蚀现象(录像)
叶轮入口K处压强最低,Hg太大时,pK≤pV, 液体汽化,形成汽泡,受压缩后溃灭。 后果:叶轮受冲击而出现剥落 泵轴振动强烈,甚至振断
规定必需汽蚀余量 (NPSH)r=(NPSH)c+Δ, 进泵样本,与流量有关 2 p u 实际汽蚀余量 NPSH 1 1 pV g 2 g g 须比(NPSH)r大0.5m以上, 最大允许安装高度[Hg]为
7.3 转子流量计
qV A0 u0 A0C R 2V f ( f ) g Af
转子流量计的特点:恒流速、恒压差 刻度换算: A( f B ) qVB qVA B( f A ) 出厂标准: 液体 1000 kg / m 3 气体 1.2kg / m 3
5 过滤计算 5.1 物料衡算 悬浮液含固量表示方法: 质量分数w, kg固体/kg悬浮液 3 3 φ , m /m 体积分数 固体 悬浮液
取1kg悬浮液
w/ p w / p (1 w ) /
取1m3悬浮液
p (1 ) 注意:①三个去向要清楚 ②基准要选好 3 1kg 1m 取 滤饼 取 滤饼 a/ a a / (1 a ) / p , (1 ) p
p0 pV [H g ] H f 01 [( NPSH )r 0.5] g g
实际安装高度Hg<[Hg]即可。
2.5 离心泵的类型与选用 1.类型 ①清水泵---单级、多级、双吸 ②耐腐蚀泵---用耐腐蚀材料 ③油泵---密封良好 ④液下泵---转轴特别长 ⑤屏蔽泵---无密封、无泄漏 2.选用 ①根据泵的工作条件,如腐蚀性、潜水等 确定泵的类型; ②根据管路所需的qV,H,确定泵的型号。
6.2.2 复杂管路计算 并联管路计算
分流或合流时,有能量的损失和交换,有时ζ <0 对于长管,三通处的阻力相对很小可忽略 方程特点: PA PB
hf 1 hf 2
qV总=qV1+qV2 注意hf不要重复计算
7 流速和流量的测量 7.1 毕托管
7.2 孔板流量计
文丘里流量计
孔板流量计的特点:结构简单,阻力损失较大 文丘里流量计特点:阻力损失较小,造价较高