第六章 磁路与变压器

合集下载

电工与电子技术 第6章 磁路和变压器

电工与电子技术 第6章 磁路和变压器
定的+Hm和-Hm 的幅度内多次反复交变磁化。当电流为 0 (即 H=0) 到,B 并未回到 0, 称为剩磁,剩磁的强弱用剩磁感应强度±Br 表示。使 B为零的磁场强度±Hc 称为矫顽力。 磁感应强度 B 的变化落后磁场强度 H 变化的性质称为磁滞特性。
B
Bm H 减小
Br
H 增加
- Hm
- Hc
磁饱和
加,称为磁饱和。
图中的 Bo-H 为真空状态下 B-H 曲线,以示比较。μ-H 曲线为磁导率随磁场强
度 H 变化的情况,如图6-2所示。
O
B0 - H 曲线
H
图6-2 B-H、μ-H 曲线
第 6 章 | 磁路和变压器
6.1 磁路的概念和基本定律
3.磁滞特性 当铁心线圈通过交流电时,铁心受到交变磁化,将一块尚未磁化的铁磁材料,放在选
l 直流磁路
磁通恒定
图6-5 直流磁路
第 6 章 | 磁路和变压器
6.2 直流和交流磁路
6.2.2 交流磁路
交流电流励磁的磁路称为交流磁路,交流状态下励磁铁心线圈又称为交流铁心线
圈。交变电流变化在线圈中产生主磁通 Φ 和漏磁通 Φσ,分别产生主感应电动势 e 和
漏感应电动势 eσ,如图6-6所示。主、漏感应电动势的表达式分别为:
第6章
磁路和变压器
6.1 磁路的概念和基本定律 6.2 直流和交流磁路 6.3 变压器
磁路和变压器
本章学习磁路和变压器,磁路是基础,变压器是其应用。包括磁性 材料、主要物理量、磁路的概念和基本定律。交流磁路的分析,包括电磁 关系、电压和电流、功率。变压器的结构、工作原理、特性、效率和功能。
N1
N2
6.2.1 直流磁路
励磁:为利用电磁感应原理工作的电气设备(如发动机等)提供工作磁场称为励磁,

电工技术-第6章变压器

电工技术-第6章变压器

E 2 R2 I2 E σ2 U 2 R2 I2 j X 2 I2 U 2
u+– 1e+–σe+–11
U 2为二次绕组的端电压。
N1
i2
+e2 –+
+ u2
e–2 –
N2
变压器空载时:
I2 0 , U 2 U 20 E2 4.44 fΦm N 2
U1 E1 U1 E1 4.44 fΦm N1
E10 E10m 2fN 1Φ0m
2
2
E10 4.44 fN 1Φ0m
同理: e20 E20m sin(t 900 )
E20 4.44 fN 2Φ0m
6.2 变压器的工作原理
(2) 从电路分析得到电压电流关系式
I1 R1
变压器一次侧等效电路如图
+
––
U 1 R1 I1 E σ1 E 1 R1 I1 j X1 I1 E 1
一次、二次绕组互不相连,能量的传递靠磁耦合。
6.2 变压器的工作原理
6.2.1 功率传输
P1:一次电源输出功率即变压器的输入功率。 P2变压器的输出功率即传递给负载。
通常 P1 P2
变压器传输电能过程有铜损和铁损,降低铜损和 铁损,变压器的输出功率会大大增加。 即 P2 P1
6.2 变压器的工作原理
空载磁势
或: i1N1 i0 N1 i2 N2
1.提供产生m的磁势
2.提供用于补偿 作用的磁势
一般情况下: I0 (2~3)%I1N 很小可忽略。
所以 i1N1 i2 N2 或 I1N1 I2 N 2
所以 I1N1 I2 N2
I1 N2 1 I2 N1 K
结论:一次、二次侧电流与匝数成反比。

