【推荐下载】初中奥数代数式同余式练习题-word范文 (2页)
代数式专题练习(word版
一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
代数式练习题(打印版)
代数式练习题(打印版)### 代数式练习题(打印版)#### 一、基础代数式运算1. 代入法求解代数式给定代数式:\( ax + b \),若 \( a = 2 \),\( b = 3 \),求代数式的值。
2. 合并同类项合并下列代数式中的同类项:\( 5x^2 + 3x - 2x^2 + x \)。
3. 代数式的简化简化代数式:\( 4y^2 - 3y + 2 - y^2 + 5y \)。
4. 多项式乘法计算多项式 \( (x + 2)(x - 3) \) 的乘积。
5. 多项式除法将多项式 \( 3x^3 - 6x^2 + 5x - 2 \) 除以 \( x - 1 \)。
#### 二、代数式的应用6. 平均数问题某班级有 25 名学生,平均分是 82 分,求总分。
7. 增长率问题如果某产品的初始价格是 100 元,每年增长 5%,求两年后的售价。
8. 速度与时间问题如果某人以 5 公里/小时的速度行走,求他 3 小时后走了多远。
9. 面积与周长问题一个矩形的长是 10 米,宽是 5 米,求其面积和周长。
10. 利润与成本问题某商品的成本是 50 元,售价是 80 元,求利润率。
#### 三、代数式的扩展11. 因式分解将代数式 \( x^2 - 9 \) 进行因式分解。
12. 配方法使用配方法将代数式 \( x^2 + 6x + 5 \) 转化为完全平方形式。
13. 代数式的不等式解不等式 \( 3x + 2 > 11 \)。
14. 代数式的方程解方程 \( 2x^2 - 5x + 1 = 0 \)。
15. 代数式的函数图像描述函数 \( y = x^2 \) 在 \( x = 0 \) 时的图像特征。
#### 四、综合应用题16. 代数式在几何中的应用一个直角三角形的两条直角边分别为 \( a \) 和 \( b \),求斜边的长度。
17. 代数式在物理中的应用如果一个物体从静止开始以匀加速运动,加速度是 \( 2 \) 米/秒²,求 3 秒后的速度。
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。
代数式是代数中的基本概念之一,它由数、字母和运算符号组成。
通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。
下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。
一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。
答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。
2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。
答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。
二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。
答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。
初中数学专项练习题:代数式(二)(Word版,含答案)
初中数学专项练习题:代数式(二)姓名:__________ 班级:__________学号:__________一、单选题1.如图,点Q在线段AP上,其中PQ=10,第一次分别取线段AP和AQ的中点P1,Q1得到线段P1Q1;再分别取线段AP1和AQ1的中点P2,Q2得到线段P2Q2;第三次分别取线段AP2和AQ2的中点P3,Q3得到线段P3Q3;连续这样操作11次,则每次的两个中点所形成的所有线段之和P1Q1+ P2Q2+P3Q3+⋯⋯+P11Q11=()A. 10−10210 B. 10−10211C. 10+10210D. 10+102112.如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A. (10,-5)B. (10,-1)C. (10,0)D. (10,1)3.设a1=1+112+122,a2=1+122+132,a3=1+132+142,……,a n=1+1n2+1(n+1)2,其中n为正整数,则√a1+√a2+√a3+⋯+√a2020的值是()A. 202020192020 B. 202020202021C. 202120202021D. 2021202120224.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 85.观察下面一列数:−1,2,−3,4,−5,6,−7…将这列数排成下列形式:记a ij为第i行第j列的数,如a23=4,那么a98是()A. 56B. 72C. 88D. 986.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得72019的结果的个位数字是()A. 7B. 9C. 1D. 37.下面图形都是由同样大小的矩形按一定的规律组成的,其中第(1)个图形中共有3个矩形,第(2)个图形中有5个矩形……按此规律,第(8)个图形中矩形的个数是()A. 15B. 17C. 19D. 21 8.1993+9319的个位数字是( )A. 2B. 4C. 6D. 89.如图,如果在正方形中画 1 条纵线和 1 条横线,便把正方形分成 4 部分(如图①);如果在正方形中画 2 条纵线和 2 条横线,便把正方形分成 9 部分(如图②);如果在正方形中画 3 条纵线和 3 条横线,便把正方形分成 16 部分(如图③...如果在正方形中画 9 条纵线和 9 条横线.便把正方形分成( )部分A. 72B. 81C. 100D. 12110.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为 12 的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的 12 )后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n , 则P n -P n-1的值为( )A. (14)n−1B. (14)nC. (12)n−1D. (12)n二、填空题11.