Phase Equilibria in Reactive Distillation
WCDMA基本概念
WCDMA基本概念1.WCDMA的主要参数干检测多用户检测,智能天线标准支持,应用时可选FDD的UTRA使用以下频段:上行(UE发射,NODEB接收,即UE到UTRAN的方向):1920-1980MHz下行(UE接收,NODEB发射,即UTRAN到UE的方向):2110-2170 MHz发射和接收频率间隔190 MHz2.WCDMA的基本概念2.1. 多普勒(Doppler)效应在波源与观察者相对于介质均为静止的情况下,介质中各点的振动频率与波源的频率相等,亦即观察者接收到的频率与波源的频率相同。
若波源与观察者或两者同时相对于介质在运动,观察者接收到的频率不同于波源频率,这种现象称为多普勒效应。
例如,当飞机迎面而来时,人们听到飞机的轰鸣声音调变高,即人耳接收到的声波频率高于飞机发出的声波频率;背离而去时,人们听到的音调变低,即人耳接收到的声波频率低于飞机发出的声波频率。
对电磁波(无线电波或光波)来说,也能发生多普勒效应。
由于电磁波可以在真空中传播,真空中不存在介质,所以在讨论时,只需要考察光源与观测者之间的相对运动。
这时,必须根据相对论才能确定其多普勒效应的频率变化关系。
设光源的频率为,它相对于观察者的速度为,计算表明,观察者测得的频率为式中,c为电磁波的传播速度(即光速);以相对于观察者远离时为正,相对接近时为负。
上式表明,当光源相对于观察者离去(退行)时,;反之,。
2.2. 信道化码和扰码下面是信道化码和扰码的关系:信道码OVSF DATASymbol rateChip rate3.84MHzChip rate3.84MHz 扰码(3.84MHz)扩频/信道化是基于正交可变扩频因子(OSVF)技术,经过扩频后信号在频率上扩展了(即信号带宽变宽)。
同一信息源使用的信道化编码有一定的限制。
物理信道采用某个信道化编码必须满足:其码树的下层分支的所有码都没有被使用,也就是说此码之后的所有高阶扩频因子码都不能使用。
NORMA 4000 5000 Power Analyzer 用户说明手册说明书
Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.
BEGRENZTE GEWÄHRLEISTUNG UND HAFTUNGSBESCHRÄNKUNG
Fluke gewährleistet, daß jedes Fluke-Produkt unter normalem Gebrauch und Service frei von Material- und Fertigungsdefekten ist. Die Garantiedauer beträgt 2 Jahre ab Versanddatum. Die Garantiedauer für Teile, Produktreparaturen und Service beträgt 90 Tage. Diese Garantie wird ausschließlich dem Erster
肝素结合蛋白联合降钙素原、超敏C_反应蛋白对早期脓毒症的诊断及预后评估
肝素结合蛋白联合降钙素原、超敏C反应蛋白对早期脓毒症的诊断及预后评估曾 彬江苏省苏州市立医院本部急诊医学科,江苏苏州 215002[摘要] 目的 探讨肝素结合蛋白(HBP)、降钙素原(PCT)、超敏C反应蛋白(hs-CRP)联合用于诊断早期脓毒症的效果及预后评估。
方法选择2022年7月至2023年6月苏州市立医院收治的早期脓毒症患者72例作为观察组,选择同期住院的非感染疾病患者72例作为对照组,进行回顾性分析,检测HBP、PCT、hs-CRP指标,比较观察组患者与对照组体检者测定结果差异,分别计算单一指标及三项指标联合诊断脓毒症的灵敏度、特异度及准确度。
另外结合观察组患者预后情况比较存活患者与死亡患者三项指标检测结果。
结果观察组脓毒症患者HBP、PCT、hs-CRP水平高于对照组,差异有统计学意义(P < 0.05)。
三项指标联合诊断脓毒症的敏感度、准确度均高于单一指标检测,差异有统计学意义(P < 0.05)。
存活患者HBP、PCT、hs-CRP水平均低于死亡患者,差异有统计学意义(P < 0.05)。
结论 临床诊断早期脓毒症可采用HBP、PCT、hs-CRP三项指标联合分析方式,具有较高的敏感度与准确度,且便于评估患者预后质量,值得推广。
[关键词] 肝素结合蛋白;降钙素原;超敏C反应蛋白;早期脓毒症;预后[中图分类号] R459.7 [文献标识码] A [文章编号] 2095-0616(2024)05-0191-04DOI:10.20116/j.issn2095-0616.2024.05.44Heparin-binding protein combined with procalcitonin and hypersensitive C-reactive protein in the diagnosis and prognosis assessment of early sepsisZENG BinEmergency Medicine Department of Suzhou Municipal Hospital Headquarters, Jiangsu, Suzhou 215002, China [Abstract] Objective To explore the combined use of three indicators of heparin-binding protein (HBP), procalcitonin (PCT), and hypersensitive C-reactive protein (hs-CRP) in the diagnosis and prognosis assessment of early sepsis. Methods A total of 72 patients with early sepsis who were admitted to Suzhou Municipal Hospital for treatment from July 2022 to June 2023 were selected as the observation group, and 72 non-infectious disease patients who were hospitalized in the same hospital during the same period were selected as the control group. A retrospective analysis was conducted, and the indicators of HBP, PCT, and hs-CRP were tested. The differences in the test results between patients in the observation group and physical examiners in the control group were compared, and the sensitivity, specificity, and accuracy of a single indicator and a combination of three indicators for the diagnosis of sepsis were calculated, respectively. In addition, combined with the prognosis of patients in the observation group, the results of the three indicators of survivors and the dead were compared. Results The levels of HBP, PCT, and hs CRP in the observation group of sepsis patients were higher than those in the control group, with statistically significant differences (P< 0.05). The sensitivity and accuracy of the combined diagnosis of sepsis using three indicators are higher than those of single indicator detection, with statistically significant differences (P< 0.05). The levels of HBP, PCT, and hs CRP in surviving patients were lower than those in deceased patients, with statistically significant differences (P< 0.05). Conclusion The analysis of a combination of three indicators of heparin-binding protein, procalcitonin, and high-sensitivity C-reactive protein can be used for clinical diagnosis of early sepsis, which has high sensitivity and accuracy and is convenient for assessing the quality of patient prognosis. Therefore, it is worth promoting.[Key words] Heparin-binding protein; Procalcitonin; Hypersensitive C-reactive protein; Early sepsis; Prognosis脓毒症属于急危重症之一,其以病情发展速度快、症状严重为主要特点,临床病死率相对较高,是各级医院ICU 患者非心脏病变类病死的重要诱因[1]。
三相电源监测传感器系列产品说明书
2C D C 251 054 F 0t 08ᕅ ᕄ ᕃᕉᕇᕆ ᕈ ᕊCM-MPN.522C D C 251055 F 0t 08ᕅ ᕄ ᕃᕉᕇᕆ ᕈ ᕊCM-MPN.622C D C 251 056 F 0t08ᕅ ᕄ ᕃᕉᕇᕆ ᕈ ᕊCM-MPN.72Multifunctional three-phase monitoring relaysCM-MPN.52, CM-MPN.62 and CM-MPN.72Data sheetApplicationThe CM-MPN.x2 are multifunctional monitoring relays for three-phase mains. They monitor the phase parameters phase sequence, phase failure, over- and undervoltage and phase unbalance.The threshold values for over- and undervoltage and phase unbalance are adjustable.Order dataOrder data - AccessoriesFeaturesMonitoring of three-phase mains for phase sequence (can be switched off), phase failure, over- andu ndervoltage as well as phase unbalance Automatic phase sequence correction configurableThreshold values for phase unbalance, over- and undervoltage are adjustable as absolute values Tripping delay can be adjusted or switched off by means of a logarithmic scale ON-delayed or OFF-delayed tripping delay selectable Powered by the measuring circuit True RMS measuring principle1x2 or 2x1 c/o (SPDT) contact configurable 3 LEDs for status indicationApprovalsA UL 508, CAN/CSA C22.2 No.14(only CM-MPN.52 und CM-MPN.62)C GLD GOST K CB scheme ECCCMarksa CE bC-TickR/T: yellow LED - relay status, timingF1: red LED - fault message F2: red LED - fault messageAdjustment of the trippingd elay t V Adjustment of the thresholdvalue for overvoltage6 Adjustment of the threshold value for undervoltage7 Adjustment of the threshold value for phase unbalance 8 Function selection(see DIP switch functions) / Marker labelOperating modeConfiguration of the devices is made by means of setting elements accessible on the front of the unit and signalling is made by means of front-face LEDs.Adjustment potentiometerThreshold valuesBy means of three separate potentiometers with direct reading scales, the threshold values for over- and undervoltage as well as for phase unbalance can be a djusted within the measuring range.Tripping delay t VThe tripping delay t V can be adjusted within a range of 0.1-30 s by means of a potentiometer with logaritmic scale. By turning to the left stop, the tripping delay can be switched off.DIP switches2C D C 252 041 F 0b 08LEDs1) Possible misadjustments of the front-face operating controls:Overlapping of the threshold values: An overlapping of the threshold values is given, if the threshold value foro vervoltage is set to a smaller value than the threshold value for u ndervoltage.DIP switch 3 = OFF and DIP switch 4 = ON: Automatic phase sequence c orrection is activated and selected operating mode is 1x2 c/o (SPDT) contactsDIP switch 2 and 4 = ON: Phase sequence detection is deactivated and the automatic phase sequence correction is activedFunction diagram legendG Control supply voltage not applied / Output contact open / LED off B Control supply voltage applied / Output contact closed / LED glowingPhase sequence and phase failure monitoringApplying control supply voltage begins the fixed start-up delay t S . When t S is complete and all phases are present with correct voltage, the output relays energize and the yellow LED R/T glows. Phase sequence monitoringIf phase sequence monitoring is activated, the output relays de- e nergize as soon as a phase sequence error occurs. The fault is displayed by alternated flashing of the LEDs F1 and F2. The output relays re- energize automatically as soon as the phase sequence is correct again. Phase failure monitoringThe output relays de-energize instantaneous if a phase failure o ccurs. The fault is indicated by lightning of LED F1 and flashing of LED F2. The output relays re-energize automatically as soon as the voltage returns to the tolerance range.25-2625-28L1, L2, L315-1615-182C D C 252 094 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valuet s = start-up delay fixed 200 msFunction descriptions/diagramsOver- and undervoltage monitoring 1x2 c/o (SPDT) contactsjApplying control supply voltage begins the fixed start-up delay t S . When t S is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize and the yellow LED R/T glows.Type of tripping delay = ON-delay AIf the voltage to be monitored exceeds or falls below the set threshold value, the output relays de-energize after the set tripping delay t V is complete. The LED R/T flashes during timing and turns off as soon as the output relays de-energize.The output relays re-energize automatically as soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %. The LED R/T glows.L1, L2, L315-1615-18> U > U - 5 %< U + 5 %< U25-2625-282C D C 252 090 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valuet s = start-up delay fixed 200 ms t v = adjustable tripping delayType of tripping delay = OFF-delay BIf the voltage to be monitored exceeds or falls below the set threshold value, the output relays de-energize instantaneously and the LED R/T turns off.As soon as the voltage returns to the t olerance range, taking into account a fixed hysteresis of 5 %, the output relays re-energize a utomatically after the set tripping delay t V is complete. The LED R/T flashes d uring timing and turns steady when timing is c omplete.25-2625-28L1, L2, L315-1615-18> U> U - 5 %< U + 5 %< U2C D C 252 091 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valuet s = start-up delay fixed 200 ms t v = adjustable tripping delayOver- and undervoltage monitoring 2x1 c/o (SPDT) contactiApplying control supply voltage begins the fixed start-up delay t S . When t S is complete and all phases are present with correct v oltage and with correct phase sequence, the output relays energize. The yellow LED R/T glows as long as at least one output relay is e nergized.Type of tripping delay = ON-delay AIf the voltage to be monitored exceeds or falls below the set threshold value, output relay R1 (overvoltage) or output relay R2 (undervoltage) de-energizes after the set tripping delay t V is c omplete. The LED R/T flashes during timing.The corresponding output relay re-energizes automatically as soon as the voltage returns to the tolerance range, taking into a ccount a fixed hysteresis of 5 %.L1, L2, L315-1615-1825-2625-28> U> U - 5 %< U + 5 %< U2C D C 252 006 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valuet s = start-up delay fixed 200 ms t v = adjustable tripping delayType of tripping delay = OFF-delay BIf the voltage to be monitored exceeds or falls below the set threshold value, output relay R1 (overvoltage) or output relay R2 (undervoltage) de-energizes instantaneously.As soon as the voltage returns to the tolerance range, taking into a ccount a fixed hysteresis of 5 %, the corresponding output relay re-energizes automatically after the set tripping delay t V is complete. The LED R/T flashes during timing.L1, L2, L315-1615-1825-2625-28> U > U - 5 %< U + 5 %< U2C D C 252 007 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valuet s = start-up delay fixed 200 ms t v = adjustable tripping delayPhase unbalance monitoringApplying control supply voltage begins the fixed start-up delay t S . When t S is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize and the yellow LED R/T glows.Type of tripping delay = ON-delay AIf the voltage to be monitored exceeds or falls below the set phase unbalance threshold value, the output relays de-energize after the set tripping delay t V is c omplete. The LED R/T flashes during timing and turns off as soon as the output relays de-energize.The output relays re-energize automatically as soon as the voltage r eturns to the tolerance range, taking into account a fixed hysteresis of 20 %. The LED R/T glows.L1, L2, L315-1615-1825-2625-282C D C 252 092 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valueUnbalanceUnbalance - HysteresisUnbalance + HysteresisUnbalancet s = start-up delay fixed 200 ms t v = adjustable tripping delayType of tripping delay = OFF-delay BIf the voltage to be monitored exceeds or falls below the set phase unbalance threshold value, the output relays de-energize i nstantaneously and the LED R/T turns off.As soon as the voltage r eturns to the t olerance range, taking into account a fixed hysteresis of 20 %, the output relays re-energize automatically a fter the set tripping delay t V is c omplete. The LED R/T flashes d uring timing and turns steady when timing is c omplete.25-2625-28L1, L2, L315-1615-182C D C 252 093 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valueUnbalanceUnbalance - HysteresisUnbalance + HysteresisUnbalancet s = start-up delay fixed 200 ms t v = adjustable tripping delayAutomatic phase sequence correctionThis function can be selected only if phase sequence monitoring is activated k (DIP switch 3 = ON) and operating mode 2x1 c/o (SPDT) contact j is selected (DIP switch 2 = OFF).Applying control supply voltage begins the fixed start-up delay t S1. When t S1 is complete and all phases are present with correct voltage, output relay R1 energizes. Output relay R2 energizes when the fixed start-up delay t S2 is complete and all phases are present with correct phase sequence. Output relay R2 remainsde-energized if the phase sequence is incorrect.If the voltage to be monitored exceeds or falls below the set threshold values for phase unbalance, over- or undervoltage or if a phase failure occurs, output relay R1 de-energizes and the LEDs F1 and F2 indicate the fault.Output relay R2 is responsive only to a false phase sequence. In conjunction with a reversing contactor combination, this enables an automatic correction of the rotation direction. See circuit diagrams.L1, L2, L315-1615-1825-2625-282C D C 252 085 F 0207F1: red LED F2: red LED R/T: yellow LEDMeasuring valuet S1 = start-up delay of R1 fixed 250 ms t S2 = start-up delay of R2 fixed 200 ms2C D C 252 086 F 0b 072C D C 252 087 F 0b 07Control circuit diagram (K1 = CM-MPN.x2)Power circuit diagramConnection diagramL1L228261525L3L3151618262825L2L116182C D C 252 038 F 0b 08L1, L2, L3 Control supply voltage = measuring voltage 15-16/18 Output contacts -25-26/28 closed-circuit principleCM-MPN.52, CM-MPN.62, CM-MPN.72Data at T a = 25 °C and rated values, unless otherwise indicatedData at T a = 25 °C and rated values, unless otherwise indicated1)Closed-circuit principle: Output relay(s) de-energize(s) if measured value exceeds or falls below the adjusted threshold value1112Technical diagramsLoad limit curvesAC load (resistive)2C D C 252 194 F 0205DC load (resistive)2C D C 252 193F 0205Derating factor Fat inductive AC load2C D C 252 192 F 0205Switching current [A]S w i t c h i n g c y c l e s2C D C 252 148 F 0206Dimensionsin mm2C D C 252 032 F 000313Further documentationYou can find the documentation online at /lowvoltage R Control Products R Electronic Relays and ControlsDimensions - Accessoriesin mm2C D C 252 009 F 00102C D C 252 010 F 0010ADP .02 - Adapter for screw mountingMAR.02 - Marker label2C D C 252 009 F 0010COV .02 - Sealable transparent coverABB STOTZ-KONTAKT GmbHP. O. Box 10 16 8069006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0Fax: +49 (0) 6221 7 01-13 25E-mail:*****************.comYou can find the address of your local sales organisation on theABB home page/contacts-> Low Voltage Products and Systems Contact usNote:We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG. Copyright© 2010 ABBAll rights reserved D o c u m e n t n u m b e r . 2 C D C 1 1 2 1 2 8 D 0 2 0 1 ( 0 7 / 1 0 )。
Solubility of Hydrogen in Heavy n-Alkanes Experiments and SAFT Modeling
