概率与数理统计第三章

合集下载

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计
定义3.7 设X和Y是两个随机变量,如果对于任意实数x和y,事
件{X≤x}与{Y≤y}相互独立,即有P{ X≤x , Y≤y }=P{X≤x}P{Y≤y},则称随 机变量X与Y相互独立。 设F(x,y)为二维随机变量(X,Y)的分布函数, (X,Y)关于X和关于Y的边缘分布 函数分别为FX(x),FY(y),则上式等价于
这正是参数为
的 分布的概率密度。
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
X
X
Y
Y
概率论与数理统计
解: (1)串联情况
X
Y
概率论与数理统计
(2)并联情况
X
Y
感谢聆听 批评指导
概率论与数理统计
二维正态分布 若(X.,Y)的概率密度为
概率论与数理统计
4. n维随机变量
设E是一个随机试验,它的样本空间是=(e).设随机变量
是定义在同一样本空间上的n个随机变量,则称向

为n维随机向量或n维随机变量。简记为
设 数
为n维随机变量
是n维随机变量,对于任意实 ,称n元函数
的联合分布函数。
设(X,Y)的一切可能值为(xi,yj),i,j=1,2,… ,且(X,Y)取各对可能值的概率为 P{X=xi,Y=yj}=pij, i,j=1,2,…
称上式为(X,Y)的(联合)概率分布或(联合)分布律.离散型随机变量(X,Y) 的联合分布律可用表3-1表示.
概率论与数理统计
(X,Y)的分布律也可用表格形式表示:
记作
或记为
.

概率论与数理统计第三章

概率论与数理统计第三章
P ( X Y 1) 1 2dxdy . 2 D
x y 1
y=x G D O 1 x+y=1 x

f ( x, y )dxdy
(2)
P(Y X )
2
dx
0
1
x
2
x
2dy 1 / 3 .
y 1 0
y = x2
y=x G
1 x
(3) P(| X | 0.3) P(0.3 X 0.3)
pij P( X xi ) P(Y y j X xi ) .
例3.1.1 设随机变量X在1,2,3三个整数中等可能取值,另一个随机 变量Y在1~X中等可能地取一整数值,求(X,Y)的概率分布。
解:由假设,随机变量X的可能取值为1,2,3. 而Y≤X,故Y 的可能取值范围也 为1,2,3. 首先,当 j>i 时,{X=i,Y=j} 为不可能事件,故 P(X=i,Y=j)=0,j>i. 当 j≤i 时,根据概率的乘法公式,有 P(X=i,Y=j)=P(X=i)•P(Y=j | X=i) =1/i • 1/3,i=1,2,3. 由此得(X, Y)的概率分布如下:
3.2 边缘分布
二维随机变量的联合分布是把(X,Y)看作一个整体的 分布。其中分量X和Y都是一维随机变量,也有各自的 分布,分别称X和Y的分布为二维随机变量(X,Y)关于 X和Y的边缘分布。 设二维随机变量(X,Y)的分布函数为F(x,y),分别记 关于X和Y的边缘分布函数为Fx(x)和Fy(y),由于 Fx(x)=P(X≤x,Y<+∞ )=F(x,+∞ ), 同理,有 Fy(y)=F(+∞ ,y). 由此看出,边缘分布函数Fx(x),Fy(y)完全由联合分布 函数F(x,y)来确定。

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

概率论与数理统计第3章

概率论与数理统计第3章

试求常数a和b。
π F xlim F x a b 2 0 解: F lim F x a b π 1 x 2
1 1 a , b 2 π
P ( 2 4) P ( 2) P ( 2 4) 0.3 0.6 0.5 0.4
P ( 3) 1 P ( 3) 1 0.5 0.5
6
例3:设r.v. 的分布函数
F x a b arctan x
b a
因此求概率可从分布函数与密度函数两条途径入手。
5、密度的图像称分布曲线,相应有两个特征: ⑴ 曲线在x轴上方;
概率面积
y
f(x)分布曲线
⑵ 曲线于x轴之间的 面积是1。
x c o d
10
例4:设 的密度在[a,b]以外为0,在[a,b]内为
一常数 ,
, a x b f ( x) 0, 其它
x2 2
16
⑶ f(x)符合密度函数的两性质: ① f(x) > 0;②



f x d x 1。
x2 2
以标准正态分布为例, e
e d t e
t2 2 2 x2 2
d x 称为高斯积分。
dy
r2 2 0
从F(x)求f(x): f x F x 从f(x)求F(x): F x f t d t
x
9
4、对于连续型随机变量 ,
⑴ P a 0 ,即某指定点的概率为0; ⑵ Pa b Pa b
Pa b Pa b f x d x