将边长为1的正方形纸片按下图所示方法进行对折,第1次对折后得到的图形面积为S 1 , 第2次对折后得到的图形面积为S 2 , …,第n 次对折后得到的图形面积为S n , 则 S 4= ________,S 1+S 2+S 3+…+S 2017=________12.根据下图中菱形四个顶点所标的数字规律,推测第2021个菱形上方顶点所标的数字是________.13.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y= √3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则弧A2019B2018的长是________.14.二次函数y=23x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2017在y轴的正半轴上,点B1,B2,B3,…,B2017在二次函数y=23x2位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3,…,△A2016B2017A2017都为等边三角形,则等边△A2016B2017A2017的高为________.15.如图所示,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5……过A1、A2、A3、A4、A5……分别作x轴的垂线与反比例函数y= 4x的图象交于点P1、P2、P3、P4、P5……并设△OA1P1、△A1A2P2、△A2A3P3……面积分别为S1、S2、S3……,按此作法进行下去,则S2020的值为________。
【七年级奥数】第25讲 同余(例题练习)
第25讲同余——练习题一、第25讲同余(练习题部分)1.有没有自然数n,满足n2与n对于模30同余?这样的自然数有多少个?2.若在十进制中,m=,其中,…,为m的数字,证明m + +…+a2+a1(mod 9).3.设A=20012002,B是A的数字和,C是B的数字和,D是C的数字和.求D.4.求证:15|172013-2.5.求证:11|102013+232015.6.设a为正整数.证明a5a(mod 10).7.证明对任意整数a,10|a2049-a2013.8.正整数x除以3余2,除以4余1.求x除以12的余数.9.五位数被72整除,求数字x与y.10.求正整数n,使得(n+1)|(n2014+2006).11.求2999的末两位数字.12.求15+25+35+…+20135除以4所得余数.答案解析部分一、第25讲同余(练习题部分)1.【答案】解:∵n2-n=n(n-1),∵n-1、n为两个连续的自然数,∴其积能被2,3整除,①当n=5k时,n(n-1)=5k×(5k-1)能被5整除,②当n=5k+1时,n(n-1)=(5k+1)×5k能被5整除,③当n=5k+2时,n(n-1)=(5k+2)×(5k+1)不能被5整除,④当n=5k+3时,n(n-1)=(5k+3)×(5k+2)能被5整除,⑤当n=5k+4时,n(n-1)=(5k+4)×(5k+3)不能被5整除,∴当n=5k、5k+1、5k+3时,n2-n能被2、3、5,即能被30整除,∴当n=5k、5k+1、5k+3时,n2与n对于模30同余,∴这样的自然数有无穷多个.【解析】【分析】先将原式变形为n(n-1),由于n-1、n为两个连续的自然数,所以可知其能被2、3整除;当n=5k、5k+1、5k+3时,n2-n能被2、3、5,即n2-n能被30整除,故得证.2.【答案】证明:∵m=,∴m=,∴m-(a n+a n-1+· · ·+a2+a1)===∴m-(a n+a n-1+· · ·+a2+a1)是9的倍数,即m-(a n+a n-1+· · ·+a2+a1)能被9整除。
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究的是数的运算和代数式的性质。
代数式是由数、字母和运算符号组成的表达式,它可以用来表示数的关系和运算。
在学习代数的过程中,练习题是必不可少的一环,通过解答练习题,可以帮助我们巩固知识,提高解题能力。
本文将介绍一些常见的代数式练习题及其答案。
一、简单的代数式求值题1. 求代数式a + b + c,其中a = 2,b = 3,c = 4。
答案:a + b + c = 2 + 3 + 4 = 9。
2. 求代数式3a - 2b,其中a = 5,b = 7。
答案:3a - 2b = 3 × 5 - 2 × 7 = 15 - 14 = 1。
3. 求代数式(a + b) × c,其中a = 2,b = 3,c = 4。
答案:(a + b) × c = (2 + 3) × 4 = 5 × 4 = 20。
二、代数式的展开和化简题1. 展开代数式(x + y)^2。
答案:(x + y)^2 = x^2 + 2xy + y^2。
2. 化简代数式2x + 3x - 4x。
答案:2x + 3x - 4x = x。
3. 展开代数式(a - b)^2。
答案:(a - b)^2 = a^2 - 2ab + b^2。
三、代数式的因式分解题1. 将代数式x^2 - 4x + 4分解因式。
答案:x^2 - 4x + 4 = (x - 2)^2。
2. 将代数式x^2 - 9分解因式。
答案:x^2 - 9 = (x - 3)(x + 3)。
3. 将代数式x^2 + 4x + 4分解因式。
答案:x^2 + 4x + 4 = (x + 2)^2。
四、代数式的方程求解题1. 解方程2x + 3 = 7。
答案:2x + 3 = 7,化简得2x = 4,再除以2得x = 2。
2. 解方程3(x - 4) = 15。
答案:3(x - 4) = 15,化简得3x - 12 = 15,再加上12得3x = 27,最后除以3得x = 9。
初中奥数代数式练习题及答案
【题451】有⼀个两位数,⼗位数上的数字是个位数的2倍;如果把⼗位上的数与个位上的数交换,就得到了另外⼀个两位数,把这个两位数与原来的两位数相加,和是132.原来的两位数是多少?【思路或解法】设原两位数为ab,交换得的新两位数为ba.依题意有10a+b+10b+a=132,⼜a=2b,所以,10a+b+10b+a=20b+b+10b+2b=33b=132.解之,b=4,a=8。
答:原来的两位数是84。
【题452】有⼀个六位数,它的个位数字是6,如果将6移⾄第⼀位前⾯时所得的新六位数是原数的4倍,那么这个六位数是____。
(10x+6)×4=600000+x解之:x=15384。
答:这个六位数是153846。