第6章-磁路和变压器

第6章-磁路和变压器
非磁性材料没有磁畴的结构,所以不具有磁化特性。
(a)无外场,磁畴排列杂乱无章。
(b)在外场作用下,磁畴排列逐 渐进入有序化。
磁性物质的磁化示意图
2. 磁饱和性
磁性物质因磁化产生的磁场是不会无限制增加的,当外磁场(或激 励磁场的电流)增大到一定程度时,全部磁畴都会转向与外场方向 一致。这时的磁感应强度将达到饱和值。
IN lx
I
其中N 为线圈的匝数;Hx 是半径为 x 处的磁场强度 。
乘积 I N 是产生磁通的原因,称为磁动势,用F 表示。
F IN 单位是安培
4. 磁导率
磁导率μ是表示磁场空间 媒质 磁性质的物理量,是物质导磁能力 的标志量。
前面已导出环形线圈的磁场强度 H ,可得磁感应强度 B 为
Bx
磁导率的单位
0.39
A
可见由于所用铁心材料不同,要得到相同的磁感应强度,则所需要的磁动势或励
磁电流是不同的。因此,采用高磁导率的铁心材料可使线圈的用铜量大为降低。
6.2 交流铁心线圈电路
铁心线圈分为两种:
1.直流铁心线圈电路
2.交流铁心线圈电路
直流铁心线圈通直流来励磁(如直流电机的励磁线圈、电磁吸盘 及各种直流电器的线圈)。因为励磁是直流,则产生的磁通是恒定的, 在线圈和铁心中不会感应出电动势来,在一定的电压U下,线圈电流I 只与线圈的R有关,P也只与I2R有关,所以分析直流铁心线圈比较简 单。本课不讨论。
t
qv
Fmax
F
I
B
B
l
B
l
I
S
N
同理,
vB F
三个矢量也构成右旋系关系。
如洛仑兹力公式所表示
F q v B

第6章磁路与变压器精品PPT课件

第6章磁路与变压器精品PPT课件

I
长度和截面积的几段组成,即磁
路由磁阻不同的几段串联而成 。
如图6.2.2所示
μ0 s0 = s1
δ
μ2 l2 s2
则 N H I1 l1 H 2 l2 (H ) l 图6.2.2 继电器的磁路
称为磁路各 段的磁压降
1. 串联磁路(给定Φ,求NI)
串联磁路:磁路由多段不同材料组成一个回路,中间无分叉 根据磁路的连续性原理,串联磁路中各段的磁通Φ都是相同。
3.磁场强度H
定义: 介质中某点的磁感应强度 B 与介质磁导率 之比。
大小: H B
单位: 安培/米(A/m)
4.磁导率μ
定义: 表示磁场媒质磁性的物理量,衡量物质的导磁能力。
大小: B
H 单位: 亨/米(H/m)
真空的磁导率 为0 常数,
0 4107亨/米
相对磁导率r
定义: 任一种物质的磁导率 和真空的磁导率0的比值。
(2) H226A0/m,
I2H N 2l23 6 0 0 0 .40A 50.3A 9
可见由于所用铁心材料的不同,要得到同样的磁感应强度, 则所需要的磁通势或励磁电流的大小相差就很悬殊.因此, 采用磁导率高的铁心材料,可使线圈的用铜量大为降低.
380,铁心中的磁感应强度为0.9T,磁路的平均长度 45cm
试求:(1)铁心材料为铸铁时线圈中的电流; (2)铁心材料为硅钢片时线圈中的电流。
解: 首先从图6.1.5中的磁化曲线查出磁场强度H,然后
根据式(6.2.1)算出电流
(1) H190A 0/m 0, I1H N 1l90 30 0 0.40 0A 51.5 3A
N
If + –
S
S
N

第六章变压器

第六章变压器

Sh ia iJ
. .
.
Zh ua ng Ra il wa yI
(6 − 10)
(6 − 11)
第六章 变压器
图 6-5 变压器的负载运行
I 1 N1 + I 2 N 2 ≈ I 0 N1
.
这就是变压器中的磁势平衡方程式。变压器的空载电流i0是励磁用的。由于铁心的磁导率高,空 f 载电流是很小的。它的有效值在原绕组额定电流的10%以内,因此i0N1 与i1N1相比,常可忽略。于是式 (6-10)可写成
.
.
= − E1 + I 0 ( R1 + jX σ 1 ) = − E 1 + I 0 Zσ 1