Solubility of Hydrogen in Heavy n-Alkanes: Experiments and SAFT ModelingL.J.Florusse and C.J.PetersLaboratory of Applied Thermodynamics and Phase Equilibria,Faculty of Applied Sciences,Delft University of Technology,Julianalaan136,2628BL,Delft,The NetherlandsJ.C.Pamies and Lourdes F.Vega`Dept.d’Enginyeria Quımica,ETSEQ,Universitat Rovira i Virgili,Avinguda dels Paısos Catalans,´¨26,43007,Tarragona,SpainH.MeijerShell Global Solutions International B.V.,1030BN,Amsterdam,The NetherlandsNew experimental measurements on the solubility of hydrogen in se®eral normal al-kanes,ranging from decane and up to hexatetracontane,are presented.Data co®er atemperature range from280K to450K,and pressures up to16MPa were applied.Hydrogen solubilities of up to30mol%were measured.These mixtures are describedthrough a molecular-based equation of state based on the statistical associating fluid()theory SAFT.In the SAFT approach,all the compounds are modeled as homonu-clear chains of united-atom sites interacting through a Lennard-Jones potential.Opti-mized®alues for the chain length,Lennard-Jones diameter,and dispersi®e energy char-acterize the hydrogen molecule.In the case of n-alkanes,a correlation for these molecu-lar parameters is used.Two additional parameters,independent of the thermodynamic®ariables,were fitted to the experimental data of a single isopleth for each particularmixture.The agreement between the measured and predicted solubilities is excellent()o®erall AAD-1.5%in all the thermodynamic range,and does not significantly worsenas the molecular weight of the compound increases.IntroductionHydrogen is a key compound in the production of fuels for the automotive industry and will acquire much more impor-tance in the future,as the free carbon sources of energy tend to emerge for pollution and environmentally evident reasons. Nowadays,hydrogen is mainly obtained from the catalytic steam reforming of nafta and natural gas,but renewable sources of energy seem to be promising for the near future. In many industrial processes where molecular hydrogen plays an important role,its solubility in different hydrocarbon solu-Ž.tions such as fuels is among the major factors required for design and optimal operation of these processes.It is also a key parameter in process models,such as the ones used inCorrespondence concerning this article should be addressed to L.F.Vega.hydrogenation and hydrotreatment processes,where hydro-gen solubility in selected liquid hydrocarbons is a good esti-mation of the hydrogen concentration in the liquid phase,a variable that is often related to kinetics.It is well known that empirical and semiempirical models, like traditional cubic equations of state,have limited predic-tive capabilities,particularly outside the range where their parameters were fitted.On the contrary,parameters of molecular models based on statistical mechanics,like the sta-Ž.tistical associating fluid theory SAFT,have physical mean-ing and are independent of the thermodynamic conditions. Another important advantage of using a molecular-based theory vs.simple mean-field approaches,is that one can ex-plicitly consider intramolecular as well as intermolecular in-teractions among the chain molecules involved.Furthermore,Table 1.Molecular Parameters for the Pure Compounds⑀r k B Ž.Ž.mnm K H 0.48740.424433.852n -C 4.2590.3983272.710n -C 6.4070.4015285.016n -C 10.700.4041294.728n -C 13.570.4049297.836n -C 17.860.4056300.646the details of the applied intermolecular potential will be re-flected in the accuracy of the thermodynamic properties cal-culated by using the theory.The goal of this work is to provide a reliable model for the prediction of vapor ᎐liquid equilibria and solubility of hydro-gen in n -alkanes.To this end,experimental and theoretical work has been carried out in the following binary hydrogen q n -alkane systems:H q n -C ,H q n -C ,H q n -C ,210216228H q n -C ,and H q n -C .236246Experimental MethodMeasurements were performed at the DelftUniversity of Technology,using a Cailletet apparatus.Experimental data cover a temperature region from about 280K to 450K,and pressures up to 16MPa were applied.We measured hydro-gen solubilities of up to a mole fraction of 30%.The Cailletet apparatus operates according to the synthetic method.At any desired temperature,the pressure is variedFigure 1.Coexisting saturated densities of pure hydro -gen.Symbols are experimental data from the NIST chemistry Ž.Webbook http:r r r chemistry and the line corresponds to predictions of SAFT with optimized parame-ters for the subcritical region.for a sample of constant overall composition until a phase change is observed visually.A sample of fixed and known composition is confined over mercury in the sealed end of a thick-walled Pyrex glass tube.The open end of the tube is placed in an autoclave and immersed in mercury.Thus,mer-cury is used for both a sealing and a fluid for transmitting pressure to the sample.The sample is stirred by means of a moving stainless steel ball whose movement is activated by reciprocating magnets.The autoclave is connected to a hy-draulic oil system that generates the pressure by means of a screw-type hand pump.The temperature of the sample is kept constant by circulating the thermostat liquid through a glass thermostat jacket that surrounds the glass tube.Further de-tails of the apparatus and experimental procedure can be Ž.found elsewhere Raeissi and Peters,2001.SAFT modelingFollowing previous work,we model the H and alkanes as 2homonuclear chainlike molecules,formed by tangentially Ž.jointed m Lennard-Jones LJ segments of equal diameter and the same dispersive energy,⑀.Each of the segments rep-resents a group of atoms,which is known as the united-atom approach.The number of segments m is allowed to take non-integer values toaccount for a realistic internuclear distance.The accuracy of this model in conjunction with the soft-SAFT Žapproach has been proven in several works Blas and Vega,.1998;Pamies and Vega,2001,2002.`Ž.The soft-SAFT equation of state EOS is a modification of the original SAFT equation proposed by Chapman et al.Figure 2.Vapor pressures of pure hydrogen in a log-logplot.Symbols are experimental data from the NIST chemistry Ž.Webbook http:r r r chemistry and the line corresponds to predictions of SAFT with optimized parame-ters for the subcritical region.Ž.Ž.1989and Huang and Radosz 1990,which is a first-order Ž.perturbation theory TPT1based on Wertheim ’s work.SAFT equations are usually written in terms of the residual Helmholtz free energy,where each term in the equation rep-resents different microscopic contributions to the total free energy of the fluid.Basic expressions concerning this work follow.For a more detailed description of the soft-SAFT Ž.EOS,the reader is referred to Pamies and Vega 2001and `references therein.For an extensive discussion on the devel-opment and applications of SAFT equations,see the recent Ž.review by Muller and Gubbins 2001.¨For nonassociating chain molecules,SAFT equations are usually written asA res s A ref q A chain1Ž.res Žres total where A is the residual Helmholtz energy A s A y ideal .A .The superscripts ref and chain refer to the contribu-tions from the monomer and the formation of the chain,re-spectively.The original SAFT is based on a hard-spheres reference fluid.In the soft-SAFT EOS,the reference term is a LJ monomer fluid,which accounts both for the repulsive and attractive interactions of the monomers forming the chain.In the chain and association terms,the original SAFT uses the radial distribution function of hard spheres,while the ra-dial distribution function of a LJ fluid is used in soft-SAFT.The chain contribution for a LJ fluid of tangent spherical segments,obtained through Wertheim ’s theory,in terms of the chain length,m ,and the pair correlation function,g ,LJ of LJ monomers,evaluated at the bond length,,is A chains N k T x 1y m ln g exp r k T w x Ž.Ž.Ž.Ž.Ým B i i LJ i L J i B i2Ž.where N is the number of chains,k is the Boltzmann con-m B stant,T is the temperature,x is the mole fraction of compo-i nent i ,and the is the potential energy.L J To calculate the free energy and derived thermodynamic properties of a mixture of LJ fluids,we use the accurate EOS Ž.of Johnson et al.1993,with van der Waals one-fluid mixing rules and the generalized Lorentz-Berthelot combining rules for the crossed interactions1s q 3Ž.Ž.i j i j ii j j 21r 2⑀s ⑀⑀4Ž.Ž.i j i j ii j j The factors and are the cross-interaction binary parame-ters.Table 2.Size Binary Parameter for the MixturesH qn -C 0.8650210H q n -C 0.8777216H q n -C 0.8893228H q n -C 0.8918236H qn -C 0.8933246Phase-equilibria calculationsPhase-equilibria calculations of binary mixtures with the soft-SAFT equation have been described in detail in previous Ž.work Blas and Vega,1998.Here we outline only the part needed for the present study.Molecular parameters for pure H have been calculated by 2fitting experimental pure hydrogen saturated liquid densities and vapor pressures.Because of the type of model used,the m parameter is allowed to be a fractional number in order to account in some way for the nonsphericity of the molecule.In the next section we will show that this approach is not unrealistic for obtaining excellent results.For n -alkanes,we employ the PV correlation recently published by Pamies and `Ž.Vega 2001.All values are given in Table 1.The PV correla-tion comes from the optimized parameters for the first eight members of the series,and it has been proven to provide very accurate results for vapor ᎐liquid properties of pure heavy n -Ž.alkanes and their mixtures Pamies and Vega,2001.`Figures 1and 2show the coexisting vapor ᎐liquid densities and vapor pressures of pure hydrogen.The circles are experi-Žmental data.NIST Chemistry Webbook.http:rr r chemistry .The solid line corresponds to predictions from the equation,using the molecular parameters shown in Table 1.As can be observed in Figure 1,the parameters have been optimized for the subcritical region.Although EOSs with a classical formulation can accurately describe the phase be-havior of pure fluids and mixtures far from the critical point,they are unable to predict the near-critical region.This prob-lem can also be explained as a difficulty in describing the Žcritical compressibility factor and critical exponents Chen .and Mi,2001.To overcome this limitation,a crossover treat-ment has been used recently in several works.See,forexam-Figure 3.Size binary parameter as a function of the car -bon number of the alkane in H H n -alkane 2mixtures.Ž.ple,the work of Kiselev and Ely1999.An alternative ap-proach is to rescale the molecular parameters to the critical Ž.point Pamies and Vega,2001.`SAFT predictions in Figures1and2do not cover the tem-perature region below16K,because of the range of validity of the reference EOS for the Lennard-Jones fluid:the tem-perature range covered by the molecular simulation data that this equation correlates is approximately0.7F T U F6.0. Therefore,although some extrapolation is possible,as shown in these plots,consistent results are not guaranteed.For thisŽU. reason,experimental data under23.7K T s0.7was not used in the optimization of the parameters for the hydrogen molecule.Because of the asymmetry of the binary mixtures we are dealing with,the two cross-interaction binary parametersandshould also be fitted to experimental data.One of the main advantages of using such a molecular-based EOS is that parameters should not depend on the thermodynamic condi-tions.Hence,the procedure we take is to use a single set of data,for example,along an isopleth,to adjust the size pa-rameter while maintaining the energy parameter at a con-stant optimized value along the homologous series.Then we use the optimized values to predict equilibrium properties at any other thermodynamic condition.The fitted values of the cross-interaction size parameter are given in Table2.The energy parameter was fixed at 5.000ؒ10y2.This number makes the hydrogen᎐alkane segment cross-interaction energy ⑀much lower than the interaction energy of the alkane᎐12alkane and hydrogen᎐hydrogen segments,which is consistent with the low solubilities measured.Figure3shows the trend of the size parameter with respect to the carbon number of the normal alkane.This trend is the same as that of the sizeŽparameter,,of the n-alkane homologous series Pamies and`.Vega,2001,and asymptotically tends to a constant value as ()()UTable3.Measured Solubility Data for the H1H n-Decane2Mixture2T P T P T PŽ.Ž.Ž.Ž.Ž.Ž.K MPa K MPa K MPax s0.016x s0.051x s0.078111283.17 2.568283.268.545283.2113.485 283.22 2.573298.197.775298.1312.265 298.14 2.343313.067.135313.0811.215 298.15 2.348328.06 6.565328.0210.315 313.05 2.163343.01 6.075342.989.535 313.12 2.158357.63 5.645357.568.875 328.04 1.993357.99 5.645357.948.845 342.98 1.843372.57 5.255373.068.215 357.79 1.723387.62 4.905387.977.665 357.88 1.718402.57 4.585402.857.165 372.84 1.608417.52 4.305417.74 6.705 387.76 1.508432.46 4.045432.62 6.295 402.66 1.418447.34 3.815447.66 5.905 417.83 1.343432.71 1.283447.61 1.238x s0.031x s0.056x s0.088111283.22 5.025283.239.463298.1614.216 298.13 4.585298.098.613313.1012.996 312.96 4.215313.017.893328.0411.946 327.92 3.895328.027.273343.0811.026 342.91 3.595343.08 6.713357.6610.226 357.74 3.345357.94 6.243358.0910.216 357.87 3.345373.03 5.793372.579.506 372.79 3.115387.77 5.413387.618.866 387.76 2.915403.56 5.033402.558.276 403.03 2.725418.24 4.733417.547.736 417.94 2.565433.85 4.443432.437.246 432.65 2.435447.92 4.203447.41 6.806 447.53 2.325x s0.038x s0.06711283.22 6.335283.2111.635298.10 5.775298.1110.575313.07 5.295313.079.685327.81 4.885328.078.905342.73 4.525343.078.235357.69 4.205358.007.635357.99 4.195359.187.575372.79 3.905373.807.055387.80 3.645388.73 6.585402.71 3.425405.35 6.105417.69 3.215419.52 5.735432.60 3.035435.18 5.375448.46 2.865449.63 5.065Note:x is the mole fraction.the length of the chain increases,representing the effective value for the H y CH interaction.Additionally,the alkane22chain length timeslinearly varies with the carbon number,which easily allows us to obtain,with confidence,theval-ues for other H q n-alkane mixtures.2Results and DiscussionWe present measurements of the solubility of H in n-de-2cane,n-hexadecane,n-octacosane,n-hexatriacontane,and n-hexatetracontane,and predictions from the soft-SAFT EOS for this system.Experimental data are summarized in Tables 3᎐7.We also check the performance of the modified Peng-Ž.Robinson PR EOS,as found in the Hysys Plant2.4.1pro-cess-engineering simulator.Several reasons led us to choose this equation for comparison.On the one hand,PR is one of the most used equations in the process industry,and it has been proven to provide very good predictions for alkane bi-Ž. nary systems Pamies and Vega,2001,and references therein.`On the other hand,we found it very appropriate to use a version embedded in a commercial package,since this is the path engineers usually take in order to use phase-equilibrium data for the design and optimization of chemical processes.()()Table4.Measured Solubility Data for the H1H n-Hexadecane2Mixture2T P T P T PŽ.Ž.Ž.Ž.Ž.Ž.K MPa K MPa K MPax s0.018x s0.078x s0.109111298.13 2.266298.2110.951312.9714.307 313.11 2.071313.219.991327.8113.127 328.09 1.921328.179.166342.7512.127 343.07 1.781343.048.461357.6411.267 357.97 1.656357.917.856357.8611.217 358.07 1.656358.037.851372.7810.467 372.79 1.551372.857.331387.719.767 387.80 1.451387.91 6.866402.629.147 403.05 1.361403.17 6.446417.668.577 418.19 1.286418.21 6.066432.548.077 432.82 1.216432.92 5.711447.347.607 448.02 1.151448.17 5.341x s0.035x s0.086x s0.113111298.16 4.600313.0510.970313.0415.134 313.07 4.205327.9310.190327.9613.884 328.09 3.870342.949.320342.9612.824 343.05 3.590354.768.780357.6011.914 357.63 3.345357.738.650357.9811.904 357.99 3.345372.968.060372.6711.084 373.03 3.115387.907.540388.0010.344 387.81 2.920402.837.060402.839.694 402.84 2.745417.78 6.650417.719.104 417.81 2.580432.65 6.260432.758.564 432.75 2.435447.54 5.910447.598.074 447.71 2.300x s0.056x s0.09111313.07 6.893312.8411.640328.11 6.343327.8710.700343.03 5.873342.669.930357.66 5.473357.759.190358.00 5.463357.819.190372.64 5.103372.978.550387.68 4.773387.907.980402.76 4.483402.787.490417.72 4.213417.657.040432.65 3.973432.66 6.630447.52 3.753447.52 6.250x s0.073x s0.09411313.079.203313.0512.153328.018.463328.0011.143343.057.823343.0210.303357.947.273357.809.563357.957.263357.959.573372.93 6.763373.188.883372.93 6.763388.018.303387.96 6.333403.017.783402.93 5.943417.907.333417.85 5.583432.69 6.923432.76 5.263447.56 6.523447.58 4.963Note:x is the mole fraction.()()Table5.Measured Solubility Data for the H1H n-Octacosane2Mixture2T P T P T PŽ.Ž.Ž.Ž.Ž.Ž.K MPa K MPa K MPax s0.030x s0.091x s0.143111342.68 2.245342.677.468342.6012.581 357.58 2.085357.63 6.928357.5211.681 372.49 1.955372.73 6.458372.4510.891 387.48 1.835387.62 6.058387.5010.191 402.45 1.735402.48 5.708402.459.581 417.39 1.635417.55 5.388417.439.041 432.27 1.545432.47 5.098432.398.551 447.13 1.465447.31 4.838447.328.131x s0.054x s0.106x s0.178111342.68 4.165342.568.613372.4914.001 357.70 3.865357.537.973387.4813.101 372.79 3.605372.457.453402.4312.311 387.80 3.385387.48 6.983417.4011.611 402.52 3.185402.40 6.563432.3210.991 417.46 3.005417.37 6.193447.2310.411 432.39 2.845432.32 5.863447.34 2.705447.26 5.553x s0.0711342.59 5.841357.49 5.421372.47 5.061372.49 5.071387.47 4.751402.42 4.461417.35 4.221432.28 3.981432.33 3.981447.21 3.771Note:x is the mole fraction.In Figure4the symbols represent our primary experimen-Ž.tal data isopleths,which are summarized in Table3.Thesymbols in Figure5represent the solubility of H in liquid2n-decane for a number of isotherms,which have been calcu-lated from the primary experimental data,as summarized in Table3and depicted in Figure4.In both Figures4and5, the solid lines are the soft-SAFT predictions using the pa-rameters of Tables1and2.Excellent agreement is obtained,Ž.with an absolute averaged deviation AAD of about0.8%. Only about12.5%of the measurements have been used to fit the cross-interaction parameters,but it is impossible to dis-tinguish which of the isopleths in Figure4was chosen.Dot-dashed lines in this figure correspond to predictions using the PR EOS,which are shown for three selected isopleths. This EOS performs equally well as the soft-SAFT EOS,ex-cept at low temperatures,where it declines toward lower pressures.Ž. Figures6and7show experimental data Tables4and5 and theoretical results for the H q n-C and H q n-C216228 mixtures,respectively.In these figures,the accuracy of the SAFT predictions is similar to that obtained for the lighter Ž.alkane n-decane.On the other hand,the performance of ()()Table6.Measured Solubility Data for the H1H n-Hexatriacontane2Mixture2T P T P T PŽ.Ž.Ž.Ž.Ž.Ž.K MPa K MPa K MPax s0.033x s0.097x s0.169111357.62 1.985357.53 6.188357.5411.921 372.53 1.845372.54 5.778372.5211.101 387.54 1.735387.61 5.418387.5410.391 402.52 1.625402.60 5.098402.499.771 417.50 1.535417.48 4.818417.479.201 432.46 1.455432.41 4.558432.418.731 447.43 1.375447.35 4.328447.358.281x s0.066x s0.118x s0.210111357.56 4.069357.607.881372.5314.341 372.53 3.799372.537.341387.5713.421 387.64 3.559387.58 6.881402.5012.621 402.55 3.349402.53 6.471417.4811.901 417.48 3.159417.49 6.101432.3711.261 432.43 2.999432.41 5.791447.2310.681 447.39 2.849447.36 5.511Note:x is the mole fraction.()()Table7.Measured Solubility Data for the H1H n-Hexatetracontane2Mixture2T P T P T PŽ.Ž.Ž.Ž.Ž.Ž.K MPa K MPa K MPax s0.065x s0.129x s0.204111372.61 3.063372.59 6.741372.5211.811 387.64 2.853387.55 6.311387.5711.041 402.62 2.683402.51 5.941402.5410.391 417.61 2.533417.51 5.601417.449.801 432.50 2.403432.37 5.311432.379.271 447.48 2.293447.32 5.041447.278.811x s0.095x s0.173x s0.257111372.71 4.623372.589.461372.5715.970 387.64 4.333387.668.841387.6114.910 402.60 4.083402.638.301402.6913.990 417.56 3.853417.657.831417.7313.180 432.54 3.653432.527.421432.5812.470 447.46 3.463447.517.051447.5011.840 U Note:x is the mole fraction.the PR EOS rapidly deteriorates,and this is more noticeable at the largest mole fraction values of H in the liquid phase.2In Figures8and9we check the performance of both the soft-SAFT and PR EOS compared to experimental data from Ž.Lin et al.1980,which were measured up to much higher pressures and temperatures than were those we present in this study.The results are a very severe test for the perfor-mance of both EOSs in these systems.Data up to25MPa and665K are used for comparison.No fitting to these data was performed.Cross-interaction parameters for this mixture were optimized using the experimental data of a single iso-pleth selected from those shown in Figure6,which are atFigure4.Isopleths of the H H n-decane vapor–liquid2equilibrium.Symbols are used for experimental data taken from Table3,and solid and dot-dashed lines correspond to soft-SAFT andPR predictions,respectively.rather lower pressures and temperatures.Predictions fromŽthe SAFT equation are excellent for the liquid phase Figure .