【题453】两个四位数相加,第⼀个四位数的每⼀个数码都不⼩于5,第⼆个四位数仅仅是第⼀个四位数的数码调换了位置.某同学的答数是16246.试问:该同学的答数正确吗?(如果正确,请你写出这两个四位数;如果不正确,请说明理由.)【思路或解法】根据题意每个四位数的各个数码只能从5、6、7、8、9这五个数字中选择,同时可知这两个四位数各个数位上的两个数字相加的和应向前⼀位进⼀.若该同学的答案是正确的话,这两个四位数的个位、⼗位、百位、千位相应的两个数之和分别是16、13、11、15。
因为11只有⼀种拆法:5+6,其中⼀个5只可能与8组成13,另⼀个6只可能与9组成15,这样个位上的两个数码⼀个是8,另⼀个是9。
⽽8+9≠16,互相⽭盾.故某同学的答数16426是不可能的。
【题453】⼀个两位数,交换它的⼗位数字和个位数字,所得的两位这样,可知其和能被11整除,同时这和可能是两位数或是三位数.因此符合条件的数有11、22、33、44、55、66、77、88、99、110、143、154、165、176、198.在这些数中,33、66、99、132分成符合条件的两个两位数是12、24、36、48.所以,这样的两位数有4个。
初中数学代数习题(含解答)
初中代数练习题(含解答)题目1.证明a ≤|a|2.证明a 2=|a|23.证明|−a|=|a|4.证明a 2=|a|5.若|a −b −c −d −4|+|b −c −d −3|+|c −d −2|+|d 2−1|=0,求a +b +c +d.6.证明||a|−|b||≤|a −b|7.证明(6,7学名:三角不等式)|a −b|≤|a|+|b|8.证明 |(x −1)2−|2x −x 2||≤19.求|x|+|x −1|+|x −2|+...+|x −2020| 的最小值即此时x 的值或范围10.求||x −1|−|x −2|+|x −3|−|x −4|+...−|x −2020||的最小值即此时x 取值范围.11.证明任何0.x 1x 2x 3...x k 即一个任意长度k 的以单循环结束的小数都可以写为一个分数p q12.证明任何即一个任意长度结束的小0.x 1x 2..(x m x m+1x m+2...x n )n 的以循环节x m x m+1x m+2...x n 数都可以写为一个分数. 综合11,12, 证明任何有理数都可以写为pq pq ,的形式(p,q 为整数且q ≠0)13.根据12的结论,可以证明为无理数:2.若分数如果2为有理数,那么2可以写作p q, p,q 为正整数且q ≠0,即2=p q2能写为那么一定能写成最简分数, 即互质。
两边同时平方得p,q 所以2=p 2q2→p 2=2q 2→p 2为偶数. 若p 为奇数,则p 2也是奇数。
所以p 只能是偶数.即同偶所以不是最简,矛p =2k →p 2=4k 2=2q 2→q 2=2k 2. 同理得q 为偶数.p,q pq 盾。
所以.2为无理数用类似的方法,试证明.3为无理数14.已知平方差公式可以通过如下方式推导:a 2−b 2=a 2−ab +ab −b 2=a(a −b)+b(a −b)=(a +b)(a −b)试用类似方法推导立方差公式:a 3−b 3=(a −b)(a 2+ab +b 2)15.证明立方差公式的右边的唯一解为.(a −b)(a 2+ab +b 2)=0a =b 16.11·2+12·3+...+12019·2020=?17.11+2+11+2+3+...+11+2+...+2020=?18.11·2·3+12·3·4+...+12018·2019·2020=?19.11·2·3+13·4·5+...+12017·2018·2019+12−13+14−...−12017+12018=?20.证明, 并说明等号成立条件. (学名:调和平均几何平均算21a+1b≤ab ≤a+b 2≤a 2+b 22≤≤术平均平方平均)≤21.若(3a −2b)x 2+(a +b−c)x +3=c +2, 求a +b +c.22.若,求证x >−1−3x−2x+1>−323.若, 求证(不要求二次函数)x <−12x 2−3x−2x+1<−724.是否存在一个函数:定义域为所有偶数,值域为所有奇数?并解释25.是否存在一个函数,定义域为所有整数,值域为所有正整数?并解释26.是否存在一个函数,定义域为所有正整数,值域为所有整数?并解释27.证明所有一次函数只有一个零点(和有且只有一个交点). (第一步:找出一个零点. 第x 轴二步: 如果为2个不同零点,证明)x 1, x 2x 1=x 228.求一次函数和两坐标轴构成的三角形面积(注意:为任意实数且)y =ax +b a,b a ≠029.求28中三角形的斜边长和斜边上的高长30.求和两坐标轴构成的图形面积y =2x −1, y =3x +1, y =−x +531.证明任何一次函数都可以写为的形式. (第一步: 把转化为ax +by +c =0y =kx +m 的形式. 第二步:把转化为的形式. 所以两ax +by +c =0ax +by +c =0y =kx +m 种表示法等价)32.由31,若和表示两个一次函数. 若两一次函数图a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0像平行或重合,求关系. 若两一次函数图像垂直,求关系.a 1,b 1,a 2,b 2a 1,b 1,a 2,b 233.若方程组,无解,求需满足的条a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0a 1,b 1,c 1,a 2,b 2,c 2件. 若,有无穷多个解,求需满足a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0a 1,b 1,c 1,a 2,b 2,c 2的条件.34.解三元一次方程组3x +2y +z =1, 2x −y −z =2, 5x +7y −3z =−335.定义一个函数为增函数如果在定义域上函数值一直增加, 即对于任意定义域里的,y x 1,x 2如果,那么(或).例:为增函数,因为任取,x 1<x 2y 1<y 2y 2−y 1>0y =2x x 1<x 2. 同理,定义一个函数为减函数如果在定义域上函y 2−y 1=2x 2−2x 1=2(x 2−x 1)>0y 数值一直减小, 即对于任意定义域里的,如果,那么(或).x 1,x 2x 1<x 2y 1>y 2y 1−y 2>0例:为减函数,因为任取,y =−2x x 1<x 2y 1−y 2=(−2x 1)−.(−2x 2)=2(x 2−x 1)>0试证明:当,一次函数为增函数. 当,一次函数为减函k >0时y =kx k <0时y =kx 数。
