数学2015 年复旦大学附中自招试卷及答案解析(3.20)

合集下载

2015-2016学年上海市复旦大学附属中学高一上学期期中考试数学试卷含详解

2015-2016学年上海市复旦大学附属中学高一上学期期中考试数学试卷含详解

复旦大学附属中学2015学年第一学期高一年级数学期中考试试卷一、填空题(每题4分,共48分)1.函数2y x=-的定义域为______.2.已知,a b ∈R ,写出命题“若0ab ≠,则220a b ->”的否命题__________.3.已知,x y R +∈且2xy =,则当x =________时,224x y +取得最小值.4.已知集合3|11A x x Z x ⎧⎫=∈⎨⎬+⎩⎭,≥,则集合A 的子集个数为______个.5.已知定义在R 上的函数()f x 为奇函数,且0x >时,2()23f x x x =+-,则0x <时,()f x =________6.已知函数25()43kx f x kx kx +=++的定义城为R (R 为实数集),则k 的取值范围为_________7.若a b ,为非零实数,则不等式①232a a +>,②4433a b a b ab ++≥,③a b a b +-≥,④2b aa b+≥中恒成立的序号是_______.8.已知定义在R 上的奇函数()f x 与偶函数()g x 满足()()()210f x g x a x x a +=>++,若()113f =-,则a =__________.9.关于x 的方程()2290x a x a a R ++-=∈有唯一的实数根,则a =________.10.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.11.已知集合2{|(2)10,}A x x a x x R =+++=∈,{|0,}B x x x =>∈R ,若A B =∅ ,则实数a 的取值范围是________.12.若a 、b R ∈,且2249a b +≤≤,则22a ab b -+的最大值与最小值之和是________.二、选择题(每题4分,共16分)13.已知函数(1)=-y f x 的定义域为[0,1],则(1)f x +的定义域为()A.[-2,-1]B.[-1,0]C.[0,1]D.[2,3]14.给出三个条件:①22ac bc >;②a bc c>;③a b >;④1a b >-.其中能分别成为a b >的充分条件的个数为()A.0B.1C.2D.315.已知{}()(){}||330A x x B x x x =>=-+>,,则A B = ()A.()21-, B.()3-∞-, C.()2-∞,D.()01,16.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有()个(1)G 是非负整数集,⊕:实数的加法;(2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法;(4){}|G x x a a b Q ==+∈,,⊕:实数的乘法.A.1 B.2 C.3 D.4三、解答题(本题共5大题,满分56分)17.已知集合{}{}211|0A B x x ax b x R =-=++=∈,,,,若B ≠∅,且A B A ⋃=,求实数a b ,的值.18.已知二次函数()2f x ax bx =+对任意x ∈R 均有()()2f x f x =--成立,且函数的图像过点312A ⎛⎫ ⎪⎝⎭,.(1)求函数()y f x =的解析式;(2)若不等式()f x t x -≤的解集为[]4m ,,求实数t 、m 的值.19.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥.(1)当1a =时,求集合B .(2)问:12a ≥是A B =∅ 的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.20.设函数()f x x a a=++.(a R ∈且0a ≠)(1)分别判断当1a =及2a =-时函数的奇偶性;(2)在a R ∈且0a ≠的条件下,将(1)的结论加以推广,使命题(1)成为推广后命题的特例,并对推广的结论加以证明.21.已知关于x 不等式()()241292110kx k k x ---->,其中k ∈R .(1)试求不等式的解集A ;(2)对于不等式的解集A ,若满足A B =Z (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少时k 的取值范围,并用列举法表示集合B ;若不能,请说明理由.复旦大学附属中学2015学年第一学期高一年级数学期中考试试卷一、填空题(每题4分,共48分)1.函数y =的定义域为______.【答案】[1,2)(2,)-+∞ 【分析】由解析式有意义求解.【详解】由题意1020x x +≥⎧⎨-≠⎩,解得1x ≥-且2x ≠.故答案为:[1,2)(2,)-+∞ .【点睛】本题考查求函数定义域,属于基础题.2.已知,a b ∈R ,写出命题“若0ab ≠,则220a b ->”的否命题__________.【答案】若0ab =,则220a b -≤【分析】根据否命题的形式写出即可.【详解】命题“若0ab ≠,则220a b ->”的否命题是“若0ab =,则220a b -≤”故答案为若0ab =,则220a b -≤【点睛】本题主要考查了否命题的形式,属于基础题.3.已知,x y R +∈且2xy =,则当x =________时,224x y +取得最小值.【答案】2【分析】由2xy =,解出2y x=,代入224x y +中,化简利用基本不等式即可求出x 的值.【详解】因为2xy =,所以2y x=222222216448x y x x x x ⎛⎫+= =++≥⎝⎭=⎪当且仅当2216x x=,即2x =时,224x y +取得最小值.故答案为2【点睛】本题主要考查了基本不等式的运用,注意基本不等式使用的条件,考查学生利用知识分析和解决问题的能力,属于基础题.4.已知集合3|11A x x Z x ⎧⎫=∈⎨⎬+⎩⎭,≥,则集合A 的子集个数为______个.【答案】8【分析】求出集合A 中元素,由子集的定义求解.【详解】3|11A x x Z x ⎧⎫=∈⎨⎬+⎩⎭,≥{012}=,,,子集个数为328=.故答案为:8.【点睛】本题考查求子集个数,掌握子集概念是解题关键.,含有n 元素的集合的子集个数为2n .5.已知定义在R 上的函数()f x 为奇函数,且0x >时,2()23f x x x =+-,则0x <时,()f x =________【答案】223x x -++【分析】求0x <的解析式()f x ,可先求出()f x -的解析式,再利用奇函数()f x 与()f x -的关系求出()f x .【详解】设0x <,则0x ->,所以2()23f x x x -=--,又因为()f x 为定义在R 上的奇函数,所以()2()23f x f x x x =--=-++.故答案为223x x -++.【点睛】本题主要考查利用奇偶性求解函数的解析式,主要利用转化法把所求转化到已知区间,结合奇偶性可得,侧重考查数学抽象的核心素养.6.已知函数25()43kx f x kx kx +=++的定义城为R (R 为实数集),则k 的取值范围为_________【答案】3[0,4【分析】由函数25()43kx f x kx kx +=++的定义城为R ,转化为2430kx kx ++≠在R 上恒成立,结合二次函数的性质,分类讨论,即可求解.【详解】由题意,函数25()43kx f x kx kx +=++的定义城为R ,即2430kx kx ++≠在R 上恒成立,当0k =时,30≠恒成立,当0k ≠时,则满足2(4)430k k ∆=-⨯⨯<,即2430k k ∆=-<,解得304k <<,综上可得,实数k 的取值范围是3[0,4.故答案为:3[0,4.【点睛】本题主要考查了函数的定义域的定义,以及一元二次式的恒成立问题,其中解答中合理转化,结合二次函数的性质,分类讨论求解是解答的关键,着重考查了推理与运算能力,属于基础题.7.若a b ,为非零实数,则不等式①232a a +>,②4433a b a b ab ++≥,③a b a b +-≥,④2b aa b+≥中恒成立的序号是_______.【答案】①②【分析】用作差法比较大小证明不等式,举反例说明不等式不成立.【详解】2232(1)20a a a +-=-+>,232a a +>恒成立,①正确;44333322222213()()()()()[()]024a b a b ab a b a b a b a ab b a b a b b +--=--=-++=-++≥,∴4433a b a b ab ++≥恒成立,②正确;2,1a b ==-时,③④均不成立,故答案为:①②.【点睛】本题考查不等式的性质,作差法是证明不等式的基本方法,必须掌握.对不恒成立的不等式可通过举反例说明,较方便.8.已知定义在R 上的奇函数()f x 与偶函数()g x 满足()()()210f x g x a x x a +=>++,若()113f =-,则a =__________.【答案】1【分析】由奇偶性求出(),()f x g x ,再由(1)f 求得a .【详解】∵()()21f xg x x x a +=++,①,∴21()()f x g x x x a-+-=-+,∵()f x 是奇函数,()g x 是偶函数,∴21()()f x g x x x a-+=-+,②,(①-②)除以2,得22111()(2f x x x a x x a=-++-+,∴1111(1)(223f a a =-=-+,∵0a >,∴1a =.故答案为:1.【点睛】本题考查函数的奇偶性,掌握奇偶性定义是解题关键.9.关于x 的方程()2290x a x a a R ++-=∈有唯一的实数根,则a =________.【答案】3【分析】考虑绝对值的性质,方程的唯一实根只能是0,即0x =,由此分析可得结论.【详解】方程2290x a x a ++-=为2290x a x a ++-=,因此原方程有唯一实根,则0x =,290a -=,3a =±,3a =-时,方程为230x x -=,x =0或3,不合题意,3a =时,方程为230x x +=,0x =,3x =-舍去.故答案为:3.【点睛】本题考查方程根的分布,根据绝对值的性质易得结论.10.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.【答案】[3,1)(3,)--+∞ 【分析】先求出A B -和B A -,再计算A B∆【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞ ,故答案为:[3,1)(3,)--+∞ 【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.11.已知集合2{|(2)10,}A x x a x x R =+++=∈,{|0,}B x x x =>∈R ,若A B =∅ ,则实数a 的取值范围是________.【答案】4a >-【分析】根据A B =∅ 可知,A =∅或方程2(2)10x a x +++=只有非正根,由此可解得a 的范围.【详解】分A ≠∅和A =∅两种情况讨论.①当A ≠∅时,A 中的元素为非正数,A B =∅ ,即方程2(2)10x a x +++=只有非正数解,所以2(2)40,(2)0,a a ⎧∆=+-≥⎨-+≤⎩解得0a ≥;②当A =∅时,2(2)40a ∆=+-<,解得40a -<<.综上所述,实数a 的取值范围是4a >-.故答案为:4a >-【点睛】当A B =∅ 时,包含A ≠∅和A =∅两种情况,A =∅容易被忽略.12.若a 、b R ∈,且2249a b +≤≤,则22a ab b -+的最大值与最小值之和是________.【答案】312【分析】用三角换元法,转化为求三角函数的最值.【详解】设cos ,sin a r b r θθ==,则23r ≤≤,2222222221cos sin cos sin sin 22a ab b r r r r r θθθθθ-+=-+=-21(1sin 2)2r θ=-,因为1131sin 2222θ≤-≤,249r ≤≤,∴21272(1sin 2)22r θ≤-≤.即22a ab b -+的最大值为272,最小值为2,和为312.故答案为:312.【点睛】本题考查由已知条件求最值,解题关键是三角换元,换元后可把两个变量分开,分别求得最值,再结合求得结论.二、选择题(每题4分,共16分)13.已知函数(1)=-y f x 的定义域为[0,1],则(1)f x +的定义域为()A.[-2,-1]B.[-1,0]C.[0,1]D.[2,3]【答案】A 【分析】由题意首先求得函数()f x 的定义域,然后求解函数(1)f x +的定义域即可.【详解】由题意可得,函数()f x 的定义域为:[]1,0-,则函数()1f x +的定义域满足:110x -≤+≤,解得:21x -≤≤-,表示为区间形式即[]2,1--.故选A .【点睛】本题主要考查抽象函数的定义域,属于中等题.14.给出三个条件:①22ac bc >;②a bc c>;③a b >;④1a b >-.其中能分别成为a b >的充分条件的个数为()A.0B.1C.2D.3【答案】C 【分析】根据不等式的性质作答.【详解】由22ac bc >能得出a b >,由a bc c >不能得出a b >(0c <时不成立),a b >,显然有a b >(原因是b b ≥),1a b >-时可能有a b <,如12a b =-,因此有两个,①③满足题意.故选:C.【点睛】本题考查不等式的性质,掌握不等式的性质是解题基础.15.已知{}()(){}||330A x x B x x x =>=-+>,,则A B = ()A.()21-, B.()3-∞-, C.()2-∞, D.()01,【答案】B 【分析】求出集合,A B 后可求其交集.【详解】由20x -≥得2x ≤,当0x ≤x >显然成立,当02x <≤时,由x >得22x x ->,解得01x <<,∴(,1)A =-∞,又()(){}|330B x x x =-+>(,3)(3,)=-∞-+∞ ,∴(,3)A B =-∞- .故选:B.【点睛】本题考查集合的交集运算,解题关键是正确解无理不等式.16.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有()个(1)G 是非负整数集,⊕:实数的加法;(2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法;(4){}|G x x a a b Q ==+∈,,⊕:实数的乘法.A.1 B.2 C.3 D.4【答案】B 【分析】根据新定义运算⊕判断.【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个.故选:B.【点睛】本题考查新定义,解题关键是对新定义的理解与应用.三、解答题(本题共5大题,满分56分)17.已知集合{}{}211|0A B x x ax b x R =-=++=∈,,,,若B ≠∅,且A B A ⋃=,求实数a b ,的值.【答案】21a b =⎧⎨=⎩或21a b =-⎧⎨=⎩或01a b =⎧⎨=-⎩.【分析】A B A ⋃=得B A ⊆,结合B ≠∅,可根据B 的各种情形分类讨论.【详解】由A B A ⋃=得B A ⊆,由于B ≠∅,∴{1}B =-或者{1}B =或者{1,1}B =-,若{1}B =-,则111(1)a b --=-⎧⎨-⨯-=⎩,即21a b =⎧⎨=⎩,若{1}B =,则1111a b +=-⎧⎨⨯=⎩,即21a b =-⎧⎨=⎩,若{11}B =-,,则1111a b -+=-⎧⎨-⨯=⎩,即01a b =⎧⎨=-⎩,综上,21a b =⎧⎨=⎩或21a b =-⎧⎨=⎩或01a b =⎧⎨=-⎩.【点睛】本题考查集合的并集,考查集合间的包含关系,解题关键是根据包含关系确定集合B 中各种可能.18.已知二次函数()2f x ax bx =+对任意x ∈R 均有()()2f x f x =--成立,且函数的图像过点312A ⎛⎫ ⎪⎝⎭,.(1)求函数()y f x =的解析式;(2)若不等式()f x t x -≤的解集为[]4m ,,求实数t 、m 的值.【答案】(1)21()2f x x x =+;(2)812t m =⎧⎨=⎩.【分析】(1)由()()2f x f x =--得出对称轴,结合点A 坐标可求得,a b ;(2)变形()f x t x -≤得21()02x t t --≤,显然0t >,直接解此不等式,由其解集为[4,]m 可求得,t m .【详解】∵()()2f x f x =--,∴1x =-是()f x 图象的对称轴,又函数图象过点3(1,)2A ,∴1232baa b ⎧-=-⎪⎪⎨⎪+=⎪⎩,解得121a b ⎧=⎪⎨⎪=⎩,∴21()2f x x x =+;(2)2211()()()22f x t x x t x t x x t t --=-+--=--,由题意21()02x t t --≤的解集是[4,]m ,所以0t >,且由21()02x t t --≤得t x t -≤≤+∴4t t m⎧=⎪⎨=⎪⎩,解得812t m =⎧⎨=⎩.【点睛】本题考查求二次函数解析式,考查解一元二次不等式,掌握二次函数的性质是解题基础.19.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥.(1)当1a =时,求集合B .(2)问:12a ≥是A B =∅ 的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.【答案】(1)[2,0]B =-;(2)充分非必要条件.【分析】(1)根据绝对值的性质解不等式得集合B ;(2)解不等式得集合,A B ,由A B =∅ 求出a 的范围,再判断是什么条件.【详解】(1)由110x -+≥得11x +≤,111x -≤+≤,20x -≤≤,所以[2,0]B =-;(2)由题意(31,32)A a a =-+,[1,1]B a a =---+,若A B =∅ ,则321a a +≤--或311a a -≥-+,解得34a ≤-或12a ≥.∴12a ≥是A B =∅ 的充分非必要条件.【点睛】本题考查解绝对值不等式,考查解一元二次不等式,考查充分必要条件的判断,掌握集合的包含关系与充分必要条件之间的联系是解题关键.20.设函数()f x =.(a R ∈且0a ≠)(1)分别判断当1a =及2a =-时函数的奇偶性;(2)在a R ∈且0a ≠的条件下,将(1)的结论加以推广,使命题(1)成为推广后命题的特例,并对推广的结论加以证明.【答案】(1)1a =时,()f x 既不是奇函数也不是偶函数,2a =-时,()f x 是奇函数.;(2)0a >时,()f x 既不是奇函数也不是偶函数,0a <时,()f x 是奇函数.证明见解析.【分析】(1)根据奇偶性定义判断;(2)0a >时,()f x 既不是奇函数也不是偶函数,0a <时,()f x 是奇函数.根据奇偶性定义证明即可.【详解】(1)1a =时,1()11f x x =++,定义域为210110x x ⎧-≥⎪⎨++≠⎪⎩,11x -≤≤,此时()2x f x x =+,()2x f x x -=-+,()()f x f x -≠-且()()f x f x -≠,()f x 既不是奇函数也不是偶函数,2a =-时,()22f x x =--,定义域为240220x x ⎧-≥⎪⎨--≠⎪⎩,22x -≤≤且0x ≠,此时()22f x x x ==---,()()f x f x x-==-,()f x 是奇函数.(2)0a >时,()f x 既不是奇函数也不是偶函数,0a <时,()f x 是奇函数.与(1)类似,0a >时,由2200a x x a a ⎧-≥⎪⎨++≠⎪⎩,得函数定义域是[,]a a -,()2f x x a =+,()2f x x a -=-+与()f x 既不相等也不是相反数,因此()f x 既不是奇函数也不是偶函数,0a <时,由2200a x x a a ⎧-≥⎪⎨++≠⎪⎩,得定义域是[,0)(0,]a a - ,()a x f x x =-,()()a x f x f x x -==-,()f x 是奇函数.【点睛】本题考查函数的奇偶性,掌握奇偶性定义是解题基础.判断奇偶性时应先确定函数定义域,在定义域内函数有时可化简,从而易于判断.21.已知关于x 不等式()()241292110kx k k x ---->,其中k ∈R .(1)试求不等式的解集A ;(2)对于不等式的解集A ,若满足A B =Z (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少时k 的取值范围,并用列举法表示集合B ;若不能,请说明理由.【答案】(1)k 0<时,212911(,)42k k A k ++=,0k =时,11(,)2A =-∞,01k <<或9k >时,211129(,)(,)24k k A k ++=-∞+∞ ,19k ≤≤时,212911(,)()42k k A k ++=-∞+∞ .(2)k 0<,B 能为有限集;44k -<<-B 中元素个数最少,{2,3,4,5}B =.【分析】(1)对k 分类讨论,利用解一元二次不等式的解法可得;(2)根据A B =Z (其中Z 为整数集).集合B 为有限集,可得,求出21294k k k++最大值可得集合B 元素个数最少时的集合.【详解】(1)0k =时,不等式为9(211)0x -->.112x <,∴11(,2A =-∞,(2)k 0<时,()21294(21104k k k x x k++-->,又方程()21294()211=04k k k x x k ++--两根为211294k k x k++=,2112x =k 0<时,由对勾函数图象知2112919311()34422k k x k k k ++==++≤<,所以21291142k k x k ++<<,212911(,)42k k A k ++=,(3)0k >时,由21291142k k k ++>得01k <<或9k >,不等式的解为112x <或21294k k x k++>,211129(,)(,)24k k A k++=-∞+∞ ,当19k ≤≤时,21291142k k k ++<,不等式的解为112x >或21294k k x k++<,212911(,)(,)42k k A k ++=-∞+∞ .综上,k 0<时,212911(,)42k k A k ++=,0k =时,11(,)2A =-∞,01k <<或9k >时,211129(,)(,)24k k A k++=-∞+∞ ,19k ≤≤时,212911(,)(,)42k k A k ++=-∞+∞ .(2)∵A B =Z (其中Z 为整数集).集合B 能为有限集,当0k =时,11(,2A =-∞,此时AB =Z 中有无限个整数,不合题意,舍去;当01k <<或9k >,211129(,(,)24k k A k++=-∞+∞ ,此时A B =Z 中有无限个整数,不合题意,舍去;当19k ≤≤时,212911(,)()42k k A k ++=-∞+∞ ,此时A B =Z 中有无限个整数,不合题意,舍去;当k 0<,212919()344k k k k k++=++,由对勾函数,知函数19(34y k k =++在(,3)-∞-上递增,在(3,0)-上递减,∴3k =-时,19()34y k k =++的最大值为193(3)3432y =-++=-,231112911(,)()2242k k k ++∴⊆,所以当21293142k k k ++<≤,即44k --<<-+B 中元素最少时,{2,3,4,5}B =.【点睛】本题考查解含参数的一元二次不等式,解题时需分类讨论,属于中档题.。

