最新人教版二年级下册数学月考试卷(含答案)
部编人教版二年级数学下册第一次月考综合能力测试卷及答案(三篇)

部编人教版二年级数学下册第一次月考综合能力测试卷及答案(三篇)目录:部编人教版二年级数学下册第一次月考综合能力测试卷及答案一部编人教版二年级数学下册第一次月考综合试题及答案二部编人教版二年级数学下册第一次月考考点题及答案三部编人教版二年级数学下册第一次月考综合能力测试卷及答案一班级:姓名:满分:100分考试时间:90分钟题序一二三四五六七总分得分一、填空题。
(20分)1、火箭升空,是________现象。
(用“平移”或者“旋转”作答)2、图中一共有______个角,其中有_____个直角,_____个锐角,_____个钝角。
3、2千克=(___)克8000克=(_____)千克600克+400克=(____)千克3千克-100克=(____)克4、最大的两位数与最小的两位数相差(______)。
5、如图苹果的位置为(2,3),则梨的位置可以表示为__________,西瓜的位置记为__________。
6、我们学过的时间单位有(___)、(___)、(___)。
计量很短的时间时,常用比分更小的单位(___)。
7、有______个锐角,______个直角,______个钝角,一共有_____个角。
8、平行四边形有(_____)条边,(_____)个角。
9、在()里填上合适的长度单位。
一条鱼长约30(______)。
一棵树高约6(______)。
玻璃杯高约12(______)。
长颈鹿高约5(______)。
10、左图中有(____)个锐角,(____)个钝角,(____)个直角。
二、我会选(把正确答案前面的序号填在()里)(10分)1、从上面观察下面的长方体,看到的形状是( )。
A.长方形B.正方形C.圆2、以雷达站为观测点,海洋舰的位置是()。
A.东偏北60° B.东偏北30° C.北偏西60° D.西偏南30°3、三位数乘两位数,所得的积是()A.三位数B.四位数C.四位数或五位数4、如图所示,图中有()个小于90°的角。
人教版二年级数学下册第一次月考达标检测卷附答案 (2)

人教版二年级数学下册第1--2单元达标检测卷一、用心填一填。
(每空1分,共19分)1.用三六十八这句口诀计算的除法算式有( )和( )。
2.30里面有( )个5,( )里面有4个3。
3.把24朵花每6朵插一个花瓶,可以插( )个花瓶,列算式是( )。
4.计算20÷5时,想口诀( ),商是( )。
5.15个,每 3个一份,可以分成( )份。
6.20个,平均分成5份,每份( )个。
7.从12里连续减( )个3,结果是0。
8.一共有( )个苹果,每( )个一份,可以分( )份。
9.下面是小红调查的本班同学掉牙的情况。
(1)全班一共有( )人。
(2)掉( )颗牙的人数最少。
(3)掉( )颗牙的人数和掉( )颗牙的人数相等。
(4)我掉了( )颗牙。
二、精心辨一辨。
(对的画“√”,错的画“×”)(每题1分,共5分)1.计算12÷6时,要想的口诀是二六十二。
( ) 2.6÷2=3读作:6除2等于3。
( ) 3.把8个苹果平均分成4份,求1份是多少,用除法计算。
( ) 4.30÷6=5和30÷5=6表示的意义相同。
( ) 5.红、黄、蓝三种颜色的花一样多,一共有18朵,黄花有6朵。
( ) 三、静心选一选。
(把正确答案的字母填在括号里)(每题1分,共5分) 1.下面的分法中,是平均分的是( )。
2.被除数是6,除数是3,商是( )。
A.18 B.2 C.33.下面的算式的商不是1的是( )。
A.8÷8 B.12÷4 C.1÷14.和12÷2用同一句乘法口诀计算的是( )。
A.12÷6 B.3×4 C.12÷35.20里面有4个( )。
A.5 B.4 C.16四、细心算一算。
(共26分)1.直接写得数。
(每题0.5分,共6分)12÷3=4×5=30÷6=15÷5=30+5=56-7=6×2=8÷4=25-5=5×7=5×6=5÷5=2.在里填上“>”“<”或“=”。
第一次月考(第一、二单元)模拟试卷(月考)(含答案)2024-2025学年二年级上册数学人教版

第一次月考(第一、二单元)模拟试卷 2024-2025学年二年级上册数学人教版一、填空题(共8题;共20分)1.(4分)比72多18的数是 ,比50少37的数是 。
2.(4分)最大两位数与最小两位数的差是 。
最小两位数和最大一位数的和是 。
3.(2分)培新小学一(1)班去少年活动中心参观。
男生有18人,女生有19人,老师4人。
一共去了 人?他们分乘两辆汽车,怎样分更合理?请你帮助分一分。
4.(2分)爸爸今年39岁,小华今年12岁,爸爸比小明大 岁。
5.(2分)用尺子量书的厚度。
书的最后一页对齐0刻度,第一页对齐1刻度,书的厚度为 厘米。
6.(2分)最大的两位数比最大的一位数多 .7.(2分)阳阳有40枚邮票,新新有34枚邮票,阳阳给新新 枚后两人就同样多。
8.(2分)小明看书,从第20页看到第46页,他一共看了 页。
二、判断题(共5题;共15分)9.(3分)一个数比49少5,这个数是44。
()10.(3分)淘气8岁,爸爸比他大25岁,妈妈比爸爸小3岁,妈妈36岁。
( )11.(3分)笔算加减法都要把相同数位对齐。
( )12.(3分)明明有2张10元纸币,买一套尺子用了6元,还剩下4元。
()13.(3分)1米的绳子和100厘米的铁丝一样长.( )三、单选题(共5题;共15分)14.(3分)59>20+□,□里最大填( )。
A.39B.38C.3715.(3分)扎西的身高是130( )A.厘米B.分米C.米16.(3分)一条绳子长60米,第一次剪去19米,第二次剪去24米,绳子比原来短了( )米。
A.60-19-24B.19+24C.60-19+2417.(3分)丽丽做一道减法题,把减数34看成了43,结果算出的差比正确的差( )。
A.多9B.少9C.无法比较18.(3分)这支铅笔的长度还差( )毫米就是6厘米长。
A.5B.3C.7四、计算题(共2题;共17分)19.(8分)直接写出得数13-8=47-6=15-9=14-4+36=63+20=73+7=32-10=26+3+9=40+17=43-5=55-4=67-7+4=72-9=34+8=8+28=34+40-5=20.(9分)竖式计算.(1)(3分)36+24-37=(2)(3分)82-22+27=(3)(3分)100-35+28=五、作图题(共1题;共4分)21.(4分)一条10厘米的线段上面有超市,食堂,还有教室,小明走4厘米是一家超市,走10厘米是教室,请问食堂在几厘米,请同学们画线段并标明。
人教版二年级下期数学单元、月考、期中和期末检测试题.docx

人教版二年级下期数学单元、月考、期中和期末检测试题小学数学二年级下册第一单元试卷班级:姓名: 得分:一、 填空。
(10分) 1. 被除数是84,除数是9,商是( )余数是( )。
2. 有38朵红花,平均分给5个小朋友,平均每个小朋友有()朵,还剩()朵。
3. 计算有余数的除法( )要比( )小。
4. 554-7所得的商是( )余数是()o5. 81里有()个9,把81平均分成9份,每份是( )o二、 直接写出下面各题的商和余数。
(12分)424-8 = ( )…… ( ) 334-5 = ( ).... ・・( ) 484-7 = ()……( )504-6 =()....・・( ) 71一9 =( )…… () 634-8 = ()・・・・ ・・()三、()里最大能填几?(18 分)8X ( ) <25 ( )X9<70 50 > ( ) X6 8X () <58()X3<29 48 > ( ) X6 6X () <56 ( )X4<2665 > () X7四、列竖式计算。
(18分)40 — 6 69—747 一539—4 194-3 174-2五、把下面各题不对的改正过来。
(4分)44一6=6……8 6 )4 4 3 6294-7474-889一931一6 = 5六、应用题。
⑴动物园有8只黑天鹅,30只白天鹅的只数是黑天鹅的几倍?⑵图书角有25本图书,平均分给8个组,每组分几本?还剩几本?小学数学二年级下册第二单元复习题姓名 __________ 得分______________________ 一、填空:1、在没有括号的算式里,有乘法和加、减法,都要先算(2、在没有括号的算式里,有除法和加、减法,都要先算(3、在没有括号的算式里,只有()或只有(4、甲数比乙数少15,乙数是30,甲数是()o5、85减去13,差是(),再除以9得()o),再算()。
最新人教版二年级下册数学月考试卷(含答案)