初一数学代数式练习题
初一数学代数式练习题一、选择题(每题2分,共20分)1. 已知 \( a = 3 \),\( b = 2 \),求 \( a^2 - b \) 的值。
A. 7B. 5C. 9D. 32. 若 \( x + y = 5 \),\( x - y = 1 \),求 \( x \) 和 \( y \) 的值。
A. \( x = 3, y = 2 \)B. \( x = 2, y = 3 \)C. \( x = 4, y = 1 \)D. \( x = 1, y = 4 \)3. 代数式 \( 3x + 5y \) 与 \( 4x - 7y \) 的和是:A. \( 7x - 2y \)B. \( 7x + 2y \)C. \( 7x + 12y \)D. \( 7x - 12y \)4. 计算 \( (3x - 2)^2 \) 的结果中 \( x^2 \) 的系数。
A. 3B. 9C. 4D. 15. 若 \( 2x = 3y \),求 \( 4x^2 - 9y^2 \) 的值。
A. 0B. 1C. 2D. 3二、填空题(每题2分,共20分)6. 代数式 \( ax + b \) 中,当 \( a = 4 \),\( b = -1 \) 时,代数式变为 ________。
7. 当 \( x = -2 \) 时,代数式 \( x^2 + 3x + 2 \) 的值为________。
8. 若 \( a = 5 \),\( b = -3 \),求 \( a^2 - b^2 \) 的值为________。
9. 代数式 \( (x + y)(x - y) \) 可以化简为 ________。
10. 若 \( 2x + 3y = 7 \),\( 3x - 2y = 8 \),求 \( 5x + y \) 的值为 ________。
三、解答题(每题10分,共60分)11. 已知 \( x = 1 \),\( y = -2 \),求代数式 \( (x - y)^2 + xy \) 的值。
同余练习题
奥数中级教程同余解题1、2001年元旦是星期一,问20年后的元旦是星期几?由于每年有365天,20年共有20×365=7300天,但每四年有一个闰年,20年中有5个闰年,故20年有7305天。
7305=7×1043+4,说明20年中有1043周,外加4天,我们关心的其实不是20年中有多少周,而是1043周以后的那4天,因为经过1043周以后那天的是星期一,再往后数4天,即20年后的元旦是星期五。
2、某年级有将近400名学生。
有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列,结果还是多余1人;同学们你们知道该年级共有学生多少名吗?假设有一名学生不参加演出,则结果一定是不管每列站8人或9人或10人都将刚好站齐。
因此此时学生人数应是8、9、10公倍数,而8、9、10的最小公倍数是360,因此可知该年级共有361人。
3、求437×309×1993被7除的余数。
思路分析:如果将437×309×1993算出以后,再除以7,从而引得到,即437×309×1993=269120769,此数被7除的余数为1。
但是能否寻找更为简变的方法呢?473≡3〔mod7〕;309≡1〔mod7〕由"同余的可乘性"知:437×309≡3×1〔mod7〕≡3〔mod7〕又因为1993≡5〔mod7〕所以:437×309×1993≡3×5〔mod7〕≡15〔mod7〕≡1〔mod7〕即:437×309×1993被7除余1。
4、分别求满足以下条件的最小自然数:〔1〕用3除余1,用5除余1,用7除余1。
〔2〕用3除余2,用5除余1,用7除余1。
〔3〕用3除余1,用5除余2,用7除余2。
〔4〕用3除余2,用7除余4,用11除余1。
代数式综合测试卷(word含答案)
一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。
(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
代数式的计算练习题
代数式的计算练习题一、单项式与多项式的计算1. 计算下列单项式的值:(1) 3x^2,其中x=4(2) 5a^3b,其中a=2,b=32. 计算下列多项式的值:(1) 2x^2 3x + 1,其中x=5(2) 4a^3 2a^2 + 3a 7,其中a=1二、合并同类项1. 合并下列多项式中的同类项:(1) 3x^2 + 5x 2x^2 + 4(2) 4a^3 3a^2 + 2a^3 + 5a^2 72. 化简下列表达式:(1) 2x^2 3x + 4x^2 5x + 6(2) 5a^3 4a^2 + 3a^3 2a^2 + a三、去括号与添括号1. 去括号并化简:(1) 3(x 4)(2) 4(a + 2b) 2(a 3b)2. 添括号并化简:(1) 5x 3 + 2x(2) 4a^2 3a + 2a^2 5a四、整式的乘法(1) (3x 4)(2x + 5)(2) (4a + 3b)(2a 3b)2. 运用分配律计算:(1) 4x(3x^2 2x + 1)(2) 3a^2(2a^3 4a + 5)五、整式的除法1. 计算下列除法:(1) 18x^3 ÷ 3x(2) 24a^4b^2 ÷ 4ab2. 化简下列表达式:(1) (4x^3 2x^2 + 6x) ÷ 2x(2) (9a^4 6a^3 + 12a^2) ÷ 3a^2六、分式的计算1. 计算下列分式的值:(1) $\frac{3}{4} \div \frac{5}{8}$(2) $\frac{2}{5} \times \frac{15}{4}$ 2. 化简下列分式:(1) $\frac{4x}{8} \frac{3x}{6}$(2) $\frac{5a^2}{10} + \frac{2a^2}{5}$七、分式的乘除法1. 计算下列分式的乘除法:(1) $\frac{3}{4} \times \frac{8}{9}$(2) $\frac{5}{7} \div \frac{2}{3}$(1) $\frac{2x}{5} \times \frac{15}{4x}$(2) $\frac{3a^2}{4} \div \frac{6a}{8}$八、分式的加减法1. 计算下列分式的加减法:(1) $\frac{3}{4} + \frac{2}{3}$(2) $\frac{5}{6} \frac{1}{4}$2. 化简下列分式:(1) $\frac{4x}{5} + \frac{3x}{10}$(2) $\frac{7a}{8} \frac{5a}{12}$九、分式的混合运算1. 