Ž8.Poorer results were expected for the vapor phase Figure .9,since no information of this phase was used in the opti-mization of cross-interaction parameters.However,the excel-lent accuracy of SAFT predictions for the H solubility in the2liquid phase,on which this study is focused,is remarkable. PR solubility predictions are much less accurate,although va-por-phase compositions are captured better by PR than by SAFT.We are aware of the somewhat unfair comparison be-tween both EOSs,because,when we used our experimental data,we did not fit any parameter of the PR equation.AsFigure5.Solubility of hydrogen in n-decane,for se-lected isotherms.Symbols are interpolated experimental data from Table3,and lines correspond to soft-SAFT predictions.Tempera-tures are given in K.Figure 6.Isopleths of the H H n -hexadecane vapor –2liquid equilibrium.Symbols are used for experimental data taken from Table 4,and solid and dot-dashed lines correspond to soft-SAFT and PR predictions,respectively.Figure 7.Isopleths of the H H n -octacosane vapor –2liquid equilibrium.Symbols are used for experimental data taken from Table 5,and solid and dot-dashed lines correspond to soft-SAFT and Ž.PR predictions at x s 0.030,0.091,and 0.178,respec-1tively.mentioned before,our aim is to show the performance of the Hysys modified version of the PR EOS,with all parameters Žfrom the Hysys database.It has already been proven Park et .al.,1995that the fitting of the PR binary interaction param-eter to each experimental isotherm will provide much better results.But the predictive capability of the EOS is not shown in this way.The performance of the PR equation depends strongly on the ␣function and the binary interaction param-eter used.Although the effect of the binary parameter can be minimized through an optimized temperature-dependent ␣Ž.function Twu et al.,1995,we believe that to fit parameters depending on temperature is an unavoidable requirement for obtaining accurate predictions using cubic EOSs.On the con-trary,the soft-SAFT EOS does not have temperature-depen-dent parameters,and we only use data of a single experimen-tal isopleth for the optimization of the binary interaction pa-rameter of the mixture.In this way,we use SAFT in a fully predictive way at other thermodynamic conditions.ŽFigures 10and 11present experimental data Tables 6and .7,respectively ,and model predictions for the binary systems H q n -C and H q n -C ,respectively.Due to the prox-236246imity to the triple point of the n -hexatetracontane,no ther-modynamically consistent solutions for the SAFT EOS could be obtained below approximately 400K.These stringent thermodynamic conditions lie far beyond the thermodynamic Žrange of validity of the LJ reference EOS see the section .entitled Phase-Equilibria Calculations .The same reasoning can be used for the H q n -C mixture below approxi-236Ž.mately 360K Figure 10.Nevertheless,accuracies remain as low as for those mixtures with the lower chain-length alka-Figure 8.Solubility of H in n -hexadecane,for selected2isotherms.Ž.Symbols are experimental data taken from Lin et al.1980,and solid and dot-dashed lines correspond to soft-SAFT and PR predictions,respectively.Temperatures are given in K.Figure 9.Equilibrium mole fraction of hydrogen in thevapor phase of the H H n -hexadecane mix -2ture,for selected isotherms.Ž.Symbols are experimental data taken from Lin et al.1980and solid and dot-dashed lines correspond to soft-SAFT and PR predictions,respectively.Temperatures are given inK.Figure 10.Isopleths of the H H n -hexatriacontane va -2por –liquid equilibrium.Symbols are used for experimental data taken from Table 6,and solid lines correspond to soft-SAFTpredictions.Figure 11.Isopleths of the H H n -hexatetracontane2vapor –liquid equilibrium.Symbols are used for experimental data taken from Table 7,and solid lines correspond to soft-SAFT predictions.nes,except for the highest solubilities of H ,where devia-2tions can increase up to an AAD of 2.5%.Consequently,the length of the alkane chain does not significantly influence the accuracy of the predictions,at least for the range of chain-length studied here.The overall AAD of soft-SAFT predic-Ž.tions with respect to solubility measurements Tables 3᎐7is less than 1.5%.PR predictions are not included in Figures 10and 11,since the two heaviest alkanes are not available in the Hysys Plant library.To summarize,the molecular model,in conjunction with the soft-SAFT theory,provides very reliable results for the solubility of H in n -alkane systems in a wide range of pres-2sures and temperatures.Furthermore,the accuracy of the predictions is independent of the thermodynamic conditions and the length of the alkane chain.It is also important to note that,to some extent,the success of the soft-SAFT the-ory relies on the physical meaning of the molecular parame-Žters such as segment size,dispersive energy,and chain .length .Although their values are effective,their physical meaning is conserved,as we have already seen in Figure 3.Ž.As was recently discussed Pamies and Vega,2001,parame-`ters should be optimized by considering the experimental in-formation range needed to later reproduce the thermody-namic features of interest.For H q n -alkane mixtures,the 2experimental data from a single isopleth suffices to provide excellent predictions,provided that molecular parameters have been optimized following a meaningful trend.ConclusionsExperimental data on the solubility of hydrogen in heavy n -alkanes and SAFT modeling of these very asymmetric sys-tems have been presented.For the five selected mixtures Žstudied H q n-C,H q n-C,H q n-C,H q n-2102162282.C,and H q n-C,the data covered a temperature range 36246from about280K up to450K,and pressures up to16MPawere applied.The theoretical description is performed using the soft-SAFT equation of state,which describes the fluid systems through a chainlike homonuclear model of Lennard-Jones segments,bonded tangentially to form the chain.Opti-mized values for the vapor᎐liquid equilibria of the pure com-pounds are used to predict the behavior of the mixtures.In addition,the binary size interaction parameter of the gener-alized Lorentz-Berthelot combining rules was fitted to the ex-perimental data of a single isopleth and used to quantita-tively describe the same system in the whole range of experi-mental conditions,in a fully predictive manner.The overall absolute averaged deviation of SAFT predictions with the ex-perimental data is less than1.5%.SAFT predictions are ex-cellent over the entire thermodynamic range where data were measured.The accuracy is independent of the thermody-namic variables,and does not get significantly worse as the chain length of the n-alkane increases.Consequently,it isproven that for H q n-alkane mixtures,the soft-SAFT2molecular model is able to provide very accurate and reliable results whenever optimized parameters remain meaningful, that is,follow physically meaningful trends.AcknowledgmentsThe experimental work of this study was financed by Shell Global Solutions International B.V.,Shell Research and Technology Centre, Amsterdam,The Netherlands.Financial support for this work has also been provided by the Spanish Government,under projectsŽ. PPQ2000-2888-E and PPQ-2001-0671.One of the authors J.C.P. acknowledges a predoctoral grant from the Departament d’Universi-tats,Recerca i Societat de la Informacio de la Generalitat de Gener-´alitat de Catalunya.Literature CitedBlas,F.J.,and L.F.Vega,‘‘Prediction of Binary and Ternary Dia-Ž. grams Using the Statistical Associating Fluid Theory SAFTŽ. Equation of State,’’Ind.Eng.Chem.Res.,37,6601998.Chapman,W.G.,K.E.Gubbins,G.Jackson,and M.Radosz,‘‘Saft-Equation-of-State Solution Model for Associating Fluids,’’FluidŽ.Phase Equilib.,52,311989.Chen,J.,and J.G.Mi,‘‘Equation of State Extended from SAFT with Improved Results for Non-Polar Fluids Across the CriticalŽ.Point,’’Fluid Phase Equilib.,186,1652001.Coorens,H.G.A.,C.J.Peters,and J.de Swaan Arons,‘‘Phase Equilibria in Binary Mixtures of Propane and Tripalmitin,’’FluidŽ.Phase Equilib.,40,1351988.Huang,S.H.,and M.Radosz,‘‘Equation of State for Small,Large, Polydisperse,and Associating Molecules,’’Ind.Eng.Chem.Res.,Ž.29,22841990.Johnson,J.K.,J.A.Zollweg,and K.E.Gubbins,‘‘The Lennard-JonesŽ. Equation of State Revisited,’’Mol.Phys.,78,5911993. Kiselev,S.B.,and J.F.Ely,‘‘Crossover SAFT Equation of State: Application for Normal Alkanes,’’Ind.Eng.Chem.Res.,38,4993Ž.1999.Lin,H.,H.M.Sebastian,and K.Chao,‘‘Gas-Liquid Equilibrium in Hydrogen q n-Hexadecane and Methane q n-Hexadecane at El-evated Temperatures and Pressures,’’J.Chem.Eng.Data,25,252Ž.1980.Muller,E.A.,and K.E.Gubbins,‘‘Molecular-Based Equations of ¨State for Associating Fluids:A Review of SAFT and Related Ap-Ž. proaches,’’Ind.Eng.Chem.Res.,40,21932001.Pamies,J.C.,and L.F.Vega,‘‘Vapor-Liquid Equilibria and Critical `Behavior of Heavy n-Alkanes Using Transferable Parameters from the Soft-SAFT Equation of State,’’Ind.Eng.Chem.Res.,40,2532Ž.2001.Pamies,J.C.,and L.F.Vega,‘‘Critical Properties of Homopolymer `Fluids Studied by a Lennard-Jones Statistical Associating FluidŽ.Theory,’’Mol.Phys.,100,25192002.Park,J.,R.L.Robinson,Jr.,and K.A.M.Gasem,‘‘Solubilities of Hydrogen in Heavy Normal Paraffins at Temperatures from323.2 to423.2K and Pressures to17.4MPa,’’J.Chem.Eng.Data,40,241Ž.1995.Peters,C.J.,‘‘Phase Behavior of Binary Mixtures of Ethane q n-Eicosane and Statistical Mechanical Treatment of Fluid Phases,’’Ž.Ph.D.Thesis.Delft University of Technology1986.Raeissi,S.,and C.J.Peters,‘‘Bubble-Point Pressures of the Binary System Carbon Dioxide q Linalool,’’J.Supercrit.Fluids,20,221Ž.2001.Twu,C.H.,J.E.Coon,A.H.Harvey,and J.R.Cunningham,‘‘An Approach for the Application of a Cubic Equation of State to Hy-Ž. drogen-Hydrocarbon Systems,’’Ind.Eng.Chem.Res.,35,9051996. Manuscript recei®ed Jan.8,2003,and re®ision recei®ed Apr.28,2003.。
Phase Interpolating Circuits
ECE1352Analog Integrated Circuits Reading Assignment:Phase Interpolating CircuitsKostas Pagiamtzis12November2001Contents1Introduction3 2Phase Interpolation32.1Phase Interpolation (4)2.2Applications of Phase Interpolation (6)3Implementations73.1Overview (7)3.2Differential MCML Buffer-Based Design (7)3.2.1Replica Biasing (10)3.3MCML-Based Phase Interpolator (11)3.4Current Integration Architectures (14)4Conclusion18 References181List of Figures1Block diagram of a phase interpolator (4)2Phase interpolation output waveforms (5)3Plot of phase interpolator transfer function (5)4MCML differential output buffer schematic (8)5Possible MCML loads (9)6I-V characteristic of symmetric loads (9)7Replica-bias circuit (10)8Replica-bias circuit with V L−BIAS generation (11)9Phase interpolator implementation,type I (12)10Phase interpolator implementation,type II (13)11Unit cell of type II phase interpolator (13)12Simplified schematic of current integration phase interpolator (15)13Current integration phase interpolator (17)21IntroductionA critical area of development in present high-speed electronic systems is high-speed inter-chip signalling.There are two main domains of interest:i)low-latency,parallel links such as memory busses and processor interconnection busses and ii)high-latency,serial communication links,for example,backplane interconnections in a large system.The memory-processor interconnection in modern processor architectures has been a bottleneck for a significant number of years,often referred to as the von Neumann bottle-neck,and has spurred much of the research into high data rate inter-chip signalling.Also, the domain of parallel computing has gained widespread adoption in recent years,further-ing interest in decreasing the latency of interprocessor communication and increasing the communication rate.Low-latency channels often include an explicit clock signal along with the parallel data and thus the main receiver problem is to use the clock to sample the incoming data at the optimal point.In serial-links,the clock is usually implicit in the data stream and a joint clock and data recovery(CDR)circuit is used to recover the clock from the input stream and use it to sample the data.Many of the timing problems related to high-speed signalling are mitigated through the use of phase-interpolating circuits to generate precise clock phases as standalone circuits or as part of a phase-locked loop(PLL)or delay-locked loop(DLL)architecture.Phase interpolators are becoming critical components in many implementations.The required behaviour of phase interpolators and prevailing architectures and their strengths and lim-itations are examined in this report.2Phase InterpolationThe general functionality of phase interpolating circuits and their role in various subsystems is described in this section.32.1Phase InterpolationThe basic operation of a phase interpolator is straightforward.Following[1],the most general form of a phase interpolator has two periodic input signals(herein called clocks)φ andψ ,usually with the same period of oscillation and derived from the same source,and a control input.The control input specifies the interpolated phase mixing requirement and is often a digital signal that indicates the interpolation weighting factor.An interpolated output signalΘis produced as well as delayed versions ofφ andψ calledφandψ, respectively.A block diagram of a phase interpolator,adapted from[1],is displayed in Figure1.The functionality of the phase interpolator can be described as follows.ConsiderFigure1:Block diagram of a phase interpolator.the above system with two inputs having absolute phaseφ andψ and a digital weighting factor,w,that can vary from0to W.The outputsφandψare delayed versions ofφ andψ respectively.A control value of w=0causes a signal with phaseφto be output and w=W causes and signal with phaseψto be output.The general form of the outputphase isΘ=wWφ+W−wWψwith all phase values taken modulo2πin radians.The inputs to a phase interpolator are usually no more than90◦out of phase and45◦is more common.Figure2shows a simplistic implementation of a phase interpolator,with accompanying waveforms.The control signal w sets the variable current sources that are in turn switched into the signal path by transistors controlled by the input signals.The weighted currents4Figure 2:Phase interpolation output waveforms.are converted into an output voltage across resistor R .This general method of interpolation can be view as a form of phase blending.A plot of the ideal transfer function of a phase interpolator is displayed in Figure 3.The input variable is the weighting function and the output variable is the phase of the output signal.The plot was constructed assuming the phase interpolator inputs have a phase difference of 45◦.The control input varies in discrete steps from 0to 15for the0 5101520 25 30 354045 0 2 4 6 810 12 14P h a s e S h i f t (d e g r e e s )Control Input analog control digital controlFigure 3:Plot of phase interpolator transfer function.digital plot.The analog transfer characteristic is shown,however,the x -axis for the analog5plot would be an analog voltage rather than a digital number.There are several desirable properties for the behaviour of phase interpolating circuits. They include:1.A monotonic transfer characteristic.2.A linear transfer characteristic.3.Maximum rejection when the control input is set to the minimum or maximum value(i.e.only one input waveform should affect the output).This is referred to as theseamless boundary requirement in[1].4.Insensitivity to input waveform risetime and falltime.5.Insensitivity to delay between inputs.6.Insensitivity to process,temperature,and supply voltage variation.The relative importance of each property varies with the specific application.For example, in[1],it is noted that monotonicity and insensitivity to process,temperature,and voltage variation are paramount.2.2Applications of Phase InterpolationPhase interpolating circuits are required in high-speed signalling circuits[2]to generate precisely aligned clocks.In links where no explicit clock is transmitted a PLL-based CDR system is often used.The PLL generates a clock with a voltage-controlled oscillator(VCO) [3]which is used to generate four or eight phases of a clock.In order to have a higher phase granularity,a phase interpolator can be used to interpolate between the four or eight VCO phases.It is usually impractical to generate more than eight phases directly from the VCO since the a ring oscillator is used to generate the clock.As the number of stages in a ring oscillator increases,thus providing more phases,the frequency of oscillation decreases. It is thus difficult to generate a high frequency clock with a large number of phases.An examples of a PLL design that incorporates a phase interpolator is presented in[4].In low latency,parallel communication links where the clock is distributed with the data, it still often necessary to generate a clock of different phase from the source clock to allow for precise data sampling alignment.In this case,the input clock is fed into a series of buffers that generate multiple phases(again,usually four or eight phases)and a phase interpolator is used to derive intermediate phases.This precisely aligned clock is then6used to sample the incoming data.Often,this system is implemented using a DLL and the delay chain is called voltage-controlled delay line(VCDL).An example of a DLL design that incorporates a phase interpolator is presented in[1,5].3Implementations3.1OverviewAll techniques presented below are variations on the same basic architecture.First,the weighting signal and its complement∗are transformed into weighted currents.These cur-rents are then mixed based on the input waveformsφ andψ .The basic architectural difference in phase interpolating systems is the method that is used to transform the phase-mixed current mode signal to an output voltage.The predominant approach is to convert the current to a voltage by using an output load.The actual loads used vary from resistors to different forms of active loads.The second approach to current-to-voltage to conversion is to differentially charge and discharge two capacitors.This method is a current integration approach.A comparator is used to sense the differential voltage on the two output capacitors and to convert it to an output waveform with high slew rate.The main development in phase interpolating circuits has been with respect to the loading and biasing circuitry rather than in the basic architecture.Two significant im-provements are the use symmetric loads and the use of replica biasing.3.2Differential MCML Buffer-Based DesignThefirst approach of phase interpolator implementation,phase blending with output loads, is exemplified by the design in[1,5].The phase interpolator design is based on a MOS current mode logic(MCML)differential buffer[6]displayed in Figure4.The MCML buffer generates a differential output signals,V OUT+and V OUT−,based on differential inputs V IN+and V IN−.A differential source-coupled pair is used to convert the input voltage to a current.The bias current in the differential pair is provided by the NMOS pulldown resistor controlled by the bias voltage V BIAS.A generic differential load is shown in the ∗The digital form of the complement of w is W−w,for analog control a differential signal is usually supplied so the complement of V C+is V C−.7Figure4:MCML differential output buffer schematic.figure which,in general,may require a bias input.The differential load converts the differential currents to output voltages across the loads.A selection of possible loads for the MCML circuits[7]are displayed in Figure5.The signal swing of MCML circuits is usually small compared to full-rail complementary CMOS logic.The simplest load is a pair of resistor loads,displayed in Figure5(a).Resistor loads are somewhat impractical considering that accurate resistors are usually difficult to man-ufacture using on-chip components.Alternative and popular differential loads that mimic resistive loads using active devices are displayed in Figure5(b).Called symmetric loads, each load consists of a diode-connected PMOS and a parallel PMOS transistor biased in the triode region.The combination of the diode and triode regions result in an extremely linear I–V characteristic over a large range of voltages.A plot of the I–V characteristic of a symmetric load in0.13µm CMOS technology is displayed in Figure6.The third type of load shown is the differential load using diode connected PMOS transistors shunted with cross-coupled PMOS loads.This configuration provides a very high differential impedance although must be taken to avoid introducing hysteresis into the circuit.No reported phase interpolators have used this last set of differential loads.8(a)Resistive loads.