复旦附中自招真题解析

复旦附中自招真题解析


7. 已知锐角 ABC 的三边长恰为三个连续正整数,AB BC CA , 若 BC 边上的高为 AD, 则 BD DC ______________. 【答】4. A 【解析】设 AB 、 BC 、 CA 分别为 n 1 、 n 、 n 1 ,则



立 方
B
C

2
2
B
D C
有 c 2 a 2 b2 2b2 c 2b ab 2 b b 2b 2 而 ab 2 a b c 2 0 b b a 5 ,


2 2 b 7b a 7 ,

若 a 5 ,25 c b c b c b 25 ,c b 1 c 13 ,b 12 代入两式验证成立; 若 a 6 , 36 c b c b c b 18 , c b 2 c 10 , b 8 代入两式验证成立;
2
若它们为不同解,则 19m n 19 矛盾 19m n
原式
m 19m 4m 1 19m2 99m 1 95m 5 . 19m 19m
9. 若关于 x 的方程 x 2 x 2 4 x m 0 有三个根,且这三个根恰好可以作为一个三角形 的三边长,则 m 的取值范围是______________. 【答】 3 m 4 . 【解析】显然 x 2 是原方程的根,设另两个根分别为 a 、 b , a b 4 2 ,
15 sin120 a a 2 3 2 4 则 a 2 2a 1 16 sin 60 2 S 2a 2 ABCD 2

2015复旦附中自主招生数学试题

2015复旦附中自主招生数学试题

2015复旦附中自主招生数学试题2015复旦附中自主招生数学试题A1.实数x 、y 、z 满足xz z x x y y x 22416222+=++-+++-,则x+y-z=_____.2.若31001的分子、分母同时加上正整数n 时,该分数称为整数,这样的正整数n 共有__个.3.已知a 2=7-3a ,b 2=7-3b ,且a≠b ,则=+22ba ab ______. 4.设P 是奇质数,则方程2xy=p(x+y)满足x<="">5.方程2121111??? ??-+??? ??-=x x x x 的解为____________.6.如图,正方形ABCD 的边长为100米,甲、乙两个动点分别从A 点和B点同时出发按逆时针方向移动,甲的速度是7米/秒,乙的速度是10米/经过_____秒,甲、乙两动点第一次位于正方形的同一条边上.7.已知△ABC 是等边三角形,动点P、Q、R分别同时从顶点A、B、C出发,沿AB 、BC 、CA 按逆时针方向以各自的速度匀速移动,且P 、Q 、R 经过△ABC 的一边所用时间分别为1秒、2秒、3秒.从运动开始起,在1秒内,经过_____秒△PQR 的面积取到最小值.8.二次函数f (x)的图像开口向上,与x 轴交于A 、B 两点,与y 轴交与点C ,以D 为顶点,若三角形ABC 的外接圆与y 轴相切,且∠DAC=150°,则x≠0时,x x f )(的最小值是_____.二、解答题9.已知a 是正常数,且关于x 的方程2311212+-=-+-x x ax x x 仅有一个实数根,求实数a 的取值范围.10.如图,抛物线的顶点坐标是??-89,25,且经过点A(8,14).(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边),求点B 、C 、D 的坐标.(3)设点P 是x 轴上的任意一点,分别连结AC 、BC .比较PA+PB 与AC+BC 的大小关系,说明理由.2015复旦附中自主招生数学试题B1.若x=ab ,y=a 2+b 2,则()()22y x y x -++=______.2.xk y =上一点C ,以C 为圆心,1为半径画圆,圆上有2点到O 点距离为2,则k 的取值范围为__________.3.设x 1、x 2为x 2-2px-p=0的两实根,p 为实数.①求证:2px 1+x 22+3p≥0;②当|x 1-x 2|≤|2p -3|时,求p 的最大值.4.实数a 1,a 2,…,a n 满足:①a 1+a 2+…+a n =0;②|a 1|+|a 2|+…+|a n |=1.求证:k 个数(k=1,2,…,n),|a 1+a 2+…+a k |≤21.。

复旦大学自主招生考试数学试题及答案

复旦大学自主招生考试数学试题及答案

1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。

A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。

A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。

2015年高三数学高校自主招生考试 真题分类解析10 不等式

2015年高三数学高校自主招生考试 真题分类解析10 不等式

2015年高三数学高校自主招生考试真题分类解析10 不等式一、选择题。

1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值X围是( ) A.(-1,1) B.[-1,1]C.(-,)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k=时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( ) A. B. C. D.5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值X围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2二、填空题。

7.(2010年中南财经政法大学)已知实数a,b满足a>b,ab=1,则的最小值是 . 8.(2009年华中科技大学) 对任意的a>0,b>0,的取值X围是.三、解答题。

9.(2009年中国科技大学)求证:∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.(2009年某某大学)P为△ABC内一点,它到三边BC,CA,AB的距离分别为d1,d2,d3,S为△ABC的面积,求证:++≥.11.(2010年某某大学)(a+b)2+3a+2b=(c+d)2+3c+2d. (*)证明:(1)a=c,b=d的充分必要条件是a+b=c+d;(2)若a,b,c,d∈N*,则(*)式成立的充要条件是a=c,b=d.12.(2010年某某大学)有小于1的n(n≥2 )个正数:x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:+++…+>4.13.(2009年清华大学)设a=(n∈N*),S n=(x1-a)(x2-a)+(x2-a)(x3-a)+…+(x n-1-a)(x n-a),求证:S3≤0.14.(2009年清华大学)(1)x,y为正实数,且x+y=1,求证:对于任意正整数n,x n+y n≥;(2)a,b,c为正实数,求证:++≥3,其中x,y,z为a,b,c的一种排列.15.(2009年大学)∀x∈R都有acos x+bcos 2x≥-1恒成立,求a+b的最大值.16.(2011年大学等十三校联考)求f(x)=|x-1|+|2x-1|+…+|2 011x-1|的最小值.17.(2012年大学等十一校联考)求+=1的实数根的个数.1.B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].3.C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0). 4.C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值X围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x +)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.9.x2+xy+y2-3(x+y-1)=(x+y)2+x2+y2-3x-3y+3=(x+y)2+(x-3)2+(y-3)2-6≥(x+y)2+(x+y-6)2-6=(x+y)2-3(x+y)+3=[(x+y)-]2≥0,故∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.2S=2(S△PBC+S△PCA+S△PAB),2S=ad1+bd2+cd3.要证++≥成立,即证(ad1+bd2+cd3)(++)≥(a+b+c)2成立.由柯西不等式可得上面不等式成立,当且仅当d1=d2=d3时等号成立.11.(1)由a=c,b=d得到a+b=c+d是显然的;反之,把a+b=c+d代入(*)式可得a=c,于是b=d.因此,a=c,b=d的充要条件是a+b=c+d.(2)充分性是显然的,下面证明必要性.当a+b=c+d时,由(1)可知:a=c,b=d,即必要性成立.当a+b>c+d时,有a-c>d-b,设a-c=d-b+p(p≥1),由(*)式得(a+b+1)2+a=(c+d+1)2+c,∴(a+b-c-d)(a+b+c+d+2)+a-c=0,∴[(a-c)-(d-b)](a+b+c+d+2)+a-c=0.∴a-c+p(a+b+c+d+2)=0,∴(1+p)a+pb+(p-1)c+pd+2p=0,这与p≥1相矛盾,于是a+b>c+d不能成立.同理可证a+b<c+d也不能成立.综上可知:必要性成立.12.∵0<x i<1,∴>(i=1,2,3,…,n).∴+++…+>+++…+≥,又∵1=x1+x2+x3+…+x n≥n,∴≥n,又∵n≥2,∴+++…+>n2≥4.13.S3=(x1-)(x2-)+(x2-)(x3-)=(x2-)(x1-+x3-)=·=-(x1+x3-2x2)2≤0.14.(1)设x=+a,则y=-a,其中-<a<,于是x n+y n=(+a)n+(-a)n=()n+()n-1·a+()n-2·a2+…+a n+()n-()n-1·a+()n-2·a2-…+(-a)n=2[()n+()n-2·a2+()n-4·a4+…]≥2×()n=.(2)不妨设a≥b≥c>0,即0<≤≤,且{,,}={,,},由排序不等式得++≥++=3.15.2【解析】方法一令cos x=t,则-1≤t≤1,f(t)=2bt2+at+1-b≥0恒成立.(1)当b<0时,,利用线性规划知识,如下图,可以解得:-1≤a+b<1.(2)当b=0时,at+1≥0,由-1≤t≤1,得-1≤a+b≤1.(3)当b>0时,(i),利用线性规划知识,如下图,可以解得:0<a+b<;(ii),即,⇒9b2-(2k+8)b+k2≤0,Δ≥0⇒-1≤k≤2,∴(a+b)max=2;(iii),即,利用线性规划知识,如图,可以解得:-1≤a+b<0.综上,(a+b)max=2.方法二2bcos2x+acos x-b+1≥0,令cos x=-,得+≤1,即a+b≤2,又当a=,b=时,cos2x+cos x+=(2cos x+1)2≥0成立,∴(a+b)max=2.16.【解析】解法一由绝对值的几何意义联想到求距离的最小值,如|x-a|+|x-b|的最小值应该是在数轴上a,b两点之间取得,为|a-b|,所以将函数f(x)的右边整理为|x-1|+|x-|+|x-|+|x-|+|x-|+|x-|+…+|x-|+|x-|+…+|x-|,共有1+2+3+…+2 011=1 006×2 011项,则f(x)可以理解为x到这1 006×2 011个零点的距离之和.从两端开始向中间靠拢,每两个绝对值的和的最小值都是在相应的零点之间取得,而且X围是包含关系,比如|x-1|+|x-|的最小值是在x∈[,1]上取得,|x-|+|x-|的最小值是在x∈[,]上取得,…,所以f(x)的最小值应该在正中间的零点或正中间的相邻两个零点之间取得.由=503×2 011可知,f(x)取得最小值的X围在第503×2 011个零点和第503×2 011+1个零点之间(这两个零点也可能相等).由<503×2 011算得n ≤1 421,所以第503×2 011个零点和第503×2 011+1个零点均为,则[f(x)]min=f()=.解法二由零点分区间法讨论去绝对值:当x∈(-∞,]时,f(x)=(1-x)+(1-2x)+…+(1-2 011x),此函数图象是一条直线中的一部分,斜率k1=-1-2-…-2 011.当x∈(,]时,f(x)=(1-x)+(1-2x)+…+(1-2 010x)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2=-1-2-…-2 010+2 011.当x∈(,]时,f(x)=(1-x)+…+(1-2 009x)+(2 010x-1)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k3=-1-2-…-2 009+2 010+2 011.……当x∈(,]时,f(x)=(1-x)+…+(1-mx)+[(m+1)x-1]+…+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2 012-m=-1-2-…-m+(m+1)+…+2 011.当x∈(,]时,f(x)=(1-x)+…+[1-(m-1)x]+(mx-1)+…+(2 011x-1),此函数图象是一条直线,斜率k2 013-m=-1-2-…-(m-1)+m+…+2 011.令,即,即,由于m∈N*,解得m=1 422.word所以当x∈(,]时,f(x)=(1-x)+…+(1-1 422x)+(1 423x-1)+…+(2 011x-1)=833-711×1 423x+1 717×589x, [f(x)]min=f()=.11 / 11。