计算下列表达式:(1) $\frac{3}{4} \times (2x 3) + \frac{1}{2}$(2) $\frac{5}{6} \div (4a 3) \frac{2}{3}$ 2. 化简下列表达式:(1) $\frac{4}{5} \times (3x + 2)十、代数式的化简1. 化简下列代数式:(1) $5x 3x + 2x^2 4 + x^2$(2) $3a^2b 2ab^2 + 4a^2b 5ab^2$2. 将下列代数式化为最简形式:(1) $2x^3 x^3 + 4x^2 2x^2 + 3x$(2) $4a^3b 3a^2b^2 + 2a^3b a^2b^2$十一、分式的化简与求值(1) $\frac{3x 6}{2x 4}$(2) $\frac{4a^2 9b^2}{2a^2 + 6ab + 9b^2}$2. 求下列分式的值:(1) $\frac{x + 3}{x 2}$,其中$x=5$(2) $\frac{a b}{a + b}$,其中$a=4$,$b=3$十二、方程的求解1. 解下列一元一次方程:(1) $3x 7 = 11$(2) $5 2a = 3$2. 解下列一元二次方程:(1) $x^2 5x + 6 = 0$(2) $2a^2 4a 6 = 0$十三、不等式的求解1. 解下列一元一次不等式:(1) $3x 4 > 7$(2) $5 2a < 3$2. 解下列一元二次不等式:(1) $x^2 4x + 3 > 0$(2) $2a^2 5a + 3 < 0$十四、应用题1. 小明买了3本书和2支笔,总共花费了45元。
初中数学竞赛专题复习第三篇初等数论第20章同余试题新人教版
初中数学竞赛专题复习第三篇初等数论第20章同余试题新人教版第20章同余20.1.1★(1)证明:任意平方数除以4,余数为0或1;(2)证明:任意平方数除以8,余数为0、1或4.解析 (1)因为奇数()222214411(mod 4)k k k =+=++≡,偶数()222240(mod 4)k k ==≡,所以,正整数21(mod 4),;0(mod 4),.n n n ?≡??奇偶为数为数 (2)奇数可以表示为21k +,从而奇数()22441411k k k k =++=++.因为两个连续整数k 、1k +中必有一个是偶数,所以()41k k +是8的倍数,从而奇数()2811mod8i =+≡.又,偶数()22224k k ==(k 为整数).若k =偶数2t =,则()224160mod 8k t ==.若k =奇数21t =+,则 ()()22244211644(mod8)k t t t =+=++≡.所以,平方数()()()0mod8,1mod8,4mod8.≡评注事实上,我们也可以这样来证:因为对任意整数a ,有0a ≡,±1,2(mod4),所以,0a ≡,1(mod4);又a ≡0,±1,±2,±3,4(mod8),所以,2a ≡0,1,()4mod8.20.1.2★求证:一个十进制数被9除所得的余数,等于它的各位数字被9除所得的余数.解析设这个十进制数1210n n A a a a a a -=L .因10≡1(mod9),故对任何整数k ≥1,有()1011mod9k k ≡=.因此1210n n A a a a a a -=L1110101010n n n n a a a a --=?+?++?+L()110mod9n n a a a a -≡++++L .即A 被9除所得的余数等于它的各位数字之和被9除所得的余数.评注 (1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.20.1.3★★求证:(1)()199985517+;(2)()2837n +;(3)()100017191-.解析 (1)因()551mod8≡-,所以()1999551mod8≡-,()19995517117160mod8+≡-+=≡,于是19998(5517)+.(2)因为2391(mod8)=≡,231(mod8)n ≡,所以()237170mod8n +≡+≡,即()2837n +.(3)因为()192mod17≡,()44192161mod17≡=≡-,所以()()()25025010004191911mod17=≡-≡,于是()100017191-.20.1.4★★对任意的正整数n ,证明:2903803464261n n n n A =--+能被1897整除.解析 18977271=?,7与271互质.因为()29035mod7≡,()8035mod7≡,()4642mod7≡,()2612mod7≡,所以()290380346426155220mod7n n n n n n n n A =--+≡--+=,故7|A又因为()2903193mod271≡,()803261mod271≡,()464193mod271≡,所以2903803464261n n n n A =--+()1932611932610mod271n n n n ≡--+=,故271|A因(7,271)=1,所以1897整除A .20.1.5★证明:2222555555552222+能被7整除.解析因为()55554mod7≡,()34641mod7≡≡,所以()22222222222205555444162mod 7≡≡?≡≡.因为()22223mod7≡,()232mod7≡,()231mod7≡,所以55555555555502222333≡≡?()9252263333223≡≡??()5mod7≡.于是()()()222255555555222225mod 70mod 7+≡+≡,即 222255557|55552222+.20.1.6★★求最大的正整数n ,使得102431-能被2n 整除.解析因为()()()()()1024512256112831313313131+-=+++-L ,①而对于整数k ≥1,有()()2231112mod4kk +≡-+=,所以,①式右边的11个括号中,(3+1)是4的倍数,其他的10个都是2的倍数,但不是4的倍数.故n 的最大值为12.20.1.7★求使21n -为7的倍数的所有正整数n .解析因为()3281mod 7≡≡,所以对n 按模3进行分类讨论.(1)若3n k =,则()()3212181110mod7k n k k -=-=-≡-=; (2)若31n k =+,则()321221281kn k -=?-=?- ()2111mod 7k ≡?-=;(3)若32n k =+,则()2321221481kn k -=?-=?- ()4113mod 7k ≡?