(b)Symmetricloads.(c)Infinite impedance.Figure5:Possible MCML loads.Figure6:I-V characteristic of symmetric loads.93.2.1Replica BiasingIn the design reported in[1,5]symmetric loads are used.The biasing network is described in detail in[8].A replica-bias circuit is used to generate the bias voltages for the NMOS current source and the symmetric PMOS loads of the MCML loads.It is noted in the reference that using the replica-bias technique to generate the NMOS bias voltage results in a high static supply rejection.The replica-bias technique further allows for high dynamic supply noise rejection by the symmetric loads.It is noted that performance similar to a cascoded loads is achieved without the loss in voltage headroom.A schematic for theFigure7:Replica-bias circuit.replica-bias circuit used in the phase interpolator is displayed in Figure7and is adapted from[8]and[7].The circuit consists of a replica of half of the MCML differential buffer in the ON state(i.e.with the NMOS differential pair transistor input tied to the high voltage).The voltage V LOW is the target low signal swing of the MCML gate.The output voltage V BIAS is used to bias the NMOS current source such that the drain voltage across the symmetric load close to V LOW(due to the virtual short at the inputs of the amplifier). In general,this the feedback loop may require compensation for stability.The replica-bias circuit actually used is modified as shown in Figure8to additionally generate the bias voltage for the symmetric loads.A second,buffer stage is added to the replica bias circuit to generate the output voltage V L−BIAS.The output V L−BIAS is nominally equal to V CT RL.10Figure8:Replica-bias circuit with V L−BIAS generation.3.3MCML-Based Phase InterpolatorTwo similar architectures for phase interpolators are described in[1,5].Thefirst imple-mentation is displayed in Figure9which is similar to a differential MCML OR/NOR gate. The phase interpolator differential inputsφ+,φ−andψ+,ψ−control when the weighted current sources are switched into theΘ+orΘ−signal path.Theφbranch current sources and theψbranch current sources are broken up into n separate current sources all con-trolled by bias voltage V CN generated from the replica-bias circuit described earlier.Each current source is connected to the source of the appropriate differential pair through tran-sistors operating as switches controlled by I CT L signals∗.Symmetric loads are used to convert the current mode signal to a differential output voltage.This implementation is referred to by the author as a type I implementation.A drawback of this implementation is the violation of the seamless boundary requirement described earlier.When one of the differential pairs is supposed to be inactive because the weighting control has been set to all zeros or all ones,the inactive input has an affect on the output.This effect is due to∗Note that only the total number of ones and zeros,called the weight of the input,matters(i.e.I CT L=0011would have the same effect as I CT L=1100).11Figure9:Phase interpolator implementation,type I. 12the gate-drain coupling capacitance in the NMOS differential input transistors.To alleviate this problem,an alternative,albeit very similar,implementation is proposed which is displayed in Figure10,with the unitCell block shown in detail in Figure11.ThisII.Figure10:Phase interpolator implementation,typetype II implementation moves the bias control switches up the stack.As a result the13differential pairs are duplicated as well as each current source.This is in contrast to the type I circuit where only one set of differential pairs is used.The gate-drain coupling capacitance of the NMOS transistors is not connected to the output nodesΘ+andΘ−when the associated control switches are turned off,thus meeting the seamless boundary requirement.The trade-offis that the transfer characteristic of this implementation suffers from non-linearity.This non-linearity is due to the effect of data-dependent loading of the phase interpolator on the previous stage.The effect of the changing weight control is to distort the inputs waveforms causing a non-linear response.The random variation of the threshold voltage of the in the differential pairs and the various current sources and control devices also affects the linearity of the response. Another limitation of this design,noted in[9]is that the linearity of the waveform is strongly dependent on the input waveforms’rising and falling edges overlapping.If the input waveforms are phase difference results in a rising or falling edge spacing greater than the RC time constant of the interpolator,then the output waveform is a poor approxima-tion of the desired waveform.The RC thefirst-order time constant of this circuit is set by the resistance at the output node which due to the load resistance of the symmetric loads in parallel with the load resistance of the differential pair NMOS,and the capacitance,C, is set by the parasitic capacitances at the output node and the input capacitance of the next stage.3.4Current Integration ArchitecturesA second type of architecture is based on current integration using capacitors and com-parator sensing of the differential voltage on the capacitors.Two similar implementations use this approach:[10]and[9].The basic structure of the phase interpolator in thefirst design is displayed in Figure12.A differential control inputs V C+and V C−are converted to weighted currents using the differential input pair.The total current in the differential pair is I BIAS as set by the current source connected to ground.Thus a total current of I BIAS is directed into the phase comparator block.The current in each branch feeding the phase mixer is weighted based on the differential input voltage V C.The input wave-forms are to be interpolated are fed into the phase mixer block and control switches that switch the current from the external bias sources.The currents are steered into the load14Figure12:Simplified schematic of current integration phase interpolator15capacitors,which integrated the current and are in turn sensed by a comparator.The detailed schematic is displayed in Figure13.This phase interpolator is part of a system that generates an arbitrary phase shift of an input signal.The input signal is first buffer in a delay line to create0◦,90◦,180◦and270◦phases.Two of these phases are fed into the phase interpolator based on which phase quadrant the desired output phase is situated.Thus the inputs I,Q,¯I,and¯Q are the0◦90◦,180◦and270◦phase signals,respectively.The Isel,¯Qsel active lows signals control which two ofIsel,Qsel,¯the inputs are phase mixed.Essentially,the four two transistors which are controlled by I and¯I(and similarly for the Q and¯Q transistors)form a pair of differential pairs.The difference between the pairs is polarity of the connections.Only one of each pair is enabledIsel.If the select inputs Isel and Qsel are at any one time as controlled by Isel and¯chose andfixed,one can see that the phase mixing circuit is similar to the above phase mixer based on differential MCML logic.In this circuit,rather than use a resistive-type load to convert the mixed current to an output voltage,current integration is used.The differential pair outputs are used to charge capacitors and each differential pair is loaded by a current mirror.Thus any current used to charge one of the capacitors is mirrored and use to discharge the other capacitor.And by superposition the opposite is also true. Thus the voltages on the capacitors are differential.These differential voltages are sensed by a comparator which sets the risetime and falltime of the output waveform because it is slewing for most of the output time.16Figure13:Current integration phase interpolator174ConclusionMany papers and reports about designs that use phase interpolators often spend little or no space discussing the actual implementation of the phase interpolator.They seem to be an afterthought.In[2]it is observed that there is no fundamental limit to signalling rates other than Shannon’s capacity limit.Thus,investigation into signalling circuitry has a high probability of positive results.As is evident from the list of references,much of the information was culled from registered patents,indicating that there is need for phase interpolating circuits.It is expected that phase interpolating circuits will be studied in more detail in both academia and in industry in the future in because as thefield of high-speed signalling progresses,the performance gain from the phase interpolator will become a critical component of the overall performance.References[1]Stefanos Sidiropoulos.High-performance inter-chip signalling.PhD thesis,StanfordUniversity,1998.[2]Mark Horowitz,Chih-Kong Ken Yang,and Stefanos Sidiropoulos.High-speed electri-cal signaling:overview and limitations.IEEE Micro,18(1):21–24,January-February 1998.[3]Behzad Razavi.Design of Analog CMOS Integrated Circuits.McGraw-Hill,Toronto,2001.[4]Patrik Larsson.A2-1600-MHz CMOS clock recovery PLL with low-Vdd capability.IEEE Journal of Solid-State Circuits,34(12):1951–1960,December1999.[5]Stefanos Sidiropoulos.A semidigital dual delay-locked loop.IEEE Journal of Solid-State Circuits,32(11):1683–1692,November1997.[6]Masayuki Mizuno,Masakazu Yamashina,Koichiro Furuta,Hiroyuki Igura,et al.AGHz MOS adaptive pipeline technique using MOS current-mode logic.IEEE Journal of Solid-State Circuits,31(6):784–791,June1996.18[7]William J.Dally and John W.Poulton.Digital Systems Engineering.CambridgeUniversity Press,1998.[8]John G.Maneatis and Mark Horowitz.Precise delay generation using coupled oscil-lators.IEEE Journal of Solid-State Circuits,28(12):1273–1282,December1993.[9]Jared L.Zerbe,Grace Tsang,and Clemenz L.Protmann.Phase interpolator withnoise Patent6,111,445,August2000.[10]Thomas H.Lee,Kevin S.Donnelly,and Tary-Chyang Ho.Voltage controlled phaseshifter with unlimited Patent5,554,945,September1996.19。
. The Design Problem
Source: Bayer AG
Source: Sulzer Chemtech AG
The Control Engineer:
Three Perspectives (of many): Scientist Chemist Design Problem Control Engineer Chemical Engineer
Why Research ?
MSS may cause problems. . . • . . . in simulation – Convergence failure – Misleading conclusions
• . . . in column operation – Profile “jumps” from desirable steady state to undesirable steady state – Industrially observed “erratic behavior”
A Mathematical Point of View
• Given a system of nonlinear DAE: Bx ˙ = f (x, u) y = g (x) where B = diag{1...1; 0...0} • Considering the equilibrium, x ˙ = 0: 0 = f (xeq , ueq ) yeq = g (xeq ) • With ueq one calculates xeq and yeq • Possible classes of solutions: – no solution – an infinite number of solutions – exactly one solution – multiple (finite number of) solutions
核磁共振中常用的英文缩写和中文名称
NMR中常用的英文缩写和中文名称收集了一些NMR中常用的英文缩写,译出其中文名称,供初学者参考,不妥之处请指出,也请继续添加.相关附件NMR中常用的英文缩写和中文名称APT Attached Proton Test 质子连接实验ASIS Aromatic Solvent Induced Shift 芳香溶剂诱导位移BBDR Broad Band Double Resonance 宽带双共振BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOC Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY ( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱CP Cross Polarization 交叉极化CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA Chemical Shift Anisotropy 化学位移各向异性CSCM Chemical Shift Correlation Map 化学位移相关图CW continuous wave 连续波DD Dipole-Dipole 偶极-偶极DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱DNMR Dynamic NMR 动态NMRDNP Dynamic Nuclear Polarization 动态核极化DQ(C) Double Quantum (Coherence) 双量子(相干)DQD Digital Quadrature Detection 数字正交检测DQF Double Quantum Filter 双量子滤波DQF-COSY Double Quantum Filtered COSY 双量子滤波COSYDRDS Double Resonance Difference Spectroscopy 双共振差谱EXSY Exchange Spectroscopy 交换谱FFT Fast Fourier Transformation 快速傅立叶变换FID Free Induction Decay 自由诱导衰减H,C-COSY 1H,13C chemical-shift COrrelation SpectroscopY 1H,13C化学位移相关谱H,X-COSY 1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X-核化学位移相关谱HETCOR Heteronuclear Correlation Spectroscopy 异核相关谱HMBC Heteronuclear Multiple-Bond Correlation 异核多键相关HMQC Heteronuclear Multiple Quantum Coherence异核多量子相干HOESY Heteronuclear Overhauser Effect Spectroscopy 异核Overhause效应谱HOHAHA Homonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn谱HR High Resolution 高分辨HSQC Heteronuclear Single Quantum Coherence 异核单量子相干INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDOR Internuclear Double Resonance 核间双共振INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSE H,X correlation via 1H detection 检测1H的H,X核相关IR Inversion-Recovery 反(翻)转回复JRES J-resolved spectroscopy J-分解谱LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR Lanthanide Shift Reagent 镧系位移试剂MAS Magic-Angle Spinning 魔角自旋MQ(C) Multiple-Quantum ( Coherence ) 多量子(相干)MQF Multiple-Quantum Filter 多量子滤波MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS Multi Quantum Spectroscopy 多量子谱NMR Nuclear Magnetic Resonance 核磁共振NOE Nuclear Overhauser Effect 核Overhauser效应(NOE)NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE谱NQR Nuclear Quadrupole Resonance 核四极共振PFG Pulsed Gradient Field 脉冲梯度场PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD Phase-sensitive Detection 相敏检测PW Pulse Width 脉宽RCT Relayed Coherence Transfer 接力相干转移RECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR Rotational Echo Double Resonance 旋转回波双共振RELAY Relayed Correlation Spectroscopy 接力相关谱RF Radio Frequency 射频ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱SC Scalar Coupling 标量偶合SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱SE Spin Echo 自旋回波SECSY Spin-Echo Correlated Spectroscopy自旋回波相关谱SEDOR Spin Echo Double Resonance 自旋回波双共振SEFT Spin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱SELINCOR Selective Inverse Correlation 选择性反相关SELINQUATE Selective INADEQUA TE 选择性双量子(实验)SFORD Single Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/N Signal-to-noise Ratio 信/ 燥比SQF Single-Quantum Filter 单量子滤波SR Saturation-Recovery 饱和恢复TCF Time Correlation Function 时间相关涵数TOCSY Total Correlation Spectroscopy 全(总)相关谱TORO TOCSY-ROESY Relay TOCSY-ROESY接力TQF Triple-Quantum Filter 三量子滤波WALTZ-16 A broadband decoupling sequence 宽带去偶序列WATERGATE Water suppression pulse sequence 水峰压制脉冲序列WEFT Water Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C) Zero-Quantum (Coherence) 零量子相干ZQF Zero-Quantum Filter 零量子滤波T1 Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2 Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间tm mixing time 混合时间τ c rotational correlation time 旋转相关时间。
基于城区无功补偿装置解决低电压问题的方案研究
电力技术应用基于城区无功补偿装置解决低电压问题的方案研究陈冠宇(广东电网有限责任公司肇庆供电局,广东通过设计一种基于电压控制的单相无功补偿装置,以解决城区低电压问题。
具体方案包括单相无功补偿电压型无功补偿继电器的工作原理与设计、单独控制的无功补偿控制器的设计与功能实现、基于电压偏差的无功分段投入策略以及电容串并联切换技术的应用。
通过该方案的实施,可以提高城区低电压台区用户的电压水平,改善供电设备和用户侧的电力质量。
城区电网;低电压问题;无功补偿装置;单相无功补偿Research on Solution of Low Voltage Problem Based on Urban Reactive PowerCompensation DeviceCHEN Guanyu(Guangdong Power Grid Co., Ltd., Zhaoqing Power Supply Bureau, Zhaoqingsingle-phase reactive power compensationproblem of low voltage in urban areas is solved. The specific scheme includes the selection and parameter calculationTelecom Power Technology法及时启动补偿装置,导致电压下降问题难以得到有三相共补装置在补偿过程中存在其他相电压升高的问题。
由于单相用户的无功需求不均衡,当某一相的负载较大时,该相的电压会升高,而补偿装置会对所有相进行补偿,导致其他相的电压升高,进一步加剧电压不平衡的问题。
该设计并没有针对城区低电压问题进行优化,无法提前投入无功补偿附近区域的无功功率,无法解决长距离输送无功功率导致的电压以功率因数为触发条件的控制装置的不足目前,许多无功补偿装置采用以功率因数为触发条件的控制装置来实现补偿操作,但是这种控制方式存在一些不足之处,特别是在解决城区低电压问题时。
专业英语(雷击钢筋混凝土结构时电磁环境的时域有限差分)解读
oscillation *,ɒsɪ'leɪʃn+
振荡
superimpose*,supərɪm'poz+ 重叠 Faraday cage 法拉第笼
grounding conductor 接地导体 Lightning Protection Zone(LPZ) 防雷区
Shielding 屏蔽的 grid-like spatial 栅格空间 empirical formulas 经验公式 compatibility 兼容性 impedance 阻抗
Vocabulary
finite-difference time-domain (FDTD) 有限差分 reinforced concrete structure ring conductor 环导体 electromagnetic 电磁的 radiated *'redɪ,et+ 辐射的 method of moment 矩量法 the impulse response 脉冲响应 Vertical column *'kɒləm+ 垂直列
3.Oscillations superimposed on the current of a branch
the frequency-domain
Fig. 5. Frequency spectrum of the current along column 1 with σg = 0.05 S/m.
1
introduction calculation model
Oscillations superimposed on the current of a branch
ALD原子层沉积技术的前驱体工艺及材料
ALD前驱体概述
In summary, there are some general requirements for ALD precursors, which include: sufficient volatility at the deposition temperature no self-decomposition allowed at the deposition temperature precursors must adsorb or react with the surface sites sufficient reactivity towards the other precursor, e.g. H2O no etching of the substrate or the growing film availability at a reasonable price safe handling and preferably non-toxicity.
compounds, such as (CH3)NNH2,tBuNH2,and CH2CHCH2NH, have also been studied.