《解析》2014-2015学年上海市复旦大学附中高一(上)期末数学试卷Word版含解析

《解析》2014-2015学年上海市复旦大学附中高一(上)期末数学试卷Word版含解析

2014-2015学年上海市复旦大学附中高一(上)期末数学试卷一、填空题(每题4分,共48分)1.设集合M={﹣1,0,1},N={a,a2},则使N⊊M成立的a的值是.2.不等式,当且仅当a=时,等号成立.3.已知函数g(x)=x﹣,那么函数f(x)=g(x)+h(x)的解析式是f(x)=.4.求值:=.5.函数的定义域为.6.函数y=x2+1(x≤﹣1)的反函数为.7.设函数f(x)=ax2+bx+1(a、b∈R),若f(﹣1)=0,且对任意实数x均有f(x)≥0成立,则a+b=.8.函数f(x)=ax2+bx+6满足条件f(﹣1)=f(3),则f(2)的值为.9.若函数y=的反函数的图象的对称中心是点(1,3),则实数a的值为.10.在同一平面直角坐标系中,函数y=g(x)的图象与y=e x的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=﹣1,则m的值是.11.设f(x)是连续的偶函数,且当x>0时,f(x)是单调的函数,则满足的所有的x的和为.12.定义两种运算:a⊕b=,则函数f(x)=的奇偶性为.二、选择题(每题4分,共16分)13.“a=0”是“函数f(x)=x2+ax在区间(0,+∞)上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.若函数f(x)在(4,+∞)上为减函数,且对任意的x∈R,有f(4+x)=f(4﹣x),则()A.f(2)>f(3) B.f(2)>f(5)C.f(3)>f(5)D.f(3)>f(6)15.已知函数f(x)=()x﹣log2x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)()A.恒为负值B.等于0 C.恒为正值D.不大于016.若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为y=2x2+1,值域为{3,19}的“孪生函数”共有()A.15个B.12个C.9个D.8个三、解答题17.已知log a484=m,log a88=n,试用m、n表示log211.18.f(x)=(1)作出函数的大致图象;(2)求不等式f(x)>f(1)的解集.19.如果函数y=x+的最小值为6,求b的值.20.通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式:f(x)=(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?21.已知函数f(x)=为奇函数,(1)求a的值;(2)求f(x)的反函数f﹣1(x);(3)解关于x的不等式:f﹣1(x)>log2.22.已知函数,其中x>0.(1)当0<a<b且f(a)=f(b),求ab的取值范围;(2)是否存在实数a、b(a<b),使得函数y=f(x)的定义域和值域都是,若存在,求出a、b的值,若不存在,说明理由;(3)若存在a、b(a<b),使得y=f(x)的定义域为,值域为(m≠0),求m的取值范围.2014-2015学年上海市复旦大学附中高一(上)期末数学试卷参考答案与试题解析一、填空题(每题4分,共48分)1.设集合M={﹣1,0,1},N={a,a2},则使N⊊M成立的a的值是﹣1.考点:集合的包含关系判断及应用.专题:集合.分析:由真子集的定义即知N的元素都是集合M的元素,从而分别让a取﹣1,0,1,看得到的集合N能否满足N⊊M,以及能否符合集合元素的性质,从而便得到a的值.解答:解:N⊊M,∴N的元素都是M的元素;若a=0,1时,显然不满足集合的互异性;若a=﹣1,则N={﹣1,1},满足N⊊M;∴a的值是﹣1.故答案为:﹣1.点评:考查列举法表示集合,真子集的定义,以及集合元素的性质.2.不等式,当且仅当a=±1时,等号成立.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:不等式,当且仅当a2=1,即a=±1时,等号成立.故答案为:±1.点评:本题考查了基本不等式的性质,属于基础题.3.已知函数g(x)=x﹣,那么函数f(x)=g(x)+h(x)的解析式是f(x)=x+,(x≥﹣,且x≠0).考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:根据已知,求出函数g(x),h(x)的定义域,进而可得函数f(x)=g(x)+h(x)的解析式.解答:解:∵函数g(x)=x﹣,(x≥﹣),h(x)=,(x≥﹣,且x≠0)∴函数f(x)=g(x)+h(x)=x+,(x≥﹣,且x≠0)故答案为:x+,(x≥﹣,且x≠0)点评:本题考查的知识点是函数的解析式及求法,函数的定义域,解答时一定要注意两个基本函数定义域对复合函数定义域的影响.4.求值:=4.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用有理指数幂的运算性质及对数的运算性质计算.解答:解:===.故答案为:4.点评:本题考查对数的运算性质,关键是对对数运算法则的记忆与运用,是基础题.5.函数的定义域为(0,7).考点:对数函数的定义域;函数的定义域及其求法.专题:计算题.分析:根据使函数的解析式有意义的原则,我们可以构造出自变量x的不等式组,解不等式组,求出x的取值范围,即可得到函数的定义域.解答:解:要使函数的解析式有意义,自变量必须满足:解得:0<x<7故函数的定义域为(0,7)故答案为:(0,7)点评:本题考查的知识点是对数函数的定义域,函数的定义域及其求法,其中正确理解,求函数的定义域即求使函数的解析式有意义的自变量的取值范围,是解答本题的关键.6.函数y=x2+1(x≤﹣1)的反函数为(x≥2).考点:反函数.专题:函数的性质及应用.分析:由原函数求得x,把x,y互换求得原函数的反函数.解答:解:由y=x2+1(x≤﹣1),得x2=y﹣1,∴x=(y≥2),x,y互换得:(x≥2),∴函数y=x2+1(x≤﹣1)的反函数为(x≥2),故答案为:(x≥2).点评:本题考查函数的反函数的求法,注意反函数的定义域为原函数的值域,是基础题.7.设函数f(x)=ax2+bx+1(a、b∈R),若f(﹣1)=0,且对任意实数x均有f(x)≥0成立,则a+b=3.考点:二次函数的性质.专题:函数的性质及应用.分析:由f(﹣1)=0,可得b=a+1,又对任意实数x均有f(x)≥0成立,可得恒成立,可求出a,b的值;解答:解:∵函数f(x)=ax2+bx+1(a、b∈R),f(﹣1)=0,∴a﹣b+1=0即b=a+1,又对任意实数x均有f(x)≥0成立∴恒成立,即(a+1)2﹣4a≤0,可得(a﹣1)2≤0恒成立∴a=1,b=2;a+b=3.故答案为:3.点评:本题考查了函数的恒成立问题及二次函数的性质的应用,难度一般,关键是掌握二次函数的性质.8.函数f(x)=ax2+bx+6满足条件f(﹣1)=f(3),则f(2)的值为6.考点:函数的值;函数解析式的求解及常用方法.专题:计算题.分析:由题意应对a进行分类:a=0时和a≠0时,再由条件分别判断出函数为常函数和二次函数的对称轴,再由函数的性质求值.解答:解:①当a=0时,∵f(﹣1)=f(3),∴函数f(x)是常函数,即a=b=0,∴f(x)=6,则f(2)=6,②当a≠0时,则函数f(x)是二次函数,∵f(﹣1)=f(3),∴f(x)的对称轴是:x=1,∴f(2)=f(0)=6,综上得,f(0)=6故答案为:6.点评:本题考查了利用常函数和二次函数的性质求值,特别再求出对称轴后,不用a和b的值直接由f(2)=f(0)求解,易错点易忘对a进行讨论.9.若函数y=的反函数的图象的对称中心是点(1,3),则实数a的值为3.考点:反函数.专题:函数的性质及应用.分析:由题意可得函数f(x)=的对称中心是(3,1),再由函数的解析式可得对称中心是(a,1 ),比较可得a的值解答:解:由题意可得函数f(x)=的对称中心是(3,1),又函数f(x)==1+的对称中心是(a,1 ),∴a=3,故答案为:3.点评:本题考查函数与反函数的图象间的关系,函数的对称中心,由函数y=得到对称中心为(a,1)是解题的关键,是基础题.10.在同一平面直角坐标系中,函数y=g(x)的图象与y=e x的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=﹣1,则m的值是.考点:反函数.专题:计算题.分析:由函数y=g(x)的图象与y=e x的图象关于直线y=x对称,则y=g(x)的图象与y=e x 互为反函数,易得y=g(x)的解析式,再由函数y=f(x)的图象与y=g(x)的图象关于y轴对称,进而可以得到函数y=f(x)的解析式,由函数y=f(x)的解析式构造方程f(m)=﹣1,解方程即可求也m的值.解答:解:∵函数y=g(x)的图象与y=e x的图象关于直线y=x对称∴函数y=g(x)与y=e x互为反函数则g(x)=lnx,又由y=f(x)的图象与y=g(x)的图象关于y轴对称∴f(x)=ln(﹣x),又∵f(m)=﹣1∴ln(﹣m)=﹣1,故答案为﹣.点评:互为反函数的两个函数图象关于线y=x对称,有f(x)的图象上有(a,b)点,则(b,a)点一定在其反函数的图象上;如果两个函数图象关于X轴对称,有f(x)的图象上有(a,b)点,则(a,﹣b)点一定在函数g(x)的图象上;如果两个函数图象关于Y轴对称,有f(x)的图象上有(a,b)点,则(﹣a,b)点一定在函数g(x)的图象上;如果两个函数图象关于原点对称,有f(x)的图象上有(a,b)点,则(﹣a,﹣b)点一定在函数g(x)的图象上.11.设f(x)是连续的偶函数,且当x>0时,f(x)是单调的函数,则满足的所有的x的和为﹣8.考点:奇偶性与单调性的综合.专题:计算题.分析:f(x)为偶函数⇒f(﹣x)=f(x),x>0时f(x)是单调函数⇒f(x)不是周期函数.所以若f(a)=f(b)⇒a=b或a=﹣b,再结合已知条件可得正确答案.解答:解:∵f(x)为偶函数,且当x>0时f(x)是单调函数∴若时,即或,得x2+3x﹣3=0或x2+5x+3=0,此时x1+x2=﹣3或x3+x4=﹣5.∴满足的所有x之和为﹣3+(﹣5)=﹣8,故答案为﹣8.点评:本题属于函数性质的综合应用,属于中档题.解决此类题型要注意变换自变量与函数值的关系,还要注意分类讨论和数形结合的思想方法的应用.12.定义两种运算:a⊕b=,则函数f(x)=的奇偶性为奇函数.考点:函数奇偶性的判断.专题:函数的性质及应用.分析:利用新定义把f(x)的表达式找出来,在利用函数的定义域把函数化简,根据函数奇偶性的定义进行判断即可.解答:解:由定义知f(x)==,由4﹣x2≥0且|x﹣2|﹣2≠0,得﹣2≤x<0或0<x≤2,即函数f(x)的定义域为{x|﹣2≤x<0或0<x≤2},关于原点对称;此时f(x)===,则f(﹣x)==﹣=﹣f(x),故f(x)是奇函数.故答案为:奇函数点评:本题主要考查函数奇偶性的判断,根据新定义将函数进行化简是解决本题的关键.二、选择题(每题4分,共16分)13.“a=0”是“函数f(x)=x2+ax在区间(0,+∞)上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;函数的单调性及单调区间.分析:函数f(x)=x2+ax在区间(0,+∞)上是增函数,结合二次函数的图象求出a的范围,再利用集合的包含关系判充要条件.解答:解:函数f(x)=x2+ax在区间(0,+∞)上是增函数,0,a≥0,“a=0”⇒“a≥0”,反之不成立.故选A点评:本题考查充要条件的判断,属基本题.14.若函数f(x)在(4,+∞)上为减函数,且对任意的x∈R,有f(4+x)=f(4﹣x),则()A.f(2)>f(3) B.f(2)>f(5)C.f(3)>f(5)D.f(3)>f(6)考点:抽象函数及其应用.分析:因为所给选项为比较函数值的大小,所以要根据已知条件将所给函数值都转化到同一个单调区间上去,因此分析f(4+x)=f(4﹣x)的含义也就成了解答本题的关键.解答:解:∵f(4+x)=f(4﹣x),∴f(x)的图象关于直线x=4对称,∴f(2)=f(6),f(3)=f(5),又∵f(x)在(4,+∞)上为减函数,∴f(5)>f(6),∴f(5)=f(3)>f(2)=f(6).故选D.点评:(1)f(a+x)=f(a﹣x)⇔函数f(x)的图象关于直线x=a对称;(2)f(a+x)=﹣f(a﹣x)⇔函数f(x)的图象关于点(a,0)对称;(3)f(a+x)=f(b﹣x)⇔函数f(x)的图象关于直线x=对称;(4)f(a+x)=﹣f(b﹣x)⇔函数f(x)的图象关于点对称.特别地,当a=b=0时,有f(﹣x)=f(x)及f(﹣x)=﹣f(x),f(x)分别表示偶函数与奇函数.15.已知函数f(x)=()x﹣log2x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)()A.恒为负值B.等于0 C.恒为正值D.不大于0考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析:由于y=()x在x>0上递减,log2x在x>0上递增,则f(x)在x>0上递减,再由条件即可得到答案.解答:解:由于实数x0是方程f(x)=0的解,则f(x0)=0,由于y=()x在x>0上递减,log2x在x>0上递增,则f(x)在x>0上递减,由于0<x1<x0,则f(x1)>f(x0),即有f(x1)>0,故选C.点评:本题考查函数的单调性及运用,考查运算能力,属于基础题.16.若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为y=2x2+1,值域为{3,19}的“孪生函数”共有()A.15个B.12个C.9个D.8个考点:函数的定义域及其求法;函数的值域;函数解析式的求解及常用方法.专题:函数的性质及应用.分析:根据“孪生函数”的定义确定函数定义域的不同即可.解答:解:由y=2x2+1=3,得x2=1,即x=1或x=﹣1,由y=2x2+1=19,得x2=9,即x=3或x=﹣3,即定义域内﹣1和1至少有一个,有3种结果,﹣3和3至少有一个,有3种结果,∴共有3×3=9种,故选:C.点评:本题主要考查函数定义域和值域的求法,利用“孪生函数”的定义是解决本题的关键.三、解答题17.已知log a484=m,log a88=n,试用m、n表示log211.考点:对数的运算性质.专题:函数的性质及应用.分析:把已知利用对数的运算性质变形求解log a2,log a11的值,然后利用对数的换底公式得到log211.解答:解:∵log a484=m,∴,即①,又log a88=n,∴log a8+log a11=n,即3log a2+log a11=n②,联立①②得:,.∴log211===.点评:本题考查对数的运算性质,考查了对数的换底公式,是基础的计算题.18.f(x)=(1)作出函数的大致图象;(2)求不等式f(x)>f(1)的解集.考点:其他不等式的解法;函数的图象.专题:不等式的解法及应用.分析:(1)分类讨论化简函数的解析式,从而画出函数的图象.(2)结合函数f(x)的图象可得f(﹣3)=f(1)=f(3)=0,数形结合可得不等式f(x)>f(1)的解集.解答:解:(1)对于函数f(x)=,当x≥0时,f(x)=(x﹣3)(x﹣1);当x<0时,f(x)=﹣=﹣()=﹣(+)=﹣﹣,故函数f(x)的图象如图所示.(2)结合函数f(x)的图象可得f(﹣3)=f(1)=f(3)=0,数形结合可得不等式f(x)>f(1)的解集为{x|﹣3<x<1,或x>3}.点评:本题主要考查分段函数的应用,分式不等式的解法,体现了转化、数形结合的数学思想,属于中档题.19.如果函数y=x+的最小值为6,求b的值.考点:基本不等式.专题:不等式.分析:先求出函数的导数,得到函数的单调区间,结合x的范围,从而求出函数取最小值时的b的值.解答:解:y′=1﹣=,令y′>0,解得:x>,令y′<0,解得:x<,∴函数在(0,)递减,在(,+∞)递增,∴函数在x=时取得最小值,∴+=6,解得:2b=9,代入函数的不表达式得:x=3,∵x≥4,不合题意,∴x=4时,函数值最小,此时:4+=6,解得:b=3.点评:本题考查了函数的单调性、最值问题,考查不等式取最小值时的条件,是一道中档题.20.通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式:f(x)=(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?考点:函数模型的选择与应用;分段函数的应用.专题:函数的性质及应用.分析:(1)通过分别求出当0<x≤10、10<x≤16、x>16时各自f(x)的最大值即得结论;(2)通过计算f(5)与f(20)的大小即得结论;(3)通过令f(x)=55,计算出0<x≤10、x>16时各自的解并比较两个解的差的绝对值与13的大小关系即可.解答:解:(1)依题意,①当0<x≤10时,f(x)=﹣0.1x2+2.6x+43=﹣0.1(x﹣13)2+59.9,故f(x)在0<x≤10时递增,最大值为f(10)=﹣0.1(10﹣13)2+59.9=59,②当10<x≤16时,f(x)≡59,③当x>16时,f(x)为减函数,且f(x)<59,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间.(2)∵f(5)=﹣0.1(5﹣13)2+59.9=53.5,f(20)=﹣3×20+107=47<53.5,∴开讲5分钟时学生的接受能力比开讲20分钟时要强一些.(3)当0<x≤10时,令f(x)=55,解得x=6或20(舍),当x>16时,令f(x)=55,解得x=17,因此学生达到(含超过)55的接受能力的时间为17﹣6=11<13,∴老师来不及在学生一直达到所需接受能力的状态下讲授完这个难题.点评:本题考查函数模型的性质与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.21.已知函数f(x)=为奇函数,(1)求a的值;(2)求f(x)的反函数f﹣1(x);(3)解关于x的不等式:f﹣1(x)>log2.考点:反函数;函数奇偶性的性质.专题:函数的性质及应用.分析:(1)利用函数的奇偶性,得到f(﹣x)=﹣f(x),解方程即可求a的值;(2)根据反函数的定义即可f(x)的反函数f﹣1(x);(3)根据对数函数的单调性,结合分式不等式的解法进行求解即可.解答:解:(1)∵函数的定义域为{x|x≠0}且f(x)是奇函数,∴f(﹣x)=﹣f(x),即f(﹣x)+f(x)=0,即+=0,则+=0,即﹣a﹣2x+a•2x+1=0,则(1﹣a)(1﹣2x)=0,∵x≠0,∴1﹣a=0.即a=1.此时f(x)=.(2)由y=得(2x﹣1)y=2x+1.即y•2x﹣y=1+2x,即(y﹣1)•2x=1+y,当y=1时,方程等价为0=1,不成立,∴y≠1,则2x=,由2x=>0得y>1或y<﹣1,即函数f(x)的值域为(﹣∞,﹣1)∪(1,+∞),由2x=,得x=log2,即f(x)的反函数f﹣1(x)=log2,x∈(﹣∞,﹣1)∪(1,+∞);(3)∵f﹣1(x)>log2.∴log2>log2.①若k>0,则x+1>0,即x>﹣1,∵x∈(﹣∞,﹣1)∪(1,+∞);∴此时x>1,此时不等式等价为>,即,则0<x﹣1<k,即1<x<k+1,②若k<0,则x+1<0,即x<﹣1,∵x∈(﹣∞,﹣1)∪(1,+∞);∴此时x<﹣1,此时不等式等价为>,即<,则x﹣1>k,即﹣1>x>k+1,综上若k>0,不等式的解集为(1,1+k),若k<0,不等式的解集为(1+k,﹣1).点评:本题主要考查函数奇偶性的应用以及函数反函数的求解,对数不等式的求解,综合性较强,运算量较大,有一定的难度.22.已知函数,其中x>0.(1)当0<a<b且f(a)=f(b),求ab的取值范围;(2)是否存在实数a、b(a<b),使得函数y=f(x)的定义域和值域都是,若存在,求出a、b的值,若不存在,说明理由;(3)若存在a、b(a<b),使得y=f(x)的定义域为,值域为(m≠0),求m的取值范围.考点:函数的值域;函数的定义域及其求法.专题:分类讨论;函数的性质及应用.分析:(1)讨论a,b的范围,确定a∈(0,1),b∈,由此出发探究a,b的可能取值,可分三类:a,b∈(0,1)时,a,b∈(1,+∞)时,a∈(0,1),b∈(1,+∞),分别建立方程,寻求a,b的可能取值,若能求出这样的实数,则说明存在,否则说明不存在;(3)由题意,由函数y=f (x)的定义域为,值域为(m≠0)可判断出m>0及a>0,结合(1)的结论知只能a,b∈(1,+∞),由函数在此区间内是增函数,建立方程,即可得到实数m所满足的不等式,解出实数m的取值范围.解答:解:(1)f(x)=,若a,b∈(0,1),f(x)递减,f(a)>f(b)不成立;若a,b∈,而y≥0,x≠0,所以应有a>0,又f(x)=,①当a,b∈(0,1)时,f(x)在(0,1)上为减函数,故有,即,由此可得a=b,此时实数a,b的值不存在.②当a,b∈(1,+∞)时,f(x)在∈(1,+∞)上为增函数,故有,即,由此可得a,b是方程x2﹣x+1=0的根,但方程无实根,所以此时实数a,b也不存在.③当a∈(0,1),b∈(1,+∞)时,显然1∈,而f(1)=0∈不可能,此时a,b也不存在.综上可知,符合条件的实数a,b不存在;(3)若存在实数a,b使函数y=f(x)的定义域为,值域为(m≠0).由mb>ma,b>a得m>0,而ma>0,所以a>0,由(,1)知a,b∈(0,1)或a∈(0,1),b∈(1,+∞)时,适合条件的实数a,b不存在,故只能是a,b∈(1,+∞),∵f(x)=1﹣在∈(1,+∞)上为增函数∴,即,∴a,b是方程mx2﹣x+1=0的两个不等实根,且二实根均大于1,∴,解之得0<m<,故实数m的取值范围是(0,).点评:本题的考点是函数与方程的综合应用,考查了绝对值函数,函数的定义域、值域,构造方程的思想,二次方程根与系数的关系等,解题的关键是理解题意,将问题正确转化,进行分类讨论探究,属于难题和易错题.。