-=.所以,当且仅当3|n 时,21n -为7的倍数.20.1.8★设n 是正整数,求证:7不整除()41n +.解析因为()144mod 7≡,()242mod 7≡,()341mod 7≡.所以当3n k =时,()()34141112mod7k n +=+=+=;当31n k =+时,()()341441415mod7k n +=?+=+=;当32n k =+时,()()34141611613mod7k n +=?+=+=.所以,对一切正整数n ,7不整除41n +.20.1.9★今天是星期日,过1003天是星期几?解析()33271mod 7=≡-,所以()()()333310033331334mod7=?≡-?=-≡.因此,过1003天是星期四.20.1.10★★求3326(25746)+被50除所得的余数.解析()2577mod50≡,()33332577mod50≡.又()27491mod50=≡-,所以()471mod 50≡.()()83347777mod50=?≡.即()332577mod50≡.从而()33257467463mod50+≡+≡.()332626(25746)3mod50+≡.由于()532437mod50==-.()103491mod50≡≡-,所以()2031mod50≡.于是()()262053333732129mod50=??≡-?=-≡.故3326(25746)+除以50所得的余数为29.20.1.11★(1)求33除19982的余数;(2)求8除2171n +-的余数.解析 (1)先找与()1mod33±同余的数.因为()52321mod33=≡-,所以()1021mod33≡.()()199199810532222825mod33=??≡-≡.故所求的余数为25.(2)因为()71mod8≡-,所以()()2121711mod8n n ++≡-=-,()217126mod8n +-≡-≡.即余数为6.20.1.12★求5555512399100+++++L 除以4所得的余数.解析因为()()520mod 4n ≡,()()52121mod 4n n +≡+,所以5555512399100+++++L()213599500mod4≡++++=≡L .20.1.13★形如221k n F =+,n =0,1,2,…的数称为费马数.证明:当n ≥2时,n F 的末位数字是7.解析当n ≥2时,2n 是4的倍数,故令24n t =.于是212k n F +=()421161617mod10t t t =+=+=+≡.即n F 的末位数字是7.评注费马数的头几个是03F =,15F =,217F =,3257F =,465537F =,它们都是素数.费马便猜测:对所有的正整数n ,n F 都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数5F 是合数.有兴趣的读者可以自己去证明.20.1.14★★已知1919191919 191 919 1 919n =L 144424443个,求n 被9除后所得商的个位数字是多少?解析因为1919191919 191 919 1 919n =L 144424443个()19191919≡?+++()191920224mod9≡?≡?≡.所以9|4n -.又4n -的个位数字是5,故n 被9除后所得商的个位数字是5.20.1.15★★求9992的末两位数.解析因为()10210mo d 25+≡,()1021mod 25≡-,()()()10010010211mod 25≡-=,()1000210mod 25-≡.所以100021-的末两位数字只可能是00、25、50、75,即10002的末两位数字只可能是01、26、5l 、76.又10002是4的倍数,故10002的末两位数字只可能是76.又9991000222=÷,所以9992的末两位数字只可能是38、88,而4|88,4|38,故9992的末两位数字是 88.20.1.16★★求所有的正整数n ,使得2337n n ++是一个立方数.解析假设存在正整数m 、n ,使得23337n n m ++=,则()31mod3m ≡,于是()31mod3m ≡.设31m k =+,则223(331)2k k k n n ++=++,易知22n n ++不能被3整除,故不存在正整数n ,使得2337n n ++是一个立方数.20.1.17★★有一列数排成一行,其中第一个数是3,第二个数是7,从第三个数开始,每个数恰好是前两个数的和,那么,第1997个数被3除,余数是多少?解析该数列是:3,7,10,17,27,44,71,115,186,301,487,788,…除以3的余数分别是:0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,…余数刚好是按“0,1,1,2,0,2,2,1”八个一循环.又1997≡5(mod 8),因此所求余数为0.20.1.18★★★求777的末位数字和{7777k N 个的末两位数字,其中k 是大于1的正整数.解析我们知道,求一个数的末位数字就是求这个数除以10的余数,求一个数的末两位数字就是求这个数除以100的余数.为此,先设法求出71(mod10)t ≡中的t ,然后求出77at b =+(a ,b 是整数)中的b .这样,问题归结为求67被10除所得的余数.因为()()2371mod1073mod10≡-≡,,()()4471mod1071mod10m ≡≡,,m 是正整数.而()()()66673mod 47311mod 4≡≡≡-≡,.所以,()773mod 4≡.可设7743m =+.于是()774337773mod10m +≡≡≡.所以,777的末位数字是3.考虑777的末两位数字.这时,由()2749mod100≡,()3743mo d100≡,()471mod100≡,得()471mod100n ≡.而{77211777t k +-=N 个,其中t 是整数且t ≥0.于是{()()217721211777313mod 4t t t k +++-≡≡≡-≡N 个.可设{7717743k n -=+N 个,那么{()774331777743mod100n k +-=≡≡N 个.所以,所求的末两位数字是43.20.1.19★★求n =1×3×5×…×1997×1999的末三位数字.解析这个积显然是5×25=125的倍数,设n =5×25×1×3×7×…×23×27×…×1999=125m .