概率论与数理统计第三章多维随机变量及其分布习题解答

概率论与数理统计第三章多维随机变量及其分布习题解答

习题3-11、设(,)X Y 的分布律为求a 。

解:由分布律的性质,得1,0iji jp a =>∑∑,即111111691839a +++++=,0a >, 解得,29a =。

注:考察分布律的完备性和非负性。

2、设(,)X Y 的分布函数为(,)F x y ,试用(,)F x y 表示:(1){,}P a X b Y c ≤≤<;(2){0}P Y b <<;(3){,}P X a Y b ≥<。

解:根据分布函数的定义(,){,}F x y P X x Y y =≤≤,得(1){,}{,}{,}(,)(,)P a X b Y c P X b Y c P X a Y c F b c F a c ---≤≤<=≤<-<<=-; (2){0}{,}{,0}(,)(,0)P Y b P X Y b P X Y F b F -<<=≤+∞<-≤+∞≤=+∞-+∞; (3){,}{,}{,}(,)(,)P X a Y b P X Y b P X a Y b F b F a b ---≥<=≤+∞<-<<=+∞-。

3、设二维随机变量(,)X Y 的分布函数为(,)F x y ,分布律如下:试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤;(3)(2,3)F 。

解:由(,)X Y 的分布律,得 (1)1311{,04}{1,1}{1,2}{1,3}002244P X Y P X Y P X Y P X Y <<<<===+==+===++=; (2){12,34}{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y P X Y ≤≤≤≤===+==+==+==1150016416=+++=;(3)(2,3){2,3}{1,1}{1,2}{1,3}F P X Y P X Y P X Y P X Y =≤≤===+==+==1119{2,1}{2,2}{2,3}000416416P X Y P X Y P X Y +==+==+===+++++=。

【学习课件】第三章概率论与数理统计

【学习课件】第三章概率论与数理统计

解 确定随机变量的取值:
及F(2,2).
p i j P Xi,Yj
F ( x , y) = P { X x , Y y}
{ P X { X i , Y i } j } { Y { X j } i } { Y j } pij
P Y j|X iP X i
xi x yjy
为 X, Y的 分 布 函 数 , 或 X与 Y的 联 合 分 布 函 数 。
X x ,Y y X x Y y
几 何 意 义 : 分 布 函 数 Fx0,y0表 示 随 机 点 X,Y落 在 区 域
x,y,xx0,yy0
中 的 概 率 。 如 图 阴 影 部 分 所 示 :
y
x0, y0
X=xi ,Y y j
P X=xi
pij , j=1, 2, pi
为给定条件X xi时,Y的条件概率分布律。
3、条件概率分布律
给定条件Yyj时,X的条件概率分布律记作:
X|Yyj
P X=xi |Yyj
pij ,i= 1, 2, pj
X |Y yj
P X |Y y j
x1
p1 j
X , Y ~P X=xi, Y=y j pij , i, j=1, 2,
则称 P X=xi | Y y j
P X=xi ,Y y j P Y=y j
pij , i=1, 2, p j
为给定条件Y y j时,X的条件概率分布律;
P Y=y j | X=xi
P
= limPX x,Y y lim Fx, y
y
y
0, x 0; =x2, 0 x 1;
1, 1 x.
FYy PY yPX ,Y y
= limPX x,Y y limFx, y