.
Zh
. .
.
ua
.
ng
Ra il
(6 − 8)
U 1 ≈ − E1
.
.
wa yI
U 20 = E 2
.
ns ti tu te
9
第六章 变压器
5、变比:
U1 E1 4.44 N1 f Φ m N1 ≈ = = =K U 20 E2 4.44 N 2 f Φ m N 2
图 6-1 心式变压器 (a) 单相心式变压器 (b)三相心式变压器
Sh
4
ia iJ
Zh
ua
ng
Ra
第六章 变压器
il wa
图 6-2 壳式变压器 (a)单相壳式变压器 (b)三相壳式变压器
yI ns ti tu te
一、变压器的结构 主要由铁心、绕组、绝缘及其他一些元部件构成。 铁心 绕组 绝缘 铁心:铁心都是由厚度为0.35—0.5mm的硅钢片迭装而成,硅钢片上涂有绝缘漆。 铁心 (据报道,美国的部分电力变压器已采用0.2mm以下的冷轧钢片。俄罗斯在中高频电机中 采用0.1mm的硅钢片。 绕组:绕组用导电性能好的漆包圆铜线绕制而成,为绝缘方便,低压绕组紧靠铁心, 绕组 高压绕组则套在低压绕组的外边,两个绕组之间留有油道,一方面作为绕组间绝缘,另一 方面冷却绕组。

第6章 磁路与变压器电路 6.1 磁场的基本物理量与铁磁材料6.2 磁路及磁路定律6.3 自感与互

第6章  磁路与变压器电路 6.1 磁场的基本物理量与铁磁材料6.2 磁路及磁路定律6.3 自感与互

Hl I
2.基尔霍夫第一定律
(6-17)
对于包围磁路某一部分的封闭面来说,由于磁通是连续的,所以穿过 该封闭面的所有磁通的代数和等于零,即
0
这就是磁路的基尔霍夫第一定律。
(6-18)
图6-7所示为一分支磁路的示意图,分支汇集处的c点和d点称为磁路 的节点,连在节点之间的分支磁路称为支路。在线圈N1和N2中分别 通过电流i1和i2,3条支路的磁通分别为Ф1、Ф2和Ф3,磁通与电流方 向如图中所示,他们之间的关系符合右手螺旋关系。
第6章 磁路与变压器电路
6.1 磁场的基本物理量与铁磁材料 6.2 磁路及磁路定律 6.3 自感与互感 6.4 变压器的结构及工作原理 6.5 变压器的工作特性 6.6 其它变压器
6.1 磁场的基本物理量与铁磁材料
6.1.1 磁场的基本知识
我国是世界上最早发现并且应用磁现象的国家之一,早在战国时期人 们就已经发现了磁铁矿石能够吸引铁片的现象。我们把具有吸引铁、 镍、钴等物质的性质叫做磁性,又把具有磁性的物体称为磁体。
表示。磁阻R m 的大小与磁路的长度l成正比,与磁路的横截面积S成反
比,并与组成磁路材料的磁导率μ有关,即
l Rm S
(6-14)
由于铁磁性材料的磁导率 比空气的磁导率 0 大得多,所以根据上
面公式可知,在磁路长度和横截面积相同的情况下,铁磁性材料的磁
阻比空气的磁阻小得多。
上一页 下一页 返回
6.2 磁路及磁路定律
(3)磁位差 和电场内存在电位差一样,在磁场中也有一个被称作磁位 差的物理量。我们把磁场强度H和沿磁力场前强度方向一段长度l的乘 积称为该长度之间的磁位差,用字母U m 表示,其单位是安(A)。在均 匀磁场中可以得到以下关系式

汽车电子电工技术-磁路和变压器

汽车电子电工技术-磁路和变压器

E
Em 2
2πfNΦm 2
4.44 fNΦm
由于线圈电阻 R 和感抗X(或漏磁通)较小, 其
电压降也较小,与主磁电动势 E 相比可忽略,故有
U E
U E 4.44 fNm 4.44 fNBmS (V)
式中:Bm是铁心中磁感应强度的最大值,单位为T; S 是铁心截面积,单位为m2。
3.2.3 功率损耗
e -N d dt
3.1.3 磁路的基本定律
(2)自感和互感
自感:当线圈中电流变化时,便在线圈周围产生 变化的磁通,这个变化的磁通穿过线圈本身时,线 圈中便产生感应电动势。这种由于线圈本身电流变 化而产生感应电动势的现象称为自感,所产生的电 动势称为自感电动势。
d d
eL -N dt = dt
(a)整块铁块 (b)叠层铁芯
3.1.2 磁性材料的磁性能
3.涡流损耗 涡流的存在会使电气设备的铁芯发热而消耗电
功率,称为涡流损耗,这对电气设备是不利的。 为了减小涡流损耗,电气设备的铁芯一般都不
用整体的铁芯,而用硅钢片叠成。硅钢片由含硅 2.5%的硅钢轧制而成,其厚度为0.35~1mm。硅钢 片表面涂有绝缘层,使片间相互绝缘。图(b)所示 为由硅钢片压制成的线圈铁芯,使得涡流大大减小。
U RI ( E σ ) ( E ) RI jXσ I ( E )
E jX I X L 称为漏磁感抗
3.2.2 电压电流关系
设主磁通 msin t, 则
e
N
d
dt
N
d dt
( msin t )
N mcos t
2πfNmsin( t 90) Emsin( t 90)
有效值
(a)磁场中通电导体所受作用力 (b)左手定则