高中2015年自主招生数学考试含答案

高中2015年自主招生数学考试含答案

⾼中2015年⾃主招⽣数学考试含答案2015年⾃主招⽣考试⼀、选择题(每⼩题6分,共30分。

每⼩题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有⼀个选项是正确的。

请将正确选项的代号填⼊题后的括号⾥,不填、多填或错填均得0分)1、下列图中阴影部分⾯积与算式2131242-??-++的结果相同的是………………【】2、下列命题中正确的个数有……………………………………………………………【】①实数不是有理数就是⽆理数;② a <a +a ;③121的平⽅根是 ±11;④在实数范围内,⾮负数⼀定是正数;⑤两个⽆理数之和⼀定是⽆理数A. 1 个B. 2 个C. 3 个D. 4 3、某家庭三⼝⼈准备在“五⼀”期间参加旅⾏团外出旅游。

甲旅⾏社告知:⽗母买全票,⼥⼉按半价优惠;⼄旅⾏社告知:家庭旅⾏可按团体票计价,即每⼈均按⼋折收费。

若这两家旅⾏社每⼈的原标价相同,那么……………………………………………………………………【】 A 、甲⽐⼄更优惠 B 、⼄⽐甲更优惠 C 、甲与⼄相同 D 、与原标价有关4、如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆⼼O 移动的⽔平距离为【】A 、2πB 、πC 、32D 、45、平⾯内的9条直线任两条都相交,交点数最多有m 个,最少有n 个,则m n + 等于……………………………………………………………………………【】 A 、36 B 、37 C 、38 D 、39 ⼆、填空题(每⼩题6分,共48分)1、甲、⼄两⼈骑⾃⾏车,同时从相距65千⽶的两地相向⽽⾏,甲、⼄两⼈的速度和为32.5千⽶/时,则经过⼩时,两⼈相遇。

2、若化简16812+---x x x 的结果为52-x ,则x 的取值范围是。

3、某校把学⽣的笔试、实践能⼒和成长记录三项成绩分别按50%、20%和30%的⽐例计⼊学期总评成绩,90分以上为优秀。

复旦大学自主招生试题

复旦大学自主招生试题

复旦大学自主招生试题(正文)复旦大学自主招生试题自主招生,作为一种独特的选拔方式,给予了高中生更多展示自己的机会,而复旦大学作为一所顶尖的综合性大学,其自主招生试题更是备受考生关注。

本文将通过介绍复旦大学自主招生试题的一些例子,分析其考查内容和要求。

一、数学试题1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求函数f(x)在区间[-2, 3]上的最小值和最大值。

分析:首先,我们需要先求出函数f(x)的导函数f'(x),然后再通过导函数的零点来找出函数f(x)的极值点。

根据极值的定义,我们可以通过求解f'(x) = 0来得到。

2. 某商店商品价格打9折,然后再减去10元,最后的价格是原价的40%。

求该商品的原价。

分析:假设原价为x元,那么根据题意,我们可以得到以下等式:0.9x - 10 = 0.4x。

通过解这个方程,我们可以求出该商品的原价x。

二、英语试题1. 阅读下面短文,并根据短文内容完成后面的题目。

Most people know that exercise is good for their health. Regular physical activity can prevent a multitude of diseases and improve one’s overall well-being. However, it is essential to find an exercise routine that suits your lifestyle and preferences. In this regard, yoga is a great option for many.Yoga combines physical poses, breathing exercises, and meditation to promote a healthy mind and body. The slow and controlled movements help build flexibility, strength, and balance. Additionally, the focus on deep breathing and mindfulness promotes relaxation and stress reduction.Furthermore, yoga can be practiced by people of all ages and fitness levels. From beginner classes to advanced poses, there are variations suitable for everyone. It is a versatile practice that can be adapted to individual needs and goals.Based on the information provided in the passage, answer the following questions:a. What are the benefits of regular exercise?b. What aspects does yoga combine?c. Why is yoga suitable for people of all ages and fitness levels?三、文学试题阅读下面的《Active Learning》一文,根据文章内容回答问题。

2015年高三数学高校自主招生考试 真题分类解析2 复数、平面向量

2015年高三数学高校自主招生考试 真题分类解析2 复数、平面向量

2015年高三数学高校自主招生考试真题分类解析2 复数、平面向量一、选择题。

1.(2009年复旦大学)设实数r>1,如果复平面上的动点z满足|z|=r,则动点w=z+的轨迹是A.焦距为4的椭圆B.焦距为的椭圆C.焦距为2的椭圆D.焦距为的椭圆2.(2009年复旦大学)复平面上点=1+2i关于直线l:|z−2−2i|=|z|的对称点的复数表示是A.−i B.1−i C.1+i D.i3.(2010年复旦大学)在xOy坐标平面上给出定点A(1,2),B(2,3),C(2,1),矩阵将向量, ,分别变换成向量,,,如果它们的终点A',B',C'的连线构成直角三角形,斜边为B'C',则k的取值为A.±2B.2C.0D.0,−24.(2010年复旦大学)设复数z=cos+isin,w=sin+icos满足z,则sin(β−α)= A.± B.,C.±D.,5.(2010年复旦大学)已知复数=1+,z2=+,则复数z1z2的辐角是A. B. C. D.6.(2010年复旦大学)在直角坐标系xOy中,已知点(1,0),(, ),(, ),(−1,0),(, )和(,),问在向量(i,j=1,2,3,4,5,6,i≠j)中,不同向量的个数是A.9B.15C.18D.307.(2011年复旦大学)给定平面向量(1,1),那么,平面向量(, )是将向量(1,1)经过A.顺时针旋转60°所得B.顺时针旋转120°所得C.逆时针旋转60°所得D.逆时针旋转120°所得8.(2011年复旦大学)设有复数=, =+isin ,令ω=,则复数ω+ω2+ω3+…+ω2 011=B. C. D.A.ω9.(2011年复旦大学)将复数z=(sin 75°+isin 15°)3 (其中i=))所对应的向量按顺时针方向旋转15°,则所得向量对应的复数是A.+ iB.+ iC. D.10.(2012年复旦大学)设S是Oxy平面上的一个正n边形,中心在原点O处,顶点依次为,,…,,有一个顶点在正y轴上.又设变换σ是将S绕原点O旋转一个角度使得旋转后的图形与原图形重合,σ−1表示σ的反变换(即旋转角度大小和σ相同但方向相反),变换τ是将S作关于y轴的对称变换(即将(x,y)变为(−x,y)),στ表示先作变换τ再作变换σ,而τσ,τστ,στστ等的含义类推,则有A.τστ=σB.τστ=σ−1C.τσ=στD.τστσ=σσ11.(2011年同济大学等九校联考)i为虚数单位,设复数z满足|z|=1,则||的最大值为A.−1B.2−C.+1D.2+12.(2011年同济大学等九校联考)向量a,b均为非零向量,(a−2b)⊥a,(b−2a)⊥b,则a,b的夹角为A. B. C. D.13.(2010年清华大学等五校联考)设向量a,b满足==1,a•b=m,则(t∈R)的最小值为A.2B.C.1D.14.(2010年清华大学等五校联考)设复数w=()2,其中a为实数,若w的实部为2,则w的虚部为A. B. C. D.15.(2011年清华大学等七校联考)设复数z满足<1且= ,则|z|=A. B. C. D.16.(2012年清华大学等七校联考)向量a≠e,=1,若∀t∈R,≥,则A.a⊥eB.a⊥(a+e)C.e⊥(a+e)D.(a+e)⊥(a−e)17.(2012年清华大学等七校联考)若复数的实部为0,Z是复平面上对应的点,则点Z(x,y)的轨迹是A.一条直线B.一条线段C.一个圆D.一段圆弧二、填空题。

2015年《高校自主招生考试》数学真题分类解析之4、创新与综合题

2015年《高校自主招生考试》数学真题分类解析之4、创新与综合题

专题之4、创新与综合题一、选择题。

1、(2011年复旦大学)设正整数n可以等于4个不同的正整数的倒数之和,则这样的n的个数是A.1B.2C.3D.42、(2011年同济大学等九校联考)设σ是坐标平面按顺时针方向绕原点做角度为的旋转,τ表示坐标平面关于y轴的镜面反射,用τσ表示变换的复合,先做τ,再做σ,用σk表示连续做k 次σ的变换,则στσ2τσ3τσ4是A.σ4B.σ5C.σ2τD.τσ2二、解答题。