概率论与数理统计

概率论与数理统计
1 0x1,0y1 其它
=
0
f X ( x)

f ( x, y)dy
1 0
当0 x 1时:f X ( x) 1dy = 1
x [0,1]时:f X ( x ) 0
1 0 x 1 f X ( x) 其它 0 1 0 y 1 类似 : fY ( y ) 其它 0 f X ( x ) fY ( y ) f ( x, y ) X、Y相互独立。
例. 已知(X, Y)的联合分布函数F(x, y)如下, 求: (1). (X, Y)的联合概率密度及边缘密度。 (2). 判断X、Y是否相互独立?
0 xy F(x,y)= y x 1 x<0或y<0 0x1, 0y1 x>1 0y1
0x1, y>1 x>1, y>1
2 F ( x,y ) 解:(1). f ( x , y ) xy
3. 二维连续型随机变量的(联合)概率密度
定义:对于二维随机变量(X,Y)的分布函
数F(x,y),若存在非负函数f(x,y)使对任意 x,y有:
F ( x , y ) f ( u, v )dudv

y
x
则称(X, Y)为连续型2维随机变量, 称 f(x,y)为(X,Y)的(联合)概率密度。
P{X=0,Y=1}=0/(56/120)=0 P{X=0,Y=3}=(35/120)/(56/120)=5/8
3 5/8 2 3/8
P{X=0,Y=2}=(21/120)/(56/120)=3/8

启示:由此题我们可以知道要想求解离散边缘分 布与离散条件分布就要先求出离散的联合分布, 此后的几个小节的解答也会用到。它是解答边缘 分布、条件分布等的桥梁,所以我们必须要熟知 联合分布的定义与基本公式和求法。

《概率论与数理统计》第3章 二维随机变量及其分布

《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2

(X,
Y)

p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)

经管类概率论与数理统计第三章多维随机变量及概率分布

经管类概率论与数理统计第三章多维随机变量及概率分布

3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。

例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。

又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。

定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。

定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。

记作(X,Y)~F(x,y)。

(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。

因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。

3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。

设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。

(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。

概率论与数理统计 第三章

概率论与数理统计 第三章
x y e 2u |0 e v |0 , x 0, y 0, 其它, 0,
(1 e 2 x )(1 e y ), x 0, y 0, 其它, 0,
例2-续3
(3)求概率P{Y≤X}. 只需在概率密度f的非零 区域与事件区域 G={(x,y)|y≤x} 的交集D上积分. 由公式
0 F ( x, y) 1; ;

F ( x, y )关于x、y均单调不减右连续.
分布函数与离散型二维随机变量分布律、连 续型二维随机变量概率密度的关系[见后].
三、离散型二维随机变量
1、二维均匀分布
两种常见的二维连续型分布
设G为一个平面有界区域,其
二维均匀分布
面积为A.如果二维连续型随机变量(X,Y)的概率密
度为
1 , ( x, y ) G , f ( x, y ) A 0, 其它,
则称(X,Y)服从区域G上的均匀分布,记为(X,Y)~U(G).
2、二维正态分布
域”的概率.
分布函数具有下列基本性质:
对任意点 ( x1 , y1 ), ( x2 , y2 ), x1 x2 , y1 y2 均有:
随机向量落在矩 形区域的概率
P{x1 X x2 , y1 Y y2 }
F ( x1 , y1 ) F ( x2 , y2 ) F ( x1 , y2 ) F ( x2 , y1 ) 0;
D
x
例2-续4
2 e
0

2 x
(1 e )dx [e
x
2 x
2 3 x 2 1 e ] |0 1 . □ 3 3 3
本例是一个典型题.大家应熟练掌握分析与计算 的方法。特别是会根据不同形状的概率密度非零区域 与所求概率的事件区域G来处理这类问题。 就P.73:例3来共同考虑如何分段?应分几段?怎 样计算各段值?(板书)

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布 二维随机变量:一般,设E 是一个随机试验,它的样本空间是S={e}.设X=X(e)和Y=Y(e)是定义在S 上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。