磁路与变压器PPT课件

磁路与变压器PPT课件
磁滞回线较窄,比如 铸铁、铸钢等。一般 用来制造变压器、电 机等的铁芯。
(2)硬磁材料:
磁滞回线较宽,比 如碳钢等。
一般用来制造永久 磁铁。
(3)矩磁材料:
磁滞回线接近矩形, 比如铁氧体材料。一 般用于计算机或控制 系统中的记忆元件。
B
B
B
H
H
H
磁路与变压器
§3 磁路及磁路的基本定律
1 磁路
i
u
: 主磁通 :漏磁通
2 磁路的基本定律 2.1 安培环路定律(全电流定律)
I2 I1
I3
安培环路定律指出:在磁场 中,任取一闭合路径,并指定其
方向,沿此闭合路径的方向对磁
H 场强度H 的矢量进行线积分,则
线积分值等于通过该闭合路径的
所有电流的代数和。
H d l I I1 I2 I3
若电流方向和磁场强度H 的方向之间符合右手螺旋关
ninihl整理ppt17对于均匀磁路称为磁阻22磁路欧姆定律nihl整理ppt18磁路电路磁动势fni电动势e电流i磁压降hl电压降u磁通密度b磁阻电阻23磁路与电路的比较整理ppt19磁路电路磁路欧姆定律电路欧姆定律安培环路定律基尔霍夫电压定律磁通的连续性基尔霍夫电流定律hlni整理ppt20磁路欧姆定律安培环路定律磁通的连续性分别与电路欧姆定律基尔霍夫电压定律基尔霍夫电流定律具有相同的形式
的单位 韦伯(Wb) 1T=1Wb/m2
通常用磁力线来描述磁场,使磁力线的疏密反 映磁感应强度的大小。显然,通过某一面积的磁力 线疏密也反映了通过该面积的磁通的大小。
由于磁通的连续性,磁磁路与力变压线器 总是闭合的空间曲线。
3 磁导率
磁导率是一个用来表示磁场媒质磁性的物理量,也

第六章 磁路与变压器

第六章 磁路与变压器
IN = H 1l1 + H 2 l 2 + L + H n l n

IN = ∑ Hl = ∑ U m
四、应用举例: 2 [1]匀强磁场的磁感应强度为 5 × 10− T,媒介质是空气,与磁场方向平 行的线段长 10cm,求这一线段上的磁位差。 解:
投影
[2]一空心环形螺旋线圈,其平均长度为 30cm,横截面积为 10cm ,匝数 3 等于 10 匝,线圈中电流为 10A,求线圈磁阻,磁动势及磁通。 解:
永久性磁铁就是利用剩磁 很大的铁磁性物质制成 的。 矫顽磁力的大小反 映了铁磁性物质保存剩磁 的能力
6.2 线圈的互感[1] 教学目的:
理解互感现象、互感电动势的概念 掌握互感系数及同名端的概念 熟悉互感现象的应用 授课形式 讲授 授课对象
教学重点:
互感现象及互感系数及同名端的概念 教学难点:互感电动势、同名端的概念
结合实际使用的变压器当 输入线圈有电流输入时, 输出带负载时有电流输出 叙述互感现象 投影下图
Ψ 21
i1
=
Ψ12
i2
= M 12
在国际单位制中,互感 M 的单位为亨利(H) 三、耦合系数 K:[1]物理意义及定义:耦合系数用来说明两线圈间的 耦合程度,定义为
互感 M 取决于两个耦合线 圈的几何尺寸、匝数、相 对位置和媒介质。当媒介 质是非铁磁性物质时, M 为常数
2
五、学生课堂练习: 5 求在长度为 80CM,截面直径为 4CM 的空心螺旋线圈中产生 5 × 10− WB 的磁通所需的磁动势 解:分析根据: Rm =
l
µS
求出磁阻
Em 求出磁动势 Rm l
利用 Φ = 总结:
通过学习要正确理解磁路及磁阻的概念,会利用 Rm =