最新人教版二年级下册数学月考试卷(含答案)2019-2020学年度第二学期二年级数学月考测试试卷班级。
______ 姓名。
______ 学号。
______一、填一填。
(每小题2分,第4、10小题各4分,共24分)1、在8÷4=2中,被除数是(8),除数是(4),商是(2),读作:(8除以4等于2)。
2、下面有(12)个,每(3)个一组,可以分成(4)组。
3、下面的平均分成2份,每份有(9)个;如果平均分成3份,每份有(6)个。
4、4×(3)=12,18÷(6)=3,24-(16)=8,(16)÷4=4.5、18本练本平均分给6个人,每人(3)本,列式为:18÷6=3.6、风车转动是一种(旋转)现象,升降国旗是一种(上下)现象。
7、根据“四七二十八”写出两道除法算式:28÷4=7,28÷7=4.8、(25)除以5的商还是5.这个数在算式中叫(被除数)。
9、15里面有(1)个3;18里面有(3)个6.10、用4、5、20这三个数,写出两道乘法算式和两道除法算式:4×5=20,20÷4=5,5×4=20,20÷5=4.二、选一选。
(将正确答案的序号填在括号里,5分。
)1、下面算式中商最大的算式是(②)。
①12÷2 ②36÷9 ③20÷42、下列运动是平移的是(②)。
①举重②钟表指针的转动3、下列3种笔中,(①)最便宜。
①4元1支②9元3支③25元5支4、24÷6的结果和(①)是一样的。
①12÷2 ②12÷3 ③18÷65、12里面有几个4?算式是(③)。
①3×4=12 ②12÷3 ③12÷4三、判断对错(对的打√,错的打×)(6分)1、把9个梨子放在3个盘子里,每个盘子里一定是3个。
(√)2、任何一道乘法口诀都可以写出两道不同的除法算式。
2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题【含答案】

2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。
2021年二年级下册数学第一次月考试题(人教新课标,含答案) (7)

2021学年度二年级数学第二学期质量检测第一次月考(考试时间50分钟,满分110分)一、我会填(共15分)。
18÷2= 6÷1= 9×2= 20-5= 36÷6=3÷3= 8×9+8= 9-7×1= 25+70-6=100-(75+17)= 99÷99= ()÷1=6()÷4=4 30÷()=6 ()×4=4二、填空题(共32分)。
1、看图写算式。
()()=()()()=()2、每份分得()叫平均分。
3、9个南瓜平均放在3个筐里,每个筐里装()个。
4、写出3个具有对称特性的数字:()、()、(),写出3个具有对称特性的汉字:()、()、()。
5、20÷5=(),读作:(),表示把()平均分成()份,也就是表示()里面有()个()。
6、(1)一共有()个,每()个一份,平均分成了()份。
(2)一共有()个◇,每()个一份,平均分成了()份。
7、30里有()个5,列式为:()÷()=()8、12本练习本平均分为小红和她的3个小伙伴,每人分到()个。
9、这个图形沿一条直线对折以后可以重合,那么我们把这个图形叫做()图形,对折的直线叫做()。
10、加法算式:()乘法算式:()除法算式:()三、判断题(对的打“√”,错的打“×”)(共5分)。
1、在出发算式里,被除数都比除数大。
()2、由、中、田、大,这4个汉字都是对称的图形。
()3、计算4×3和12÷3都是用“三四十二”这个口诀。
()4、求12里有几个2,列式为12÷6=2。
()5、这个图形可以由经过平移形成。
()四、我会选(将正确答案的序号填在括号里)(共10分)。
1、15根胡萝卜平均分给3只小兔,每只小兔分得几根?列式为()①15÷5=3(根)②15÷3=5(根)③3×5=15(根)2、除数是6的算式是()①6÷3=2 ②12÷6=2 ③2×3=63、把这些◇◇◇◇◇◇◇◇◇◇平均分给2个小朋友,正确的分法是()①◇◇◇◇◇◇◇◇◇◇②◇◇◇◇◇◇◇◇◇◇③◇◇◇◇◇◇◇◇◇◇4、下列图形不是对称图形的是()①②③5、一堆苹果比20个多,比30个少,分成的份数和个数一样多,这堆苹果一共有()个。
人教版二年级数学下册第二次月考试卷附答案

人教版二年级数学下册第二次月考检测卷一、用心填一填。
(每空1分,共21分)1.45÷9=(),读作:(),用口诀()来计算。
2.除数是4,被除数是8,商是();63里面有()个9。
3.把下面这些字母分分类。
A C D H M N S这些字母中,是轴对称图形的有(),不是轴对称图形的有()。
4.火箭升空是()现象,钟面上的时针和分针的运动是()现象。
5.根据6×7=42写两道除法算式是()和()。
6.写出4道商是6的除法算式:()、()、()、()。
7.用36个△能摆成()个,能摆成()个。
8.(1)买6双手套要()元,35元可以买()条毛巾。
(2)平均每支钢笔()元钱,45元可以买()支钢笔。
二、静心选一选。
(把正确答案的字母填在括号里)(每题2分,共10分)1.图形可以由下面的图形()平移得到。
2.得数是5的除法算式是()。
A.24-19B.5×1C.10÷2 3.面包店有18个面包,可以按()个一袋,正好装完。
A.6 B.8 C.7 4.每次取3颗,连续()次取完。
A.6 B.7 C.9 5.如图,沿台灯的边缘线剪下来,能剪出()个完整的台灯。
A.1B.2C.3三、细心算一算。
(共23分)1.直接写得数。
(每题1分,共12分)42÷7=30÷6=8×9=64÷8=56-19=64+28=36+24=5×8=21÷3=60-34=2×7=35+29=2.将下列算式按得数从小到大排列。
(每空1分,共5分)63÷740÷824÷872÷948÷8()<()<()<()<()3.方框内是几?(每题1分,共6分)□÷6=756÷□=7□÷2=836÷□=9 □÷8=4 28÷□=4四、慧心想一想。
部编人教版二年级数学下册第一次月考试卷及答案学生专用(三篇)

2×8=9×4=3×7=2×9=
1×1=5×6=2×2=4×2=
5+7=3×5=9×2=5×5=
7×5=6+4=6×5=7×3=
五、列式计算。(10分)
1、1、
2、
六、我会画。(10分)
1、在方格图左边画一个平行四边形,右边画一个三角形。
2、画一条比8厘米短3厘米的线段。
七、解决问题。(20分)
答:一共要比3场。
一共可以组成3种不同的币值。分别为10元5角,20元5角,30元。
9、2个6相加是(______),2个6相乘是(______)。
10、最大的两位数与最小的两位数相差(______)。
二、我会选(把正确答案前面的序号填在( )里)(10分)
1、比较下面三个角的大小,最大的是( )
A. B. C.
2、右面这个时钟比准确时间快10分,准确时间是( )。
A.9时45分 B.8时45分 C.9时05分
2、书店有甲、乙两个书架,甲书架放们本书,乙书架放56本,现在书店又进了26本书,怎样放才能使两个书架的书同样多?
3、每张桌子可以坐6人,再来2人就坐满5张桌子了,请问来了几人?
4、解决问题。
周六上午芳芳读完书要去学滑冰,11:00还要去姥姥家。下面的哪个时间可能是芳芳学滑冰的时间?请你圈出来。
5、每张邮票8元,小芳想买4张邮票,一共需用多少元?
1、二年级(1)班有男生21人,比女生少3人,二年级(1)班有学生多少人?
2、车上原有25人,现有多少人?
3、一根绳子剪去10米,还剩5米,这根绳子原来长多少米?
4、3个人去打乒乓球,每两个人进行一场比赛,一共要比几场?
5、有5角,10元,20元的纸币各一张,一共可以组成多少种不同的币值?请写出来。
新人教版二年级数学下册第一二次月考试题 (6套)

正 正 正
正 正 —
正
5、下图是小明记录的一个月的天气情况,请把记录结果填在下表中。
1把记录结果写在下表中
天气
天数
2这个月一共有( )天。 比 多( )天。
新人教版二年级数学下册月考测试卷(3月)
一、算一算。
35÷7=9×7=42÷6=62-20=25÷5=
8÷8=49÷7=6×4=21÷3= 6×6=
二、填一填
1、一周是( )天,28天是( )周。
2、28÷4=( ),读作( ),
表示把28平均分成( )份,每份是( ),还可以表示28里面有( )个( )。
3、根据下图可以写出乘法算式是( ),除法算式是( )或( ),都可以应用( )这句乘法口决来进行计算
4、在○里填上“+”“-”“×”或“÷”。
(1)买一个足球的钱可以买几个
(2)买4个花多少元钱?
(3)你还能提出其他的数学问题并解答吗?
3、铅笔盒原来10元1个,现在优惠促销,一次买3个24元,促销的铅笔盒每个多少元?每个比原来便宜多少元?
新人教版二年级第一次月考试卷数学
(全卷满分100分,考试时间90分钟)
同学们,本学期我们愉快地度过了一个月的时间了,你在知识的海洋中有哪些收获呢?下面我们来检测一下自己吧!
6、24÷4=6和4×6=24用的口诀是( )。
7、小明看一本书,每天看6页,看了5天,还剩12页没看完,这本书有( )页。
8、下面是兴趣班人数的统计表,请完成以下表格。
班别
男生人数
女生人数
本班总人数
奥数班
20
比男生少3人
电脑班
比女生2倍多3人
9人
二、我会想。(22分)
最新人教版二年级数学下册第二次月考试题及答案各版本(三篇)

