立体几何之空间角(经典)

合集下载

立体几何第六讲:空间中的角

立体几何第六讲:空间中的角

第六讲:空间中的角(二)二面角 一,知识点 1,基本概念1)半平面:当两个平面相交时,我们往往只画起一部分,就像一本翻开的书,我们把其中一部分叫做半平面。

2)二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小指的是二面角的平面角的大小。

即分别在两个半平面内做交线的垂线,两条射线所成的角为二面角的平面角。

2,范围:],0[π特别:重合为0,共面为π,即相当于把一张纸折叠后的两种极限情况。

3,步骤:一找,二证,三计算4,用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个?而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。

二,典型例题与解读求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题.总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事.1 定义法即在二面角的棱上找一点(特殊点),在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!用定义法时,要认真观察图形的特性。

例1 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

jA B CDP H2、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2 在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的大小。

3、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例3 在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求B-PC-D的大小。

立体几何综合复习——空间角(完整版)

立体几何综合复习——空间角(完整版)

立体几何专题复习-----空间角的求法(一)异面直线所成的角:定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上理解说明:(1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。

(2)异面直线所成的角的范围:]2,0(π(3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. (4)求异面直线所成的角的方法:法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线;法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求(5).向量法: CDAB CD AB →→=.cos θ(二)直线和平面所成的角1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、记作:θ;3、范围:[0,2π]; 当一条直线垂直于平面时,所成的角θ=2π,即直线与平面垂直;1.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角lαβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 (3)二面角的平面角的特点:1)角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。

2、作二面角的平面角的常用方法:①、点P 在棱上——作垂直于棱的直线(如图1) ;②、点P 在一个半平面——三垂线定理法;(如图2) ③、点P 在二面角内——垂面法。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

空间几何的立体角计算

空间几何的立体角计算

空间几何的立体角计算在空间几何中,立体角是指球心所在的立体角。

它是一个以球心为顶点,包含在球面上的一个锐角空间图形。

计算立体角的方法有很多种,下面将介绍几种常见的计算方法。

一、球体的立体角计算对于球体而言,可以通过球的半径和球心与球面上两点之间的弧长计算立体角。

假设球心为O,球面上两点为A和B,对应的单位法向量为a和b。

则球体的立体角可以用以下公式表示:Ω = acos(a·b)其中,·表示向量的点积运算,acos表示反余弦函数。

上述公式表示了向量a和向量b的夹角。

二、多面体的立体角计算对于多面体,可以将其分解为若干个共有顶点的面组成的角。

然后根据面的法向量来计算每个面对应的立体角,并将其相加得到总的立体角。

比如,假设有一个四面体,顶点分别为A、B、C和D,面分别为ABC、ACD、ADB和BDC。

其中,每个面都可以计算对应的立体角。

假设面ABC与面ACD的夹角为α,面ABC与面ADB的夹角为β,面ABC与面BDC的夹角为γ,则四面体的立体角Ω可以用以下公式表示:Ω = α + β + γ而计算每个面对应的立体角,可以使用球体的立体角计算方法进行计算。

三、棱锥的立体角计算对于棱锥而言,可以通过棱锥的顶角和侧面法向量计算立体角。

假设棱锥的顶点为O,底面上一点为A,底面上的两条棱为OB和OC,顶角为∠BOC,底面上的法向量为n,则棱锥的立体角可以用以下公式表示:Ω = 2π - ∠BOC其中,∠BOC可以通过向量OB和向量OC的点积计算得到。

四、扇形的立体角计算对于扇形而言,可以通过确定扇形对应的圆锥的顶角和底面法向量计算立体角。

圆锥的底面是扇形的圆心O、半径r和夹角θ所在的圆。

假设圆锥的顶点为O,扇形上的两点为A和B,顶角为α,则扇形的立体角可以用以下公式表示:Ω = α - sinα其中,α可以通过扇形的半径r和夹角θ计算得到:α = rθ。