设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:)}(){(),(y Y x X P y x F ≤⋂≤=),(y Y x X P ≤≤=称为二维随机变量(X,Y )的分布函数,或称随机变量X 和Y 的联合分布函数分布函数F(x,y)具有以下基本性质: 1.F (x,y)是变量x 和变量y 的不减函数,即对于任意固定的y ,当);,(),(,1212y x F y x F x x ≥> 对于任意固定的x ,当),(),(,1212y x F y x F y y ≥> 2.0≤F(x,y)≤1,且对于任意固定的y ,F (-∞,y)=0, 对于任意固定的x, F (x ,-∞)=0, F (-∞,-∞)=0,F (∞,∞)=13.F(x,y )=F(x+0,y ),F(x,y+0),即F(x,y )关于x 右连续,关于y 也右连续4.对于任意,,),,(),,(21212211y y x x y x y x <<下述不等式成立 0),(),(),(),(21111222≥-+-y x F y x F y x F y x F离散型随机变量:如果二维随机变量(X,Y)全部可能取到的不相同的值是有限对或可列无限多对,则称(X,Y )是离散型随机变量称,2,1,,},{====j i p y Y x X P ij i i ……为二维离散型随机变量(X,Y )的分布律,或随机变量X 和Y 是联合分布律 表格形式表示联合分布律: Y X1x… i x… 1y11p … 1i p… ………j yj p 1… ij p… ………离散型随机变量X 和Y 的联合分布函数为∑∑≤≤=x x yy ij i i p y x F ),(,其中和式是对一切满足y y x x i i ≤≤,的i,j 来求和的连续型随机变量:对于二维随机变量(X,Y )的分布函数F (x,y),如果存在非负的函数f(x,y)使得对于任意x,y 有 ⎰⎰∞-∞-=y xdudv v u f y x F ),(),(,则称(X,Y )是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y )的概率密度,或称为随机变量X 和Y 的联合概率密度概率密度的性质: 1.f(x,y)≥0 2.⎰⎰∞∞-∞∞-=∞∞=1),(),(F dxdy y x f3.设G 是xOy 平面上的区域,点(X,Y )落在G 内的概率为 ⎰⎰=∈Gdxdy y x f G Y X P ),(}),{(4.若f(x,y)在点(x,y )连续,则有),(),(2y x f y x y x F =∂∂∂一般,设E 是一个随机试验,它的样本空间是S={e},设),(),(2211e X X e X X ==…),(,e X X n n =是定义在S 上的随机变量,由它们构成的一个n 维向量,,(21X X …),n X 叫做n 维随机向量或n 维随机变量对于任意n 个实数n x x x n ,,^,,21元函数},^,{),^,(111n n n x X x X P x x F ≤≤=称为n 维随机变量,,(21X X …),n X 的分布函数或随机变量n X X X ,^,,21的联合分布函数。

东华大学《概率论与数理统计》课件 第三章 二维随机变量

东华大学《概率论与数理统计》课件 第三章 二维随机变量

Y
X
y1
y2
yn
x1
p11
p12
p1 n
x2
p21
p22
p2n
n
pi• =
pij
j =1
p1•
p2•
xm
pm1
pm2
pmn
m
p• j =
pij
p•1
p•2
p• n
i =1
其中, pij = P( X = xi ,Y = y j ) ,
pm•
n
m
p• j = pi• = 1
j −1
( x,
y)
=
1 s
,
0,
(x, y) S (x, y) S
3.体积为v的空间区域V上
(
x,
y,
z)
=
1 v
,
0,
(x, y, z) V (x, y, z) V
基本概念:随机向量、联合分布函数。 离散型随机变量:联合概率分布、阶梯型分布函
数。 连续型随机变量:概率密度函数、连续型分布函
数。

FY
(
y)
=
F
(+,
y)
=
lim
x→+
F
(
x,
y)
F ( x) = F ( x,+)
1 = F(+,+)
0 = F(−, y) O
二维随机变量 (X ,Y) 的分布函数: F(x, y) = P(X x,Y y)
y
y
(x,y)
0
x
x
二维分布函数 F(x,y) 的性质: (1)(非降性) F(x, y) 是 x 或 y 的单调非降函数.

《概率论与数理统计》第三章

《概率论与数理统计》第三章

§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

概率论与数理统计第3章

概率论与数理统计第3章

i
31
二维离散型随机变量的边缘分布
关于X的边缘分布列
X
x1
x2
x3

概率 P1.
P2.
P3.

pi P{X xi} pij
关于Y的边缘分布列
j
Y
y1
y2
y3

概率 P.1
P.2
P.3

p j P{Y y j} pij
32
i
16
2019-9-16
例1 设二维离散型随机变量(X,Y)的联合分布律为
30
15
2019-9-16
二维离散型随机变量的边缘分布
Y
X
y1
y2
y3