最新人教版二年级数学下册第二次月考试题及答案(各版本(三篇)目录:最新人教版二年级数学下册第二次月考试题及答案各版本一最新人教版二年级数学下册第二次月考试题及答案完整二最新人教版二年级数学下册第二次月考试题及答案完美版三最新人教版二年级数学下册第二次月考试题及答案各版本一班级:姓名:满分:100分考试时间:90分钟一、填空题。
(20分)1、23比61少________,70比26多________,比16多27的数是________。
2、游乐园国庆搞活动,1张门票可以换2瓶水,小王一家三口的门票能换(____)瓶水。
3、0与任何数相乘都得(___),1与任何数相乘都得(___)。
4、8040读作:(_________________);三千零五写作:(____________)5、填上合适的长度单位“厘米”或“米”。
一块橡皮长4(__________)一张桌子高60(__________)一棵大树高8(__________)一座桥长30 (___________)6、你在学校上一节课要________分钟,课间体息要________分钟。
7、用可以摆成(_____)个两位数。
8、长度单位有(_______)和(_________)。
9、由5个千、8个百和2个一组成的数是(__________)10、求几个相同加数的和用(_________)计算简便。
二、我会选(把正确答案前面的序号填在()里)(10分)1、二年级口算比赛小明用了1分40秒,小刚用了2分钟,两人相差()。
A.20分B.20秒C.20小时D.2天2、先估一估,再量一量,下面的线段中最长的是()。
A. B. C.3、小文从窗外看到的情景是( )A. B. C.4、小明家收了15个西瓜,(),要用几个筐?A.用了3个筐装 B.平均每个筐装5个 C.要把15个西瓜装在筐里5、两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于()。
新人教版二年级数学下册第二次月考综合试题及答案(八套)

新人教版二年级数学下册第二次月考综合试题及答案说明:本套试卷精心编写了各考点和重要知识点,测试面广,难易兼备,仅供参考。
全套试卷共八卷。
目录:新人教版二年级数学下册第二次月考综合试题及答案(一)新人教版二年级数学下册第二次月考考点题及答案(二)新人教版二年级数学下册第二次月考考试卷及答案(三)新人教版二年级数学下册第二次月考考试及答案(四)新人教版二年级数学下册第二次月考考试及答案(五)新人教版二年级数学下册第二次月考考试及答案(六)新人教版二年级数学下册第二次月考考试及答案(七)新人教版二年级数学下册第二次月考考试及答案(八)新人教版二年级数学下册第二次月考综合试题及答案一班级:姓名:满分:100分考试时间:90分钟一、填空题。
(20分)1、1张可以换(____)张,或换(____)张,或换(____)张。
2、6个4相加的和是________。
3、同学们排队,小丽前面有14名同学,后面有16名同学,她所在的这队共有(____)名同学。
4、6个9相加的和是(____),7个5相加的和是(____)。
5、丽丽用4米长的竹竿量井深,竹竿露出井沿部分是1米.井深_______米.6、35里面有(____)个5,63是7的(______)倍。
从40里连续减去(______)个8,得0。
7、1米=(____)厘米200厘米=(____)米7厘米+6厘米=(____)厘米42米-20米=(____)米8、在一个乘法算式中,积是其中一个因数的12倍,另一个因数是(______)。
9、一根铁丝先用去一半,再用去剩下的一半,还剩9米。
这根铁丝原来长___米。
10、8050读作:(_________________);二千零二写作:(____________)二、我会选(把正确答案前面的序号填在()里)(10分)1、3个人每人做6朵花,共做了多少朵花?列式不正确的为()。
A.3+3+3 B.6+6+6 C.6×32、把一个长方形的框架拉成了一个平行四边形,这个平行四边形的周长与原长方形的周长相比()。
二年级数学第一次月考试卷分析【含答案】

二年级数学第一次月考试卷分析【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数字是偶数?A. 3B. 4C. 5D. 62. 1 + 1 等于多少?A. 1B. 2C. 3D. 43. 下列哪个数字是质数?A. 12B. 13C. 15D. 184. 下列哪个数字是奇数?A. 10B. 11C. 12D. 135. 下列哪个数字是合数?A. 7B. 11C. 13D. 14二、判断题(每题1分,共5分)1. 2 + 2 = 4 ()2. 5 3 = 2 ()3. 9 + 6 = 15 ()4. 8 5 = 3 ()5. 10 + 5 = 15 ()三、填空题(每题1分,共5分)1. 4 + 5 = ____2. 7 2 = ____3. 9 + 7 = ____4. 6 4 = ____5. 8 + 4 = ____四、简答题(每题2分,共10分)1. 请写出2的倍数,并解释为什么。
2. 请写出3的倍数,并解释为什么。
3. 请写出4的倍数,并解释为什么。
4. 请写出5的倍数,并解释为什么。
5. 请写出6的倍数,并解释为什么。
五、应用题(每题2分,共10分)1. 小明有3个苹果,他又买了2个苹果,请问他现在有多少个苹果?2. 小红有5个橘子,她吃掉了2个橘子,请问她现在有多少个橘子?3. 小刚有6个香蕉,他给了小明3个香蕉,请问他现在有多少个香蕉?4. 小李有7个梨,他又买了4个梨,请问他现在有多少个梨?5. 小王有8个葡萄,他吃掉了5个葡萄,请问他现在有多少个葡萄?六、分析题(每题5分,共10分)1. 请分析奇数和偶数的区别。
2. 请分析质数和合数的区别。
七、实践操作题(每题5分,共10分)1. 请用算盘计算:4 + 52. 请用计算器计算:8 3八、专业设计题(每题2分,共10分)1. 设计一个包含三个数字的加法题目,并给出答案。
2. 设计一个包含三个数字的减法题目,并给出答案。
2022-2023学年贵州省新高考“西南好卷”高二年级下册学期适应性月考数学试题(五)【含答案】