由于1000=8×125,所以,我们只需求出m 除以8所得的余数,进而便可求得n 除以1000的余数.m =(1× 3×7)×(9×11×13×15)×(17×19×21×23)×(27×29×31)×(33×35×37×39)×…×(1985×1987×1989×1991)×(1993×1995×1997×1999)在上述乘积中,除第一和第四个括号外,每个括号中都是四个数的乘积,这个积是()()()()81838587k k k k ++++1≡×3×5×71≡()mod8.而()1375mod8??≡,()2729311mod8??≡.于是()515mod8m ≡?≡.所以,()()125125851255625mod1000m k =?+≡?=,即n 的末三位数字是625.20.1.20★★★★如果k 是大于1的整数,a 是210x kx -+=的根.对于大于10的任意正整数n ,22n na a -+的个位数字总是7,求是的个位数字.解析首先,我们证明k 的个位数字不可能是偶数.其次,根据22n na a -+与7对模10同余,从中确定k 的个位数字.因为a 是210x kx -+=的根,所以这方程的另一个根是1a.于是 1a k a+=.如果k 的个位数字是偶数,那么 2222122a a a k a -??+=+-=- 的个位数字仍是偶数.()22222222a a k -+=-- 的个位数字也是偶数.对于10n >,22n na a -+的个位数字也是偶数,与题设矛盾.k 的末位数字不能是偶数.(1)如果k 的个位数字是1或9,那么()221mod10a a -+≡-,由此得()221mod101n n a a n -+≡-,≥. (2)如果k 的个位数字是3或7,那么()227mod10a a -+≡,由此得()227mod10n na a -+≡,1n ≥.(3)如果k 的个位数字是5,那么()223mod10a a -+≡,()22227mod10a a -+≡.所以()227mod10n n a a -+≡,2n ≥.综上所述,k 的个位数字是3或5或7.20.1.21★★2005年12月15日,美国中密苏里州大学的数学家Curtis Cooper 和Steven Boone 教授发现了第43个麦森质数3040245721-,求这个质数的末两位数.解析因为()10210241mod 25=≡-,所以()()3040545304024530402457107722212≡?≡-?()128322mod 25≡-≡-≡,所以,304024572的末两位数只能是22、47、72、97.又304024572≡0(mod4),所以,304024572的末两位数只能是72.从而,3040245721-的末两位数是71.20.1.22★★★求最小的正整数a ,使得存在正整数n ,满足2001|5532n n a +?.解析因为2001=3×23×29,所以,要使2001|5532n n a +?,只要使3|5532n n a +?,23|5532n n a +?,29|5532n n a +?.易知()()553211mod3nn n a a +?≡+-,()()55329919mod 23n n n n n a a a +?≡+?≡+?,()()553233mod 29nn n n a a +?≡-+?.(1)若n 是奇数,则()1mod3a ≡,()1mod 23a ≡-,()1mod 29a ≡,而(3,29)=1,故()1mod87a ≡ .令12871231a k k =+=-,则18720(mod23)k +≡,所以()1520mod 23k -+≡,即()145180mod 23k -+≡,所以()118mod23k ≡-,则1k 能取的最小正整数是5.所以n 是奇数时,a 的最小正整数解是 8751436?+=.(2)若n 是偶数,则()1mod3a ≡-,()1mod 23a ≡-,()1mod 29a ≡-,由于(3,23)=1,(3,29)=1,(23,29)=1,所以1a ≡-(mod3×23×29).故当n 是偶数时,a 的最小正整数解是323291??-等于2000.综上所述,满足条件的最小正整数a 为436.20.1.23★★证明:对任意正整数n ,87n +不可能是三个整数的平方和.解析假设存在整数a 、b 、c ,使得22287n a b c +=++.由于对任意整数x ,2x ≡0,1,4(mod8),于是222a b c ++≡0,1,2,3,4,5,6(mod8).而()877mod8n +≡,矛盾!20.1.24★证明不定方程22257x y -=无整数解.解析因为22257x y =+,显然,y 是奇数.(1)若x 为偶数,则()220mod8x ≡.又()21mod8y ≡.所以()2574mod8y +≡,矛盾,故x 不能为偶数.(2)若x 为奇数,则()222mod4x ≡.但()2570mod 4y +≡,矛盾,故x 不能为奇数.由(1),(2)可知:原方程无整数解.20.1.25★证明:不定方程2286a b c +-=没有整数解.解析如果n ≡0,1,2,3(mod4),那么2n ≡0,1,4(mod 8).所以22a b +≡0,1,2,4,5(mod8).但与()226mod8a b +≡矛盾.从而原不定方程无整数解.20.1.26★证明:不定方程4425x y z ++=没有整数解.解析以5为模,如果0x ≡,±1,±2(mod5),那么2x ≡0,1,4(mod5),4x ≡0,1,1(mod5).即对任一整数x ,4x ≡0,1(mod5).同样,对任一整数y ,4y ≡0,1(mod5).所以442x y ++≡2,3,4(mod5).从而原不定方程无整数解.20.1.27★★★求最小的正整数n ,使得存在整数1x ,2x ,…,n x ,满足444121599n x x x +++=L .解析对任意整数a ,可知()20mod4a ≡或()21mod8a ≡,由此可得40a ≡或()1mod16.利用这个结论,可知,若n <15,设()44412mod16n x x x m +++=L ,则m ≤n <15,而1599≡()15mod16,矛盾,所以n ≥15.另外,当n =15时,要求()444121mod16n x x x ≡≡≡≡L ,即1x ,2x ,…,n x 都为奇数,这为我们找到合适的数指明了方向.事实上。
初二年级奥数代数式测试题
初二年级奥数代数式测试题初二年级奥数代数式测试题一、知识回顾1. 填空:(1)x的表示成_____________; (2)比a多的数是_____________;(3)b 的绝对值表示为_____________; (4)x的相反数表示成_____________;(5)小明今年m岁,则他去年_____________岁;(6)买10千克大米,花了a元,则这种大米的单价为_______元/千克。