Pi.
x1
p11
p12
p13

P1.
x2
p21
p22
p23

P2.
x3
p31
p32
p33

P3.
…………… …
p.j p.1 p.2 p.3 …
关于X的边缘分布律 关于Y的边缘分布律
pi P{X xi} pij
j
p j P{Y y j} pij
22
11
2019-9-16
第4节 常见多维随机变量
23
1. 多项分布
在独立重复试验中,设每次实验必有A1, A2 , , Ar 之一发生,且事件Ai在每次实验中发生的概率为pi, 记Xi为Ai出现的次数,则 X1, X 2 , , X r 的分布律为
P{X1 n1, X 2 n2 , , X r nr}
20
10
2019-9-16
(4) P{X Y} f (x, y)dxdy y x 0, y 0

《概率论与数理统计》三

《概率论与数理统计》三
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量X 和Y 的联合分布函数。
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)

1 0 pij 1,

2
pij 1.
j1 i1


函 F ( x, y) pij

xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)联合分布函数 F ( x, y) ;
解 1)
A 1 f ( x, y )dxdy dxdy 2 2 (1 x )(1 y )


1 1 A ( dy )dx 2 2 1 x (1 y ) Aarctan x arctan y


f (u , v)dudv
联合概率密度的基本性质:
1) 2)
f ( x, y ) 0;



f ( x, y )dxdy 1
概率密度还有如下性质:
1)设D为任意平面区域, 有
P{( X , Y ) D} f ( x, y)dxdy
D
2) 在 f ( x, y )的连续点 ( x, y )处,有
0.1
y2
a
0.4 2 已知 P( X x2 | Y y2 ) . 试求常数a,b的值。 . 3 解 由
b
0.1 a b 0.4 1
以及
P{ X x2 , Y y2 } 0.4 2 P{ X x2 | Y y2 } P{Y y2 } a 0.4 3
故关于X的边缘分布律为:
pi P{ X xi } pij
j 1

同理关于Y的边缘分布律为
p j P{Y y j } pij
i 1

联合分布律与边缘分布律的表格形式
X Y
y1
pi1
p1
x1 p11

xi
p j
pi yj p1 j p1 pi pij
FY ( y) P{Y y} P{X , Y y} F (, y)
分别称 FX ( x) 和 FY ( y ) 为 ( X , Y ) 关于 X 和 Y 的边 际分布函数,简称边际分布或边缘分布.
例 3.1.1 假设二维随机变量 X , Y 的联合分布函 数为 1 e x e y e x y xy x 0, y 0 F x, y 0 其它 称这分布为二维指数分布,其中参数 0 . 利用上面所给公式,容易求得 X , Y 关于随机变量 X 和 Y 的边缘分布函数分别为
解得
a 0.2, b 0.3
§3.3 二维连续型随机变量
3.3.1 联合概率密度
定义3.3.1 设 F ( x, y)是二维随机变量 ( X , Y )的联合分布 函数,如果存在一个非负函数 f ( x, y) ,使得
x y
F ( x, y )
则称 ( X , Y ) 是二维连续型随机变量,称 f ( 的联合概率密度. 与
j取不大于i的正整数. 且由乘法公式得
1 1 P{ X i ,Y j } P{Y j X i }P{ X i } , i 4 i 1,2,3,4, j i .
于是 ( X ,Y ) 的分布律为
Y
X
1
2
3
4
1 2
3
1 4
1 8 1 8
1 12
0 0 0
1 12
1 12
类似的,可求得其它的 pij ,最后可得 ( X 1 , X 2 ) 的联合分 布律与边缘分布律如下表:
X1
X2
0
1 10 3 10 3 3
1
10 10
pi
2 5
0
1
p j
3
5
2
5
3
5
注:两种情形的边缘分布律是相同的!
例3.2.3 设二维随机变量( X , Y )的分布律为
Y X
x1 x2
y1
(1)右连续性 F x, y 关于变量 x 或 y 都是右连续的.
(2)有界性 对任意的 x 和 y,有 0 F x, y 1 ,且
x
lim F x, y 0
y
lim F x, y 0
x y
lim F x, y 1
(3)非负性 对于任意 x1 x2 , y1 y 2 有
分布函数的几何意义
Y
( x, y )
F ( x, y)可视为随机点
( X , Y )落在以 ( x, y) 为顶点的
O O
X
左下方的无穷矩形的概率.
Y
( x1 , y2 )
( x2 , y 2 )
( x1 , y1 )
( x2 , y1 )
O
图2 设 x1 x2 , y1 y2 ,则有
X
整体大于部分之和!
§3.2 二维离散型随机变量
定义3.2.1 如果二维随机变量(X,Y)只取有限对或 可列无穷多对值,则 称(X,Y)为二维离散型随机变量.
假设二维随机变量 X , Y 的所有可能取值为 ( xi , y j ), i, j 1, 2, ,并且
P{ X xi , Y y j } pij