非金属前驱体
For chalcogenide thin films it is possible to use elemental S, Se, and Te as precursors provided that the other source is a volatile and reactive metal. The first ALD process to be developed was ZnS deposition using elemental zinc and sulfur. For other precursor types, including halides, β-diketonates,
化工专业英语词汇
化工专业英语词汇reaction kinetics 反应动力学reactant 反应物purify 精制提纯recycle 循环回收unconverted reactant未转化的反应物chemical reactortransfer of heat,evaporation,crystallization结晶drying干燥screening筛选,浮选chemical reaction化学反应cracking of petroleum石油裂解catalyst催化剂,reaction zone反应区conservation of mass and energy能量与质量守衡定律technical advance 技术进步efficiency improvement 效率提高reaction 反应separation 分离heat exchange 热交换reactive distillation 反应精馏capital expenditure 基建投资setup 装置capital outlay 费用,成本,基建投资yield 产率,收率reaction byproduct 反应副产物equilibrium constant 平衡常数waste 废物feedstock 进料,原料product 产物,产品percent conversion百分比转化率ether 乙醚gasoline汽油oxygenate content 氧含量catalyst 催化剂reactant 反应物inert 惰性物,不参加反应的物质reactive distillation 反应精馏-energy saving 节约能量energy efficiency 能量效率heat-sensitive material 热敏性物质pharmaceutical 制药foodstuff 食品gas diffusivity气体扩散性,气体扩散系数gas adsorption 吸收;absorption:吸附specialty chemical特殊化学品,特种化学品batch间歇的;continuous:连续的micro-reactor 微型反应器hydrogen and methane oxidation 氢气和甲烷氧化反应ethylene epoxidation 乙烯环氧化反应phosgene synthesis 光气合成.commercial proportions 商业规模replication 复制sensor 传感器,探头separation of solids 固体分离suspension 悬浮液porous medium 多孔介质filtration 过滤medium 介质filter 过滤器trap 收集,捕集Buchner funnel 布氏漏斗Vacuum 真空conical funnel 锥形漏斗filter paper 滤纸area 面积filter cake 滤饼factor 因数,因子,系数,比例viscosity 黏度density 密度corrosive property 腐蚀性particle size 颗粒尺寸shape 形状size distribution 粒度分布packing characteristics填充性质concentration 浓度filtrate 滤液feed liquor 进料液pretreatment 预处理latent heat 潜热resistance 阻力surface layer 表面层-filtering medium 过滤介质drop in pressure 压降filtering surface 过滤表面filter cake 滤饼cake filtration 饼层过滤deep bed filtration 深层过滤depth 深度law 定律net flow 净流量conduction 传导convection 对流radiation 辐射temperature gradient 温度梯度metallic solid 金属固体thermal conduction 热传导motion of unbound electrons 自由电子的运动electrical conductivity 导电性thermal conductivity 导热性poor conductor of electricity 不良导电体transport of momentum 动量传递the random motion of molecules 分子无规则运动brick wall 墙壁furnace 火炉,燃烧器metal wall of a tube 金属管壁macroscopic particle 宏观的粒子control volume 控制体enthalpy 焓macroscopic phenomenon 宏观现象forces of friction 摩擦力fluid mechanics 流体力学flux(通量,流通量)of enthalpy 焓通量eddy 尾流,涡流turbulent flow 湍流natural and forced convection 自然对流和强制对流buoyancy force 浮力temperature gradient 温度梯度electromagnetic wave 电磁波fused quartz 熔化的石英reflect 反射,inflection:折射matte无光泽的,无光的temperature level 温度高低inter-phase mass transfer界相际间质量传递-rate of diffusion扩散速率acetone 丙酮dissolve 溶解ammonia 氨ammonia-air mixture 氨气-水混合物physical process 物理过程oxides of nitrogen 氮氧化物nitric acid 硝酸carbon dioxide 二氧化碳sodium hydroxide 氢氧化钠actualrate of absorption 实际吸收速率two-film theory 双膜理论concentration difference 浓度差in the vicinity of 在…附近,靠近..,大约…,在…左右molecular diffusion 分子扩散laminar sub-layer 层流底层resistance 阻力,阻止boundary layer 边界层Fick’s Law费克定律is proportional to 与…成比例concentration gradient 浓度梯度plate tower 板式塔installation 装置feed 进料bottom 底部,塔底solvent 溶剂top 顶部,塔顶partial vaporization 部分汽化boiling point 沸点equimolecular counter-diffusion 等分子反向扩散ideal system 理想系统ratio of A to B A与B的比值with the result that:由于的缘故,鉴于的结果tray 塔板packed tower 填料塔bubble-cap tower 泡罩塔spray chamber 喷淋室maintenance expense 维修费foundation 基础tower shell 塔体packing material 填料pump 泵blower 风机accessory heater 附属加热器-cooler 冷却器heat exchanger 换热器solvent-recovery system 溶剂回收系统operating cost 操作费用power 动力circulating gas 循环气labor 劳动力steam蒸汽regenerate再生cooling water 冷却水solvent make-up 补充溶剂optimum 最优的unabsorbed component未吸收组分purity纯度volatility挥发性vapor pressure蒸汽压liquid mixture 液体混合物condense凝缩,冷凝binary distillation双组分精馏multi-component distillation多组分精馏stage-type distillation column级板式精馏塔mount 安装,固定conduit导流管),downcomer 降液管gravity重力weir溢流堰vapor-liquid contacting device汽液接触装置valve tray浮阀塔板reboiler再沸器vaporization汽化condensate冷凝液,凝缩液overhead vapor塔顶汽体condenser冷凝器ifeed tray进料板base塔底,基础bottoms product塔底产品condensation冷凝stripping section汽提段,提馏段distillate section精馏段total condense全凝器distillate product塔顶馏出产品reflux回流thermodynamic equilibrium 热力学平衡solution溶液-fractional crystallization分步结晶solubility,溶解度,溶解性soluble可溶解的solvent溶剂employ采纳,利用miscible可混合的,可溶的,可搅拌的mechanical separation 机械分离)liquid-liquid extraction 液液萃取aromatic 芳香烃的paraffin石蜡,链烷烃lubricating oil润滑油decompose分解,离解,还原,腐烂penicillin青霉素streptomycin(链霉素)precipitation沉淀,沉析ethyl alcohol乙醇)extract萃取液heat requirement热负荷solute溶质extract phase萃取相baffle-plate折流挡板,缓冲挡板settling tank沉降槽centrifuge离心.离心机,离心分离emulsifying agent乳化剂density difference密度差raffinate萃余液extract 萃取液drying of Solids 固体干燥process material过程物料(相对最终产品而言的)organic有机的,有机物的benzene苯humidity湿度moisture content湿含量drying rate干燥速率critical moisture content临界湿湿含量falling-rate降速concave (凸的,凸面)or convex(凹的,凹面)approximate to:接近,趋近straight line:直线constant-rate drying period恒速干燥阶段convection drying对流干燥drying gas干燥气体falling-rate period降速干燥阶段mean value平均值-vacuum drying真空干燥discolor变色,脱色sublime升华freeze drying冷冻干燥adiabatic绝热的,不传热的pressure gradientperpendicular to:与----垂直counter-current逆流per unit area单位面积water-cooling tower水冷塔sensible heat(sensible heat:显热)water droplet水珠,水滴quantitative relation定量关系thermal diffusion热扩散at right angles to 与…成直角,与…垂直by virtue of 由于,根据,凭借于molecular transfer分子传递balance 抵消,平衡drag forces曳力a function of …的函数of the same order具有同一数量级eddy diffusion涡流扩散is almost inversely proportional to 几乎与…成反比Reynolds number雷诺准数fully developed turbulent flow充分发展湍流coefficient系数In principle从原理而言exothermic(放热的,endothermic吸热的,adiabatic绝热的)triple bond三健,三价nitrogen oxides氮氧化物compound化合物conversion转化,转化率protein蛋白质compress压缩reaction yield反应产率reaction speed反应速度one-pass(单程) reactorenergy input能量输入maximum最大的near toequilibrium接近平衡output产出,输出,产量fertilizer化肥urea尿素ammonium nitrate硝酸铵-ammonium phosphate磷酸铵ammonium sulfate硫酸铵diammonium hydrogen phosphate磷酸二氢铵ash纯碱pyridine砒啶polymers聚合物nylon尼龙acrylics丙烯酸树脂via经,由,通过,借助于hydrogen cyanide氰化氢nitric acid硝酸bulk explosive集装炸药crude oil原油natural gas天然气bitumen沥青fossil fuel化石燃料seepage渗出物asphalt沥青oil drilling采油gasoline汽油paint涂料plastic塑料synthetic rubber合成橡胶fiber纤维soap肥皂cleansing agent清洗剂wax石蜡explosive炸药oil shale油页岩deposit沉积物aquatic plant 水生植物sedimentary rock沉积岩sandstone砂岩siltstone泥岩tar sand沥青石chain-shaped链状的methane甲烷paraffin石蜡,烷烃ring-shaped(环状的)hydrocarbonnaphthene环烷烃naphtha石脑油tarry柏油的,焦油的,焦油状的asphaltene沥青油impurity杂质-pollutant 污染物combustion燃烧capillarity毛细现象,毛细管力viscous resistance粘性阻力barrel桶(国际原油计量单位)tanker油轮kerosene煤油heavy gas oil重瓦斯油reforming重整cracking裂化octane number of gasoline汽油辛烷值branched-chain(带支链的)materials science材料科学mechanical, thermal, chemical, electric, magnetic, and optical behavior. (机械性能、热学性能、化学性能、电学性能、磁性能、光学性能)Amalgam 汞齐,水银;混合物,交叉solid state physics固体物理学metallurgy 冶金学,冶金术magnet 磁铁,有吸引力的人或物insulation 绝缘catalytic cracking 催化裂化structural steels 结构钢computer microchip 计算机芯片Aerospace 航空Telecommunication 电信information processing 信息处理nuclear power 核能energy conversion 能量转化internal structure 内部结构defect structure 结构缺陷crystal flaw 晶体瑕疵vacant atomic site 原子空位dislocation 错位precipitate 沉淀物semiconductor 半导体mechanical disturbance 机械扰动ductility 延展性brittleness 脆性spinning electrons 旋转电子amorphous 非定型的,非晶型的,非结晶的,玻璃状的;无一定目的的,乱七八糟chemical process safety 化工过程安全exotic chemistry 奇异化学-hydrodynamic model水力学模型two-phase flow两相流dispersion model分散模型toxic有毒的release释放,排放probability of failure失效概率accident prevention事故预防hard hat 安全帽safety shoe防护鞋rules and regulations 规章制度loss prevention损失预防hazard identification 危害辩识,technical evaluation技术评估safety management support安全管理基础知识safety experience安全经验technical competence技术能力safety knowledge安全知识design engineer设计师cost engineer造价师process engineering过程工程plant layout工厂布局general service facilities公用工程plant location工厂选址close teamwork紧密的团队协作specialized group专业组storage仓库waste disposal废物处理terminology术语,词汇accountant会计师,会计,出纳final-proposal决议tangible return有形回报Empirical model 经验模型process control(过程控制)first-principles基本原理,基本规则regression model回归模型.operating condition操作条件nonlinear-equation-solving technique非线性方程求解技术process-simulation software packages过程模拟软件包least-squares-regression最小二乘法statistical technique 统计技术intensity强度,程度phenomenological model 现象模型model identification模式识别-neural network神经网络a priori:先验的,既定的,不根据经验的,由原因推出结果的,演绎的,直觉的process data historian:过程数据历史编撰师qualitative定性的quantitative precision定量的精确high-fidelity高保真的computationally intensive计算量大的mathematical expressionsteady-state model稳态模型bioengineering生物工程artificial人工的hearing aid助听器artificial limb假肢supportive or substitute organ辅助或替代器官biosynthesis生物合成life scientist生命科学家agricultural engineer农艺师fermentation发酵civil engineer土木工程师sanitation卫生physiologists生理学criteria 指标human medicine人体医学medical electronics医疗电子medical instrumentation医疗器械blood-flow dynamics血液流动动力学prosthetics假肢器官学biomechanics生物力学surgeon外科医生replacement organ器官移植physiologist生理学家counterpart对应物,配对物psychology心理学self-taught自学barrier障碍物medical engineering医学工程,医疗工程health care保健diagnostic application of computers计算机诊断agricultural engineering农业工程biological production生物制品生产bionics(仿生学)human-factors engineering人类与环境工程environmental health engineering环境健康工程environmentally benign processing环境友好加工commodity or specialty通用商品或特殊化学品styrene苯乙烯ibuprofen异丁苯丙酸the Chemical Manufacturers Association化工生产协会as a whole整体而言emission释放物,排放物voluntary自愿的,无偿的,义务的;有意的,随意的;民办的in the absence of无---存在deactivate失活bulk chemical 大宗化工产品Fine chemical 精细化工Pharmaceutical制药segment段,片,区间,部门,部分;弓形,圆缺;分割,切断tonnage吨位,吨数,吨产量inorganic salt无机盐hydroquinone 对苯二酚demonstrate论证,证明,证实;说明,表明,显示forefront最前线,最前沿Lewis acid不可再生的路易斯酸anhydrous无水的phaseout消除HF alkylation氰氟酸烷基化catalytic oxidation催化氧化governmental regulation政府规定pharmaceutical intermediate药物中间体stereoselective立体选择性的ketone酮functional group官能团detrimental有害的chlorofluorocarbon二氯二氟化碳,氟里昂carbon tetrachloride四氯化碳straightforward简单明了的coordinating ligand配合体,向心配合体kilogram千克thermal stability热稳定性devastate破坏,蹂躏outline描绘,勾勒membrane technology膜技术production line生产线dairy牛奶water purification水净化lifetime寿命membrane module膜组件durability 耐久性,寿命,使用期限,强度chemical additive添加剂end-of-pipe solution 最终方案closed system封闭系统substitute取代,替代technical challenge技术挑战,技术困难wastewater treatment污水处理fouling污垢,发泡surface treatment表面处理applied Chemistry应用化学nomenclature of chemical compound化学化合物的命名法descriptive 描述性的prefix前缀alkane烷烃family族carbon skeleton碳骨架chain链Latin or Greek stem 拉丁或者希腊词根suffix后缀constitute取代物,取代基homologous series同系物branched chain支链烷烃parent母链,主链derivative衍生物substituent取代基locant位次,位标replicating prefix重复前缀词Gas and Liquid Chromatography气相色谱与液相色谱analytical chemistry分析化学moving gas stream移动的气流heats of solution and vaporization溶解热和汽化热activity coefficient活度系数counteract抵消milliliter毫升essential oil香精油test mixture测试混合物sample样品helium氦argon氩carrier载体injection注射stationary nonvolatile phase静止的不挥发相detector检测器fraction collector馏分收集器columnar liquid chromatography柱状液相色谱仪retention volume保留体积retention times保留时间high-performance高性能mobile phase移动相high-efficiency高效的analyte分析物plane chromatography薄层色谱capillary action毛细管作用assay分析化验fluorescence 荧光色,荧光retardation factor保留因子,延迟因子。
制冷专业英语大全
制冷专业英语根本术语制冷 refrigeration蒸发制冷 evaporative refrigeration沙漠袋 desert bag制冷机 refrigerating machine制冷机械 refrigerating machinery制冷工程 refrigeration engineering制冷工程承包商 refrigeration contractor制冷工作者 refrigerationist制冷工程师 refrigeration engineer制冷技术员 refrigeration technician制冷技师 refrigeration technician制冷技工 refrigeration mechanic冷藏工人 icer制冷安装技工refrigeration installation mechanic制冷维修技工 refrigeration serviceman冷藏链 cold chain制冷与空调维修店refrigeration and air conditioning repair shop冷藏 refrigerated prvservation一般制冷换热器英语换热器 heat exchanger热交换器 heat exchanger紧凑式换热器 compact heat exchanger管式换热器 tubular heat exchanger套管式换热器 double-pipe heat exchanger间壁式换热器 surface type heat exchanger外表式换热器 surface type heat exchanger板管式换热器 tube-on-sheet heat exchanger板翅式换热器 plate-fin heat exchanger板式换热器 plate heat exchanger螺旋板式换热器 spiral plate heat exchanger平板式换热器 flat plate heat exchanger顺流式换热器 parallel flow heat exchanger逆流式换热器 counter flow heat exchanger*流式换热器 cross-flow heat echanger折流式换热器 turn back flow heat exchanger直接接触式换热器 direct heat exchanger旋转式换热器 rotary heat exchanger刮削式换热器 scraped heat exchanger热管式换热器 heat pipe exchanger蓄热器 recuperator壳管式换热器 shell and tube heat exchanger管板 tube plate 可拆端盖 removable head管束 bundle of tube管束尺寸 size of tube bundle顺排管束 in-line hank of tubes错排管束 staggered hank of tubes盘管 coil蛇形管 serpentine coilU形管 U-tube光管 bare tube肋片管 finned tube翅片管 finned tube肋管 finned tube肋管束 finned tube bundle肋片 fin套片 plate fin螺旋肋 spiral fin整体肋 integral fin纵向肋 longitudinal fin钢丝肋 wire fin肋 inner fin肋片管尺寸 size of fin tube肋片厚度 fin thickness肋距 spacing of fin肋片数 pitch of fin肋片长度 finned length肋片高度 finned height肋效率 fin efficiency换热面积 heat exchange surface传热面积 heat exchange surface冷却面积 cooling surface加热外表 heat exchange surface基外表 primary surface扩展外表 extended surface肋化外表 finned surface迎风外表 face area流通外表 flow area净截面积 net area;effective sectional area迎风面流速 face velocity净截面流速 air velocity at net area迎风面质量流速 face velocity of mass净截面质量流速 mass velocity at net area冷〔热〕媒有效流通面积effective area for cooling or heating medium冷〔热〕媒流速 velocity of cooling or heating medium干工况dry condition;sensible coolingcondition湿工况 wet condition;dehumidifying condition 接触系数 contact factor旁通系数 bypass factor换热效率系数 coefficient of heat transmission effectiveness盘管风阻力air pressure drop of coil;air resistance of coil盘管水阻力 pressure drop of cooling or heating medium外表冷却 surface cooling蒸发冷却 evaporating cooling冷却元件 cooling element涡流管制冷英语涡流制冷效应 vortex refrigerating effect兰克-赫尔胥效应 Ranque-Hilsch effect涡流管制冷 vortex tube refrigeration涡流管 vortex tube兰克管 Ranque tube膨胀喷嘴 expansion injector涡流室 vortex device别离孔板 separation orifice调节阀 control valve膨胀压力比 expansion pressure ratio冷气流分量 cold gas fraction热气流分量 hot gas fraction冷却效应 cooling effect加热效应 heating effect冷却效率 cooling efficiency磁制冷英语磁热效应magnetocaloric effect磁制冷 magnetic refrigeration磁制冷机 magnetic refrigerating machine磁冰箱 magnetic refrigerator压缩机制冷系统及机组制冷系统 refrigeration system制冷机 refrigerating machine机械压缩制冷系统mechanical compression refrigeration system蒸气压缩制冷系统vapour compression refrigeration system压缩式系统 compression system压缩机 compressor制冷压缩机refrigerating compressor,refrigerant compressor 吸气端 suction end排气端 discharge end低压侧 low pressure side高压侧 high pressure side蒸发压力 evaporating pressure吸气压力 suction pressure,back pressure排气压力 discharge pressure蒸发温度 evaporating temperature冷凝压力 condensing pressure冷凝温度 condensing temperature吸气温度 suction temperature回气温度 back temperature排气温度 discharge temperature压缩比 compression ratio双效压缩 dual compression单级压缩 single-stage compression双级压缩 compound compression多级压缩 multistage compression压缩级 compression stage低压级 low pressure stage高压级 high pressure stage中间压力 intermediate pressure中间冷却 intercooling多级膨胀 multistage expansion湿压缩 wet compression干压缩 dry compression制冷系统 refrigerating system机械制冷系统 mechanical refrigerating system 氟利昂制冷系统 freon refrigerating system氨制冷系统 ammonia refrigerating system压缩式制冷系统compression refrigerating system单级压缩制冷系统single-stage compression refrigeration system双级压缩制冷系统two-stage compression refrigeration system多级制冷系统 multistage refrigerating system 复叠式制冷系统 cascade refrigerating system 混合制冷剂复叠系统 mixed refrigerant cascade 集中制冷系统 central refrigerating plant直接制冷系统 direct refrigeration system直接膨胀供液制冷系统refrigeration system with supply liqiud direct expansion重力供液制冷系统refrigeration system with supply liquid refrigerant for the evaporator by