以上是几种常见的空间几何中立体角的计算方法,可以根据不同的几何形状选择合适的方法进行计算。

立体几何专题复习(三) 空间角专题

立体几何专题复习(三)   空间角专题

空间角例题讲解:一、异面直线夹角问题例1、(1)如图,正棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为_ _ _(2) 如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA= 90,点D 1、F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成的角的余弦值_________。

二、线面夹角问题例2、(1)直线a 是平面α的斜线,直线b 在平面α内,当a 与b 成60O 的角,且b 与a 在α内的射影成45O的角时,a 与α所成的角为( ) (A)60O (B)45O (C) 90O (D)30O(2)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且 2AC BC BD AE ===,M 是AB 的中点.(I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.三、二面角问题例3、(1)四边形ABCD 是正方形,P 是平面ABCD 外一点,且⊥PA 平面ABCD ,PA=AB=a ,则二面角D PC B --的大小为 。

(2)在二面角βα--l 的一个平面α内有一条直线AB ,它与棱的夹角为︒45,AB 与平面β所成的角为︒30,则二面角的大小为 ;1A(3) 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.(Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角的平面角的正弦值大小.巩固练习:一、选择题1.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成角的余弦值为( )A.13B.23C.33D.232.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不.正确的是( ) A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角3.已知三棱锥底面是边长为1的正三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( ) A.32 B.12 C.33 D.364.已知正四面体A -BCD ,设异面直线AB 与CD 所成的角为α,侧棱AB 与底面BCD 所成的角为β,侧面ABC 与底面BCD 所成的角为γ,A B C E D P则( )A.α>β>γB.α>γ>βC.β>α>γD.γ>β>α二、填空题5.已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为________.6.已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的大小是__________.7.已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于________.三、解答题8.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别为AB、SC的中点.(1)证明:EF∥平面SAD;(2)设SD=2CD,求二面角A-EF-D的余弦值.9.如图,正方体ABCD-A1B1C1D1中,E为棱C1D1上的动点,F为棱BC的中点.(1)求证:AE⊥DA1;(2)求直线DF与平面A1B1CD所成角的正弦值;(3)若E为C1D1的中点,在线段AA1上求一点G,使得直线AE⊥平面DFG.10.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AD=CD,∠CAD=30°.(1)若AD=2,AB=2BC,求四面体ABCD的体积;(2)若二面角C-AB-D为60°,求异面直线AD与BC所成角的余弦值.。

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.

,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬

[0,π] .

易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.

立体几何篇(空间角之二面角)

立体几何篇(空间角之二面角)

立体几何篇(空间角专题之二面角)二面角的定义:在两个平面的交线上任取一点,过该点,在各自的平面内作交线的垂线,两根射线所成的平角即为两个平面的二面角,二面角的范围为ο≤θ或]0≤180,0[π二面角的求法:1、定义法:2、三垂线法:(最重要的方法)3、面积比法:4、垂面法:5、向量法:(建系)例题1、定义法:(当等腰三角形出现的情况下,用定义法)1、求正四面体相邻的两个平面的所成二面角余弦值的大小2、如图,在三棱锥A BCD-中,侧面ABD ACD,是全等的直角三角形,AD是公共的斜边,且31AD BD CD===,,另一侧面ABC是正三角形.(1)求证:AD BC⊥;(2)求二面角B AC D--的余弦值;2、三垂线法(也叫站柱法)三垂线定理:(1)垂直于斜线由垂直于射线;(2)垂直于射线则垂直于斜线。

ABCD例3、如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(Ⅰ)求直线PC与平面ABC所成角的正切值;(Ⅱ)求二面角B﹣AP﹣C所成角的正切值.例4、在如图所示的几何体中,四边形ABCD 是等腰梯形, AB ∥CD ,∠DAB = 60,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(Ⅰ).求证: BD ⊥平面AED .(Ⅱ)求二面角F -BD -C 的余弦值.E F BA C D3、面积比法原射S S =θcos例5、1111D C B A ABCD -是长方体,侧棱1AA 长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面DE C 1与底面CDE 所成二面角的正切值。