磁路与变压器资料课件

磁路与变压器资料课件
变压器工作原理
变压器是利用电磁感应原理实现电压、电流和阻抗变 换的电气设备。当交流电压施加在变压器的一次绕组 时,产生交变磁通,该磁通穿过二次绕组,产生感应 电动势。根据电磁感应定律,感应电动势的大小与磁 通的变化率成正比。由于一次绕组和二次绕组匝数不 同,因此一次绕组和二次绕组上的感应电动势也不同 ,从而实现电压的变换。
02
磁路设计要考虑材料的 成本和可获得性,以及 材料的物理和机械性能 。
03
磁路设计要尽可能减小 磁滞、涡流和磁饱和等 效应,以提高变压器的 效率。
04
磁路设计要考虑散热问 题,以保证变压器在正 常工作温度下运行。
04
变压器性能分析
变压器效率与损耗
变压器效率
变压器效率是指在正常工作条件下,其输出功率与输入功率的比值,是衡量变压 器性能的重要指标。
磁感应
描述磁场对通电导体作用的物理量, 其大小与导体在磁场中的长度、电流 大小及磁场强度有关。
磁通
穿过某一面积的磁力线总数,反映了 磁场在某一区域的强弱。
磁导率与磁阻
磁导率
描述材料导磁性能的物理量,其值越大表示导磁性能越好。
磁阻
反映磁场传播速度的物理量,与磁导率成反比关系。
02
变压器原理
变压器工作原理
感谢观看
变压器损耗
变压器在运行过程中会产生铁损和铜损,铁损主要是由于磁滞和涡流现象引起的 ,而铜损则是由电流通过绕组时产生的电阻损耗。
变压器绝缘与散热
变压器绝缘
变压器绝缘是保证变压器正常运行的重要条件,主要分为内 绝缘和外绝缘,内绝缘是变压器油、纸、纸板等绝缘材料, 外绝缘则是变压器外部的绝缘套管和绝缘子等。
变压器设计制造中的挑战与解决方案

《电工电子技术》磁路与变压器课件

《电工电子技术》磁路与变压器课件

B
bc段是磁化曲线的膝部
c
b
C点以后是饱和段
ab段是上升段
a H
0 起始磁化曲线
起始磁化 曲线反映 了什么?
oa段是线性段
起始磁化曲线的ab段反映了铁磁材料的 高导磁性;c点以后说明铁磁材料具有 磁饱和性。
铁磁性材料具有高导磁性、磁饱和性、磁滞性和剩磁性。
高导磁性 磁导率可达102~104,由铁磁材料组成的 磁路磁阻很小,在线圈中通入较小的电流即可获得较 大的磁通。
把变压比和变流比公式代入可得: 改接成 ZL 4扬声器后
Z1
U1 I1
kU 2 I2
k
k2
U2 I2
k2ZL
k
'2
6400 4
1600,则k
'
40
所以: N 2
N1
k'
600 40
15匝
例:设交流信号源电压U 100 V ,内阻Ro 800 Ω,负载RL 8 Ω。 (1)将负载直接接至信号源,负载获得多大功率?
(2)变压器的负载运行与变换电流作用
i1 A X u1
Φ
N1N2
i2 S a
u2
x
|ZL|
变压器在能量传递的 过程中损耗甚小,因此:
P1 P2 或:U1I1 U 2 I 2
变压器的一次侧接电源,二次侧与 负载接通,这种运行状态称为负载运行。
变压器负载运行时由于副边电流存 在的去磁作用,因此原边电流由 i10增 大至i1。原边磁动势增加的数值恰好等 于二次侧负载所需要的磁动势。即:
UI
220 2
阻抗: Z
Ro
jX o
U I
220 2
83.5