gravity液泵供液制冷系统refrigeration system with supply liquid refrigerant for evaporator by liquid pump间接制冷系统 indirect refrigeration system融霜系统 defrosting system热气融霜系统 defrosting system by superheated vapour电热融霜系统 eletrothermal defrosting system 制冷系统故障 breakdown of the refrigerating system冰堵 freeze-up冰塞 ice plug脏堵 filth blockage油堵 greasy blockage液击〔冲缸、敲缸〕 slugging湿行程 wet stroke镀铜现象 appearance of copper-plating烧毁 burn-out倒霜 frost back制冷机组 refrigerating unit压缩机组 compressor unit开启式压缩机组 open type compresssor unit开启式压缩机 open type compressor半封闭式压缩机组 semihermetic compressor unit 半封闭式压缩机 semihermetic compressor全封闭式压缩机组hermetically sealed compressor unit全封闭式压缩机 hermetically sealed compressor 压缩冷凝机组 condensing unit全封闭式压缩冷凝机组hermetically sealed condensing unit半封闭式压缩冷凝机组 semihermetically sealed condensing unit开启式压缩冷凝机组open type compressor condensing unit工业用压缩冷凝机组 industrial condensing unit 商业用压缩冷凝机组 commercial condensing unit 整马力压缩冷凝机组integral horsepower condensing unit分马力压缩冷凝机组fractional horsepower condensing unit跨式制冷机组 straddle refrigerating unit容积式压缩机及零部件英语容积式压缩机 positive displacement compressor 往复式压缩机〔活塞式压缩机〕 reciprocating compressor回转式压缩机 rotary compressor滑片式压缩机 sliding vane compressor单滑片回转式压缩机single vane rotary compressor滚动转子式压缩机 rolling rotor compressor三角转子式压缩机 triangle rotor compressor多滑片回转式压缩机multi-vane rotary compressor滑片 blade旋转活塞式压缩机 rolling piston compressor涡旋式压缩机 scroll compressor涡旋盘 scroll固定涡旋盘 stationary scroll,fixed scroll驱动涡旋盘 driven scroll,orbiting scroll斜盘式压缩机〔摇盘式压缩机〕swash plate compressor斜盘 swash plate摇盘 wobble plate螺杆式压缩机 screw compressor单螺杆压缩机 single screw compressor阴转子 female rotor阳转子 male rotor主转子 main rotor闸转子 gate rotor无油压缩机 oil free compressor膜式压缩机 diaphragm compressor活塞式压缩机 reciprocating compressor单作用压缩机 single acting compressor双作用压缩机 double acting compressor双效压缩机 dual effect compressor双缸压缩机 twin cylinder compressor闭式曲轴箱压缩机 closed crankcase compressor 开式曲轴箱压缩机 open crankcase compressor顺流式压缩机 uniflow compressor逆流式压缩机 return flow compressor干活塞式压缩机 dry piston compressor双级压缩机 compund compressor多级压缩机 multistage compressor差动活塞式压缩机stepped piston compound compressor,differential piston compressor串轴式压缩机tandem compressor,dual compressor截止阀 line valve,stop valve排气截止阀 discharge line valve吸气截止阀 suction line valve局部负荷旁通口 partial duty port能量调节器 energy regulator容量控制滑阀 capacity control slide valve容量控制器 capacity control消声器 muffler联轴节 coupling曲轴箱 crankcase曲轴箱加热器 crankcase heater轴封 crankcase seal,shaft seal填料盒 stuffing box轴封填料 shaft packing机械密封 mechanical seal波纹管密封 bellows seal转动密封 rotary seal迷宫密封 labyrinth seal轴承 bearing滑动轴承 sleeve bearing偏心环 eccentric strap滚珠轴承 ball bearing滚柱轴承 roller bearing滚针轴承 needle bearing止推轴承 thrust bearing外轴承 pedestal bearing臼形轴承 footstep bearing轴承箱 bearing housing止推盘 thrust collar偏心销 eccentric pin曲轴平衡块crankshaft counterweight,crankshaft balance weight曲柄轴 crankaxle偏心轴 eccentric type crankshaft曲拐轴 crankthrow type crankshaft连杆 connecting rod连杆大头 crank pin end连杆小头 piston pin end曲轴 crankshaft主轴颈 main journal曲柄 crank arm,crank shaft曲柄销 crank pin曲拐 crank throw曲拐机构 crank-toggle阀盘 valve disc阀杆 valve stem阀座 valve seat阀板 valve plate阀盖 valve cage 阀罩 valve cover阀升程限制器 valve lift guard阀升程 valve lift阀孔 valve port吸气口 suction inlet压缩机气阀 compressor valve吸气阀 suction valve排气阀 delivery valve圆盘阀 disc valve环片阀 ring plate valve簧片阀 reed valve舌状阀 cantilever valve条状阀 beam valve提升阀 poppet valve菌状阀 mushroom valve杯状阀 tulip valve缸径 cylinder bore余隙容积 clearance volume附加余隙〔补充余隙〕 clearance pocket活塞排量 swept volume,piston displacement理论排量 theoretical displacement实际排量 actual displacement实际输气量 actual displacement,actual output of gas气缸工作容积 working volume of the cylinder 活塞行程容积 piston displacement气缸 cylinder气缸体 cylinder block气缸壁 cylinder wall水冷套 water cooled jacket气缸盖〔气缸头〕 cylinder head平安盖〔假盖〕 safety head假盖 false head活塞环 piston ring气环 sealing ring刮油环 scraper ring油环 scrape ring活塞销 piston pin活塞 piston活塞行程 piston stroke吸气行程 suction stroke膨胀行程 expansion stroke压缩行程 compression stroke排气行程 discharge stroke升压压缩机 booster compressor立式压缩机 vertical compressor卧式压缩机 horizontal compressor角度式压缩机 angular type compressor对称平衡型压缩机 symmetrically balanced type compress吸收式制冷机英语吸收式制冷机 absorption refrigerating machine 吸收式制冷系统absorption refrigerating system间歇式吸收系统 intermittent absoprtion system 连续循环吸收式系统continuous cycle absorption system固体吸收式制冷 solid absorption refrigeration 氨-水吸收式制冷机ammonia/water absorption refrigerating machine单级氨-水吸收式制冷机single stage ammonia/water absorption refrigerating machine 多级氨-水吸收式制冷机multistage ammonia/water absorption refrigerating machine 双级氨-水吸收式制冷机ammonia/water absorption refrigerating machine with two stage absorption process双级发生和双级吸收式氨-水制冷机ammonia/water absorption refrigerating machine with two stage generation and absoprtion process分解 decomposition水解 hydrolysis扩散 diffusion能量增强剂 energy booster缓蚀剂 anticorrsive发生缺乏 incomplete boiling吸收缺乏 incomplete absorption喷淋密度 sprinkle density溴化锂 lithium bromide溴化锂水溶液aqueous solution of lithium bromide氨水溶液 aqueous solution of ammonia吸收剂 absorbent,absorbing agent吸附剂 adsorbent溶液 solution浓度 concentration溶解度 solubility溶剂 solvent溶质 solute浓溶液 rich solution,concentrated solution 稀溶液 weak solution,diluted solution溶液分压 partial pressure of liquor吸收 absorption吸附 adsorption吸收式制冷 absorption refrigeration吸附式制冷 adsorption refrigeration工质对 working substance热力系数 heat ratio放气围 deflation ratio焓-浓度图 enthalpy concentration chart溴化锂吸收式制冷机 lithiumbromide absorption refrigerating machine单效型溴化锂吸收式制冷机single-effect lithiumbromide absorption refrigerating machine两效型溴化锂吸收式制冷机double-effect lithiumbromide absorption refrigerating machine单筒型溴化锂吸收式制冷机one-shell lithiumbromide absorption refrigerating machine双筒型溴化锂吸收式制冷机two-shell lithiumbromide absorption refrigerating machine三筒型溴化锂吸收式制冷机three-shell lithiumbromide absorption refrigerating machine两级溴化锂吸收式制冷机two-stage lithiumbromide absorption refrigerating machine直燃式溴化锂吸收式制冷机direct-fired lithiumbormide absorption refrigerating machine溴化锂吸收式冷温水机组lithiumbromide absorption water heater chiller无泵型溴化锂吸收式制冷机lithiumbromide absorption refrigerating machine with bubble pump蒸汽型吸收式制冷机 steam operated absorption refrigerating machine热水型吸收式制冷机hot water operated absorption refrigerating machine发生器 generator沉浸式发生器 submerged generator喷淋式发生器 spray-type generator立式降膜式发生器vertical falling filmgenerator直燃式发生器 direct-fired generator高压发生器 high pressure generator低压发生器 low pressure generator吸收器 absorber喷淋式吸收器 spray absorber降膜式吸收器 falling film absorber立式降膜式吸收器vertical falling film absorber卧式降膜式吸收器horizontal falling film absorber喷淋装置 spray system溶液换热器 solution heat exchanger溶晶管 anti-crystallinic pipe抽气装置 purging system精馏器 rectifier屏蔽泵 shield pump发生器泵 generator pump吸收器泵 absorber pump蒸发器泵 evaporator pump溶液泵 solution pump氨水泵 aqua-ammonia pump混合阀 mixing valve太阳能制冷与供热英语太阳能 solar energy太阳常数 solar constant太阳能系统 solar energy system被动式太阳能系统 passive solar energy system 主动式太阳能系统 active solar energy system 混合式太阳能系统 hybrid solar energy system 太阳能制冷 solar cooling太阳能热机驱动制冷 solarpowered cooling太阳能吸收式制冷机solar absorption refrigerating machine光-热转换制冷 photothermal refrigeration光-电转换制冷 photoelectrical refrigeration 太阳能蒸汽喷射制冷机solar steam jet refrigerating machine连续式太阳能吸收式制冷机continual solar absorption refrigerating machine间歇式太阳能吸收式制冷机 intermittent solar absorption refrigerating machine敞开式太阳能吸收式制冷机open solar absorption refrigerating machine太阳能空调装置 solar air-conditioning system 太阳能制冷系统solar energy cooling system,solar cooling system太阳能集热器 solar collector选择式吸收外表 selective absorber surface电淀积 electrodeposition平板型太阳能集热器 flat plate solar collector 真空管太阳能集热器tubular solar collector,vacuum tube collector聚光型太阳能机热器 focus solar collector集热量 heat-collecting capacity集热温度 heat-collecting temperature集热效率 heat-collecting efficiency蓄热介质 heat storge medium岩石蓄热容器 rock storge container辅助热源 supplementary heat source太阳能贮存系统 solar energy storge system太阳能供热系统solar heating system,solar space heating installation自然循环闭式供水系统natural convection closed water system强制循环闭式供水系统 forced convection in a closed water system热风供热系统 warm air heating system家用太阳能热水系统solar domestic water heating system热管与余热制冷英语热管 heat pipe深冷热管 cryogenic heat pipe低温热管 low temperature heat pipe中温热管 moderate temperature heat pipe高温热管 liquid metal heat pipe管芯 wick相容性 compatibility传热极限 heat transport limitation重力热管 gravity assisted heat pipe热管换热器 heat pipe exchanger深冷热管手术器 heat pipe surgery cryoprobe余热 exhaust heat低温余热 low temperature exhaust heat余热制冷utilizing waste heat for refrigeration氟利昂透平 freon turbine氟利昂透平离心式制冷机centrifugal refrigerating machine driven by freon turbine 动力-制冷循环 power/refrigeration cycle透平压缩机及零部件英语涡流 swirl叶片颤振 blade flutter叶片通过频率 blade passing frequency喘振 surging脱流 stall叶轮反响度(反作用度) impeller reaction叶轮 impeller半开式叶轮 unshrouded impeller闭式叶轮 shrouded impeller叶片 blade,vane导流叶片组件 pre-rotary vane assembly扩压器 diffuser蜗壳 scroll滑动 slip透平压缩机 turbocompressor离心式压缩机 centrifugal compressor轴流式压缩机 axial flow compressor刚性轴离心式压缩机stiff-shaft centrifugal compressor挠性轴离心式压缩机 flexibleshaft centrifugal compressor亚音速压缩机 subsonic compressor超音速压缩机 supersonic compressor冷却塔英语自然通风式冷却塔 atmpspheric cooling tower,natural draught cooling tower机械通风式冷水塔 mechanical draught cooling tower吸风式冷水塔 induced draught cooling tower送风式冷水塔 forced draught cooling tower水膜式冷水塔 film cooling tower水滴式冷水塔 drop cooling tower喷雾式冷水塔 spray cooling tower拉西环 Rasching rings温度接近值 approach水垢 scale水垢抑制剂 scale inhibitor藻类 algae防藻剂 algaecide淀渣 slime升压阀 back-up valve冷水塔 water cooling tower,cooling tower凉水塔 water cooling tower,cooling tower 冷却塔 water cooling tower,cooling tower喷水池 spray pond干式冷水塔 dry cooling tower湿-干式冷水塔 wet-dry cooling tower冷水塔填料 packing of cooling tower,fill of cooling tower膜式填料 film packing帘栅形填料 grid packing,grid fill片式填料 plate packing,plate fill松散填料 random packing,random fill飞溅式填料 splash packing空气压缩制冷系统英语空气循环制冷 air-cycle refrigeration空气循环制冷机air-cycle refrigerating machine涡轮冷却器 turbine cooler温降 temperature drops开式循环 open cycle闭式循环 closed cycle除水 water elimination补气 air supply回热式空气制冷循环 regenerative air cycle飞机座舱空调系统aircraft air-conditioning system增压式飞机空调系统 "Bootstrap" system冲压空气 ram air制冷系统自动调节流量调节 flow regulation制冷剂控制器 refrigerant control膨胀阀 expansion valve节流阀 throttle valve热力膨胀阀 thermostatic expansion valve热电膨胀阀 thermal electric expansion valve 平衡热力膨胀阀internal equalizer thermostaice expansion valve外平衡热力膨胀阀external equalizer thermostaice expansion valve外平衡管 external equalizer pipe平衡管 internal equalizer pipe蒸发器阻力损失 pressure drop of evaporator同工质充注 same material charge交*充注 cross charge吸附充注 absorptive charge气体充注 gas charge膨胀阀过热度superheat degree of expansion valve过热温度调节 superheat temperature regulation 膨胀阀容量 expansion valve capacity手动膨胀阀 hand expansion valve自动膨胀阀 automatic expansion valve浮球调节阀 float regulation valve浮球阀 float valve低压浮球阀 low pressure float valve高压浮球阀 high pressure float valve流量调节 flow regualation制冷剂控制器 refrigerant control膨胀阀 expansion valve节流阀 throttle valve热力膨胀阀 thermostatic expansion valve热电膨胀阀 thermal electric expansion valve 平衡热力膨胀阀internal equalizer thermostaice expansion valve外平衡热力膨胀阀external equalizer thermostaice expansion valve外平衡管 external equalizer pipe平衡管 internal equalizer pipe蒸发器阻力损失 pressure drop of evaporator同工质充注 same material charge交*充注 cross charge吸附充注 absorptive charge气体充注 gas charge膨胀阀过热度superheat degree of expansion valve过热温度调节 superheat temperature regulation 膨胀阀容量 expansion valve capacity手动膨胀阀 hand expansion valve自动膨胀阀 automatic expansion valve浮球调节阀 float regulation valve浮球阀 float valve低压浮球阀 low pressure float valve高压浮球阀 high pressure float valve恒压膨胀阀 constant pressure expansion valve 能量调节 capacity regulator单机能量调节capacity regulation of single unit卸载能量调节capacity regulation of load drainage程序指令式能量调节系统 capacity regulation system of program order电磁阀 solenoid valve 电磁滑阀 magnetic slide valve三通电磁阀 three way magnetic valve蒸汽喷射式制冷系统英语蒸汽喷射制冷 steam jet refrigeration蒸汽喷射制冷机steam-jet refrigerating machine蒸发式蒸汽喷射制冷机 evaporation-type steam jet refrigeration machine混合式蒸汽喷射制冷机 contact-type steam jet refrigerating machine蒸汽喷射制冷系统steam jet refrigerating system蒸汽喷射器 steam ejector主喷射器 main ejector辅助喷射器 auxiliary ejector喷射系数 jet coefficient主冷凝器 main condenser辅助冷凝器 auxiliary condenser多效蒸发 multieffective evaporation高位安装 high-level installation低位安装 low-level installation上下位安装 high-low-level installation臭氧层保护英语臭氧 ozone臭氧层 ozonesphere,ozone layer臭氧层破坏 ozonesphere depletion,ozonesphere disturbance消耗臭氧层物质ozone depleting substances 〔ODS〕禁用制冷剂 forbidden refrigerant过渡制冷剂 transition refrigerant替代制冷剂 substitute refrigerant自然制冷剂 natural refrigerant氟利昂家族 freon group全氟代烃fluorocarbon 〔FC〕氯氟烃chloroflurocarbon〔CFC〕氢氟烃hydrofluorocarbon〔HCF〕含氢氯氟烃hydrochloroflurocarbon〔HCFC〕含氢氯化烃hydrochlorocarbon〔HCC〕全氯化烃polychlorocarbon〔PCC〕哈龙 Halon共沸混合物 azeotropic mixture碳氢化合物hydrocarbon compound,hydrocarbon 〔HC〕臭氧消耗潜能值 ozone depletion potential 〔ODP〕温室效应 greenhouse effect全球变暖 global warming京都议定书 kyoto protocol全球变暖潜能值 global warming potential〔GWP〕变暖影响总当量 total equivalent warming impact 〔TEWI〕寿命期气候性能life cycle climate performance〔LCCP〕蕴含能量 embodied energy 不易收集的排放 fugitive emissions热电制冷英语热电制冷 thermoelectric refrigeration温差电制冷 thermoelectric refrigeration半导体制冷 semiconductor refrigeration热电效应 thermoelectric effect塞贝克效应 Seebeck effect珀尔帖效应 Peltier effect热电制冷效应thermoelectric refrigeration effect汤姆逊效应 Thomson effect焦耳效应 Joule effect傅里叶效应 Fourier effect温差电动势 thermoelectric power塞贝克系数 Seebeck coefficient优值系数 figure of merit热电堆 thermoelectric pile温差电堆 thermoelectric pile最正确电流 optimum current经济电流 economic current热电半导体 thermoelectric semiconductors热电材料 thermoelectric material热电制冷材料 thermoelectric cooling material n型半导体 n-type semiconductorsp型半导体 p-type semiconductors半导体制冷器thermoelectric-refrigerating unit热电制冷器 thermoelectric refrigerating unit 热电空调器 thermoelectric air conditioner半导体空调器 thermoelectric air conditioner 半导体恒温器 thermoelectric thermostat半导体冷饮水器 thermoelectric drinking water cooler半导体热泵 thermoelectric heat pump半导体降温机 thermoelectric dehumidifier低温半导体制冷器low temperature thermoelectric unit焊接式半导体制冷器soldered thermoelectric refrigerating unit粘接式半导体制冷器sticky thermoelectric refrigerating unit嵌装式半导体制冷器inlaid thermoelectric refrigerating unit复叠式半导体制冷器cascade thermoelectric refrigerating unit医用半导体制冷器medicine thermoelectric refrigerating unit盐水冷却系统开式盐水冷却系统 open brine system闭式盐水系统 closed brine system盐水箱 brine bank盐水混合箱 brine mixing tank盐水溢流箱 brine return tank盐水回流箱 brine return tank盐水膨胀箱 brine balance tank盐水加热器 brine heater盐水冷却器 brine cooler盐水筒 brine drum盐水集管 brine header盐水泵 brine pump盐水喷雾 brine spray盐水喷淋 brine sparge制冷暖通行业品牌中英文对照AEROFLEX “亚罗弗〞保温ALCO “艾科〞自控Alerton 雅利顿Alfa laval阿法拉伐ARMSTRONG “阿姆斯壮〞保温AUX 奥克斯BELIMO 瑞士“搏力谋〞BERONOR西班牙“北诺尔〞电加热器BILTUR 意大利“百得〞BOSIC “柏诚〞自控BROAD 远大Burnham美国“博恩汉〞锅炉CALPEDA意大利“科沛达〞水泵CARLY 法国“嘉利〞制冷配件Carrier 开利Chigo 志高Cipriani 意大利斯普莱力CLIMAVENETA意大利“克莱门特〞Copeland“谷轮〞压缩机CYRUS意大利〞赛诺思〞自控DAIKIN 大金Danfoss丹佛斯Dorin “多菱〞压缩机DUNHAM-BUSH 顿汉布什DuPont美国“杜邦〞制冷剂Dwyer 美国德威尔EBM “依必安〞风机ELIWELL意大利“伊力威〞自控EVAPCO美国“益美高〞冷却设备EVERY CONTROL意大利“美控〞Erie 怡日FRASCOLD 意大利“富士豪〞压缩机FRICO瑞典“弗瑞克〞空气幕FUJI “富士〞变频器FULTON 美国“富尔顿〞锅炉GENUIN “正野〞风机GREE 格力GREENCOOL格林柯尔GRUNDFOS “格兰富〞水泵Haier 海尔Hisense 海信HITACHI 日立Honeywell 霍尼韦尔Johnson 江森Kelon 科龙KRUGER瑞士“科禄格〞风机KU BA德国“库宝〞冷风机Liang Chi 良机LIEBERT 力博特MARLEY “马利〞冷却塔Maneurop法国“美优乐〞压缩机McQuary 麦克维尔Midea 美的MITSUBISHI三菱Munters 瑞典“蒙特〞除湿机Oventrop德国“欧文托普〞阀门Panasonic 松下RANCO “宏高〞自控REFCOMP意大利“莱富康〞压缩机RIDGID 美国“里奇〞工具RUUD美国“路德〞空调RYODEN “菱电〞冷却塔SanKen “三垦〞变频器Samsung 三星SANYO 三洋SASWELL英国森威尔Schneider 施耐德SenseAir 瑞典“森尔〞传感器SIEMENS 西门子SINKO "新晃“空调SINRO “新菱〞冷却塔STAND “思探得〞加湿器SWEP 舒瑞普TECKA “台佳〞空调Tecumseh“泰康〞压缩机TRANE 特灵TROX德国“妥思〞VASALA芬兰“维萨拉〞传感器WILO德国“威乐〞水泵WITTLER 