例6、E 为正方体1111D C B A ABCD -的棱1CC 的中点,求平面E AB 1的底面1111D C B A 所成锐角的余弦值。

4、垂面法通过作二面角棱的垂面得到平面角的方法叫垂面法。

例7、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.Pβα lC B A。

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题

(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),

立体几何中---向量法求空间角

立体几何中---向量法求空间角

y
uuur AP
=(0,0,1),
uuur AB
(
2,1mu,r0方), 向Cuu朝Bur面 内( ,2nru,r0方x, 0向u)u,朝urCuu面Pur (0, 1,1) ,
设平面 PAB 的法向量为 mur外 情=, 况(x属 ,,y于 二,z)“ 面,则一 角进 等mu一 于r出 法 uA” 向uPur的量 0
(I)求证:AO⊥平面BCD; (II)求异面直线AB与CD所成角的大小; (III)求点E到平面ACD的距离。
A
D O
B
E
C
解:(I)提示;数量积为零 (II)解:以O为原点,如图建立空间直角坐标系,
则B(1, 0, 0), D(1, 0, 0),
C(0,
3, 0), A(0, 0,1), E(1 ,
S
解:由(2)知平面SAB的一个法向量为nr (1,1,2),
uuur 又由OC 平面SAO知OC是平面SAO的法向量 O
uuur 且OC (0,1,0)
A
Cy
B
cos nr,OuuCur 0 1 0 6
x
6 1 6
所以二面角B-AS-O的余弦值为 6 6
(2)求EB与底面ABCD所成的角的正切值。 uuur
解:因为PD 平面ABCD,所以PD是平面ABCD的法向量。
由(1)知D(0,0,0),P(0,0,1),
z P
B(1,1,0),E(0,1 ,1) 22
E
y
uuur PD
uuur (0,0,1),EB
(1,1

1
)
C
B
22
x
G
cos
uuur uuur PD,EB

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

立体几何复习专题(空间角)

立体几何复习专题(空间角)

专题:空间角一、基础梳理1.两条异面直线所成的角(1)异面直线所成的角的范围:(0,]2π。

(2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。

两条异面直线,a b 垂直,记作a b ⊥。

(3)求异面直线所成的角的方法:(1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。

平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。

1:三棱柱111B A O OAB -,平面11O OBB ⊥平面OAB ,90,601=∠=∠AOB OB O ,且12,OB OO ==OA =B A 1与1AO 所成角的余弦。

2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。

一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0︒角。

直线和平面所成角范围:[0,2π]。

(2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。

(3)公式:已知平面α的斜线a 与α内一直线b 相交成θ角, 且a 与α相交成ϕ1角,a 在α上的射影c 与b 相交成ϕ2角, 则有θϕϕcos cos cos 21= 。

由(3)中的公式同样可以得到:平面的斜线和它在平面 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。

AB O 1A1B1O考点二:直线和平面所成的角例2. 如图,在三棱柱ABC A B C '''-中,四 边形A ABB ''是菱形,四边形BCC B ''是矩形,C B AB ''⊥,02,4,60C B AB ABB '''==∠=, 求AC '与平面BCC B ''所成角的正切。

立体几何之空间角

立体几何之空间角

立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。

) 异面直线所成角 1.022.π⎧⎛⎤ ⎪⎥⎝⎦⎪⎨⎧⎪⎨⎪⎩⎩范围:,平移相交(找平行线替换)求法:向量法⎥⎦⎤⎝⎛20π,) 直线与平面所成角 1.π⎧⎡⎤⎪⎢⎥⎣⎦⎪⎨⎧⎪⎨⎪⎩⎩范围0,2定义2.求法向量法⎥⎦⎤⎢⎣⎡2,0π nm nm⋅⋅=arcsin θ 若n m ⊥则α//a 或α⊂a 若n m //则α⊥a) 二面角[]1.0.2.π⎧⎪⎪⎪⎪⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩范围:定义法(即垂面法)作二面角平面角的方法:三垂线定理及逆定理垂线法直接法3.求二面角大小的方法射影面积法向量法θcos S S =' ☎S 为原斜面面积 S '为射影面积 θ为斜面与射影所成锐二面角的平面角✆当θ为锐角时,nm nm⋅⋅=arccos θ当θ为锐角时,nm nm ⋅⋅-=arccos πθ二、例题讲解在正三棱柱111ABC A B C -中,若1,AB 求1AB 与B C 1所成的角的大小。