3、(2009年南京大学)求所有满足tan A+tan B+ta n C≤[tan A]+[tan B]+[tan C]的非直角三角形.4、(2010年浙江大学)如图,一条公路两边有六个村庄,要建一个车站,要求到六个村庄的距离之和最小,应该建在哪里最合适?如果再在边上增加一个村庄呢?5、(2009年清华大学)A、B两人玩一个游戏,A选择n枚硬币,B根据自己的策略将这些硬币全部摆放在位点上,之后A选取一个至少有2枚硬币的位点,取走一枚硬币,再将另一枚硬币移动到相邻位点,A若在有限步内根据规则在指定点P处放上一个硬币则获胜.问在一条有5个位点的线段和7个位点的圆环上,A分别至少选择多少枚硬币时,无论点P的位置如何均可保证获胜?6、(2009年清华大学)有64匹马,每匹马的速度保持不变且各不相同,现通过比赛来完成排名,若每场比赛最多只能有8匹马参赛,问理想状态下能否在50场比赛内完成排名?7、(2009年清华大学)有100个集装箱,每个集装箱装有两件货物.在取出来的过程中货物的顺序被打乱了,现在按一定的规则将货物依次放入集装箱中.集装箱的体积都是1,且每个集装箱最多放两件货物,若装了一件货物后装不下第二件货物,那么就将这个集装箱密封,把第二件货物装到下一个集装箱中.问在最坏情况下需要多少个集装箱?8、(2009年清华大学)请写出一个整系数多项式f(x),使得+是其一根.9、(2010年清华大学)将长为n的棒锯开,要求锯成的每段长都是整数,且任意时刻,锯成的所有棒中最长的一根严格小于最短的一根的2倍,如6只能锯一次,6=3+3,而7能锯2次,7=4+3,4又能锯为2+2,问长为30的棒最多能锯成几段?若a,b,c中没有1,则a≥2,b≥2,c≥2,a+b+c=abc化为++=1,而1=++≤++=,显然不成立.∴三角形三内角的正切值分别为1,2,3.即满足三内角的正切值分别为1,2,3的三角形,即为所求.【解析】无4.1.首先设六个村庄到达公路的距离之和为S0,车站P到六个村庄的距离之和为S,下面我们根据车站所建的位置来讨论它到六个村庄的距离之和.(1)建在A、B之间(包括端点A),则S=AP+2PB+PC+PD+PE+S0=AE+BC+BD+S0+4PB.(2)建在B、C之间(包括两端点B、C),则S=PA+2PB+PC+PD+PE+S0=AE+BC+BD+S0.(3)建在C、D之间(包括端点D),则S=PA+2PB+PC+PD+PE+S0=AE+BC+BD+S0+2PC.(4)建在D、E之间(包括端点E),则S=PA+2PB+PC+PD+PE+S0=AE+BC+BD+S0+2PC+2PD.(5)建在A的左侧或E的右侧,则S均比情况(2)中的大.综合以上各种情况,我们可以发现:当车站建在B、C之间(包括端点B、C)时最合适.币.于是由结论①可知A可获胜.③对于4个位点线段的情况,A只要选择8枚硬币,不妨设点P为P1,P2,P3三点中的一点,并设点P 4处有硬币S枚,则点P4处的硬币尽可能移到点P3处后,点P1,P2与P3处共有:8−S+[]≥4②左半环内有7枚硬币.a.若这7枚硬币全在点P7处,则看右半环内的4枚硬币,若点P1处有2枚,则将其移动到点P7处后,点P7处就有8枚硬币,就能保证通过左半环的通路移动硬币,最终让点P处有硬币;若点P1处仅有1枚或没有硬币,则可将点P7处的硬币移动3枚到点P1处,再将点P1处的硬币移动到点P2处后,点P2与点P3处的硬币就不少于4枚.这样,通过右半环的通路,最终可将至少1枚硬币移动到点P4处.b.若这7枚硬币不全在点P7处,则将点P7处的硬币移到点P6处后,在点P5与点P6两处的硬币就不少于4枚.于是通过左半环的通路,最终也可保证有硬币移动到点P4处.③左半环有6枚硬币,则右半环就有5枚硬币.a.左半环内的6枚硬币全在点P7处,将它们移动到点P1处后,右半环内就有了8枚硬币,则通过右半环的通路,可最终保证至少移动1枚硬币到点P4处.b.左半环内的6枚硬币,点P7处有5枚,则再看点P1处,若点P1处的硬币数不足2枚,则在点P2与点P3处就有4枚硬币,则从右半环的通路,就能移动硬币到点P4;若点P1处的硬币数有2枚或2枚以上,则至少可从点P1处移动1枚硬币到点P7处.这样,点P7处就有6枚硬币,于是可移3枚到点P6处.这样点P5与点P6处就有4枚硬币,通过左半环可移动硬币到点P4处.c.左半环内的6枚硬币,点P7处有4枚或不足4枚,则在点P6与点P5处就有2枚或2枚以上,则将点P7处的硬币移动到点P6处以后,在点P6与点P5处的硬币数就不少于4枚,于是通过左半环可移动硬币到点P4处.④若左半环内的硬币数不足6枚,则右半环内的硬币就在6枚或6枚以上,则对右半环内硬币的分布情况进行相同的讨论,亦可发现必可将硬币移动到点P4处.各自的前4名,共8匹马进行一场比赛.这8匹马中的前4名,就是A组与B组32匹马中的前4名;接下来,又在A组与B组中分别扣除32匹马中的前4名后,再分别按照A组与B组中的排名,再各取4匹马,这8匹马进行一场比赛,它们中的前4名,就是A组与B组32匹马中的第5名到第8名;重复上述过程,又可分别确定第9名到第12名;……;最后留下的8匹马,只需进行一场比赛,就能确定第25名到第32名的排名.这样进行了7场比赛,就将A组与B组中的32匹马进行了排名.同理进行7场比赛,又可将C组与D组中的32匹马进行排名.这样第三步共进行14场比赛.第四步:要来完成AB组的32匹马与CD组的32匹马(它们各自内部的排名已经完成)共计64匹马的排名.采用第三步中的方法,每次分别选择AB组与CD组中留下的前4名进行一场比赛,都能确定其中4匹马在总体中的排名,这样14场比赛后,就确定了前56匹马的排名,最后留下的8匹马,只需进行一场比赛,就确定了第57名到第64名的排名.因此,只需15场比赛就能完成这两大组64匹马的排名.综观以上四个步骤,一共进行:8+12+14+15=49(场).所以,可以在50场比赛内完成排名.【解析】无7.由题意知共有200件货物.设a1≤a2≤…≤a99≤a100,b1≥b2≥…≥b99≥b100,令a i+b i=1,a i≥b i,则将它们按如下顺序排列:a1,a2,b1,a3,b2,a4,b3,…,a99,b98,a100,b99,b100,则a 1+a2>1,a2+b1>1,b1+a3>1,…,a100+b99>1,+<1,a1到a100,b1到b98各在一个箱中,b99,b100在一个箱子中,则在最坏情况下需要199个箱子.换个角度考虑,无论200件货物如何排列,体积最小的货物总能与它前面的或后面的货物合装进一个集装箱的,故有199个集装箱就一定能将200件货物全部装下.【解析】无8.设x=+,则(x)3=3,即x3−3x2·+3x·2−2=3,∴x3+6x−3=(3x2+2)·,∴(x3+6x−3)2=2·(3x2+2)2,整理得:x6−6x4−6x3+12x2−36x+1=0,则f(x)=x6−6x4−6x3+12x2−36x+1即为所求的一个整系数多项式.【解析】无9.首先,由题意可知:当我们锯了若干次之后,产生若干根棒,它们中有长度相等与仅差一个单位的棒(例如:7,8,9;6,6,7;5,5,6,6等),这些棒除了2k−2,2k−1,2k与2k−1,2k−1,2k这两种情况,其他无论锯开哪一根,均不能符合最长的一根严格小于最短一根的2倍,有了这样的认识,我们就可以用枚举法来解本题了.(1)30=11+19=11+7+12=11+7+6+6=5+6+7+6+6,。