德国〞威特〞阀门YORK 约克ZENNER德国“真兰〞计量制冷能力及计算术语英语运行工况 operating conditions标准性能 standard rating标准工况 standard condition空调工况 air conditioning condition部条件 internal conditions外部条件 external conditions蓄热 accumulation of heat蓄冷 accumulation of cold制冰能力 ice-making capacity热泵用压缩机的供热系数 heat-pump compressor coefficient of performance容积效率 volumetric efficiency容积输气量 vulumetric displacement实际输气量 actual displacement理论输气量 theoretical displacement冷凝热量 condenser heat过冷热量 heat of subcooling过热热量 superheat运转工况下的制冷量rating under working conditions标准制冷量 standard rating名义工况 normal conditions试验工况 test conditions轴功率 brake power效率 efficiency指示效率 indicated efficiency机械效率 mechanical efficiency总效率 overall efficiency制冷系数 coefficient of performance 〔COP〕制冷压缩机的制冷系数 refrigerating compressor coefficient of performance热力完善度 thermodynamical perfectness能效比 energy efficiency ratio 〔EER〕热泵供热系数 heat-pump coefficient of performance 空调有效显热制冷量useful sensible heat capacity of air conditioner空调有效潜热〔减湿〕制冷量 useful latent heat (dehumidifyying) capacity of air conditioner 空调器有效总制冷量 useful total capacity of air conditioner制冷剂循环量 circulating mass of refrigerant 制冷剂循环容积circulating volume of refrigerant单位压缩功 compress work per mass示功图 indicator diagram指示功 indicated work摩擦功 frictional work功率 power摩擦功率 frictional power指示功率 indicated power理论功率 idea power制冷量 refrigerating capacity总制冷量 gross refrigerating capacity净制冷量 net refrigerating capacity单位制冷量 refrigerating capacity per weighing 单位容积制冷量 refrigerating capacity per unit of swept volume制冷系统制冷量 system refrigerating capacity 单位轴功率制冷量refrigerating effect per shaft power压缩冷凝机组制冷量 compressor condensing unit refrigerating capacity制冷压缩机制冷量refrigerant compressor capacity蒸发器净制冷量net cooler refrigerating capacity制冷装置制冷装置refrigerating installation,refrigerating plant工业制冷装置 industrial refrigerating plant 商业制冷装置 commercial refrigerating plant 中心站房 central station成套机组 self-contained system规安装 code installation 制冷回路 refrigerating circuit热平衡 heat balance货物负荷 product load操作负荷 service load设计负荷 design load负荷系数 load factor制冷装置试验与操作试运转 commissioning吹污 flush气密性试验 gas-tight test,air-right test密闭容器 closed container漏气 air infiltration放气 air vent检漏 leak hunting,leak detection检漏仪 leak detector卤素灯 halide torch电子检漏仪 electronic leak detector真空试验 vacuum test试验压力 test pressure工作压力 operating pressure,working pressure 最高工作压力 highest operating pressure气密试验压力 gas-tight test pressure设计压力 design pressure平衡压力 balance pressure充气 aerate,gas charging制冷剂充注 refrigerant charging首次充注 initial charge保护充注 holding charge,service charge制冷剂缺乏 lack of refrigerant,under-charge,gas shortage缺液 starveling充灌台 charging board充灌量 charge充注过多 overcharge供液过多 overfeeding制冷剂抽空 pump down of refrigerant降温试验 pull down test制冷[功能]试验 refrigeration test卸载起动 no-load starting,unloaded start卸载机构 unloader闪发flash vaporization,instantaneous vaporization闪发气体 flash gas不凝性气体 non condensable gas气体排除 gas purging,degassing,gasoff阀针跳动 hammering,needle hammer阀振荡 hunting of a valve阀片跳动 valve flutter,valve bounce短期循环 short-cycling异常温升 overheating泄漏 leak气蚀 cavitation制冷剂瓶 refrigerant cylinder,gas bottle 检修用瓶 service cylinder,gas bottle紧急泄放阀 emergency-relief valve检修阀 service valve平安阀 pressure relief valve抽空阀 pump out valve加油阀 oil charge valve放油阀 oil drain valve放空阀 purge valve充灌阀 charging valve喷液阀 liquid injection valve润滑油润滑油 lubricant oil冷冻机油 refrigeration oil冷冻油 refrigerant oil凝点 condensation point闪点 flash point浊点 cloud point絮凝点 flock point流动点 pour point起泡 foaming皂化 saponify油泥 sludge结碳 carbonization制冷剂制冷剂〔制冷工质〕 refrigerant高温制冷剂 high temperature refrigerant 低压制冷剂 low pressure refrigerant中温制冷剂 medium temperature refrigerant 中压制冷剂 medium pressure refrigerant低温制冷剂 low temperature refrigerant高压制冷剂 high pressure refrigerant氟利昂 freon卤化碳制冷剂 halocarbo refrigerant氟利昂11 freon 11氟利昂12 freon 12氟利昂13 freon 13 氟利昂14 freon 14氟利昂22 freon 22氟利昂113 freon 113氟利昂125 freon 125氟利昂134a freon 134a氟利昂152a freon 152a碳氢化合物制冷剂 hydrocarbon refrigerant甲烷 methane乙烷 ethane丙烷 propane丁烷 butane异丁烷 isobutane乙烯 ethylene无机化合物制冷剂inorganic compund refrigerant氨 ammonia二氧化碳 carbon dioxide二氧化硫 sulphur dioxide干冰 dry ice共沸制冷剂 azeotropic mixture refrigerant氟里昂500 freon 500氟里昂501 freon 501氟里昂502 freon 502氟里昂503 freon 503氟里昂504 freon 504近共沸溶液制冷剂near azeotropic mixture refrigerant非共沸溶液制冷剂nonazeotropic mixture refrigerant蒸发器壳盘管式蒸发器 shell-and-coil evaporator壳管式蒸发器 shell-and-tube evaporator喷淋式蒸发器 spray-type evaporator立管式蒸发器 vertical-type evaporator平行管蒸发器 receway coil螺旋管式蒸发器 spiral tube evaporator“V〞型管蒸发器 herringbone type evaporator 沉浸式盘管蒸发器 submerged evaporator板式蒸发器 plate-type evaporator螺旋板式蒸发器 spiral sheet evaporator平板式蒸发器plate-type evaporator,tube-in-sheet evaporator管板式蒸发器 tube-on-sheet evaporator凹凸板式蒸发器 embossed-plate evaporator吹胀式蒸发器 roll-bond evaporator压焊板式蒸发器 roll-bond evaporator制冰块器的蒸发器 ice cube maker evaporator结冰式蒸发器 ice-bank evaporator蓄冰式蒸发器 ice-bank evaporator结霜蒸发器 frosting evaporator除霜蒸发器 defrosting evaporator无霜蒸发器 nonfrosting evaporator强制通风蒸发器 forced circulation evaporator 冷液式蒸发器 liquid cooling evaporator封套式蒸发器 wrap-round evaporator蒸发器 evaporator直接冷却式蒸发器 direct evaporator直接式蒸发器 direct evaporator间接冷却式蒸发器 indirect cooled evaporator 间接式蒸发器 indirect evaporator干式蒸发器 dry expansion evaporator满液式蒸发器 flooded evaporator再循环式蒸发器 recirculation-type evaporator 强制循环式蒸发器 pump-feed evaporator冷凝器英语冷凝器 condenser冷凝液 condensate空冷式冷凝器 air-cooled condenser风冷式冷凝器 air-cooled condenser自然对流空冷式冷凝器natural convecton air-cooled condenser强制通风式冷凝器 forced draught condenser冷凝风机 condensate fan线绕式冷凝器 wire and tube condenser水冷式冷凝器 water-cooled condenser沉浸式盘管冷凝器 submerged coil condenser套管式冷凝器 double pipe condenser壳管式冷凝器 shell and tube condenser组合式冷凝器 multishell condenser卧式壳管式冷凝器closed shell and tube condenser卧式冷凝器 closed condenser立式壳管式冷凝器 open shell and tube condenser 立式冷凝器 open condenser,vertical condenser 壳盘管式冷凝器 shell and coil condenser分隔式冷凝器 split condenser淋激式冷凝器 atmospheric condenser溢流式冷凝器 bleeder-type condenser蒸发式冷凝器 evaporative condenser板式冷凝器 plate-type condenser 空冷板式冷凝器air-cooled plate-type condenser水冷板式冷凝器water-cooled plate-type condenser焊接板式冷凝器 welded sheet condenser螺旋板式冷凝器 spiral sheet condenser冷凝-贮液器 condenser-receiver混合式冷凝器 barometric condenser液化器 liquefier冷凝水泵 condensate pump冷凝器梳 condensate comb预冷盘管 desuperheating coil过冷器 subcooler中间冷却器 intercooler盐水冷却器 brine cooler气-液回热器 liquid or suction heat exchanger 回热器 superheater紊流器 turbulator预冷器 precooler级间冷却器 interstage cooler饮水冷却器 drinking-water cooler喷泉式饮水冷却器 bubbler-type drinking water cooler冷藏间冷却器 cold-storage cooler盐水〔水〕冷却器 brine〔water〕cooler空气冷却器 air cooler,forced draught干式空气冷却器 dry-type air cooler强制循环空气冷却器forced-circulation air cooler自然对流空气冷却器natural-convection air cooler空气冷却机组 air-cooler unit蒸发盘管枯燥盘管 drier coil冷却盘管 cooling coil蒸发盘管 expansion coil蓄冷盘管 hold-voer coil直接蒸发盘管 direct expansion coil制冷剂分配器 refrigerant distributor支承板 tube support蓄冷板 hold-over plate共晶混合物板 eutectic plate折流板 baffle滴水盘 drip tray冷藏库排管冷却排管 cooling coil,cooling grid 冷却排管组 cooling battery顶排管 overhead coil。
Macromatic PMPU-FA8系列电源保护设备说明书
14◆ Protects against phase loss,phase reversal, phase unbalance, undervoltage, overvoltage & rapid cycling ◆ Universal voltage range of 190-500V—greater range that covers more global applications ◆ True RMS voltage measurementensures accurate sensing across more applications ◆ Retains fault indication andcontinues monitoring all voltages even with a lost phase ◆ Full fault indication on top of unit foreasy troubleshooting ◆ Manual reset option works withexternal switch to reset the relay from outside the enclosure ◆ 10A SPDT output contacts● Requires a 600V-rated socket when used on system voltages above 300V.⏹ Dual range unit auto-senses between the 190-250V AC and 350-500V AC ranges (see Application Data on next page).DIAGRAM 104The PMPU-FA8 Series Three-Phase Monitor Relays continuously monitor allvoltages to protect motors and equipment from expensive damage due to phase loss, phase reversal, phase unbalance, undervoltage and overvoltage. These products detect single phasing and unbalanced voltages regardless of any regenerative voltages.Utilizing an advanced microprocessor-based design allows true RMS voltage measurement with full wave monitoring. This provides a more accurate method to measure the voltages, regardless of load type or wave shape, and results in improved protection across more applications.True RMS voltage measurement ensures accurate sensing in most generator and other applications with non-sinusoidal wave forms, eliminating nuisance tripping. Full wave monitoring provides a more accurate method to measure the voltages, regardless of load type or wave shape, resulting in improved protection across more applications.Unlike similar three-phase monitor relays, the PMPU-FA8 Series will continue to function even with a lost phase. They are the only line-powered units in their class to retain fault indication and continuous monitoring of all voltages during a phase loss, increasing the ease of troubleshooting and the level of protection.The PMPU-FA8 Series is a true universal product, with three units that work on a wide variety of adjustable line-line voltages to cover more global applications. All other settings for undervoltage trip point, trip delay, restart delay and unbalance trip point are fixed for ease of setup. They utilize an industry-standard 8 pin octal socket.Operation:When the proper three-phase line voltage is applied to the unit and the phase sequence (rotation) is correct, the relay is energized after the Restart Delay is completed. Any one of five fault conditions will de-energize the relay after a delay. As standard, re-energization is automatic upon correction of the fault condition. Manual reset is available if an external momentary N.C. switch is connected to pins 6 and 7. A bi-color status LED indicates normal condition and also provides specific fault indication to simplify troubleshooting.Sockets & Accessories availableApplication DataDimensionst h r e e -p h a s e m o n i t o r r e l ay s | p l u g -i n15All Dimensions in Inches (Millimeters)Response Times:Restart:2 seconds fixed Drop-out Due to Fault:Phase Loss and Reversal: 100ms fixed Undervoltage and Overvoltage: 4 seconds fixedUnbalance: Normal:4 seconds fixed Severe (>12%): 0.25 seconds fixedOutput Contacts: SPDT 10 A @ 277V AC / 7A @ 30V DC; 1HP @ 250V AC, 1/2HP @ 125V AC,C300 Pilot DutyLife: Mechanical: 10,000,000 operations; Full Load: 100,000 operations Temperature : Operating: -28o to 65o C (-18o to 149o F) Storage:-40o to 85o C (-40o to 185o F)Mounting: Uses an 8 pin octal socket. Requires a 600V-rated socket when used on system voltages greater than 300V such as Macromatic Catalog Number 70169-D.Status LED:Reset: As standard, the PMPU-FA Series relays are in the Automatic Reset mode. However, they can be set in the Manual Reset mode by connecting an external N.C. switch across terminals 6 and 7. Upon application of line voltage, the PMPU-FA8 Series will go into Manual Reset mode if it recognizes a closure across terminals 6 and 7. After a fault clears, the relay will not reset until the N.C. switch is opened. Note: When the unit is in the Manual Reset mode, the N.C. switch must be opened after each Power-up to reset the relay and resume normal operation.Approvals:Three-Phase Line-Line Voltage:Power Consumption: Less than 40VA.Phase Loss: Unit trips on loss of any Phase A, B or C, regardless of any regenerative voltages.Phase Reversal (Out-of-Sequence): Unit trips if sequence (rotation) of the three phases is anything other than A-B-C. It will not work on C-B-A.Undervoltage: Fixed at 90% of the line voltage setting. Unit trips when the average of all three lines is less than the adjusted set point for a period longer than the fixed 4 second trip delay. It will reset at +3% of the Undervoltage trip setting.Overvoltage: Fixed at 110% of the line voltage setting. Unit trips when the average of all three lines is greater than the fixed set point for a period longer than the fixed 4 second trip delay. It will reset at 107% of the line voltage setting.Phase Unbalance: Fixed at 6% unbalance. Unit trips when any one of the three lines deviates from the average of all three lines by more than the adjusted set point for a period longer than the fixed 4 second trip delay.The Voltage Line-Line knob on the PMPU-FA8 has two ranges (left): a 190-250V low voltage scale and a 380-500V high voltage scale. The unit auto senses the 3-phase line-line voltage when appliedand automatically selects the appropriate range.Low Voltage & EMC Directives EN60947-1, EN60947-5-1File #E109466with appropriatesocket File #E109466。
神经科学专用名词
精要速览系列(影印版)Instant Notes Neuroscience神经科学……………核心词汇翻译参考手册……………………主编杜继曾陈学群浙江大学,玉泉校区,神经生物学和生理学教研室编写者陆新江,王莉,王懿,徐弘同学按章节顺序:Section A Brain cellsA1 Neuron structureNeuron 神经细胞,神经元Subcellular organelles 亚细胞器Nissl body 尼氏体神经元中的粗面内质网形成的聚合物。
Neurite 神经突Axon 轴突Dendrite 树突Mitochondria 线粒体dendritic spines 树突脊树突在神经元上分化成几百个微小投射。
axon hillock 轴丘myelin sheath 髓鞘axon collalterals 轴突分枝terminals 突触末稍varicosities 曲张体microtubules 微管cytoskeleton 细胞骨架A2 Classes and numbers of neuronsMorphology 形态学Neurotranmitters 神经递质Unipolar 单极神经元仅有一个树突的神经元。
Bipolar 双极神经元Multipolar 多极神经元Pseudounipolar 假单极神经元生长出两个神经突,但随后融合Pyramidal cell 锥体细胞Purkinje cell 浦肯野氏细胞Projection neuron 投射神经元拥有长轴突的神经元Interneurons 内在神经元拥有短的轴突的神经元Afferent 传入Efferent 传出Sensory neuron 感觉神经元Motor neuron 运动神经元A3 Morphology of chemical synapses electrical synapse 电突触chemical synapse 化学突触synaptic cleft 神经间隙axodendritic synapse 轴树突触轴突与树突之间的突触axosomatic synapse 轴体突触axoaxonal synapse 轴轴突触small clear synaptic vesicles(SSVs) 小清晰突触囊泡在突触前神经元存在的储存递质的囊泡dense projections 致密突起active zone 活性区域postsynaptic density 突触致密物质large dense-core vesicles 巨大致密度中心囊泡A4 glial cells and myelinationGlial cells 胶质细胞是神经细胞的辅助细胞Astrocytes 星状细胞Oligodendrocytes 寡突细胞Schwann cells 许旺氏细胞围绕在神经细胞外的一种胶质细胞,形成髓鞘。
非对称混合电解质体系中恒电荷颗粒表面与stern电位的测定_樊会敏赵艳刘新敏李航