解:法一:如图一所示,设O 为C B 1、B C 1的交点,D AC 为的中点,则所求角是DOB ∠。

设1,BB a AB ==则,于是在DOB ∆中,122211,,21,,2OB BC BD OD AB BD OB OD =======+ 即90,DOB ∠=︒∴ ︒=∠90DOB法二:取11A B 的中点O 为坐标原点,如图建立空间直角坐标系,xyz O -AB 21的长度单位,则由1AB =有((())((111111110,,,0,1,0,0,2,,,220,A B B C AB C B AB C B AB C B-∴==⋅=-=∴⊥如图二所示,在四棱锥P A B C D -中,底面A B C D 是一直角梯形,90,//,,2B A D A D B C A BB C a A D a ∠=︒===且PA ABCD ⊥底面,PD 与底面成30︒角。

立体几何复习空间角的求法

立体几何复习空间角的求法
2
(1)证明:DE∥平面 BCF; (2)证明:CF⊥平面 ABF; (3)当 AD=23时,求三棱锥 F-DEG 的体积 V . 的大 90.0 小为
(结论)B
O
D
作(找)---证(指出)---算---结论
C
练:正方体ABCD—A1B1C1D1中,
D1
求:
A1
(1) 二面角A-BD-A1的正切值;
(2) 二面角A1-AD-B的大小.
D
解由:正连方结体A的C,性交质BD可于知O,,连BD结⊥OOAA1 ,BD⊥AAA1
作(找)---证---指出---算---结论
在三角形中计算
(一)异面直线所成的角:范围是(0,π/2]. 平移直线成相交直线: (1)利用中位线,平行四边形; (2)补形法.
作(找)---证---指出---算---结论
关键
在三角形中计算
例1.正四面体S-ABC中,如
s
果E、F分别是SC、AB的
中点,那么异面直线EF和 E
• [例1] (2013年高考新课标全国卷Ⅱ)如图
所示,直三棱柱ABC-A1B1C1中,D,E分别是 AB,BB1的中点.
(1)证明:BC1∥平面 A1CD; (2)设 AA1=AC=CB=2,AB=2 2,求三棱锥 C-A1DE 的体积.
题型二 立体几何中的折叠问题
[例 3] (2013 年高考广东卷)如图(1),在边长为 1 的等边三角形 ABC 中,D,E 分别是 AB,AC 边上的 点,AD=AE,F 是 BC 的中点,AF 与 DE 交于点 G, 将△ABF 沿 AF 折起,得到如图(2)所示的三棱锥 A- BCF,其中 BC= 2.
SA所成的角=_______.

空间的角最新版

空间的角最新版

D
O
G
F E
C
B
R tAGOAAG11=AA9=G0
ABE GAO
即直线AE与D1F所成的角为直角(。 算)
例2.已知,在矩形ABCD中,AB=4,BC=3,E为DC边上的中点,
沿AE折成60º的二面角,分别求DE、DC与平面AC所成的角。
D
D
E
C
3
E2 C
3
A
4
B
A
4
B
二面角 D—AE—B 为60º
AE 13
131313
D
D 2 E 2C
E
C
3
M
F
N
A
4B
图(1)
MF
N
A
B
图(2)
在Rt∆DFM中,M F D M CO 60 S6 1 31 23 13
在Rt∆EFM中,EF M2EM2F 5
13
5
在Rt∆DFE中,Cos∠DEF=
EF 13 5 5 13 DE 2 2 13 26
直线与平面 所成的角
平面的一条斜线和它在这个平面内的
射影所成的锐角,叫做这条直线和这 个平面所成的角,特别地,若Lᅩα则 L与α所成的角是直角,若L//α或 L α,则L与α所成的角是的角。
二面角及它 的
平面角
从一条直线出发的两个半平面所组 成的图形叫做二面角。以二面角的 棱上任意一点为端点,在两个面内 分别作垂直于棱的两条射线,这两 条射线所成的角叫做二面角的平面 角。
在图(2)中∵DF=
D 2 E 2 F 2 2 (5)24 2 5 5 2 5 2 7 33 13 131313 13
33
在Rt∆DFC中, tanDCFDF 133 33 219 CF 73 73 73