2015-2016学年上海市复旦大学附属中学高一上学期期末考数学试卷含详解

2015-2016学年上海市复旦大学附属中学高一上学期期末考数学试卷含详解

复旦大学附属中学2015-2016学所第一学期高一年级数学期末考试试卷(满分:120分考试时间:100分钟所有答案都写在答题纸相应位置上)一、填空题(每题4分,共48分)1.函数()()lg 12+=-x f x x 的定义域为__________.2.设函数()2211222x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =__________.3.已知幂函数()f x x α=是偶函数,在[)0,+∞上递增的,且满足1122⎛⎫> ⎪⎝⎭f .请写出一个满足条件的α的值,α=__________.4.函数()()01=>+xf x x x 的反函数为()1f x -=__________5.设函数()()20.5log 23f x x x =--,则()f x 的单调递增区间为_________.6.函数13xy ⎛⎫= ⎪⎝⎭的图象与函数3log y x =-的图象关于直线__________对称.7.已知5log 3a =,57=b ,则用a ,b 的代数式表示63log 105=__________.8.方程:()()2122log 26log 21+-=++x x x 的解为__________.9.若函数()()23log =+-f x x ax a 的值域是R ,则实数a 的取值范围是__________10.若函数()232622xx ax x f x x ⎧-+<=⎨-+≥⎩的值域为[)2,-+∞,则实数a 的取值范围为__________.11.已知函数()10lg 0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围为__________.12.已知函数(1)()3ln f x x =;(2)()231f x x =+;(3)()3xf x e =;(4)()3=f x x.其中满足对于任意1x D ∈(其中D 为函数的定义域),相应地存在唯一的2x D ∈3=的函数的序号为____________________.二、选择题(每题4分,共16分)13.下列函数中,既是偶函数,又是在区间()0,∞+上单调递减的是()A.1y x=B.2xy = C.1lny x= D.3y x =14.若1,1a b ><-则函数xy a b =+的图象必不经过()A.第一象限B.第二象限C.第三象限D.第四象限15.若a ,b ,c 均大于1,且log log 4a b c c ⋅=,则下列各式中,一定正确的是()A.ac b≥ B.ab c≥ C.≥bc aD.ab c≤16.定义在实数集R 上函数()y f x =的反函数为()1y f x -=.若函数()y f x =-的反函数是()1y f x -=-,则()y f x =-是()A.是奇函数,不是偶函数B.是偶函数,不是奇函数C.既是奇函数数,又是偶函数D.既不是奇函数,也不是偶函数三、解答题17.已知函数()lg(1)f x x =+,解不等式0(12)()1f x f x <--<.18.已知实数0a >,且函数()22x xaf x a -=+为奇函数.判断函数()f x 的单调性,并用单调性的定义证明.19.已知函数()2020xx a x f x x ⎧+≥=⎨<⎩,其中a R ∈.(1)若0a =,解不等式()14f x ≥;(2)已知函数()y f x =存在反函数,其反函数记为()1y f x -=.若关于x 的不等式:()()14--≤f a f x 在[)0,x ∈+∞上恒成立,求实数a 的取值范围.20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值()0f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数:()121f x x =-,()221xf x =-的定义域为()0,1D =,试判断其中哪些在D 上封闭,并说明理由.(2)若函数()52x ag x x -=+的定义域为()1,2,是否存在实数a ,使得()g x 在其定义域()1,2上封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且()()0ff x x=,求证:()00f x x =.21.设定义在R 上的函数()f x 、()1f x 和()2f x ,满足()()()12f x f x f x =+,且对任意实数1x 、2x (12x x ≠),恒有()()()()11122122->-f x f x f x f x 成立.(1)试写出一组满足条件的具体的()1f x 和()2f x ,使()1f x 为增函数,()2f x 为减函数,但()f x 为增函数.(2)判断下列两个命题的真假,并说明理由.命题1):若()1f x 为增函数,则()f x 为增函数;命题2):若()2f x 为增函数,则()f x 为增函数.(3)已知()321=+++f x x x x ,写出一组满足条件的具体的()1f x 和()2f x ,且()2f x 为非常值函数,并说明理由.复旦大学附属中学2015-2016学所第一学期高一年级数学期末考试试卷(满分:120分考试时间:100分钟所有答案都写在答题纸相应位置上)一、填空题(每题4分,共48分)1.函数()()lg 12+=-x f x x 的定义域为__________.【答案】(1,2)(2,)-+∞ 【分析】结合分式和对数式对变量的限制条件可求.【详解】由题意可得2010x x -≠⎧⎨+>⎩,解得1x >-且2x ≠,故答案为:(1,2)(2,)-+∞ .【点睛】本题主要考查函数定义域的求解,明确分式、根式、对数式等对自变量的限制条件是求解的关键,侧重考查数学抽象的核心素养.2.设函数()2211222x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =__________.【分析】分段讨论进行求解.【详解】当1x ≤-时,由()3f x =可得1x =(舍);当12x -<<时,由()3f x =可得x =或x =;当2x ≥时,由()3f x =可得32x =(舍);综上可得x =【点睛】本题主要考查分段函数,分段函数求值问题一般是分段讨论解决,侧重考查数学运算的核心素养.3.已知幂函数()f x x α=是偶函数,在[)0,+∞上递增的,且满足1122⎛⎫> ⎪⎝⎭f .请写出一个满足条件的α的值,α=__________.【答案】23【分析】结合偶函数和单调性及1122⎛⎫> ⎪⎝⎭f 可得,答案不是唯一的.【详解】因为1122⎛⎫> ⎪⎝⎭f ,所以1α<;因为()f x 在[)0,+∞上递增的,所以0α>;因为幂函数()f x x α=是偶函数,所以α的值可以为23.故答案为:23.【点睛】本题主要考查幂函数的性质,幂函数的单调性和奇偶性取决于α,侧重考查数学抽象的核心素养.4.函数()()01=>+xf x x x 的反函数为()1f x -=__________【答案】,(0,1)1xx x∈-【分析】反解x ,然后可得反函数.【详解】因为()()01=>+xf x x x ,所以11(0,1)11x y x x ==-∈++.由1xy x =+得1y x y=-,所以()1,(0,1)1xf x x x-=∈-.故答案为:,(0,1)1xx x∈-.【点睛】本题主要考查反函数的求法,求解反函数的关键是反解x ,注意定义域的变化,侧重考查数学抽象的核心素养.5.设函数()()20.5log 23f x x x =--,则()f x 的单调递增区间为_________.【答案】(),1-∞-【分析】将函数视为复合函数,根据“同增异减”的判断原则,进行求解;注意定义域的取舍.【详解】记()223u x x x =--,因为0.5log y u =为减函数,所以当()y f x =单调递增时,()y u x =单调递减,由()2230u x x x =-->得3x >或–1x <,又当1x <-时,()y u x =单调递减.故–1x <.故答案为:()–,1∞-.6.函数13xy ⎛⎫= ⎪⎝⎭的图象与函数3log y x =-的图象关于直线__________对称.【答案】y x=【分析】利用反函数图象的性质可求.【详解】因为313log log y x x =-=,所以13xy ⎛⎫= ⎪⎝⎭与3log y x =-互为反函数,所以函数13xy ⎛⎫= ⎪⎝⎭的图象与函数3log y x =-的图象关于直线y x =对称.故答案为:y x =.【点睛】本题主要考查反函数的特征性质,互为反函数的两个函数图象关于直线y x =对称,侧重考查数学抽象的核心素养.7.已知5log 3a =,57=b ,则用a ,b 的代数式表示63log 105=__________.【答案】12a b b a+++【分析】先对63log 105进行转化,然后可求.【详解】因为57=b ,所以5log 7b =,55563555log 105log 5log 211log 105log 63log 7log 92a bb a +++===++.故答案为:12a bb a+++.【点睛】本题主要考查对数的运算,熟悉对数的运算公式是求解的关键,侧重考查数学运算的核心素养.8.方程:()()2122log 26log 21+-=++x x x 的解为__________.【答案】2log 3【分析】移项化简,然后求解指数方程可得.【详解】原方程等价于()()2122log 26log 21x x x +--+=,()()212122226log 26log 21log 21x x xx x ++---+==+,即有2126221x x x +-=+,整理得()22260x x --=,解得23x =,即2log 3x =.故答案为:2log 3.【点睛】本题主要考查对数方程的求解,明确对数的运算规则是求解的关键,侧重考查数学运算的核心素养.9.若函数()()23log =+-f x x ax a 的值域是R ,则实数a 的取值范围是__________【答案】(,4][0,)-∞-+∞ 【分析】根据函数()()23log =+-f x x ax a 的值域是R 可得2t x ax a =+-能取到所有正数,结合图象位置可求a 的取值范围.【详解】设2t x ax a =+-,因为函数()()23log =+-f x x ax a 的值域是R ,所以240a a ∆=+≥,解得0a ≥或4a ≤-.故答案为:(,4][0,)-∞-+∞ .【点睛】本题主要考查对数型函数的性质,复杂函数的值域问题一般利用换元法进行转化,侧重考查数学抽象的核心素养.10.若函数()232622xx ax x f x x ⎧-+<=⎨-+≥⎩的值域为[)2,-+∞,则实数a 的取值范围为__________.【答案】9[]2-【分析】先求2x ≥时的值域,结合函数的值域确定实数a 的取值范围.【详解】当2x ≥时,()262x f x =-≥-;因为()f x 的值域为[)2,-+∞,所以当2x <时,()2f x ≥-,当22a>时,4232a -+≥-,解得942a <≤;当22a ≤时,223242a a -+≥-,解得4a -≤≤;综上可得92a -≤≤;故答案为:9[2-.【点睛】本题主要考查分段函数的值域问题,分段函数的值域应该分段进行考虑,侧重考查数学运算的核心素养.11.已知函数()10lg 0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围为__________.【答案】81(0,10【分析】作出图象,结合图象的对称性可求.【详解】作出函数的图象,如图,不妨设1234x x x x <<<,由图可得122x x +=-,341x x =,4110x <≤;所以12344412x x x x x x +++=+-,易知函数1y x x =+在区间(1,10]上为增函数,所以101(2,10y ∈,则有123481(0,]10x x x x +++∈.故答案为:81(0,10.【点睛】本题主要考查函数的图象应用,发现函数图象中的对称关系是求解的关键,侧重考查直观想象的核心素养.12.已知函数(1)()3ln f x x =;(2)()231f x x =+;(3)()3xf x e =;(4)()3=f x x.其中满足对于任意1x D ∈(其中D 为函数的定义域),相应地存在唯一的2x D ∈3=的函数的序号为____________________.【答案】(3)(4)【分析】根据条件进行逐个验证,求解每个函数的值域可得.【详解】(1)中函数的定义域为()0,∞+,当11x =时,1ln 0x =3=;(2)中函数的定义域为R ,任意1x R ∈,都有1()1f x ≥,此时19(0,9]()f x ∈,不满足存在唯一的2x R∈,使3=;(3)中函数的定义域为R ,任意1x R ∈,都有1()0>f x ,此时()190,()f x ∈+∞,因为()3x f x e =为增函数,所以存在唯一的2x R ∈3=;(4)中函数的定义域为(,0)(0,)-∞+∞ ,任意1(,0)(0,)x ∈-∞+∞ ,都有()1(,0)(0,)f x ∈-∞+∞ ,当1(,0)x -∞∈时,()19,0()f x ∈-∞,因为()3=f x x 在(),0-∞为减函数,所以存在唯一的2(,0)x ∈-∞,使3=;同理,当1(0,)x ∈+∞时,也存在唯一的2(0,)x ∈+∞,使3=;故答案为:(3)(4).【点睛】本题主要考查函数性质的应用,准确理解题目中的新定义是求解的关键,侧重考查数学运算的核心素养.二、选择题(每题4分,共16分)13.下列函数中,既是偶函数,又是在区间()0,∞+上单调递减的是()A.1y x=B.2xy = C.1lny x= D.3y x =【答案】C【分析】结合选项和函数单调性奇偶性进行判断.【详解】选项A,D 均为奇函数,不合题意;当0x >时,22x xy ==为增函数,不合题意;当0x >时,11ln ln ln y x x x===-,易知为减函数.故选:C.【点睛】本题主要考查函数的性质,结合基本函数解析式的特征可求性质,侧重考查数学抽象的核心素养.14.若1,1a b ><-则函数xy a b =+的图象必不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【详解】试卷分析:令2,2a b ==-,则22x y =-的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.15.若a ,b ,c 均大于1,且log log 4a b c c ⋅=,则下列各式中,一定正确的是()A.ac b ≥B.ab c≥ C.≥bc aD.ab c≤【答案】B【分析】利用对数的运算公式及不等式求解.【详解】因为log log 4a b c c ⋅=,所以11log log 4a b c c =⋅,即1log log 4c c a b ⋅=;因为a ,b ,c 均大于1,所以log 0,log 0c c a b >>,所以()22log log log log log ()24c c c c c ab a b a b +⋅≤=,即log 1c ab ≥或log 1c ab ≤-(舍).由log 1c ab ≥可得ab c ≥.故选:B.【点睛】本题主要考查对数的运算公式及基本不等式,条件的等价转化是求解的关键,侧重考查逻辑推理的核心素养.16.定义在实数集R 上函数()y f x =的反函数为()1y fx -=.若函数()y f x =-的反函数是()1y f x -=-,则()y f x =-是()A.是奇函数,不是偶函数B.是偶函数,不是奇函数C.既是奇函数数,又是偶函数D.既不是奇函数,也不是偶函数【答案】A【分析】利用反函数求解原函数,结合奇偶性定义进行判定.【详解】因为函数()y f x =-的反函数是()1y f x -=-,所以()x f y -=,即()y f x =-,所以()()f x f x -=-,即()y f x =-是奇函数.因为()y f x =-存在反函数,所以一定不是偶函数.故选:A.【点睛】本题主要考查反函数的求解及性质,明确反函数的求解方法是解题的关键,侧重考查数学抽象的核心素养.三、解答题17.已知函数()lg(1)f x x =+,解不等式0(12)()1f x f x <--<.【答案】21,33⎛⎫-⎪⎝⎭【分析】利用对数运算法则可得()()220lg 22lg 1lg 11xx x x -<--+=<+,结合对数函数的单调性可得结果.【详解】解:不等式()()0121f x f x <--<,即()()220lg 22lg 1lg11xx x x -<--+=<+.由22010x x ->⎧⎨+>⎩,解得11x -<<.由220lg11x x -<<+,得221101xx -<<+.因为10x +>,所以1221010x x x +<-<+,解得2133x -<<.由112133x x -<<⎧⎪⎨-<<⎪⎩,得2133x -<<.故不等式的解集为21,33⎛⎫- ⎪⎝⎭.【点睛】本题考查了对数型不等式的解法,注意对数函数的单调性以及真数的范围是解题的关键.18.已知实数0a >,且函数()22x xaf x a-=+为奇函数.判断函数()f x 的单调性,并用单调性的定义证明.【答案】增函数;证明见解析.【分析】利用奇偶性先求解实数a ,然后判断单调性,证明单调性.【详解】因为实数0a >,所以()22x x af x a-=+的定义域为R .又函数()22x x af x a -=+为奇函数,所以()1001a f a -==+,即1a =,经检验知符合题意;()21212121x x xf x -==-++,函数()f x 为增函数;证明如下:任取12,x x R ∈,设12x x <,()()121222112121x x f x f x -=--+++()()()()()()()121221121222122122222212121212121x x x x x x x x x x +-+-=-==++++++,因为2x y =为增函数,所以1222x x <,即有()()12f x f x <,所以函数()f x 为增函数.【点睛】本题主要考查利用单调性的定义判定函数的单调性,注意定义法证明的步骤,侧重考查逻辑推理的核心素养.19.已知函数()2020xx a x f x x ⎧+≥=⎨<⎩,其中a R ∈.(1)若0a =,解不等式()14f x ≥;(2)已知函数()y f x =存在反函数,其反函数记为()1y f x -=.若关于x 的不等式:()()14--≤f a f x 在[)0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)1[2,0)[,)2-+∞ ;(2)()1,23,4⎤⋃⎦.【分析】(1)把0a =代入,分段讨论求解即可;(2)根据函数存在反函数可得实数a 的范围,再结合()()14--≤f a f x 可求.【详解】(1)若0a =,当0x ≥时,由214x ≥可得12x ≥;当0x <时,由124x≥可得20x -≤<;综上可知不等式()14f x ≥的解集为1[2,0)[,)2-+∞ .(2)因为函数()y f x =存在反函数,则()y f x =必为单调函数,所以1a ≥;由解析式的特征可知,()y f x =为增函数,所以0x ≥时,()(0)f x f a ≥=;121()log ,01x f x x x -≥=<<⎪⎩在(0,)+∞也为增函数,()()14--≤f a f x 在[)0,x ∈+∞上恒成立,所以140(4)a f a a -->⎧⎨-≤⎩,当041a <-<时,即34a <<,2log (4)a a -≤恒成立;当41a -≥时,即13a ≤≤a ≤12a ≤≤综上可得实数a的取值范围是()1,23,4⎤⋃⎦.【点睛】本题主要考查分段函数的性质,分段函数问题主要是分段处理,侧重考查数学抽象的核心素养.20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值()0f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数:()121f x x =-,()221xf x =-的定义域为()0,1D =,试判断其中哪些在D 上封闭,并说明理由.(2)若函数()52x ag x x -=+的定义域为()1,2,是否存在实数a ,使得()g x 在其定义域()1,2上封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且()()0ff x x=,求证:()00f x x =.【答案】(1)()2f x 在D 上封闭,理由见解析;(2)存在,2a =,证明见解析;(3)证明见解析【分析】(1)根据定义域,求得函数的值域,利用新定义,即可得到结论;(2)根据函数封闭定义转化为不等式恒成立问题,再利用变量分离法求解,可求a 的值.(3)函数f (x )在其定义域D 上封闭,且单调递增,假设()00f x x ≠,根据单调函数性质可证假设不成立,由此能证明f (x 0)=x 0.【详解】(1)当()0,1x ∈时,()()1211,1f x x =-∈-,∴()1f x 在D 上不封闭;()()2210,1x f x =-∈,∴()2f x 在D 上封闭.(2)设存在实数a ,使得()52x ag x x -=+在()1,2上封闭,即对一切()1,2x ∈,5122x ax -<<+恒成立,∵20x +>,∴2524x x a x +<-<+,即3442x a x -<<-恒成立,∵()341,2x -∈-∴2a ≥;∵()422,6x -∈∴2a ≤.综上,满足条件的2a =.(3)假设()00f x x ≠,①若()00f x x >,∵()00f x x D ∈,,()f x 在D 上单调递增,∴()()()0ff x f x >,即()00xf x >,矛盾;②若()00f x x <,∵()0f x ,0x D ∈,()f x 在D 上单调递增,∴()()()0ff x f x <,即()00xf x <,矛盾.∴假设不成立,()00f x x =.【点睛】本题考查函数的综合运用,根据函数封闭的定义与函数定义域、值域、单调性等知识点进行综合的考查,考查转化能力与函数基础知识的应用,属于中等题.21.设定义在R 上的函数()f x 、()1f x 和()2f x ,满足()()()12f x f x f x =+,且对任意实数1x 、2x (12x x ≠),恒有()()()()11122122->-f x f x f x f x 成立.(1)试写出一组满足条件的具体的()1f x 和()2f x ,使()1f x 为增函数,()2f x 为减函数,但()f x 为增函数.(2)判断下列两个命题的真假,并说明理由.命题1):若()1f x 为增函数,则()f x 为增函数;命题2):若()2f x 为增函数,则()f x 为增函数.(3)已知()321=+++f x x x x ,写出一组满足条件的具体的()1f x 和()2f x ,且()2f x 为非常值函数,并说明理由.【答案】(1)答案不唯一,见解析;(2)命题1)为真,命题2)为假,理由见解析;(3)答案不唯一,详见解析.【分析】(1)根据题意找出满足条件的一组()1f x 和()2f x 即可,答案不唯一;(2)命题1)为真命题,结合单调性定义进行说明;命题2)为假命题,列举反例即可;(3)由()321=+++f x x x x 写出一组符合题意的()1f x 和()2f x 即可.【小问1详解】()13=f x x 为R 上的增函数,()2f x x =-为R 上的减函数,()2f x x =为增函数;【小问2详解】命题1):若()1f x 为增函数,则()f x 为增函数,是真命题;理由如下:设12x x <,由()1f x 为增函数可得()()1112f x f x <;若()2f x 为增函数或者常数函数,则()()()12f x f x f x =+一定为增函数;若()2f x 满足()()2221f x f x >,则由()()()()11122122->-f x f x f x f x 可得()()()()11122122f x f x f x f x -+>-,()()()()11211222f x f x f x f x +<+,即()()12f x f x <,所以()f x 为增函数;命题2):若()2f x 为增函数,则()f x 为增函数,是假命题;如()3113x x f x =--为减函数,()2f x x =为增函数,()()()()3322111211222112121113333f x f x x x x x x x x x x x ⎛⎫-=-----=-+++ ⎪⎝⎭,()()212212f x f x x x -=-,若证()()()()11122122->-f x f x f x f x 恒成立,即证()()2221121212133x x x x x x x x -+++>-,12x x ≠,即证22121233x x x x +++>,22221212122133324x x x x x x x ⎛⎫+++=+++ ⎪⎝⎭ ,且1212x x +与2x 不同时为零,所以不等式22121233x x x x +++>恒成立,即()3113x x f x =--,()2f x x =满足()()()()11122122->-f x f x f x f x ,且()3113x x f x =--为减函数,()2f x x =为增函数,但是()313f x x =-不是增函数;所以命题2)是假命题;【小问3详解】答案不唯一;由()321=+++f x x x x ,令()31f x x x =+,为增函数,()221f x x =+非常数函数,()()()()()3322111211*********f x f x x x x x x x x x x x -=+-+=-+++,()()()()()22212212121211f x f x x x x x x x -=+-+=-+,若证()()()()11122122->-f x f x f x f x 恒成立,即证()()()()2212121212121x x x x x x x x x x -+++>-+,12x x ≠,即证221212121x x x x x x +++>+,又222212121221311024x x x x x x x ⎛⎫+++=+++> ⎪⎝⎭恒成立,所以当120x x +≥时,即证221212121x x x x x x +++>+,且()()()2222212121212121111110222x x x x x x x x x x +++--=++-+->恒成立,又12x x ≠,所以110x -=与210x -=不同时成立,即221212121x x x x x x +++>+恒成立,同理当120x x +<时,()221212121x x x x x x +++>-+,因为()()()222221212121212111111222x x x x x x x x x x +++++=+++++,又12x x ≠,所以110x +=与210x +=不同时成立,所以()()()2221212111110222x x x x +++++>恒成立,即原不等式恒成立,综上所述,221212121x x x x x x +++>+恒成立,即()()()()11122122->-f x f x f x f x 恒成立.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.。

2015 年复旦附中中考自招数学试卷及答案(3.20和3.28全)

2015 年复旦附中中考自招数学试卷及答案(3.20和3.28全)

2015年复旦附中自招数学试卷(3.20)填空A1、若22x ab y a b ==+, ,则=______________2、12x x -=12x x 、的方差______________3、从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有__________个4、解方程:12x x +=-+5、2815231x x x x -+--=的解有_________个。

6、37531(12)8mx mx mx x m x -<-⎧⎨+-<-+⎩ 有正数解,求m 的取值范围__________7、2104y x x m =-+与x 轴两个交点在x 的正半轴,求m 的取值范围。

8、495235x y x z z +++==--时,求x y 的值9、矩形ABCD 中,3AB BC =,将矩形折叠,点B 落在边AD 上的点M 处,C 落在N 处,求EC FB AM -1、 扫雷游戏2、已知不等式:21y x px ≤-++求能使x y +最大值为2的负实数p 的取值范围。

3、如图所示,直线l 经过点P ,且垂直于AB ,当长方形AOBP 的周长为20时,请求出无论图形如何变化,l 始终经过的定点坐标___________。

4、在反比例函数k y x=上存在点C ,以点C 为圆心,1为半径画圆,圆上存在两点到O 点距离为2,则k 的取值范围______________5、已知直线MA NB 、均与线段MN 为直径的半圆相切,直线AB 与半圆相切于点F ,P 在线段MN 上且PF MN ⊥,当直线AB 变化时,求+PA PB AB的最大值6、在1,2,3……,39,40数列中能找出__________对数字使它们的差的绝对值为质数。

1、已知在BAC ∠的内部存在一点M ,在不画出A 点的情况下过M 点作一条直线,使它经过A 点。

2、设12x x 、为220x px p --=的两根,p 为实数 ①求证:212230px x p ++≥ ②当1223x x p -≤-时,求p 的最大值3、实数12n a a a 、满足: ①12=0n a a a +++ ②121n a a a +++= 求证:k 个数123k n =(,,,),1212k a a a +++≤4、锐角ABC ∆中,AD BE CF ,,分别为BC AC AB ,,边上的高,设BC a =,AC b =,AB c =,BD x =,EC y =,AF z =① 用a b c 、、表示x② 当a b c 、、满足什么关系时,有2()x y z a b c++=++B。