2022-2023学年贵州省新高考“西南好卷”高二下学期适应性月考数学试题(五)一、单选题1.若 ,则( )1i z =-z =A .0B .1C D .2【答案】C【分析】根据复数的求模公式计算.=故选:C.2.某高中共有学生1800人,其中高一、高二、高三的学生人数比为16:15:14,现用分层抽样的方法从该校所有学生中抽取一个容量为90的样本,则高二年级应该抽取的人数为( )A .28B .30C .32D .36【答案】B【分析】根据分层抽样的性质,按比例抽取即可求解.【详解】高二年级应该抽取人,159030161514⨯=++故选:B3.在中,角所对的边分别为,且,则等于( )ABC ,,A B C ,,a b c 4,3a b c ===B C +A .B .C .D .π22π33π45π6【答案】B【分析】根据给定条件,求出角A ,再利用三角形内角和定理计算作答.【详解】在中,由余弦定理得,ABC 222169131cos 22432b c a A bc +-+-===⨯⨯而,则,0πA <<π3A =所以.2ππ3B C A +=-=故选:B4.老师布置了两道数学题,学生做对第一题的概率是,做对第二题的概率是,两题都做对的7868概率是,现在抽查一个学生,该生在第一题做对的前提下,第二题做对的概率是( )58A .B .C .D .68586757【答案】D【分析】根据条件概率公式求解.【详解】设做对第一题为事件,做对第二题为事件,A B 由条件可知,,()()()765,,888P A P B P AB === ;∴()()()558|778P AB P B A P A ===故选:D.5.已知成等比数列,且1和4为其中的两项,则的最小值为( )1234,,,a a a a 3a A .2B .C .D .142-16-【答案】C【分析】根据给定条件,当1和4为两项时,求出较小的值,当1和4为连续的两项或为24,a a 3a 或为两项时,分析判断作答.13,a a 14,a a 【详解】依题意,当1和4为两项时,则,解得或,取,24,a a 23244==a a a 32a =32a =-32a =-当1和4为两项时,为正数,大于,13,a a 3a 2-当1和4为任意连续的两项时,等比数列的公比,必为正数,大于,0q >3a 2-当1和4为两项时,由于与同号,必为正数,大于,14,a a 3a 1a 3a 2-所以的最小值为.3a 2-故选:C6.已知圆锥的母线长为2,则过圆锥顶点的截面面积最大值为( )A .1BC .2D.【答案】C【分析】由其侧面展开图的中心角可求得底面圆的半径为,当截面顶角为时,过圆锥顶点r =π2的截面面积最大,从而可得结论.【详解】设底面圆的半径为,,解得,由圆锥母线长为2,可得圆锥轴截面r 22r π=r =的顶角为,2π3当截面顶角为时,过圆锥顶点的截面面积最大,此时.π212222S =⨯⨯=故选:C.7.函数在单调递减,且为奇函数.,则满的取()f x (),-∞+∞()13f =-()33ln 102f x x ⎡⎤⎛⎫--+< ⎪⎢⎥⎝⎭⎣⎦x 值范围是( )A .B .C .D .()11,0,2⎛⎫-⋃+∞⎪⎝⎭()31,0,2⎛⎫-⋃+∞ ⎪⎝⎭()30,3,2⎛⎫+∞ ⎪⎝⎭()1,+∞【答案】A【分析】根据函数的单调性,奇偶性以及可解不等式组或分()13f =-()332ln 10f x x ⎧⎛⎫->⎪ ⎪⎝⎭⎨⎪+<⎩()332ln 10f x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪+>⎩,别解两个不等式组即可得出结论.【详解】由已知,使不等式成立的满足或,x ()332ln 10f x x ⎧⎛⎫->⎪ ⎪⎝⎭⎨⎪+<⎩()332ln 10f x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪+>⎩因为为奇函数.且,所以,()f x ()13f =-()13f -=将的图象右移个单位后,由得,()f x 32332f x ⎛⎫-> ⎪⎝⎭12x <又得,即,()ln 10x +<011x <+<10x -<<所以满足的范围为,()332ln 10f x x ⎧⎛⎫->⎪ ⎪⎝⎭⎨⎪+<⎩x 10x -<<同理,满足的范围为.()332ln 10f x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪+>⎩x 12x >综上,的取值范围为,x ()11,0,2⎛⎫-⋃+∞⎪⎝⎭故选:A.【点睛】关键点睛:通过函数的单调性,奇偶性,以及,从而解出得,()13f =-332f x ⎛⎫-> ⎪⎝⎭12x <以及得,是解题关键.本题考查函数的基本性质的综合应用,属于较难题.()ln 10x +<10x -<<8.分别为双曲线的左,右焦点,过的直线与双曲线左支交于两12,F F 2222:1(0,0)x y C a b a b -=>>1F ,A B 点,且,以为圆心,为半径的圆经过点,则的离心率为( )113AF BF =O 2OF B CA B C .D .5253【答案】A【分析】根据双曲线的定义以及可得边的关系,结合余弦定理即可求解.113AF BF =【详解】由题意得,1290F BF ∠=设,则,1BF m=2122,3,32,4BF m a AF m AF m a AB m=+==+=在中,由勾股定理得,解得,则,2Rt ABF ()()()2222432a m m m a ++=+m a =12,3BF a BF a==在中,由勾股定理得,化简得,所以的离心率12Rt F BF ()()22232a a c +=22104c a =C c e a ==故选:A.二、多选题9.已知圆的方程为,则关于圆的说法正确的是( )M ()()22121x y -++=M A .圆心的坐标为M ()1,2-B .点在圆内33,22P ⎛⎫- ⎪⎝⎭MC .直线被圆0x y +=MD .圆在点处的切线方程为M ()1,1-1y =-【答案】BCD【分析】由圆的标准方程即可判断A,根据点与圆的位置关系即可判断B,根据直线与圆相交,结合勾股定理即可求解弦长判断C,根据点的位置即可判断切线与轴平行,即可判断D.x 【详解】由圆的方程为,知圆心为,半径为1,选项A 错误;M ()()22121x y -++=()1,2-点到点,选项B正确;33,22P ⎛⎫- ⎪⎝⎭()1,2-1=<点到,所以,选项C 正确;()1,2-0x y +==由于点在圆上,点与圆心在垂直于坐标轴的直线上,所以圆在点()1,1-M ()1,1-()1,2-x M 的切线直线与轴平行,其方程为,选项D 正确;()1,1-x 1y =-故选:BCD.10.设函数,则下列结论正确的是( )()πsin 23f x x ⎛⎫=+ ⎪⎝⎭A .的图象关于直线对称()y f x =7π12=x B .的图象关于点中心对称()y f x =π,06⎛⎫- ⎪⎝⎭C .在区间有两个极值点()f x π11π,1212⎛⎫- ⎪⎝⎭D .在区间单调递减()f x 5π0,12⎛⎫ ⎪⎝⎭【答案】ABC【分析】代入验证法即可判断AB,根据的范围,求解的范围,结合正弦函数的性质即可判x π23x +断CD.【详解】对A ,,A 正确;7π7ππ3πsin 2+sin 1121232f ⎛⎫⎛⎫=⨯==- ⎪ ⎪⎝⎭⎝⎭对B ,,B 正确;πππsin 2sin 00663f ⎡⎤⎛⎫⎛⎫-=⨯-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对C ,当时,,π11π,1212x ⎛⎫∈- ⎪⎝⎭ππ13π2,366t x ⎛⎫=+∈ ⎪⎝⎭由正弦函数的性质和图象可知有2个极值点,sin y t =()y f x =由,解得,解得,即和为函数的极值点,C 正确;ππ2=32x +ππ3π,2=1232x x =+7π12=x π=12x 7π12=x 对D , 当时,,5π0,12x ⎛⎫∈ ⎪⎝⎭ππ7π2,336t x ⎛⎫=+∈ ⎪⎝⎭由正弦函数的性质知当时,单调递增,当时,单调递减,ππ32t ,æöç÷Îç÷èøsin y t =π7π26t ,æöç÷Îç÷èøsin y t =所以在上不单调,D 错误;()y f x =5π0,12⎛⎫ ⎪⎝⎭故选:ABC.11.如图,在中,关于的值,以下说法正确的是( )C ·AB ACA .当半径为定值,弦越长,的值就越大C AB ·AB ACB .当弦长度为定值,半径越大,的值就越大AB ·AB ACC .的值与弦的长度无关·AB AC ABD .的值与半径的大小无关·AB AC 【答案】AD【分析】由圆中的垂径定理结合数量积的计算即可得,结合选项即可求解答案.22AB AC a⋅=【详解】设的半径为,的长度为,取的中点,连接,则C r AB 2a AB D CD CD AB⊥在中,Rt ACD △,,cos aAD a AC r CAD r==∠=∴22cos 22aAB AC a r CAD ar a r ⋅=⋅⋅∠=⋅= 只与弦的长度有关,且弦越长,的值越大,与半径无关.AB AB ·AB AC 故选:AD.12.已知函数,且.则下列结论一定正确的是( )()()1ln f x x x=-()()e af f b >A .若,则B .若,则0a >0a b ->0a >e 0ab ->C .若,则D .若,则a<0e 2ab +>a<0ln 0a b -<【答案】BD【分析】利用导数研究函数的单调性,结合选项及函数单调性逐项判断即可.【详解】函数的定义域为,因为,()f x {}|0x x >()()1ln f x x x =-所以,令,()1ln 1f x x x '=+-()1ln 1h x x x =+-则,所以函数在上单调递增,()2110h x x x '=+>()1ln 1h x x x =+-()0,∞+又,所以当时,,即,所以在上单调递减,()10h =01x <<()0h x <()0f x '<()f x ()0,1当时,,即,所以在上单调递增,1x >()0h x >()0f x ¢>()f x ()1,+∞所以.()()min 10f x f ==所以当,取,因为,所以,此时,A 错误;0a >2,e a b ==2e e 1>>()()e a f f b >0a b -<当时,,由得,即,B 正确;0a >e 1a>()()e a f f b >e a b >e 0a b ->当时,取,,满足,此时,C 错误;a<01,1a b =-=1e 1-<()()e af f b >e 2a b +<当时,,由得,则,即,D 正确.a<00e 1a <<()()e a f f b >e ab >ln b a >ln 0a b -<故选:BD.三、填空题13.展开式中含项的系数为______.(723x 【答案】14【分析】求出展开式的通项公式,令x 的指数为3,可求出r 值,从而得解.【详解】展开式的通项公式为,(72(()772177C 21C 2r rrrrr rr Tx--+==-令,则,所以含项为,32r =6r =3x 63377C 214T x x ==所以展开式中含项的系数为14.(723x 故答案为:14.14.抛物线在第一象限上一点,满足,为该抛物线的焦点,则直线的斜率为24y x =P 5PF =F PF ______.【答案】43【分析】过点P 作抛物线准线的垂线段,利用抛物线定义结合直角三角形即可求解.【详解】由题意作图如下:过引抛物线准线的垂线,垂足为,P M 则,所以,5PM PF ==23AF PM =-=在中,,所以,Rt PAF △222AP AF PF+=4PA =所以.4tan 3PA AFP AF∠==故答案为:.4315.有五名教师到甲,乙两个学校支教,每个学校至少安排一名教师,则在不同,,,,A B C D E ,A B 的学校方法的种数为__________.【答案】16【分析】理解题意,根据排列和组合的概念及其性质即可得出结论.【详解】其中被安排在不同学校有种,,A B ()22122232A A C A 2816+=⨯=故答案为16.16.某学习小组研究函数的性质时,得出了如下的结论:()1112f x x x =+--①函数图象关于轴对称;()f x y②函数图象关于点中心对称;()f x 3,02⎛⎫ ⎪⎝⎭③函数在上单调递减;()f x ()1,2④函数在上有最大值.()f x ()1,1-32-其中正确的结论是_____________(填写所有正确结论的序号)【答案】①③④【分析】对于①,通过偶函数的定义即可判断, 对于②,即可判断,()()63f f ≠--对于③,根据导函数的正负即可判断,对于④,结合①③即可判断.