立体几何微重点14 与空间角有关的最值问题

立体几何微重点14 与空间角有关的最值问题

立体几何微重点14与空间角有关的最值问题立体几何动态问题中,空间角的最值及范围问题是高考的常考题型,常与图形翻折、点线面等几何元素的变化有关,常用方法有几何法、函数(导数)法、不等式法等.主要是利用三角函数值比较及最小角定理(线面角是最小的线线角,二面角是最大的线面角)等求解.考点一空间角的大小比较例1(2022·嘉兴质检)已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,AA1=a,AB=b,且a>b,侧棱CC1上一点E满足CC1=3CE,设异面直线A1B与AD1,A1B与D1B1,AE 与D1B1所成的角分别为α,β,γ,则()A.α<β<γB.γ<β<αC.β<α<γD.α<γ<β规律方法(1)最小角定理:直线与平面所成角是直线与平面内所有直线所成角中最小的角(线面角是最小的线线角).(2)最大角定理:二面角是平面内的直线与另一个平面所成角的最大角(二面角是最大的线面角).跟踪演练1设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P -AC-B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β考点二空间角的最值例2(2022·绍兴模拟)已知正方体ABCD-A1B1C1D1的棱长为2,M,N分别是BC,B1C1的中点,点P是截面AB1C1D(包括边界)上的动点,D1P=343,2ME→=EN→,则EP与平面AB1C1D所成最大角的正切值为________.规律方法求空间角最值、范围的两种常用方法(1)利用空间角的定义及几何图形找到空间角,构造三角形,利用三角函数的比值构造函数求最值、范围.(2)建立空间坐标系,利用坐标运算求空间角的三角函数值,构造函数求最值、范围. 跟踪演练2 (2022·内江模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,M 为线段A 1D 的中点,N 为线段CD 1上的动点,则直线C 1D 与直线MN 所成角的正弦值的最小值为( )A.32B.66C.63D.64考点三空间角的范围例3 如图1,在平面多边形ABCDE 中,四边形ABCD 是正方形,△ADE 是正三角形.将△ADE 所在平面沿AD 折叠,使得点E 达到点S 的位置(如图2).若二面角S -AD -C 的平面角θ∈⎣⎡⎦⎤π6,π3,则异面直线AC 与SD 所成角的余弦值的取值范围是( )A.⎣⎡⎦⎤216,24 B.⎣⎡⎦⎤616,24 C.⎣⎢⎡⎦⎥⎤216,6+216 D.⎣⎡⎦⎤0,28 易错提醒 求空间角的范围时,要注意空间角自身的范围;利用坐标法求角时,要注意向量夹角与空间的关系.跟踪演练3 在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在棱CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎡⎦⎤33,1 B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,233 D.⎣⎡⎦⎤233,1。