2015-2016学年上海市复旦大学附中高一(上)期末数学试卷

2015-2016学年上海市复旦大学附中高一(上)期末数学试卷

2015-2016学年上海市复旦大学附中高一(上)期末数学试卷参考答案与试题解析一、填空题(每题4分,共48分)1.(4分)(2015秋•杨浦区校级期末)函数定义域为{x|x>﹣1且x≠2}.【解答】解:由,解得:x>﹣1且x≠2.∴函数的定义域为{x|x>﹣1且x≠2}.故答案为:{x|x>﹣1且x≠2}.2.(4分)(2012•余杭区校级模拟)设f(x)=,若f(x)=3,则x= .【解答】解:当x≤﹣1时,即x+2=3,解得x=1(舍去)当﹣1<x<2时,即x2=3,解得x=,或x=﹣(舍去)当x≥2时,即2x=3,解得x=(舍去)故当f(x)=3,则x=故答案为:3.(4分)(2015秋•杨浦区校级期末)已知幂函数f(x)=xα是偶函数,在[0,+∞)上递增的,且满足.请写出一个满足条件的α的值,α= .【解答】解:根据幂函数f(x)=xα是偶函数,在[0,+∞)上递增的,知α>0,且α为偶数;又满足.所以α<1;写出一个满足条件的α值,则α=即可.故答案为:.4.(4分)(2015秋•杨浦区校级期末)函数的反函数为f﹣1(x)= ,(x∈(0,1)).【解答】解:由y=,解得x=>0,解得0<y<1,因此f(x)的反函数为f﹣1(x)=,(x∈(0,1)).故答案为:,(x∈(0,1)).5.(4分)(2015春•龙岩期末)函数f(x)=log(x2﹣2x﹣3)的单调递增区间为(﹣∞,﹣1).【解答】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)6.(4分)(2015秋•杨浦区校级期末)函数的图象与函数y=﹣log3x的图象关于直线y=x 对称.【解答】解:∵y=﹣log3x=log x,∴同底的指数函数和对数函数互为反函数,则图象关于y=x对称,故答案为:y=x7.(4分)(2015秋•杨浦区校级期末)已知log53=a,5b=7,则用a,b的代数式表示log63105=.【解答】解:∵log53=a,5b=7,∴=a,b=log57=,∴lg3=alg5,lg7=blg5,∴log63105===.故答案为:.8.(4分)(2015秋•杨浦区校级期末)方程:的解为{log23} .【解答】解:由22x+1﹣6>0,得2×4x>6,即4x>3,则方程等价为=log22x+log2(2x+1)=log22x(2x+1),即22x+1﹣6=2x(2x+1),即2(2x)2﹣6=(2x)2+2x,即(2x)2﹣2x﹣6=0,则(2x+2)(2x﹣3)=0,则2x﹣3=即2x=3,满足4x>3,则x=log23,即方程的解为x=log23,故答案为:{log23}9.(4分)(2015秋•杨浦区校级期末)若函数的值域是R,则实数a的取值范围是(﹣∞,﹣4]∪[0,+∞).【解答】解:∵函数的值域是R,∴其真数函数g(x)=x2+ax﹣a的函数值应该能够取遍所有正数,∴函数y=g(x)的图象应该与x轴相交即△=a2+4a≥0解得a≤﹣4或a≥0.∴实数a的取值范围是(﹣∞,﹣4]∪[0,+∞).故答案为:(﹣∞,﹣4]∪[0,+∞).10.(4分)(2015秋•杨浦区校级期末)若函数的值域为[﹣2,+∞),则实数a的取值范围为[﹣2,] .【解答】解:∵函数的值域为[﹣2,+∞),当x≥2时,f(x)=﹣6+2x≥﹣2.当x<2,f(x)=x2﹣ax+3=(x﹣)2+3﹣,当=2时,f(x)=(x﹣)2+3﹣≥3﹣≥﹣2,解得﹣2≤a≤2,a=4∈[﹣2,2],故a=4成立;当<2时,f(x)=(x﹣)2+3﹣≥3﹣≥﹣2,解得﹣2≤a<4.当>2时,f(x)=(x﹣)2+3﹣≥(2﹣)2+3﹣≥﹣2,解得4<a.综上所述,实数a的取值范围是[﹣2,].故答案为:[﹣2,].11.(4分)(2015秋•杨浦区校级期末)已知函数,若方程f(x)=a有四个不同的实根x1,x2,x3,x4.则x1+x2+x3+x4的取值范围为(,9).【解答】解:作函数的图象如下,方程f(x)=a有四个不同的实根x1,x2,x3,x4,结合图象,A,B,C,D的横坐标分别为x1,x2,x3,x4,故x1+x2=﹣2,x3∈(,1),x4∈(1,10),故x3+x4∈(,11),∴x1+x2+x3+x4∈(,9),故答案为:(,9).12.(4分)(2015秋•杨浦区校级期末)已知函数(1)f(x)=3lnx;(2)f(x)=3x2+1;(3)f(x)=3e x;(4).其中满足对于任意x1∈D(其中D为函数的定义域),相应地存在唯一的x2∈D,使的函数的序号为(3)、(4).【解答】解:根据题意可知:对于(1),函数f(x)=3lnx,x=1时,lnx没有倒数,不成立;对于(2),函数f(x)=3x2+1,当x1=0时,存在x2=±使得使,故不符合题意;对于(3),函数f(x)=3e x,对任意一个自变量x,函数f(x)都有倒数,且使成立;对于(4),函数f(x)=,对定义域内的任意一个自变量x,函数f(x)都有倒数,且使成立;所以成立的函数序号为(3)、(4).故答案为:(3)、(4).二、选择题(每题4分,共16分)13.(4分)(2015秋•杨浦区校级期末)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的是()A.B.y=2|x|C.D.y=x3【解答】解:对于A,函数是奇函数,不满足;对于B,是偶函数,又是在区间(0,+∞)上单调递增,不满足;对于C,既是偶函数,又是在区间(0,+∞)上单调递减,满足;对于D,函数是奇函数,不满足,故选C.14.(4分)(2015秋•杨浦区校级期末)若0<a<1,b<﹣1,则函数f(x)=a x+b的图象不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限【解答】解:函数f(x)=a x(0<a<1)的是减函数,图象过定点(0,1),在x轴上方,过一、二象限,函数f(x)=a x+b的图象由函数f(x)=a x的图象向下平移|b|个单位得到,∵b<﹣1,∴|b|>1,∴函数f(x)=a x+b的图象与y轴交于负半轴,如图,函数f(x)=a x+b的图象过二、三、四象限.故选A.15.(4分)(2015秋•杨浦区校级期末)已知a,b,c均大于1,且log a c•log b c=4,则下列各式中,一定正确的是()A.ac≥b B.ab≥c C.bc≥a D.ab≤c【解答】解:∵a、b、c均大于1,log a c•log b c=4,∴log c a•log c b=,∴log c a、log c b大于零,则log c a•log c b≤(log c a+log c b)2,即≤(log c a+log c b)2,∴(log c a+log c b)2≥1,∴(log c ab)2≥1,∴log c ab≥1或log c ab≤﹣1,当且仅当log c a=log c b,即a=b时取等号,∵a、b、c均大于1,∴log c ab>1,解得ab≥c,故选:B16.(4分)(2015秋•杨浦区校级期末)定义在实数集R上函数y=f(x)的反函数为y=f﹣1(x).若函数y=f(﹣x)的反函数是y=f﹣1(﹣x),则y=f(﹣x)是()A.是奇函数,不是偶函数B.是偶函数,不是奇函数C.既是奇函数数,又是偶函数D.既不是奇函数,也不是偶函数【解答】解:函数y=f(﹣x)的反函数是y=f﹣1(﹣x)=﹣f﹣1(x),关于原点对称,∴y=f(﹣x)是奇函数,故选A.三、解答题17.(8分)(2015秋•杨浦区校级期末)已知函数f(x)=lg(x+1),解关于x的不等式0<f (1﹣2x)﹣f(x)<1.【解答】解:∵函数f(x)=lg(x+1),∴不等式0<f(1﹣2x)﹣f(x)<1可化为0<lg(1﹣2x+1)﹣lg(x+1)<1,即;化简得,即,解得即﹣<x<;∴原不等式的解集为{x|﹣<x<}.18.(10分)(2015秋•杨浦区校级期末)已知实数a>0,且函数为奇函数.判断函数f(x)的单调性,并用单调性的定义证明.【解答】解:∵函数为奇函数,实数a>0,∴有f(0)=0,即=0,解可得a=1,∴f(x)=;f(x)=1﹣理由:设x1<x2,则f(x1)﹣f(x2)=,∵x1<x2,∴f(x1)﹣f(x2)<0,∴f(x)是增函数.19.(12分)(2015秋•杨浦区校级期末)函数f(x)=,其中a∈R.(1)若a=0,解不等式f(x)≥;(2)已知函数y=f(x)存在反函数,其反函数记为y=f﹣1(x).若关于x的不等式:f﹣1(4﹣a)≤f(x)在x∈[0,+∞)上恒成立,求实数a的取值范围.【解答】解:(1)a=0时,,∵,∴当x≥0时,f(x)=x2,解得x≥;当x<0时,f(x)=,解得﹣2≤x<0;综上,不等式的解集为{x|﹣2≤x<0或x≥};(2)若函数y=f(x)存在反函数,则函数f(x)在R为单调函数,则a≥1,此时函数f(x)在R为单调递增函数,x∈[0,+∞)时,f(x)≥f(0)=a;此时f﹣1(x)=在(0,+∞)上也为增函数,若关于x的不等式:f﹣1(4﹣a)≤f(x)在x∈[0,+∞)上恒成立,则,当0<4﹣a<1,即3<a<4时,log2(4﹣a)≤a恒成立,当4﹣a≥1,即1≤a≤3时,解:得:﹣1+≤a≤2综上可得:a∈[﹣1+,2]∪(3,4).20.(12分)(2015秋•杨浦区校级期末)若函数f(x)满足:对于其定义域D内的任何一个自变量x0,都有函数值f(x0)∈D,则称函数f(x)在D上封闭.(1)若下列函数的定义域为D=(0,1),试判断其中哪些在D上封闭,并说明理由.f1(x)=2x﹣1,f2(x)=2x﹣1.(2)若函数g(x)=的定义域为(1,2),是否存在实数a,使得g(x)在其定义域(1,2)上封闭?若存在,求出所有a的值,并给出证明:若不存在,请说明理由.(3)已知函数f(x)在其定义域D上封闭,且单调递增.若x0∈D且f(f(x0))=x0,求证:f(x0)=x0.【解答】解:(1)在f1(x)=2x﹣1中,对于定义域D内的任意一个自变量x0,都有函数值f1(x0)∈(﹣1,1)∉D1,故函数f1(x)=2x﹣1在D1上不封闭;在f2(x)=2x﹣1中,2x﹣1∈(0,1),在D1上封闭.(2)g(x)=的定义域为(1,2),对称中心为(﹣2,5),当a+10>0时,函数g(x)=在D2上为增函数,只需,解得a=2当a+10<0时,函数g(x)=在D2上为减函数,只需,解得a∈∅综上,所求a的值等于2.证明:(3)∵函数f(x)在其定义域D上封闭,且单调递增.x0∈D且f(f(x0))=x0,∴根据单调函数性质f(x0)∈D,则有唯一的x0∈D,∴f(x0)=x0.21.(14分)(2015秋•杨浦区校级期末)设定义在R上的函数f(x)、f1(x)和f2(x),满足f(x)=f1(x)+f2(x),且对任意实数x1、x2(x1≠x2),恒有|f1(x1)﹣f1(x2)|>|f2(x1)﹣f2(x2)|成立.(1)试写出一组满足条件的具体的f1(x)和f2(x),使f1(x)为增函数,f2(x)为减函数,但f(x)为增函数.(2)判断下列两个命题的真假,并说明理由.命题1):若f1(x)为增函数,则f(x)为增函数;命题2):若f2(x)为增函数,则f(x)为增函数.(3)已知f(x)=x3+x2+x+1,写出一组满足条件的具体的f1(x)和f2(x),且f2(x)为非常值函数,并说明理由.【解答】解:(1)根据题意,设函数f1(x)=3x为(0,+∞)上的增函数,f2(x)=﹣2x为(0,+∞)减函数,则f(x)=3x﹣2x是(0,+∞)上的单调增函数;(2)命题1):若f1(x)为增函数,则f(x)为增函数,是真命题;理由是:设x1<x2由y=f1(x)是区间D上的增函数可得f1(x1)<f1(x2)①若f2(x)为单调递增或常函数,则y=F(x)是区间D上的增函数②若函数f2(x1)>f2(x2),则由|f1(x1)﹣f1(x2)|>|f2(x1)﹣f2(x2)|可得,﹣f1(x1)+f1(x2)>f2(x1)﹣f2(x2)∴f1(x1)+f2(x1)<f1(x2)+f2(x2),即f(x1)<f(x2);综上,函数f(x)为单调递增函数;命题2):若f2(x)为增函数,则f(x)为增函数,是假命题;如函数f1(x)=﹣3x为减函数,f2(x)=2x为增函数,但f(x)=2x﹣3x不是单调递增函数;(3)由f(x)=x3+x2+x+1,令f1(x)=x3,为定义域R上的增函数,f2(x)=x2+x+1,且f2(x)为非常值函数,则f′(x)=3x2+2x+1=3+>0,所以f(x)是定义域R上的增函数.。

(高清打印版)2015上海数学自招复旦分校真题

(高清打印版)2015上海数学自招复旦分校真题

/////////////////2015年复旦分校自主招生测试题数学试题1、若4,129x y z xy y +=+=+-,求32x y z ++。

2、若抛物线2y ax bx c =++与x 轴交于A B 、,与y 轴交于C ,且三角形ABC 是直角三角形,求ac 。

3、正方形DEFG EHLB NMKL 、、,边长分别为c a b 、、,求a b c 、、,满足的关系式。

4、若不等式组1252x x x a <->⎧⎪⎨-<<⎪⎩或只有整数2-一个解,求a 的取值范围。

5、若2(1)2(1)0a x x a -+-+=的根都是整数,则整数a 的取值范围?6、已知:Rt ABC ∆,3,4,BC AC D ==为AB 上一动点,作DE BC ⊥,求EF的最小值。

7、从1,2,...,100中取两个不同的数,使两数之和大于100,则有______种不同取法。

8、若12...n x x x 、、、只能取2,0,1-,且满足12...17,n x x x ++=-+22212...37,n x x x ++=+则33312..._______n x x x +++=。

9、已知:等腰ABC ∆,两圆外切且都与AB AC 、相切,两圆半径为1和2,求ABC ∆的面积。

10、已知:正五边形1AG =,_____FG JH DC ++=。

11、已知ABC ∆外接于O ,且AO BC ⊥,垂足为D ,且AB BC=(1)证明:ABC ∆是正三角形;(2)若1,=,,AB AE x PE y ==求y 关于x 的解析是及定义域;(3)在(2)的条件下,,PAC EPC αβ∠=∠=,当y 取何值时,22sin sin 1αβ+=。

12、(1)当04x <<,解22[]0x x x --=;(2)求所有实数x ,使3[]43x x =+。

上海市复旦大学附属中学2014-2015学年高一上学期期中数学试题(带答案解析)

上海市复旦大学附属中学2014-2015学年高一上学期期中数学试题(带答案解析)