【详解】函数的定义域为,()f x {}|1,2x x x ≠±≠±且定义域内任意都满足,所以函数的图象关于轴对称,①正确;x ()()f x f x -=()f x y 因为,而,且;②错,()11119661625420f =+=+=--()111331313222f -=+=+=--()()63f f ≠--对于时,,()1,2x ∈()11111212f x x x x x =+=-----+,()()()()()()()()()22222222121163121212x x x f x x x x x x x --+---'=+==----+-+在上,单调递减,③正确;x ()1,2()()0,f x f x '<由①③知,为偶函数,时,,单调递减,()f x [)0,1x ∈()1112f x x x =+--()f x 又为偶函数,所以在上单调递增,()f x ()f x ()1,0x ∈-当时,有,④正确;0x =()()max 113001022f x f ==+=---故正确的结论是①③④.故答案为:①③④.四、解答题17.已知函数,求函数的单调区间及最小值.()43212314324f x x x x =--+()f x 【答案】单调增区间为,,单调递减区间为,最小值.()1,0-()3,+∞()(),1,0,3∞--11-【分析】根据导函数即可求解单调区间,再根据单调区间,即可求解最小值.【详解】由题意,函数的定义域为.()f x R 令,得或,或,()()()3223130f x x x x x x x =--=+-='=1x -0x =3x =当时,或;当时,或,()0f x ¢>10x -<<3x >()0f x '<1x <-03x <<所以函数的单调递增区间为,,单调递减区间为,()f x ()1,0-()3,+∞()(),1,0,3∞--所以函数的极小值为和()f x ()()()()43212311111143243f -=⨯--⨯--⨯-+=-,又为上的连续函数,()43212313333114324f =⨯-⨯-⨯+=-()f x R 所以函数在上的最小值为-11.()f x R 18.已知数列满足.{}n a 111,1nn n a a a a +==+(1)求证:数列为等差数列;1n a⎧⎫⎨⎬⎩⎭(2)若,求满足条件的最小整数.123132497100n n a a a a a a a a +++++>n 【答案】(1)证明见解析(2)33【分析】(1)取倒数,即可由等差数列的定义求解,(2)由裂项相消求和可得,由不等式即可求解.31223411n n na a a a a a a a n +++++=+【详解】(1)由得11n n n a a a +=+11111n n n na a a a ++==+又11a =所以数列是以为首项,公差为1的等差数列;1n a ⎧⎫⎨⎬⎩⎭111a =(2)由(1)知,,即则()1111n n n n a a =+-⨯=1n a n =()111111n n a a n n n n +==-++所以,133224111111197122311100n n n a a a a a a a a n n n +++++=-+-+-=>++ 解得,973n >又为整数.n所以的最小值为33 .n 19.甲盒中有3个黑球,3个白球,乙盒中有4个黑球,2个白球,丙盒中有4个黑球,2个白球,三个盒中的球只有颜色不同,其它均相同,从这三个盒中各取一球.(1)求“三球中至少有一个为白球”的概率;(2)设表示所取白球的个数,求的分布列.ξξ【答案】(1)79(2)分布列见解析【分析】(1)由题意,分别求出甲、乙、丙盒中取一球为白球事件的概率,再用间接法即可求得“三球中至少有一个为白球”的概率;(2)由题意可得的可能取值为0,1,2,3.分别求出各个取值的概率,从而可列出离散型随机变ξ量的分布列.【详解】(1)记甲、乙、丙盒中取一球为白球事件分别为,三球中至少有一球为白球记为、、A B C 事件,M 则;;.()12P A =()13P B =()13P C =()()1P M P ABC =-1111111233⎛⎫⎛⎫⎛⎫=--⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;79=(2)由题意可知,随机变量的可能取值为0,1,2,3.ξ,()2112011239P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭()()1P P ABC ABC ABCξ==++,21111141211232339⎛⎫⎛⎫⎛⎫=⨯-+⨯-⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()2P P ABC ABC ABC ξ==++111111111111233233233⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,518=.()211132318P ξ⎛⎫==⨯= ⎪⎝⎭所以,随机变量的分布列如下:ξξ0123P 294951811820.如图,在四棱锥中,底面为菱形, 是边长为2的正三角形,P ABCD =ABCD PAB .60ABC ︒∠=(1)求证:;AB PC ⊥(2)若与平面夹角的余弦值.PC =PAD PBC 【答案】(1)证明见解析(2)35【分析】(1)根据几何关系,证明平面POC 即可;AB ⊥(2)建立空间直角坐标系,运用空间向量求解.【详解】(1)如图,取中点,连接,, ,AB O OC OP AC ∵底面为菱形,, 是等边三角形,ABCD 60ABC ∠=︒ABC ∴,OC AB ⊥∵ 是等边三角形,PAB∴,OP AB ⊥∵ ,平面POC ,平面POC ,OP OC O ⋂=PO ⊂CO ⊂∴平面,又平面,AB ⊥POC PC ⊂POC ∴;AB PC ⊥(2)∵ 是边长为2的正三角形,点为中点,∴,PAB OAB OP ∵四边形为菱形,,则∴,ABCD 60,2ABC AB ∠=︒=OC =222OC OP PC +=∴,又 ,平面ABCD ,平面ABCD ,且,OC OP ⊥OP AB ⊥OC ⊂AB ⊂OC AB O = ∴底面;OP ⊥ABCD 如图,以所在直线分别为轴建立空间直角坐标系,,,OC OAOP ,,x yz 则,()()))(0,1,0,0,1,0,,2,0,AB C D P -,()((1,0,0,,DA CB AP BP ==-=-= 设平面的法向量为,由得:,PAD ()1,,n x y z = 1100DA n AP n ⎧⋅=⎪⎨⋅=⎪⎩ 00y y ⎧-=⎪⎨-=⎪⎩取,∴,y =1,1x z =-=()1n =- 设平面的法向量为,由得:,PBC ()2,,b c n a = 2200CB n BP n ⎧⋅=⎪⎨⋅=⎪⎩ 00b b ⎧-=⎪⎨=⎪⎩取,∴,b =1,1a c =-=()21n =-- ∴,平面与平面夹角的余弦值为;1212123cos ,5n n n n n n ⋅== PAD PBC 35综上,平面与平面夹角的余弦值为.PADPBC 3521.已知椭圆,三点,,中恰2222:1(0)x y C a b a b +=>>⎛ ⎝1,⎛- ⎝12⎫-⎪⎪⎭有两点在椭圆上.C (1)求的标准方程;C (2)设过点的直线(不为轴)与交于不同的两点,若点满足,()2,0P -l x C A B 、()0,M m MA MB =求的取值范围.m 【答案】(1)2212x y +=(2)m ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝ 【分析】(1)根据对称性判断三点中哪两点在椭圆上并求出 ;,,a b c (2)由题意,M 点必定在线段AB 的垂直平分线上,设直线l 的方程,根据l 的斜率确定m 的范围.【详解】(1)由椭圆的对称性可知点和在上,代入方程得,⎛ ⎝1,⎛- ⎝C221112a b +=设的半焦距为,则离心率为,,所以,解得,C (0)c c>c a=,a b c ==a =1a b =则椭圆;22:12x C y +=(2)由题意直线的斜率存在,设为,l (),0k k ≠则,联立得:,():2l y k x =+()222220y k x x y ⎧=+⎨+-=⎩()2222128820k x k x k ++-+=设,的中点设为,()()1122,,,A x y B x y AB ()00,N x y ,,2122812k x x k -+=+()()()1212122422412k y y k x k x k x x k k +=+++=++=+,()()()222228412821680k k k k ∆=-+-=-+>解得,且,则,,k -<<0k ≠202412k x k -=+02212k y k =+又 ,所以 , ,MA MB =MN AB ⊥202022112412MNk m y m k k k x kk --+===--+解得:,,且,2212k m k =-+k ⎛∈ ⎝0k≠当时,, ,k ⎛∈⎝22201122k k k k<=<++∴22012k k <-<+当,k ⎛⎫∈ ⎪ ⎪⎝⎭22012k k >->+所以;m ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝ 22.已知函数.()()e 1,0ax f x a x a =-+>(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;2a =()y f x =()()0,0f (2)若,求的取值范围.()ln 1f x x ax ≥-+a 【答案】(1)94(2)1,)e ∞⎡+⎢⎣【分析】(1)根据导数的几何意义求得切线方程为,分别令和当,求得与坐标23y x =+0x =0y =轴交点坐标,结合面积公式,即可求解;(2)根据题意转化为在上恒成立,设,求得e ln 0(0)ax a x x -≥>()0,x ∞∈+()e ln ax g x a x =-,再令,求得,得到为单调递增函数,得出()21e ax g x a x '=-()21e ax h x a x =-()0h x '>()h x ,使得,求得,结合和基本不等式,即()00,x ∃∈+∞()00g x '=()00min e ln ax g x a x =-0201e 0ax a x -=可求解.【详解】(1)解:当时,,则,2a =()22e 21x f x x =-+()24e 2x f x '=-可得,即在点处的切线的斜率为,()02f '=()()0,0f 2k =又由,所以曲线在点处的切线方程为,()03f =()y f x =()()0,0f 23y x =+当时,;当时,,0x =3y =0y =32x =-所以曲线在点处的切线与坐标轴围成三角形的面积.()y f x =()()0,0f 1393224S =⨯⨯=(2)解:因为,则在上恒成立,()()e 1ax f x a x =-+()ln 1f x x ax nx ≥-+()0,x ∞∈+即为在上恒成立,e ln 0(0)ax a x x -≥>()0,x ∞∈+设,可得,()e ln ,0axg x a x x =->()21e ax g x a x '=-当时,;当时,,0x +→()g x '→-∞x →+∞()g x '→+∞令,可得()()21e ax h x g x a x '==-()321e 0ax h x a x'=+>所以在上单调递增,()21e ax h x a x =-()0,x ∞∈+所以,使得,()00,x ∃∈+∞()02001e 0ax g x a x '=-=当上,,单调递减,()00,x x ∈()0g x '<()g x 当上,,单调递增,()0,x x ∈+∞()0g x '>()g x 所以()()000min e ln ax g x g x a x ==-由,可得0201e 0ax a x -=020001e ln ln ax a x ax a ax =-=+所以,解得,()()022000min 01e ln 2ln 0ln ax g x g x a x ax a ax a ==-=+≥+≥+1e a ≥即实数的取值范围为a 1,)e ∞⎡+⎢⎣【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
最新人教版二年级数学下册第一次月考试卷附答案(三篇)