土壤/水界面电位是一个基本的电化学性质参数,对土壤中物理、化学以及生物过程具有重要 影响。胶体颗粒的表面电位在研究离子-表面相互作用[1]、颗粒间相互作用[2]、颗粒的运动速率[3]以 及电化学性质[4]等方面均具有重要意义。 离子在带电颗粒表面上的吸附力除了静电引力外,还存在特性吸附力。由特性吸附在表面的离 子与颗粒结合非常紧密,能够与颗粒一起运动。由于离子有一定大小,离子与表面的特殊吸附层具 有一定的厚度(约为一个离子直径),这一吸附层称为 Stern 层。吸附反离子中心构成的平面称为 Stern 面或扩散层起始面。Stern 面上的电位即为 Stern 电位或扩散层起始面的电位。目前已经存在一 些 Stern 电位测定的理论和方法,例如通过测定表面电荷密度,利用双电层理论计算 Stern 电位[5], 用 zeta 电位代替 Stern 电位[6],负吸附法[7],pH 指示分子法[8]等等。基于测定表面电荷密度来计算 Stern 电位,此方法不能适用于同时含有可变电荷与恒电荷的体系,因为 H+会强烈影响电荷密度[9]。 负吸附法又不容易控制测定误差[10],从而导致实验数据比较分散[7]。Zeta 电位远远小于 Stern 电位 [7,11] 。因此用 zeta 电位代替 Stern 电位计算蒙脱石-水体系的膨胀压完全偏离实验值[12]。二次谐波产 生法[13]是测定 Stern 电位的经验方法,而且只能适用于恒电荷体系。此外,还有一些扩展的方法来 测定 Stern 电位,比如 pH 指示分子法[8],原子力显微镜法[14],遗憾的是这些方法会对表面产生破坏 [13] 。 近年来,Hou 和 Li[9]、Li 等[15-16]及 Liu 等[17]在双电层理论的基础上建立了测定 Stern 电位的方 法并不断完善。此方法基于离子正吸附原理,实验误差容易控制,适用于包括恒电荷与可变电荷在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Phase Equilibria in Reactive DistillationProcesses-Theories and ExperimentsMing-Jer LeeDepartment of Chemical EngineeringNational Taiwan University of Science and Technology2006/6/21NTUST1Outlinen Introductionn Phase Equilibrium Criterian Thermodynamic Modelsu Equations of Stateu Activity Coefficient Modelsn Parameter Determinationsn Thermodynamic Properties from Literaturen Experimentsu VLE, LLE, VLLEn Concluding Remarks2006/6/21NTUST2Reactive Distillation Processes n Reactionsu Esterification, hydrolysis,transesterification,….u Kinetic models (a i= x i g i)«Pseudo-homogeneous«Langmuir-Hinshelwood«Eley-Ridealn Phase equilibriau VLE, VLLEu Thermodynamic models«f-f(Equations of state)«g-f(Activity coefficient models)2006/6/21NTUST3Phase Behavior in an Esterification, Hydrolysis, or Transesterification Reactive Distillation Column n Components: Alcohol/Acid/Ester/Watern Partially miscible: (two liquid phases)u Water + Alcohols (C4or higher)u Water + Estersu Water + Alcohols + Estersu Water + Alcohols + Esters + Acidsn One liquid phase: Vapor-liquid equilibrium (VLE)n Two liquid phases: Vapor-liquid-liquid equilibrium (VLLE)2006/6/21NTUST42006/6/21NTUST5Phase Equilibrium CriterianAt phase equilibria:u T I = T II = T III = …= T u P I = P II = P III = …= Puf i I (T, P, x i I )= f i II (T, P, x i II )= f i III (T, P, x i Iii ) = .. for i = 1, 2,.., cnCriteria for systems at VLE:u f i v = f i L for i = 1, 2,…, c uf -f method:Px f P y f i Li L i i V i V i f f ===Both the vapor phase and liquid phase fugacities are calculated from an equation of state.ug -f method:oLii i L i i V iVi f x f P y f g f ===V apor phase fugacity is calculated from an equation of stateand liquid phase fugacity from an activity coefficient model.2006/6/21NTUST6Phase Equilibrium CriterianCriteria for systems at LLE u f i LI = f i LII for i = 1, 2,…, cuUsing EOSII iLII iI i LI i II i LII iI i LIi xx P x P x ff ff =Þ=IIi II i I i I i oL i II i II i oL i I i I i x x f x f x g g g g =Þ=nCriteria for systems at VLLEu f iv= f i LI = f i LIIfor i = 1, 2,…, cuf -f methoduUsing activity coefficient modelug -f methodPx P x P y II i LII i I i LI i i V i f f f ==oLi II i II i oL i I i I i i V i f x f x P y g g f ==2006/6/21NTUST 7Fugacity and Fugacity CoefficientnDefinition of fugacity (f i )úúûùêêëé-=RT )y ,P ,T (G )y ,P ,T (G exp )P y (f iIGM i i i i i úûùêêëé-==RT )y ,P ,T (G )y ,P ,T (G exp )P y (f iIGM i i i i i i f nDefinition of fugacity coefficient (f i )()úûùêëé-=òdP V V RTexp P IGM ii1Z ln V d N P N V RT RTln P/ZRT V V N ,V ,T i i i j -úúûêêëé÷÷øöççè涶-=ò=¥=¹1f2006/6/21NTUST8Fugacity Coefficient in Vapor Phasenf i V = f i V P y inGases at very low pressures:u EOS : Ideal gas law uf i V = 1, f i V = P y i = P inGases at low to moderate pressures (up to 10 –20 bar):uEOS : Two-term virial equationåå==+=i jij j i i mix mix i mix )T (B y y )y ,T (B where ,Z V )y ,T (B RT V P 1÷÷øöççèæ++=-=å=RT P B Z where ,Z ln )T (B y V ln mix mix mix c j ij j V i 4112121f u B (T ): Second virial coefficientu Non-association: Tsonopoulos (1974, 1975), Lee and Chen (1998)u Association: Hayden and O ’Connell (1975)uInput variables: critical properties, w , m , R g , association parameters ,.2006/6/21NTUST 9Fugacity Coefficient in Vapor Phasewhere k ij : binary interaction parameter()()()úúúûùêêêëé-+++úúúúûùêêêêëé--÷øöçèæ---=åRT bP Z RT bP Z ln b b a a y bRT a RT bP Z ln Z b b ln V V i j ij j V V i V i 21212221f )b V (b )b V (V )T (a b V RT P -++--=()icj i ci cj jj ii ij j i ci cj ij j i b y b ;a a k y y a y y a ååååå======-==111111nGases at high pressures:uEOS : e.g., Peng-Robinson EOSMixing Rules:n Input variables: T c,i , P c,i , w i nParameters: k ij ’s2006/6/21NTUST 10Fugacity Coefficient in Liquid Phase()()()úúúûùêêêëé-+++úúúúûùêêêêëé--÷øöçèæ---=åRT bP Z RT bP Z ln b b a a x bRT a RT bP Z ln Z b b ln L L i j ij j L L i L i 21212221f )b V (b )b V (V )T (a b V RT P -++--=()icj i ci cj jjii ij j i ci cj ij j i b x b a a k x x a x x a ååååå======-==111111nf i L = f i L P x inFugacity coefficient calculated from an EOS:Peng-Robinson EOSMixing rules:2006/6/21NTUST 11Fugacity in Liquid Phasenfew bars),)T (P x )x ,T ()x ,P ,T (f sat i i i i i L i g =oLi i i L i f x f g ==sat isati oLi T ()T (P )P ,T (f f nFugacity calculated from an activity coefficient modelf i oL : fuagcity of liquid i at the defined standard state;pure liquid i at system T & P , as usual.)T (P )P ,T (f sati oL i »then,2006/6/21NTUST12Correlative Activity Coefficient Modelsu Margules model u van Laar modeluRedlich-Kister modelnExample: Margules model for binary systems:nRandom mixing assumption (Wohl ’s expansion):.....z z z a z z a x q RT Gk j i ijkijk ijj i ij i ii ex++=ååååååRT/G ln ex ii =g å=iii exln x RT /G g ()[]()[]2211221212112211222122x A A A x ln ;x A A A x ln -+=-+=g g Parameters: A 12, A 212006/6/21NTUST13Correlative Activity Coefficient ModelsnNon-random mixing assumption (Wilson ’s local composition)uWilson model (Wilson, 1964)«For binary systems:u Input variables: V 1L , V 2Lu Parameters: (l 12–l 11), (l 21–l 22)uNote:•Good for a variety of miscible mixtures containing polar or association components•Only require binary parameters for multi-component systems •Invalid to LLE systems()úûùêëé+-+-+-=221121122112121122x x x x x x x ln ln L L L L L g ()úûùêëé+-+++-=221121122112212211x x x x x x x ln ln L L L L L g úûùêëé--=úûùêëé--=RT exp V V ;RT exp V V where L LL L 2221212111121212l l L l l L2006/6/21NTUST14Correlative Activity Coefficient ModelsuNRTL model (Non-Random Two-Liquid; Renon and Prausnitz, 1968)«For binary systems:()úúûùêêëé++÷÷øöççèæ+=212121212221212121221G x x G G x x G x ln t t g ()úúûùêêëé++÷÷øöççèæ+=221212121212121212212G x x G G x x G x ln t t g úûùêëé÷øöçèæ--=úûùêëé÷øöçèæ--=RT g g exp G ;RT g g exp G where 1121122122121212a a u Parameters: (g 12-g 22), (g 21-g 11), a 12uNote:•Good for both miscible and partially miscible systems •Only require binary parameters for multi-component systems2006/6/21NTUST15Correlative Activity Coefficient ModelsuUNIQUAC (Abrams and Prausnitz, 1975)«For binary systems:()++-÷÷øöççèæ-++=21211221121111112t q q F F q F g '''***ln q l r r l ln q z x ln ln ÷÷øöççèæ+-+12121221212112t q q t t q q t q ''''''q ()++-÷÷øöççèæ-++=12122112212222222t q q F F q F g '''***ln q l r r l ln q z x ln ln ÷÷øöççèæ+-+21212112121221t q q t t q q t q ''''''q 1021211212=úûùêëé÷øöçèæ-=úûùêëé÷øöçèæ-=z ;RT u exp ;RT u exp where D t D t u Input variables: molecular structure (constituent groups)u Parameters: (D u 12), (D u 21)uNote:•Good for both miscible and partially miscible systems •Only require binary parameters for multi-component systems2006/6/21NTUST16Predictive Activity Coefficient ModelsnRegular solution model u For binary systems:uInput variables: solubility parameter (d i ),liquid molar volume (V i L )uNote: g i always greater than 1(positive deviation)()2212211d d F g -=RT V ln L ()2212122d d F g -=RT V ln L )fraction volume (Vx Vx where cj L jj L i i i å==1F2006/6/21NTUST 17Predictive Activity Coefficient ModelsnGroup-contribution approach :u ASOG (Analytic Solutions of Groups, Wilson and Deal, 1962)uUNIFAC (UNIQUAC Functional Group Activity Coefficients, Fredenslund et al., 1975)uInput variables: molecular structure (constituent groups)CH 3-C -CH 2-CH-CH 3CH 3CH 3CH 3CH 3-OHMixtures of 2,2,4-trimethyl pentane + methanolu -CH 3group: 1u-OH group: 1u -CH 3group: 5u -C -group: 1u -CH 2group: 1u-CH group: 12006/6/21NTUST18Parameter Determination (Data Reduction)nVLE data reduction (g -f method)uBubble-P calculation«Given T , x i => Calculate P , y i from f i V = f i Lc....,,i ,f x P y oLi i i i Vi1==g f Vi oLi i i i i f x P y P f g ==åå====cii ii i c i i calc P P 11f g ()()()å=úúûùêêëé-+-=Nk ky t exp icalciP texp calc iy yP P parameters binary min 12222s s p where N : number of data points.s : standard deviation of measurement.Objective function p defined on the basis of the maximum-likelihood principle:2006/6/21NTUST19Parameter Determination (Data Reduction)nLLE data reduction u Flash calculation:Given T , z i (feed composition) => Calculate x i I , x i II from f i LI = f i LII and material balance equationsc....,,i ,x x II ii Ii i 1==g g ()()011111=+--å=Ni i iK /z :equation Flash b II iI i II i II i i /x /x K with gg ==where b : fraction of phase I()()cn /x x parameters binary min n k j c i texp ,j k ,i calc ,j k,i 212112÷÷øöççèæ-=ååå===p where n : number of tie-lines; c : number of components.()()()i i calc,II i ii calc ,I iK /z x ;K z x1111+-=-+=b b b2006/6/21NTUST20Parameter Determination (Data Reduction)nVLLE data reduction via a flash calculation:Given T , z i (feed composition) => Calculate x i I , x i II , y i , P from f i V = f i LI = f i LII and material balance equationsc....,,i ,f x f x P y oL i II i i L i I i i i V i 10===g g f ()()()[]11111=-+-+-å=Ni II iI iI iiI iK /K K z K :equation Flash b b a a V ioLi II iIIII V oLI I i i I i P /f x /y K with f==()()[]11121=-+-+-å=Ni I iII i II i iII iK /K K zK :equation Flash b b a aSolve a (fraction of vapor phase) and b (fraction of liquid phase I) from flash eqs. 1 and 2, simultaneously.2006/6/21NTUST21Parameter Determination (Data Reduction)nVLLE data reduction via a flash calculation (continued):()()[]II iI i I i icalc ,I iK /K K z xb b a a -+-+=11where a: fraction of vapor phase; b : fraction of liquid phase Iååå======c i ci ci oLiII iII ioLiI iI ii calcf x f x P y P111g g ()[]bb a a -+-+=11I i II i II i icalc ,II iK /K K z x()()cn /x x parameters binary min n k j c i texp ,j k ,i calc,j k ,i 313112÷÷øöççèæ-=ååå===p calcoL i IIicalc ,II i calcoL i I icalc ,I i calc ,III icalc iP/f xP/f xxyg g ==º2006/6/21NTUST 22Thermodynamic Properties Needed in Phase Equilibrium CalculationsnPure components:u Critical properties:T c , P c , V c , Z c u Acentric factor, dipole moment,..u Vapor pressures uDensity,….nMixtures: (to determine binary interactionparameters, k ij , A ij , a , ..)u VLE data u LLE data u VLLE dataThermodynamic Properties of PureFluids from Literaturen NIST Chemistry Webbook(National Institute ofStandards and Technology, USA)u /chemistry/n“TRC Thermodynamic Tables, Hydrocarbons”,Thermodynamics Research Center, The Texas A&MUniversity System, College Station, TX.n“TRC Thermodynamic Tables, Non-Hydrocarbons”,Thermodynamics Research Center, The Texas A&MUniversity System, College Station, TX.n Reid, R.C.; Prausnitz, J.M.; Poling, B.E., “TheProperties of Gases and Liquids,”4th ed., McGraw-Hill,NY (1987).n Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P., “TheProperties of Gases and Liquids,”5th ed., McGraw-Hill,NY (2001).2006/6/21NTUST23Phase Equilibrium and Other Thermodynamic Properties of Mixtures from LiteratureDECHEMA--Chemistry Data SeriesVol. I Vapor-Liquid Equilibrium Data CollectionVol. II Critical Data of Pure SubstancesVol. III Heats of Mixing Data CollectionVol. IV Recommended Data of Selected Compounds and Binary Mixtures Vol. V Liquid-Liquid Equilibrium Data CollectionVol. VI Vapor-Liquid Equilibria for Mixtures of Low Boiling SubstancesVol. VIII Solid-Liquid Equilibrium Data CollectionVol. IX Activity Coefficients at Infinite DilutionVol. X Thermal Conductivity and Viscosity Data of Fluid MixturesVol. XI Phase Equilibia and Phase Diagrams of ElectrolytesVol. XII Electrolyte Data CollectionVol. XIV Polymer Solution Data CollectionThermodynamic property database: DETHERM2006/6/21NTUST24VLE Data of Mixtures from LiteratureVolume 1: Vapor-Liquid Equilibrium Data CollectionJ. Gmehling, U. Onken, W. Arlt, P. Grenzhauser, U. Weidlich, B. Kolbe, J. RareyPart Title Published1 Aqueous-Organic Systems 19911a Supplement 1 19981b Supplement 2 19882a Alcohols 19862b Alcohols and Phenols 19902c Alcohols Supplement 1 20012d Alcohols and Phenols Supplement 2 19822e Alcohols and Phenols Supplement 3 19882f Alcohols and Phenols Supplement 4 19903/4 Aldehydes, Ketones, Ethers 19793a Aldehydes, Supplement 1 19933b Ketones, Supplement 1 19934a Ethers, Supplement 1 19964b Ethers, Supplement 2 19992006/6/21NTUST25VLE Data of Mixtures from LiteratureVolume 1: Vapor-Liquid Equilibrium Data CollectionJ. Gmehling, U. Onken, W. Arlt, P. Grenzhauser, U. Weidlich, B. Kolbe, J. Rarey5 Carboxylic Acids, Anhydrides, Esters 20015a Carboxylic Acids, Anhydrides, Supplement 1 20025b Esters, Supplement 2 20026a Aliphatic Hydrocarbons C4-C6 (2nd Ed. with minorchanges)19976b Aliphatic Hydrocarbons C7- C18(2nd Ed. with minor changes)1997 6c Aliphatic Hydrocarbons Supplement 1 1983 6d+e Alipatic Hydrocarbons C4- C301999 7 Aromatic Hydrocarbons (2nd Ed. with minor changes) 1997 7a/7bSupplement 1 2000 8 Halogen, Nitrogen, Sulfur and other Compounds 19848a Halogen, Nitrogen, Sulfur and other Compounds, Supplement 120012006/6/21NTUST26Phase Equilibrium Data from Experiments n VLE Apparatus:u Static typeu Semi-flow type Vapor sampleLiquid sampleVapor sampleLiquid sample2006/6/21NTUST27Phase Equilibrium Data from Experiments u Flow typen VLLE Apparatus: u Static type Vapor sample Liquid sampleVapor sampleLiquid I sampleLiquid II sample2006/6/21NTUST28Static VLE Apparatus2006/6/21NTUST292006/6/21NTUST30Vapor Pressures of Dimethyl Adipate (賴政海,2003)0.00180.0020.00220.00240.00260.00280.0031/T (K -1)0.11101001000P (k P a )2006/6/21NTUST 31VLE of Isopropyl Acetate (1) + 2-Propanol (2)(Hong et al., Ind. Eng. Chem. Res., 2003)0.00.20.40.60.81.0x 1 , y 130354045501201602002406080100120P (k P a )2006/6/21NTUST 32Azeotropic Point of Isopropyl Acetate (1) + Isopropanol (2) at 333.15 K(Hong et al., Ind. Eng. Chem. Res., 2003)-0.10.00.1x 1-y 1x 145.045.546.046.5P (k P a )0.981.001.02D P y / D P x2006/6/21NTUST 33VLE of 1-Octanol + 1,2-Dimethoxybenzene + 2-Methoxyphenol at 433.15 K(Hwang et al., Ind. Eng. Chem. Res., 2001)1-octanol1,2-dimethoxybenzene2-methoxyphenol0.00.20.40.60.8 1.0LLE Phase Behavior2006/6/21NTUST342006/6/21NTUST 35LLE ApparatusTop sampleBottom sampleTo circulating thermostatic bathFrom circulating thermostatic bathStir barLLE of Water + Ethanol + Ethyl Acetate withGlycerol, KAc, or CaCl2at 313.15 K(Lee et al., Fluid Phase Equilibria, 2005)2006/6/21NTUST36LLE of Water + n-Butanol+ n-Butyl Acetate withGlycerol, KAc, or CaCl2at 313.15 K (葉至恩,2003)2006/6/21NTUST372006/6/21NTUST 38Static VLLE Apparatus45to vac.2006/6/21NTUST 39VLLE of Water (1) + PGMEA (2)(Hsieh et al., Ind. Eng. Chem. Res., 2006)UNIQUAC0.100.150.20y 1320330340350360T (K )0.0000.0300.060x 1II0.40.60.8 1.0x1I expt.calc. ( NRTL-HOC )calc. ( UNIQUAC-HOC )b 12(K) = 2.6262 + 0.1007 T (K)b 21(K) = -573.2592 +0.3682 T (K)2006/6/21NTUST 40Saturated Pressures at VLLE for Water (1) + PGMEA (2)(Hsieh et al., Ind. Eng. Chem. Res., 2006)0.00270.00280.00290.0030.00311 / T (K -1)10100P (k P a )VLLE of Water + PGME + PGMEA at 343.15 K(Hsieh et al., Ind. Eng. Chem. Res., 2006)liquid phase0.00Water2006/6/21NTUST41VLLE of Water + Butyl Propionate + n-Butanol at 363.15 K(Lee et al., Fluid Phase Equilibria, 2004)42Prediction LLE Properties from UNIFACLLE of Water + Isopropyl Acetate + 2-Propanol(2006/6/21NTUST432006/6/21NTUST 44Prediction VLE Properties from UNIFAC VLE of Isopropyl Acetate(1) + 2-Propanol (2) (洪桂彬,2003)0.00.20.40.60.8 1.0x1 or y1050100150200250P(k P a)expt.UNIFAC-LLE UNIFAC-Original UNIFAC-Dortmund UNIFAC-LyngbyKey Points to Parameter Determinationn Vapor pressuresu Pure compoundsn Phase compositions and equilibrium pressuresu Binary, ternaryn Existence of azeotropic pointsu Binary, ternary, quaternaryn Location of azeotropic pointsu Binary, ternary, quaternaryn Existence of phase splittingu Ternary, quaternaryn Compositions of two-liquid phases (binodal curves)u Ternary, quaternary2006/6/21NTUST45Concluding Remarksn For completely miscible systemsu f-f method«Equations of State with proper mixing rulesu g-f method«f: Two-term virial equation«g: Wilson, NRTL or UNIQUAC modeln For partially miscible systemsu g-f method«f: Two-term virial equation«g: NRTL or UNIQUAC modeln Vapor pressure data (or Antoine constants) areessentially needed for each constituent.n For type-1 LLE systems, ternary LLE data areimportant to determine model parameters.n For type-2 LLE systems, binary LLE data are crucial todetermine model parameters.2006/6/21NTUST46。