上海市复旦大学附属中学2014-2015学年高一上学期期中考试-数学试题第I 卷(选择题)一、单选题1.三国时期赵爽在《勾股方圆图注》中,对勾股定理的证明可用现代数学表述为如下图所示,我们教材中利用该图作为几何解释的是( ).A .如果a b >,b c >,那么a c >B .如果0a b >>,那么22a b >C .对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立D .如果a b >,0c >那么ac bc>2.设x 取实数,则()f x 与()g x 表示同一个函数的是()A .()(),f x x g x =B .()()()22,xf xg x x==C .()()()01,1f x g x x ==- D .()()29,33x f x g x x x -==-+3.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件4.在关于x 的方程()22401160x ax x a x -+=+-+=,和223100x ax a +++=中,已知至少有一个方程有实数根,则实数a 的取值范围是( ) A .44a -≤≤B .97a a ≥≤-或C .24a a ≤-≥或D .24a -<<第II 卷(非选择题)二、填空题5.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.6.命题“若21x =,则1x =”的否命题为__________.7.函数y =__________.8.已知集合1,2,3,4A ={} 、1,2B ={} ,满足A C B C ⋂=⋃ 的集合C 有___个9.已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____10.已知集合{()()(){}3,12340P x x Q x x x x =-≥=+-->,则P Q =I __________.11.若不等式2(2)2(2)40a x a x -+--<对一切x ∈R 成立,则a 的取值范围是 _ _ .12.已知关于x 的不等式20ax bx c ++<的解集是1|22x x x ⎧⎫<->-⎨⎬⎩⎭或,则不等式20cx bx a -+>的解集为_________13.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈, ②[]33-∈,③[][][][][]01234Z =U U U U ,④整数,a b 属于同一类的充要条件是[]0a b -∈. 其中正确的个数是___________14.某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费P (万元)与仓库到停车库的距离x (公里)成反比,而每月库存货物的运费K (万元)与仓库到停车库的距离x (公里)成正比.如果在距停车库18公里处建仓库,这两项费用P 和K 分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x = ________ 公里. 15.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________.三、解答题16.解方程:212324x x +-= 17.若关于x 的不等式:21241(0)x x k k k+-≥+≠ (1)解此不等式; (2)若21242{|1}x x x k k+-∈≥+,求实数k 的取值范围. 18.已知,其中(){}22112,2103x P x Q x x x m ⎧⎫-=-≤=-+-≤⎨⎬⎩⎭,其中全集U =R ,若U x C P ∈是U x C Q ∈的必要而不充分条件,求实数m 的取值范围.19.现有A B C D 、、、四个长方体容器,A B 、的底面积均为2x ,高分别为,x y ;C D 、的底面积均为2y ,高也分别为x y 、 (其中x y ≠),现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x 与y 大小的情况下有没有必胜的方案?若有的话,有几种?20.定义实数,a b 间的计算法∆则如下:2,,a a ba b b a b≥⎧∆=⎨<⎩ (1)计算()231∆∆(2)对x z y <<的任意实数,,x y z ,判断等式()()x y z x y z ∆∆=∆∆是否恒成立,并说明理由:(3)写出函数()()12y x x x =∆∆-∆的解析式,其中22x -≤≤并求其值域. 21.已知,,a b c ∈R ,满足a b c >>.(1)求证:1110a b b c c a++>---; (2)现推广:把1c a -的分子改为另一个大于1的正整数p ,使110pa b b c c a++>---对任意a b c >>恒成立,试写出一个p ,并证明之;(3)现换个角度推广:正整数m n P 、、满足什么条件时,不等式0m n pa b b c c a++>---对任意a b c >>恒成立,试写出条件并证明之.参考答案1.C 【解析】 【分析】将赵爽弦图中的直角三角形的两直角边长度取作,a b ,分别求出正方形的面积,以及四个直角三角形的面积,即可得出结果. 【详解】将赵爽弦图中的直角三角形的两直角边长度取作,a b ,斜边为222()c c a b =+, 则外围的正方形的面积为2c ,即22a b +; 四个阴影部分面积之和刚好为2ab ,对任意的正实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立. 故选:C. 【点睛】本题主要考查基本不等式的推导,熟记基本不等式即可,属于常考题型. 2.B 【解析】 【分析】()f x 与()g x 表示同一个函数,则函数的定义域、对应法则、值域都相同,对选项进行逐一分析,得到答案. 【详解】A. ()g x x ==表达式与()f x x =不同,所以不是同一函数,A 不正确.B .()()1f x g x ==()0x >,()(),f x g x 的定义域、对应法则、值域都相同,所以表示同一函数,正确.C. ()()01g x x =-的定义域为{}|,1x x R x ∈≠且,()1f x =的定义域为R ,定义域不同,所以不是同一函数,C 不正确.D.()293x f x x -=+ 的定义域为{}|,3x x R x ∈≠-且,()3g x x =-的定义域为R ,定义域不同,所以不是同一函数,D 不正确. 故选:B 【点睛】本题考查同一函数的判断,属于基础题. 3.A 【解析】 试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q”、“若q 则p”的真假.并注意和图示相结合,例如“p ⇒q”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 4.C 【解析】 【分析】可以采用补集思想.三个判别式均小于0的条件下取交集后再取补集即可. 【详解】若方程()22401160x ax x a x -+=+-+=,和223100x ax a +++=都没有实数根.则()()2122221601640443100a a a a ⎧=-<⎪⎪=--<⎨⎪=-+<⎪⎩V V V ,解得:24a -<<. 则方程()22401160x ax x a x -+=+-+=,和223100x ax a +++=中,已知至少有一个方程有实数根. 所以2a ≤-或4a ≥ 故选:C 【点睛】本题考查了命题与命题的否定,考查补集的方法解题,属于基础题. 5.{}1,2,3,4- 【解析】 【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题. 6.若21x ≠,则1x ≠ 【解析】 【详解】根据逆否命题的写法:既否条件又否结论,原命题的否命题为若21x ≠,则1x ≠.故答案为若21x ≠,则1x ≠. 7.[)(]2,11,2-U 【解析】 【分析】函数的定义域满足被开方数非负和分母不为0得到不等式组,从而可得函数的定义域. 【详解】函数y =.2010x x ⎧-≥⎨-≠⎩,解得22x -≤≤且1x ≠所以函数y =[)(]2,11,2-U故答案为:[)(]2,11,2-U 【点睛】本题考查具体函数的定义域,属于基础题. 8.4 【解析】由条件A C B C ⋂=⋃ 可知:B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃⊆⋂⊆()()()(),则符合条件的集合C 的个数即为集合{3},4 的子集的个数,共4个. 9.116【解析】211414()44216x y xy x y +=⋅≤=,当且仅当x=4y=12时取等号. 10.31,2⎡⎫⎪⎢⎣⎭【解析】 【分析】先求出不等式3x -≥P ,根据数轴标根法求出()()()12340x x x +-->的解集,即求出集合Q ,由交集的运算求出P Q I.【详解】由3x -≥()2103031x x x x ⎧-≥⎪⎪-≥⎨⎪-≥-⎪⎩,解得:12x ≤≤,即[]1,2P =.用数轴标根法解()()()12340x x x +-->得312x -<<或4x >. ()31,4,2Q ⎛⎫=-+∞ ⎪⎝⎭U 。

上海市复旦大学附属中学2014-2015学年高一下学期期末数学试题(原卷版)

上海市复旦大学附属中学2014-2015学年高一下学期期末数学试题(原卷版)

上海市复旦附中2014-2015高一年级期末考试数学试卷分析第二部分优秀试题精讲1.已知数列{}n a 满足:*434121,0,,N n n n n a a a a n --===∈,则2014a =___________.2.等差数列{n a }前n 项和为n S .已知1m a -+1m a +-2m a=0,21m S -=38,则m=_______.3.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________.4.设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = . 5.若数列{a n }前8项的值各异,且a n+8=a n 对任意n ∈N *都成立,则下列数列中可取遍{a n }前8项值的数列为 ( ) A. {a 2k+1}B. {a 3k+1}C. {a 4k+1}D. {a 6k+1}6.已知点11,3⎛⎫⎪⎝⎭是函数()(0,1)xf x a a a =>≠图象上一点,等比数列{}n a 的前n 项和为()f n c -,数列{}()0n n b b >的首项为c ,且前n 项和n S 满足:当2n ≥时,都有1n n S S --=(1)求c 的值;(2)求证:为等差数列,并求出n b . (3)若数列11n n b b +⎧⎫⎨⎬⎩⎭前n 项和为n T ,是否存在实数m ,使得对于任意的*N n ∈都有n T m ≥,若存在,求出m 的取值范围,若不存在,说明理由.第三部分 试卷展示大学附属中学2014学年第二学期高一年级数学期来考试试卷一、填空题(每题4分,共48分7.求值:2sin arccos 3⎡⎤⎛⎫-= ⎪⎢⎥⎝⎭⎣⎦_____.8.等比数列{}n a 中,若245,20a a ==,则6a =__________.9.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前10项和10S =________. 10.函数arccos 2y x =-的反函数为__________.11.已知数列{}n a 满足:*434121,0,,N n n n n a a a a n --===∈,则2014a =___________.12.等差数列{n a }前n 项和为n S .已知1m a -+1m a +-2m a =0,21m S -=38,则m=_______.13.已知函数13()2sin 122f x x x ππ⎛⎫=+<< ⎪⎝⎭,1()f x -为()f x 的反函数,则112f -⎛⎫= ⎪⎝⎭_______(用反三角形式表示).14.方程sin 2cos ,[0,2]x x x π=∈的解集是____________. 15.函数y =的定义域为____________.16.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________.17.当01x ≤≤时,不等式sin 2xkx π≥成立,则实数k 的取值范围是______________.18.设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = . 二、选择题(每题4分,共16分)19.不等式tan 2x <<的解集是( ) A. |arctan 2,3x k x k k Z πππ⎧⎫-<<+∈⎨⎬⎩⎭B. 2|arctan 2,3x k x k k Z πππ⎧⎫+<<+∈⎨⎬⎩⎭C. |22arctan 2,3x k x k k Z πππ⎧⎫-<<+∈⎨⎬⎩⎭ D. 2|2arctan 22,3x k x k k Z πππ⎧⎫+<<+∈⎨⎬⎩⎭20.对数列{}n a ,“0n a >对于任意*N n ∈成立”是“其前n 项和数列{}n S 为递增数列”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 非充分非必要条件21.设{(,)|cos(arccos )},{(,)|arccos(cos )}A x y y x B x y y x ====,则A B =I ( ) A. {(,)|,11}x y y x x =-≤≤ B. 11(,)|,22x y y x x ⎧⎫=-≤≤⎨⎬⎩⎭C. {(,)|,01}x y y x x =≤≤D. {(,)|,0}x y y x x π=≤≤22.若数列{a n }前8项的值各异,且a n+8=a n 对任意n ∈N *都成立,则下列数列中可取遍{a n }前8项值的数列为 ( ) A. {a 2k+1}B. {a 3k+1}C. {a 4k+1}D. {a 6k+1}三、解答题(共5题,共56分)23.解方程:cos2cos sin x x x =+.24.已知方程240x ++=有两个实根12,x x ,记12arctan ,arctan x x αβ==,求αβ+的值.25.已知点11,3⎛⎫ ⎪⎝⎭是函数()(0,1)xf x a a a =>≠的图象上一点,等比数列{}n a 的前n 项和为()f n c -,数列{}()0n n b b >的首项为c ,且前n 项和n S 满足:当2n ≥时,都有1n n S S --=(1)求c 的值;(2)求证:为等差数列,并求出n b . (3)若数列11n n b b +⎧⎫⎨⎬⎩⎭前n 项和为n T ,是否存在实数m ,使得对于任意的*N n ∈都有n T m ≥,若存在,求出m 的取值范围,若不存在,说明理由.26.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n 年(以2016年为第一年),该企业不进行技术改造的年纯利润为n a 万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为n b 万元,求n a 和n b ;(2)设从2016年起的第n 年(以2016年为第一年),该企业不进行技术改造的累计纯利润为n A 万元,进行技术改造后的累计纯利润为n B 万元,求n A 和n B ;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?27.如果有穷数列123,,,m a a a a L (m 为正整数)满足1211,,m m m a a a a a a -===L ,即1(1,2,,)i m i a a i m -+==L ,那么我们称其为对称数列.(1)设数列{}n b 是项数为7的对称数列,其中,1234,,,b b b b 为等差数列,且142,11b b ==,依次写出数列{}n b 的各项;(2)设数列{}n c 是项数为21k -(正整数1k >)的对称数列,其中121,,,k k k c c c +-⋯是首项为50,公差为-4的等差数列.记数列{}n c 的各项和为数列21k S -,当k 为何值时,21k S -取得最大值?并求出此最大值;(3)对于确定的正整数1m >,写出所有项数不超过2m 的对称数列,使得211,2,2,,2m -⋯依次为该数列中连续的项.当1500m >时,求其中一个数列的前2015项和2015S .。

答案版上海市复旦大学附属中学2014-2015学年高一上学期期中考试数学试卷(2)

答案版上海市复旦大学附属中学2014-2015学年高一上学期期中考试数学试卷(2)

D. f x
x2 9 , g x x 3 x3
【解析】A 选项对应关系不同, f x x , g x x2 x ;C、D 选项定义域不相同.
x 3 x y 6 14、 是 成立的( y 3 x y 9
2 x x 1
的定义域为_______.
【答案】 2,1
1, 2 ; 1,2 ,本题需注意定义域只能写成区间
2 x 0 2 x 2 【解析】由 ,即 x 2,1 x 1 x 1 0
或是集合的形式,避免写不等式的形式. 4、已知集合 A 1, 2,3, 4 , B 1, 2 则满足 A C B C 的集合 C 有_______个. 【答案】4; 【解析】由条件 A C B C 可知, B B
复旦大学附属中学 2014-2015 学年第一学期 高一年级数学期中考试试卷
(时间 90 分钟,满分 120 分) 一、填空题(每小题 4 分,共 44 分)
6 1、用列举法表示集合 A a N* , a Z _______. 5 a
【答案】 1, 2,3, 4 ;
充要条件是“ a b 0 ”. 其中,正确结论的个数 是_______. .. 【答案】3 个; 【解析】①正确,由于 2015 能够被 5 整除;②错误, 3 1 5 2 ,故 3 2 ;③正确, 将整数按照被 5 除分类,刚好分为 5 类;④正确. 10、某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费 p (万元)与仓库 到停车库的距离 x (公里)成反比,而每月库存货物的运费 k (万元)与仓库到停车库的距 离 x (公里)成正比. 如果在距离停车库 18 公里处建仓库,这两项费用 p 和 k 分别为 4 万元 和 144 万元,那么要使这两项费用之和最小,仓库到停车库的距离 x _______公里. 【答案】 2 ; 【解析】 设 p 所以 p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年复旦附中自招数学试卷(3.20)
填空A
1、若22x ab y a b ==+, ,则
=______________
2
、12x x -=12x x 、的方差______________
3、从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有__________个
4
、解方程:12x x +=-+ 5、28152
31x x x x -+--=的解有_________个。

6、37531(12)8mx mx
mx x m x -<-⎧⎨+-<-+⎩
有正数解,求m 的取值范围__________
7、2104y x x m =-+与x 轴两个交点在x 的正半轴,求m 的取值范围。

8、495
235
x y x z z +++==--时,求x y 的值
9、矩形ABCD 中,3AB BC =,将矩形折叠,点B 落在边AD 上的点M 处,
C 落在N 处,求EC FB
AM
-
1、 扫雷游戏
2、已知不等式:21y x px ≤-++求能使x y +最大值为2的负实数p 的取值范围。

3、如图所示,直线l 经过点P ,且垂直于AB ,当长方形AOBP 的周长为20时,请求出无论图形如何变化,l 始终经过的定点坐标___________。

4、在反比例函数k
y x
=
上存在点C ,以点C 为圆心,1为半径画圆,圆上存在两点到O 点距离为2,则k 的取值范围______________
5、已知直线MA NB 、均与线段MN 为直径的半圆相切,直线AB 与半圆相切于点F ,P 在线段MN 上且PF MN ⊥,当直线AB 变化时,求+PA PB
AB
的最大值
6、在1,2,3……,39,40数列中能找出__________对数字使它们的差的绝对值为质数。

1、已知在BAC ∠的内部存在一点M ,在不画出A 点的情况下过M 点作一条直线,使它经过A 点。

2、设12x x 、为220x px p --=的两根,p 为实数
①求证:2
12230px x p ++≥ ②当1223x x p -≤-时,求p 的最大值
3、实数12n a a a 、满足: ①12=0n a a a ++
+
②121n a a a ++
+=
求证:k 个数
123k n =(,,,),121
2
k a a a +++≤
4、锐角ABC ∆中,AD BE CF ,,分别为
BC AC AB ,,边上的高,设BC a =,AC b =,AB c =,BD x =,EC y =,AF z =
① 用a b c 、、表示x
② 当a b c 、、满足什么关系时,有
2()x y z a b c
++=++
B。

相关文档
最新文档