最新人教版二年级数学下册第一次月考试卷(附答案(三篇)目录:最新人教版二年级数学下册第一次月考试卷附答案一最新人教版二年级数学下册第一次月考试题及答案二最新人教版二年级数学下册第一次月考试题及答案一三最新人教版二年级数学下册第一次月考试卷附答案一班级:姓名:满分:100分考试时间:90分钟一、填空题。
(20分)1、最大的两位数与最小的两位数相差(______)。
2、1时=(_______)分。
半小时是(_______)分。
3、12÷2=6,读作(___________),其中被除数是(____),除数是(____),商是(_____)。
4、在括号里填上合适的长度单位。
手指宽约是1________ 一棵大树高约8________教室的门高2________ 铅笔长约20________5、与1000相邻的两个数是(______)和(______)6、两个相同的数相乘的积是64,这两个数相加的和是(______)。
7、一个角有(____)个顶点,(____)条边。
8、最大的三位数是(______),最小的四位数是(______),它们的和是(______),差是(______)。
9、填上合适的长度单位“厘米”或“米”。
一块橡皮长4(__________)一张桌子高60(__________)一棵大树高8(__________)一座桥长30 (___________)10、我们学过的时间单位有(____)、(____)、(____)。
二、我会选(把正确答案前面的序号填在()里)(10分)1、小红的身高是98厘米,小丽比小红矮4厘米,小丽的身高是()A.94米B.102厘米C.1米D.94厘米2、椅子摇晃了,常常在椅子下边斜着钉木条,这是运用了()。
A.三角形的稳定性能B.四边形容易变形的特性3、一个三角形中,最多有()个直角。
A.1B.2C.34、以雷达站为观测点,海洋舰的位置是()。
A.东偏北60° B.东偏北30° C.北偏西60° D.西偏南30°5、小明家收了15个西瓜,(),要用几个筐?A.用了3个筐装 B.平均每个筐装5个 C.要把15个西瓜装在筐里三、判断题:对的在()里画“√”,错的画“×”。
2022-2023学年四川省成都市高二年级下册学期4月月考数学(文)试题【含答案】