2.用代数式表示:(1)x的3倍再加上2的和;(2)a的与的差;(3)x的相反数与x的算术平方根的和;(4)a与b两数的平方和。
3.说出下列代数式的`实际意义:(1)苹果每千克的价格是x元,则2x可以理解为_________________________________;(2) 可以解释为____________________________________________________________。
4.当x分别取下列值时,求代数式1-3x的值:(1)x=1; (2)x= 。
回顾(1)是代数式?什么是代数式的值?(2)字母与数一起参与运算时,书写过程中应注意哪些问题?5.下列代数式中,哪些是整式?哪些是单项式?哪些是多项式?解:整式有:单项式有:多项式有:6.说出上题中单项式的系数和次数;多项式的项、每一项的系数和次数用常数项。
回顾(1)什么是单项式、多项式、整式?(2)什么是单项式的系数和次数?多项式的次数如何确定?7.下列各组代数式是不是同类项?(1) 与 ;(2) 与 ;(3)-2与4.3;(4) 与 ;(5) 与8.合并同类项:(1) + =_______________; (2) =________________;(3) =____________;(4) =_____________;9.去括号:(1) =_____________; (2) =___________;(3) =_____________; (4) =__________;回顾(1)什么叫做同类项?(2)合并同类项的法则是什么?(3)去括号法则是什么?二、典例精析例1、小明家统计了家里用水量与应缴水费(元)之间的关系,如下表用水量水费 /元1 1.20+0.502 2.40+0.503 3.60+0.504 4.80+0.505 6.00+0.50(1)写出用水量与水费 (元)之间的关系;(2)计算用水量是35 时的水费。
代数式经典练习题
知识点1代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
知识点2、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点3、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π知识点4、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(3)单项式的指数只和字母的指数有关,与系数的指数无关。
数学北师大版七年级上册3.2《代数式》-同步练习(解析版)-word文档
2018-2019学年数学北师大版七年级上册3.2《代数式》同步练习一、选择题1.下列不是代数式的是()A. (x+y)(x-y)B. c=0C. m+nD. 999n+99m【答案】B【考点】代数式的定义【解析】【解答】代数式就是用运算符号把数和字母连接而成的式子(单独一个数或字母也是代数式),由此可得只有选项B不是代数式,故答案为:B.【分析】代数式就是用运算符号把数和字母连接而成的式子(单独一个数或字母也是代数式),代数式中一般不含有“≠、>、≤、<、=、≥、≧、≦、、≈”,根据定义即可做出判断。
2.一个两位数,个位是a,十位比个位大1,这个两位数是()A. a(a+1)B. (a+1)aC. 10(a+1)aD. 10(a+1)+a【答案】D【考点】列式表示数量关系【解析】【解答】这个两位数是10(a+1)+a。
故答案为:D【分析】个位是a,十位比个位大1,所以十位上的数为(a+1),根据各个数位上的数字所表示的意义,个位是a则表示a个一,十位上的数为(a+1),则表示(a+1)个十,从而表示出这个两位数。
3.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A. m=24(1﹣a%﹣b%)B. m=24(1﹣a%)b%C. m=24﹣a%﹣b%D. m=24(1﹣a%)(1﹣b%)【答案】D【考点】列式表示数量关系【解析】【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.4.已知a=﹣2,则代数式a+1的值为()A. ﹣3B. ﹣2C. ﹣1D. 1【答案】C【考点】代数式求值【解析】【解答】当a=﹣2时,原式=﹣2+1=﹣1,故答案为:C.【分析】把a的值代入原式计算即可得到结果.5.用代数式表示“a与-b的差的2倍”正确的是()A. a-(-b)×2B. a+(-b)×2C. 2[a-(-b)]D. 2ª-2b【答案】C【考点】列式表示数量关系【解析】【解答】列代数式2[a-(-b)].故答案为:C【分析】将文字语言转化为数学语言即可列出算式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【推荐下载】初中奥数代数式同余式练习题-word范文
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
初中奥数代数式同余式练习题
导语:我国的高中数学竞赛分三级:每年10月中旬的全国联赛;次年一月的CMO(冬令营);次年三月开始的国家集训队的训练与选拔。
下面就由小编
为大家带来初中奥数代数式同余式练习题,大家一起去看看怎么做吧!
先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?
取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走
i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空
格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.
在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以201X年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.
同余,顾名思义,就是余数相同.
定义1 给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作
a≡b(modm),
并读作a同余b,模m.
若a与b对模m同余,由定义1,有
a=mq1+r,b=mq2+r.
所以 a-b=m(q1-q2),
即 m|a-b.
反之,若m|a-b,设。