第6章变压器-

第6章变压器-

第6章变压器** 三相组式和芯式变压器** 三相组式变压器三相组式变压器由3台容量、变比等基本参数完全相同的单相变压器按三相连接方式连接组成。

其示意图如图6.1.1,此图的原、副边均接成星形,也可接成其它接法。

三相组式变压器的特点是具有3个独立铁心;三相磁路互不关联;三相电压对称时,三相励磁电流和磁通也对称。

** 三相芯式变压器三相芯式变压器的磁路系统是由组式变压器演变过来的,其演变过程如图6.1.2所示。

当我们把三台单相变压器的一个边(即铁心柱)贴合在一起,各相磁路就主要通过未贴合的一个柱体,如图6.1.2(a)所示。

这时,在中央公共铁心柱内的磁通为三相磁通之和,即ΦΣ=ΦA+ΦB+ΦC。

当三相变压器正常运行(即三相对称)时,合成磁通ΦΣ=0,这样公共铁心柱内的磁通也就为零。

因此中央公共铁心柱可以省去,则三相变压器的磁路系统如图6.1.2(b)所示。

为了工艺制造方便起见,我们把3相铁心柱排在一个平面上,于是就得到了目前广泛采用的如图6.1.2(c)所示的三相芯式变压器的磁路系统。

图6.1.2 三相芯式变压器的铁心演变过程(a)3个铁心柱贴合(b)中央公共铁心柱取消(c)三相芯式铁心三相芯式变压器的磁路系统是不对称的,中间一相的磁路比两边要短些。

因此,在对称情况下(即ΦA=ΦB=ΦC时),中间相的励磁电流就比另外两相的小,但由于励磁电流在变压器负载运行时所占比重较小,故这对变压器实际运行不会带来多大影响。

比较芯式和组式三相变压器可以知道,在相同的额定容量下,三相芯式变压器具有省材料、效率高、经济等优点;但组式变压器中每一台单相变压器却比一台三相芯式变压器体积小,重量轻,便于运输。

对于一些超高电压、特大容量的三相变压器,当制造及运输发生困难时,一般采用三相组式变压器。

** 三相变压器的联结组三相变压器的原边和副边都分别有A,B,C 三相绕组,它们之间到底如何联法,对变压器图6.1.1 三相组式变压器的运行性能有很大的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N匝 x
Hx S I
9
即有: Φ
NI l
F Rm
S
式中:F=NI 为磁通势,由其产生磁通;
Rm 称为磁阻,表示磁路对磁通的阻碍作用; l 为磁路的平均长度;
S 为磁路的截面积。
2. 磁路的欧姆定律
若某磁路的磁通为,磁通势为F ,磁阻为Rm,则
F
Rm
此即磁路的欧姆定律。
10
3. 磁路与电路的比较 磁路
第6章 磁路与变压器
1
6.1 磁场的基本知识
6.1.1 磁感应强度
磁感应强度B : 表示磁场内某点磁场强弱和方向的物理量。
磁感应强度B的方向: 与电流的方向之间符合右手螺旋定则。
磁感应强度B的单位: 特斯拉(T),1T = 1Wb/m2
均匀磁场: 各点磁感应强度大小相等,方向相同的 磁场,也称匀强磁场。
磁性物质不同,其磁滞回 线和磁化曲线也不同。
磁滞回线
7
6.2 直流磁路及分析计算方法
6.2.1 磁路的概念
在电机、变压器及各种铁磁元件中常用磁性材料 做成一定形状的铁心。铁心的磁导率比周围空气或 其它物质的磁导率高的多,磁通的绝大部分经过铁 心形成闭合通路,磁通的闭合路径称为磁路。
N
If + –
S
6.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 H B

磁场强度H的单位 :安培/米(A/m)
3
6.1.4 磁导率
磁导率 :表示磁场媒质磁性的物理量,衡量物质
的导磁能力。
磁导率 的单位:亨/米(H/m)
真空的磁导率为常数,用 0表示,有:
0 4π 107 H/m
磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
5
6.1.6 磁饱和性
磁性物质由于磁化所产生的磁化磁场不会随着 外磁场的增强而无限的增强。当外磁场增大到一定 程度时,磁性物质的全部磁畴的磁场方向都转向与 外部磁场方向一致,磁化磁场的磁感应强度将趋向 某一定值。如图。
N
300
(2)查硅钢片材料的磁化曲线,
当 B=0.9 T 时,磁场强度 H=260 A/m,则
I Hl 260 0.45 0.39 A
N
300
结论:如果要得到相等的磁感应强度,采用磁导率
高的铁心材料,可以降低线圈电流,6.3.1 电磁关系
i
主磁通 :通过铁心闭合的 +
B1