A
2

A
1

2
2)
F ( x, y )
x y

f (u, v)dudv
x y
A dudv 2 2 (1 u )(1 v )
Aarctan u
x
arctan v
y
1 2 arctan x arctan y 2 2
1 e x , FX ( x) F ( x, ) 0, y 1 e , FY ( y ) F (, y ) 0,
x0 x0
y0 y0
注意 边缘分布与参数 无关!这 说明研究多维随机变量,仅仅研究边
缘分布是不够,而必须将他们作为一
个整体来研究.

p j

例3.2.2 假设5件产品中有3件正品,2件次品,从
中取两次,每次取一件,记 1, 第i次取到正品 Xi i 1,2 0, 第i次取到次品
分别对有放回抽样和无放回抽样两种情况,求(X1,X2)的
联合分布律和边缘分布律.
解 (1)有放回的情形.此时
2 2 4 p00 P{ X 1 0, X 2 0} 5 5 25
P{x1 X x2 , y1 Y y2 } F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 )
二元函数能否成为某二维随机变量分布 函数的充分必要条件.
定理 3.1.1 二维联合分布函数 F ( x, y ) 具有如下的性质:


xi pi 1
pi 2
pij






例3.2.1 设随机变量 X 在 1, 2,3, 4 四个整数中等可能地
取值, 另一个随机变量 Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X , Y ) 的分布列及P( X Y ).
解 { X i ,Y j } 的取值情况是 : i 1,2,3,4,
体的统计规律性,我们引入联合分布函数的概念.
定义 3.1.2 设 X , Y 是二维随机变量,对任意实 数 x, y ,称二元函数
F x, y PX x Y y P X x, Y y ˆ
为二维随机变量 X , Y 的分布函数或 X 与 Y 的联合分 布函数.
第三章 多维随机向量及其概率分布
在前一章中,所讨论的随机现象只涉及到一个随 机变量, 但是在很多随机现象中, 每一次试验的结果 仅用一个随机变量来描述是不够的, 而是要用多个随 机变量来描述.例如,射击的弹着点要用横坐标和纵坐 标两个变量来描述; 对于钢的成份, 需要同时研究它 的含碳量,含硫量,含磷量;等等.这样,对应每一 个基本结果(样本点) ,试验的结果需要用 n 个随机 变量 X 1 , X 2 , , X n 来表示.我们不但要知道每个随 机变量 X i (i 1, 2,, n) 的概率分布, 而且更重要的是 要掌握它们间的相互关系,即要掌握随机向量 ( X1 , X 2 ,, X n ) 整体的概率性质和统计性质。 本章将介绍多维随机变量的概念, 重点放在二维 随机变量.
F ( x, y) f ( x, y ) xy
2
3)若平面区域D的面积为0,则
P{( X , Y ) D} 0
例3.3.1 设二维随机变量 ( X , Y ) 具有概率密度
2e (2 x y ) , x 0, y 0, f ( x, y ) 其它. 0, (1) 求分布函数 F ( x, y ); (2) 求概率 P{Y X }.
类似的,可求得其它的 pij ,最后可得 ( X 1 , X 2 ) 的联合分 布律与边缘分布律如下表:
X1
X2
0
4 6 25 25 6 9
1
25 25
pi
2
3
0
5
5
1
p j
2
5
3
5
(2)无放回的情形.此时
2 1 1 p00 P{ X 1 0, X 2 0} P{ X 1 0}P{ X 2 0 | X 1 0} 5 4 10

(1) F ( x, y)
x

x y 2e (2u v ) d v d u, x 0, y 0, 0 0 0, 其他. (1 e 2 x )(1 e y ), x 0, y 0. 得 F ( x, y ) 0, 其他.
则称上式为(X,Y)的联合分布律.
i, j 1,2,
联合分布律的基本性质
相关文档
最新文档