2022-2023学年四川省成都市树德中学(宁夏校区)高二下学期4月月考数学(文)试题一、单选题1.若,则的虚部为( )(1i)1i z +=-z A .1B .C .D .1-i-i【答案】A【分析】根据复数代数形式的除法运算化简复数,即可得到,再根据复数的定义判断即可.z z 【详解】因为,所以,所以,(1i)1i z +=-()()()21i 1ii 1i 1i 1i z --===-++-i z =所以的虚部为.z 1故选:A2.为迎接2023年成都大运会,大运会组委会采用按性别分层抽样的方法从某高校报名的200名学生志愿者中抽取30人组成大运会志愿小组.若30人中共有男生12人,则这200名学生志愿者中女生可能有( )A .12人B .18人C .80人D .120人【答案】D【分析】根据分层抽样等比例性质即可求女生人数.【详解】由题设,若200名学生志愿者中女生有人,则,x 301220030x -=所以人.1820012030x =⨯=故选:D3.的两个顶点为,周长为16,则顶点C 的轨迹方程为( ).ABC (3,0),(3,0)A B -ABC A .B .()22102516x y y +=≠()22102516y x y +=≠C .D .()2210169x y y +=≠()2210169y x y +=≠【答案】A【分析】根据题意,可知点C 到A 、B 两点的距离之和为10,故轨迹为椭圆,同时注意取值范围.【详解】由题知点C 到A 、B 两点的距离之和为10,故C 的轨迹为以为焦点,长轴长(3,0),(3,0)A B -为10的椭圆,.故.所以方程为.222210,3,16a c b a c ===-=2212516x y +=又故三点不能共线,所以ABC ,,A B C ()22102516x y y +=≠故选A【点睛】本题主要考查椭圆的定义与椭圆的标准方程,注意求轨迹时结合实际情景进行特殊点排除.4.已知是曲线上的任一点,若曲线在点处的切线的倾斜角均是不小于的M 21ln 2y x x ax =++M π4锐角,则实数的取值范围是( )a A .B .C .D .[)2,+∞[)1,-+∞(],2-∞(],1-∞-【答案】B【分析】分析可知对任意的恒成立,结合参变量分离法以及基本不等1πtan 14y x a x '=++≥=0x >式可求得实数的取值范围.a 【详解】函数的定义域为,且,21ln 2y x x ax =++()0,∞+1y x a x '=++因为曲线在其上任意一点点处的切线的倾斜角均是不小于的锐角,21ln 2y x x ax =++M π4所以,对任意的恒成立,则,1πtan 14y x a x '=++≥=0x >11a x x -≤+当时,由基本不等式可得,当且仅当时,等号成立,0x >12x x +≥=1x =所以,,解得.12a -≤1a ≥-故选:B.5.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是A .B .C .(1,0)D .(1,)(1,)2π(1,)2π-π【答案】B【详解】由题圆,则可化为直角坐标系下的方程,2sin ρθ=-,,22sin ρρθ=-222x y y +=-,2220x y y =++圆心坐标为(0,-1),则极坐标为,故选B.1,2π⎛⎫- ⎪⎝⎭【解析】直角坐标与极坐标的互化.6.下列有关回归分析的说法中不正确的是( )A .回归直线必过点(),x y B .回归直线就是散点图中经过样本数据点最多的那条直线C .当相关系数时,两个变量正相关0r >D .如果两个变量的线性相关性越弱,则就越接近于r【答案】B【分析】根据线性回归直线的性质可判断选项AB ;根据相关系数的性质可判断CD ,进而可得正确选项.【详解】对于A 选项,回归直线必过点,A 对;(),x y 对于B 选项,线性回归直线在散点图中可能不经过任一样本数据点,B 错;对于C 选项,当相关系数时,两个变量正相关,C 对;0r >对于D 选项,如果两个变量的线性相关性越弱,则就越接近于,D 对.r0故选:B.7.是的导函数,若的图象如图所示,则的图象可能是( )()f x '()f x ()f x '()f xA .B .C .D .【答案】C【分析】先利用题给导数图像得到的正负情况,再利用导数几何意义即可求得单调性,()f x '()f x 进而得到的可能图象.()f x 【详解】由的图象可得,()f x '当时,,则单调递增;0x <()0f x ¢>()f x 当时,,则单调递减;10x x <<()0f x '<()f x 当时,,则单调递增.1x x >()0f x ¢>()f x 则仅有选项C 符合以上要求.故选:C8.已知是椭圆的右焦点,过椭圆的下顶点且斜率为的直线与以点F ()2222:10x y C a b a b+=>>C 34为圆心、半焦距为半径的圆相切,则椭圆的离心率为( )F C A B .CD 12【答案】A【分析】求得过椭圆的下顶点且斜率为的直线,利用圆心到此直线的距离列方程,化简求得离C 34心率.【详解】过椭圆的下顶点且斜率为的直线方程为,C ()0,b -3433,044yx b x y b =---=,由点到直线距离公式,得(),0F c c 即,,则.2232c bc b =+()()220c b c b -+=20,2c b b c -==又,即,222ab c =+()222225a c c c =+=解得c a =故选:A9.已知,若不是函数的极小值点,则下列选项符合的是,R a b ∈x a =21()()()(1)x f x x a x b e -=---( )A .B .C .D .1b a ≤<1b a <≤1a b<≤1a b <≤【答案】B【分析】利用数轴标根法,画出的草图,对选项A ,B ,C ,D 逐一分析.()f x 【详解】解:令,得.21()()()(1)0x f x x a x b e -=---=123,,1x a x b x ===下面利用数轴标根法画出的草图,借助图象对选项A ,B ,C ,D 逐一分析.()f x 对选项A :若,由图可知是的极小值点,不合题意;1b a ≤<x a =()f x 对选项B :若,由图可知不是的极小值点,符合题意;1b a <≤x a =()f x 对选项C :若,由图可知是的极小值点,不合题意;1a b <≤x a =()f x 对选项D :若,由图可知是的极小值点,不合题意;1a b <≤x a =()f x 故选:B.【点睛】方法点睛:利用数轴标根法,口诀 “自上而下,从右到左,奇穿偶不穿”,画出的草()f x 图,结合极小值点的定义,对选项A ,B ,C ,D 逐一分析,即可求解.10.已知椭圆,过原点的直线交椭圆于、(在第一象限)由向轴()2222:10x y a b a b Γ+=>>A B A A x 作垂线,垂足为,连接交椭圆于,若三角形为直角三角形,则椭圆的离心率为( )C BCD ABDA .BCD 12【答案】B 【分析】设点、,其中,,则、,分析可知()00,A x y ()11,D x y 00x >00y >()00,B x y --()0,0C x,利用点差法可得出,可求得,由可求得该椭圆的离心率的1DA AB k k =-22DA DBb k k a =-22b a e =值.【详解】如下图所示,设点,其中,,则、,()00,A x y 00x >00y >()00,B x y --()0,0C x则,,00AB y k x =02BC y k x =设点,则,作差可得,()11,D x y 22112222002211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩22221010220x x y y a b --+=所以,,2221022210y y b x x a -=--所以,,则不互相垂直,2221010102221010101DA DBy y y y y y b k k x x x x x x a -+-=⋅==-≠--+-,AD BD 所以,则,所以,,AD AB ⊥1AD ABk k =-001AD AB x k k y =-=-又因为,所以,,000122DA DB DA BC xy k k k k y x ==-⋅=-2212b a =所以,该椭圆的离心率为c e a =====故选:B.11.已知,,,且,,,则04a <<02b <<03c <<216ln ln 4a a =24ln ln 2b b =29ln ln 3c c =( ).A .B .C .D .c b a >>c a b>>a c b>>b c a>>【答案】D 【分析】构造函数,利用导数判断函数单调性,作出图象,数形结合求解即可.()()2ln 0xf x x x =>【详解】由题意,得,,.22ln ln 44a a =22ln ln 22b b =22ln ln 33c c =设,则,()()2ln 0x f x x x =>()1232ln ln x e f x x ⎛⎫'- ⎪⎝⎭=-当时,;当时,,120x e <<()0f x ¢>12x e >()0f x '<所以在上为增函数,在上为减函数,()f x ()120,e ()12,e +∞结合,时,;时,,()10f =1x <()0f x <1x >()0f x >易画出的草图(如下图),()f x 又,,,结合a ,b ,c 的取值范围及的图象,可得()()4f a f =()()2f b f =()()3f c f =()f x ,b c a >>故选:D 12.设是定义在R 上的奇函数,在上有,且()f x (),0∞-2023(2023)(2023)0xf x f x '+<,则不等式的解集为( )()20230f =()ln 20230x f x ⋅<A .B .C .D .()(),10,1-∞-⋃()(),11,0-∞-- ()()1,00,1- ()()1,01,-⋃+∞【答案】B 【分析】构造函数,利用题给条件求得在上单调性,再利用奇()()2023,0k x x f x x =⋅<()k x (,0)-∞函数满足求得,进而得到在上的函数值的正负情()f x ()20230f =()20230f -=()2023f x (,0)-∞况,再利用奇函数的性质即可求得不等式的解集.()ln 20230x f x ⋅<【详解】令,则()()2023,0k x x f x x =⋅<()()()2023202320230k x f x x f x ''=+⋅<则在上单调递减,()()2023k x x f x =⋅(,0)-∞又是定义在R 上的奇函数,,则,()f x ()20230f =()20230f -=则,()(1)120230k f -=-⨯-=则当时,,,;1x <-()0k x >()20230f x <()ln 20230x f x ⋅<当时,,,.10x -<<()0k x <()20230f x >()ln 20230x f x ⋅<又由是定义在R 上的奇函数,可得()f x 当时,,;1x >()20230f x >()ln 20230x f x ⋅>当时,,01x <<()20230f x <()ln 20230x f x ⋅>综上,不等式的解集为()ln 20230x f x ⋅<()(),11,0-∞-- 故选:B二、填空题13.如图,若向量对应的复数为z ,则表示的复数为______.OZ 4z z +【答案】##3i +i 3+【分析】先由图中得到,再利用复数的运算规则即可求得表示的复数.1i z =-4z z +【详解】由图可得,,1i z =-则()()()()41i 441i 1i 1i 21i 3i 1i 1i 1i z z ++=-+=-+=-++=+--+故答案为:3i +14.已知曲线在点P 处的切线与直线垂直,则P 点的横坐标为()33f x x x =-+210x y +-=___________.【答案】1±【分析】由题设知P 处的切线斜率为,应用导数几何意义列方程求P 点的横坐标.2【详解】由题设在P 处的切线斜率为,而,22()31x f x '=-所以,则,即.2()312P P f x x '=-=233P x =1P x =±故答案为:1±15.已知椭圆C :,过右焦点的直线交椭圆于,若满足22221(1)1x y a a a +=>-,A B,则的取值范围______.OA OB OA OB -=+a 【答案】⎛ ⎝【分析】根据椭圆方程得右焦点坐标为,设直线方程为,,联()1,0AB 1x ny =+()()1122,,,A x y B x y 立得交点坐标关系,由得,即OA OB OA OB -=+ 0OA OB ⋅= ,整理得关于得方程有解,即可得的取值范围.