S1
,
B2

S2
,
... ,
Bn

Sn
(2) 求各段磁场强度 Hi
根据各段磁路材料的磁化曲线 Bi=f ( Hi) ,求B1,
B2 ,……相对应的 H1, H2 ,……。
(3) 计算各段磁路的磁压降 (Hi li )
(4) 根据下式求出磁通势( NI )
n
NI Hili i1
– e
磁通。
u
漏磁通:经过空气或其 –
e–++
它非导磁媒质闭合的磁通。 N
磁通势F
磁通
磁感应强度B
磁阻 R m l
S
I
N

F NI
Rm
l
S
电路
电动势 E 电流 I 电流密度 J 电阻 R l
S
I
+
_E
R
I E R
E l
S
11
4. 磁路分析的特点 (1)在处理电路时不涉及电场问题,在处理磁路时离不 开磁场的概念; (2)在处理电路时一般可以不考虑漏电流,在处理磁路 时一般都要考虑漏磁通; (3)磁路欧姆定律和电路欧姆定律只是在形式上相似。
2
6.1.2 磁通
磁通 :穿过垂直于B方向的面积S中的磁力线总数。 在均匀磁场中 = B S 或 B= /S
说明: 如果不是均匀磁场,则取B的平均值。 磁感应强度B在数值上可以看成为与磁场方向垂直
的单位面积所通过的磁通,故又称磁通密度。
磁通 的单位:韦[伯](Wb) 1Wb =1V·s
基本公式:
设磁路由不同材料或不同长度和截面积的 n 段组 成,则基本公式为:
NI H 1l 1 H 2 l 2 H n l n
n

NI Hili
i 1
13
基本步骤: (由磁通 求磁通势F=NI )
(1) 求各段磁感应强度 Bi 各段磁路截面积不同,通过同一磁通 ,故有:
相对磁导率 r:
任一种物质的磁导率 和真空的磁导率0的比值。
r

0

H 0 H

B B0
4
磁性材料主要指铁、镍、钴及其合金等。
6.1.5 高导磁性
磁性材料的磁导率通常都很高,即 r 1 (如坡莫 合金,其 r 可达 2105 ) 。
磁性材料能被强烈的磁化,具有很高的导磁性能。
S
N
直流电机的磁路
交流接触器的磁路
8
6.2.2 磁路的欧姆定律
磁路的欧姆定律是分析磁路的基本定律
1. 引例 环形线圈如图,其中媒质是均 匀的,磁导率
为, 试计算线圈内部 的磁通 。
解:根据安培环路定律,有
Hdl I
设磁路的平均长度为 l,则有 NI Hl B l l S
由于 不是常数,其随励磁电流而变,磁路欧姆定律
不能直接用来计算,只能用于定性分析; (4)在电路中,当 E=0时,I=0;但在磁路中,由于有
剩磁,当 F=0 时, 不为零。
12
6.2.3 磁路的分析计算
主要任务: 预先选定磁性材料中的磁通 (或磁感应 强度),按照所定的磁通、磁路各段的尺寸和材料, 求产生预定的磁通所需要的磁通势F=NI , 确定线 圈匝数和励磁电流。
B
b •
B
a •
O
磁化曲线 H
6
6.1.7 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后于 外磁场变化的性质。
磁性材料在交变磁场中反复磁化,其B-H关系曲 线是一条回形闭合曲线,称为磁滞回线。 B
剩磁感应强度Br (剩磁) :
Br•
当线圈中电流减小到零(H=0)
时,铁心中的磁感应强度。
•O
H
14
例1:一个具有闭合的均匀的铁心线圈,其匝数为300,
铁心中的磁感应强度为 0.9T,磁路的平均长度为
45cm,试求: (1)铁心材料为铸铁时线圈中的电
流; (2)铁心材料为硅钢片时线圈中的电流。
解:(1)查铸铁材料的磁化曲线, 当 B=0.9 T 时,磁场强度 H=9000 A/m,则
I Hl 9000 0.45 13.5 A
相关文档
最新文档