立体几何空间成角问题【实用资料】

立体几何空间成角问题【实用资料】

1、异面直线所成的角
(3)计算。
根据异面直线所成角的定义,求异面直线所成角,就
是要将其变换成相交直线所成有角。其一般方法有:
(1)平移法:即根据定义,以“运动”的观点,用
Hale Waihona Puke “平移转化”的方法,使之成为相交直线所成的角。
具体地讲是选择“特殊点”作异面直线的平行线, 构作含异面直线所成(或其补角)的角的三角形,再求之。
B’
C’
BC’AC,BC’=26cm,求BC’与底面所成的角。
分析:欲求BC’与底面ABC所成的角,关键在于准确地找到BC’在
x
于(0º,9底0º]面, 上的射影。注意到ACAB和ACBC’,即AC平面ABC’,所以,
连例BC结2’:A=平A如12EB图面,C6,Cc的Am1斜BE,交求三,CB棱则’线C柱’平BAA与AB面1上底CC1—A面,EBA为所C’A成,B1C的C’故1’角CB与’。O点B的D为C1底所’所在面成求为底的一的角面等(角或上腰补。直的角角射),三影角形O,在直平角面边AABB=CA’C和=2c平m,面侧棱与底面成60º角A,BC’
线段在平面内的射影; 通常是从斜线上找特殊点, 作平面的垂线段,构作含所求线面角的三角形求之。
A’
例2:如图,斜三棱柱ABC—A’B’C’的底面为 B’
C’
一等腰直角三角形,直角边AB=AC=2cm,侧棱与底 面成60º角,BC’AC,BC’=26cm,求BC’与底面
所分成析的:角。欲求BC’与底面ABC所成的角,关键
AC,
O
x
解: , , 平面 (1)定义法: 根据定义作出二面角的平面角;
AC AB AC BC’ 这实为异面直线上两点的距离公式,但这里 不局限
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中小学1对1课外辅导专家
武汉龙文教育学科辅导讲义
授课对象 冯芷茜 授课教师 徐江鸣 授课时间 2013-9-19 授课题目 立体几何中的空间角 课 型 复习课
使用教具
讲义、纸、笔
教学目标 熟悉高考中立体几何题型的一般解法
教学重点和难点
重点:运用空间直角坐标系的方法解决立体几何问题 难点:二面角,线面角的空间想象能力 参考教材 人教版高中教材 高考考纲 历年高考真题
教学流程及授课详案
【知识讲解】
空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)
(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。

异面直线所成角的范围:o
o
900≤<α;
注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。

有的还可以
通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。

(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o
0;
②线面垂直:线面所成的角为o
90;
③斜线与平面所成的角:范围o
o
900<<α;即也就是斜线与它在平面内的射影所成的角。

(3)二面角:关键是找出二面角的平面角。

方法有:①定义法;②三垂线定理法;③垂面法;
注意:还可以用射影法:S
S '
cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封
闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。

一般用于解选择、填空题。

时 间 分

及 备 注
【题海拾贝】
例1在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.
EF平面P AD;
(1)求证://
(2)当平面PCD与平面ABCD成多大二面角时,
EF平面PCD?
直线
例2已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a,
F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求异面直线AC,BE所成角余弦值;
(Ⅲ)求面ACD和面BCE所成二面角的大小.
例3如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (Ⅰ)证明:AC//平面PMD ;
(Ⅱ)求直线BD 与平面PCD 所成的角的大小;
(Ⅲ)求平面PMD 与平面ABCD 所成的二面角(锐角)的大小。

例4已知斜三棱柱111ABC A B C -,90BCA ∠=

2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥。

(I )求证:1AC ⊥平面1A BC ; (II )求1CC 到平面1A AB 的距离; (III )求二面角1A A B C --的大小。

例5(2007年4月济南市)如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的
平面互相垂直且DE=2,ED//AF 且∠DAF =90°。

(1)求BD 和面BEF 所成的角的余弦;
(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF
的比值;若不存在,说明理由。

例6(四川省成都市2007届高中毕业班第三次诊断性检测)如图,四棱锥P ABCD -中,侧面PDC
是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=
的菱形,M 为PB 的中点.
(Ⅰ)求PA 与底面ABCD 所成角的大小; (Ⅱ)求证:PA ⊥平面CDM ; (Ⅲ)求二面角D MC B --的余弦值.
【课堂练习】
1.(2007武汉3月)如图所示,四棱锥P —ABCD 中,
AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。

(1)求证:BM ∥平面PAD ;
(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。

2. 如图所示,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。

(1)试确定PB
P A 1的值,使得PC ⊥AB ;
(2)若3
21=PB
P A ,求二面角P —AB —C 的大小;
(3)在(2)条件下,求C 1到平面PAC 的距离。

3. 如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1. (I )求证:A 1C //平面AB 1D ;
(II)求二面角B—AB1—D的大小;
(III)求点c到平面AB1D的距离.
【课后总结】
家长签名:。

相关文档
最新文档