()()21212110OA OB n y y n y y ⋅=++++=n a 【详解】已知椭圆C :,则其右焦点坐标为,22221(1)1x y a a a +=>-()1,0过右焦点的直线交椭圆于,若满足,所以,,A B OA OB OA OB -=+ 0OA OB ⋅= 则设直线方程为,AB 1x ny =+()()1122,,,A x y B x y 则,所以,2222111x y a a x ny ⎧+=⎪-⎨⎪=+⎩()()()222222212110n a a y n a y a ⎡⎤-++---=⎣⎦显然恒成立,所以,0∆>()()()()212222221222221111n a y y n a a a y y n a a ⎧-⎪+=--+⎪⎪⎨-⎪=-⎪-+⎪⎩则()()()()21212121212121111OA OB x x y y ny ny y y n y y n y y ⋅=+=+++=++++()()()()()222222222212111011a n a n n n a an a a ----=+⋅+⋅+=-+-+整理得,所以,()()()22222111a a a a n a a +---=--()()()22221101a a a a a a +---≥--又,所以,解得,1a >2101a a a ⎧--≤⎨>⎩1<≤a所以的取值范围为.a ⎛ ⎝故答案为:.⎛ ⎝【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.16.若函数的最大值为,则实数的取值范围为___________.()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩()1f -a 【答案】30,2e ⎡⎤⎣⎦【分析】求得,由题意可得在恒成立,讨论的范围,分,(1)f -222alnx x a ---+ 0x >x x e =,,运用参数分离和构造函数,求得导数和单调区间,可得最值,进而得到的范0<<x e >x e a 围.【详解】解:当时,,则,则当0x <()1f x x ax =++()()()222211111x x x f x x x x -+-'=-==时,即在上单调递增,当时,即在(),1x ∈-∞-()0f x ¢>()f x (),1-∞-()1,0x ∈-()0f x '<()f x 上单调递减,所以当时取得极大值,即当时的最大值;()1,0-=1x -0x <由,可得在恒成立,(1)2f a -=-+222alnx x a ---+ 0x >即为,2(1)a lnx x -- 当时,显然成立;x e =20e >-当时,有,可得,0<<x e 10lnx ->21x a lnx -设,,2()1x g x lnx =-0<<x e ,222(1)(23)()(1)(1)x lnx x x lnx g x lnx lnx ---'==--由时,,则,在递减,0<<x e 223lnx <<()0g x '<()g x (0,)e 且,()0g x <可得;0a 当时,有,可得,>x e 10lnx -<21x a lnx -设,,2()1x g x lnx =->x e,222(1)(23)()(1)(1)x lnx x x lnx g x lnx lnx ---'==--由时,,在递减,32e x e <<()0g x '<()g x 32(,)e e 由时,,在,递增,32x e >()0g x '>()g x 32(e )∞+即有在处取得极小值,且为最小值,()g x 32x e =32e 可得,32a e 综上可得.302a e 故答案为:30,2e ⎡⎤⎣⎦三、解答题17.已知函数.21()2ln (2)2f x x a x a x =-+-(1)当时,求函数的单调区间;1a =-()f x (2)若函数在上单调递增,求实数a 的取值范围.()()g x f x ax=-()0,∞+【答案】(1)单调递增区间为和,单调递减区间为()0,1()2,+∞()1,2(2)1,2⎛⎤-∞-⎥⎝⎦【分析】(1)对求导得到,令,,解不等式即可得到单调区间;()f x ()f x '()0f x ¢>()0f x '<(2)把在上单调递增转化成在上大于等于零恒成立,再求出最值即可得()f x ()0,∞+()0,∞+()f x '到的取值范围.a 【详解】(1)当时,,1a =-21()2ln 32f x x x x=+-则.()()212232()3(0)x x x x f x x x x x x ---+'=+-==>当或时,,单调递增;当时,,单调递减.01x <<2x >()0f x ¢>()f x 12x <<()0f x '<()f x 所以的单调递增区间为和,单调递减区间为.()f x ()0,1()2,+∞()1,2(2)在上单调递增,()()g x f x ax=-()0,∞+则在上恒成立.2()()20ag x f x a x x ''=-=--≥()0,x ∈+∞即在上恒成立,2220x x ax --≥()0,x ∈+∞所以在上恒成立,2220x x a --≥()0,x ∈+∞所以恒成立.()221112(1)222a x x x ≤-=--令,,211()(1)22x x ϕ=--()0,x ∈+∞当时,有最小值为,1x =()ϕx 12-故.12a ≤-所以实数a 的取值范围是.1,2⎛⎤-∞-⎥⎝⎦18.当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.年初中毕业生2022升学体育考试规定,考生必须参加立定跳远、掷实心球、分钟跳绳三项测试,三项考试满分分,150其中立定跳远分,掷实心球分,分钟跳绳分.某学校在初三上期开始时要掌握全年级学1515120生每分钟跳绳的情况,随机抽取了名学生进行测试,得到下边频率分布直方图,且规定计分规100则如表:每分钟跳绳个数[)155,165[)165,175[)175,185[)185,∞+得分17181920(1)请估计学生的跳绳个数的中位数和平均数(保留整数);(2)若从跳绳个数在、两组中按分层抽样的方法抽取人参加正式测试,并从中任[)155,165[)165,1756意选取人,求两人得分之和大于分的概率.234【答案】(1)中位数为,平均数为184185(2)1415【分析】(1)设学生的跳绳个数的中位数为,利用中位数的定义可得出关于的值;将每个矩形m m 底边的中点值乘以对应矩形的面积,相加可得出平均数;(2)计算可得出在内抽取人,分别记为、,在内抽取人,分别记为、[)155,1652a b [)165,1754A 、、,列举出所有的基本事件,并确定所求事件的基本事件,利用古典概型的概率公式可求B C D 得所求事件的概率.【详解】(1)解:设学生的跳绳个数的中位数为,m 因为,则,()()0.0060.012100.180.50.0060.0120.03410+⨯=<<++⨯()175,185m ∈由中位数的定义可得,解得,()()0.0060.012101750.0340.5m +⨯+-⨯=0.321751840.034m =+≈平均数(个).1600.061700.121800.341900.32000.12100.08185x =⨯+⨯+⨯+⨯+⨯+⨯=(2)解:跳绳个数在内的人数为个,跳绳个数在内的人数为[)155,1651000.066⨯=[)165,175个,1000.1212⨯=按分层抽样的方法抽取人,则在内抽取人,分别记为、,6[)155,1652a b 在内抽取人,分别记为、、、,[)165,1754A B C D 从这人中任意抽取人,所有的基本事件有:、、、、、62(),a b (),a A (),a B (),a C (),a D 、、、、、、、、、,共种,(),b A (),b B (),b C (),b D (),A B (),A C (),A D (),B C (),B D (),C D 15两人得分之和大于分包含的基本事件有:、、、、、34(),a A (),a B (),a C (),a D (),b A 、、、、、、、、,共种,(),b B (),b C (),b D (),A B (),A C (),A D (),B C (),B D (),C D 14则两人得分之和大于分的概率.341415P =19.已知曲线的方程为,的方程为,是一条经过原点且斜率大于1C ()2211x y -+=2C 3x y +=3C 的直线.0(1)以直角坐标系原点为极点,轴正方向为极轴建立极坐标系,求与的极坐标方程;O x 1C 2C(2)若与的一个公共点(异于点),与的一个公共点为,当时,1C 3C A O 2C 3C B 3OA OB+=求的直角坐标方程.3C 【答案】(1),;(2).1:2cos C ρθ=2:cos sin 30C ρθρθ+-=13y x =【分析】(1)将曲线的方程化为,即可将曲线的方程化为极坐标方程,利用1C 2220x y x +-=1C ,可将曲线的直角坐标方程化为极坐标方程;cos x ρθ=sin y ρθ=2C (2)设曲线的极坐标方程为,将曲线与、与极坐标方程分别联立,3C 02πθαα⎛⎫=<<⎪⎝⎭1C 3C 2C 3C 可求出和关于的表达式,并代入等式,求出的值,即可得出曲线OAOBα3OA OB+=tan α的直角坐标方程.3C 【详解】(1)曲线的方程为,整理得,1C ()2211x y -+=2220x y x +-=转换为极坐标方程为,即.22cos 0ρρθ-=2cos ρθ=曲线的方程为,转换为极坐标方程为;2C 3x y +=cos sin 30ρθρθ+-=(2)因为曲线是一条经过原点且斜率大于的直线,3C 0设曲线极坐标方程为,3C 02πθαα⎛⎫=<<⎪⎝⎭由于与的一个公共点(异于点),故,所以,1C 3C A O 2cos ρθθα=⎧⎨=⎩2cos OA α=与的一个公共点为,,所以.2C 3C B cos sin 3ρθρθθα+=⎧⎨=⎩3cos sin OB αα=+由于,所以3OAOB+=2cos cos sin ααα++=即,()sin 3cos αααβ+=+=锐角满足,此时,,βcos β=sin β=()sin 1αβ+=,,,则,02πα<< 02βπ<<0αβπ∴<+<2παβ+=sin sin cos 2παββ⎛⎫∴=-==⎪⎝⎭cos cos sin 2παββ⎛⎫=-== ⎪⎝⎭,因此,曲线的直角坐标方程为.sin 1tan cos 3ααα∴==3C 13y x =【点睛】本题考查直角坐标方程与极坐标方程的互化,同时也考查了利用极坐标方程求解过原点的线段长度的问题,要充分利用三角恒等变换思想求解,考查计算能力,属于中等题.20.设函数,().2()ln (21)1f x ax x x a x a =---+-a ∈R (1)当时,求函数的最大值;0a =()f x (2)对任意的函数恒成立,求实数a 的取值范围.[)1,x ∞∈+()0f x ≥【答案】(1)0(2)1,2⎡⎫+∞⎪⎢⎣⎭【分析】(1)把代入函数解析式,通过导数讨论函数的单调性得出结果;0a =(2)求出函数的导函数,导函数在处的导数为零,由,对导数进行放缩,再()f x 1x =ln 1≤-x x 分成,,三种情况讨论函数的单调性得出结果.0a ≤102a <<12a ≥【详解】(1)当时,,0a =()ln 1f x x x x =-+-,()()ln 0f x x x '=->由,解得;则在上单调递增;()0f x ¢>01x <<()f x ()0,1由,解得;则在上单调递减.()0f x ¢>1x >()f x ()1,+∞所以在处取最大值,最大值为.()f x 1x =()10f =(2),()21ln (21)2(1)ln ax x a x xf x a =----=--'下面证明,ln 1≤-x x 设,()n (0)l 1x g x x x -+=>,11()1xg x x x -'=-=当时,,单调递增;01x <<()0g x '>()g x 当时,,单调递减;1x >()0g x '<()g x 所以,即.()(1)0g x g ≤=ln 1≤-x x 则,()2(1)(1)(21)(1)x x x f x a a ≥---=--'当时,即时,由得恒成立,210a -≥12a ≥[)1,x ∞∈+()0f x '≥在上单调递增,符合题意.所以.()f x [)1,+∞()()10f x f ≥=12a ≥当时,由得恒成立,在上单调递减,显然不0a ≤[)1,x ∞∈+()0f x '≤()f x [)1,+∞()()10f x f ≤=成立,舍去.0a ≤当时,由,得,即,102a <<ln 1≤-x x 11ln 1x x ≤-1ln 1x x ≥-则,11()2(1)1(21)x f x a x ax x x -⎛⎫⎛⎫'≤---=- ⎪ ⎪⎝⎭⎝⎭因为,所以.时,恒成立,102a <<112a >11,2x a ⎡⎫∈⎪⎢⎣⎭()0f x '≤在上单调递减,显然不成立,舍去.()f x [)1,+∞()()10f x f ≤=102a <<综上可得:.1,2a ∞⎡⎫∈+⎪⎢⎣⎭21.已知椭圆的焦距为,且过点.()2222:10x y C a b a b +=>>2⎛ ⎝(1)求椭圆方程;(2)为椭圆的上顶点,三角形是椭圆内接三角形,若三角形是以为直角顶点的等腰A AEF C AEF A 直角三角形,求三角形的面积.AEF 【答案】(1)2212x y +=(2)169【分析】(1)根据已知条件可得出关于、的方程组,解出这两个量的值,即可得出椭圆的2a 2b C 方程;(2)分析可知直线的斜率存在且不为零,设直线的方程为,将直线的方程与AE AE 1y kx =+AE 椭圆的方程联立,求出点的坐标,可得出的表达式,同理可得出的表达式,设,C E AEAF0k >由求出的值,再利用三角形的面积公式可求得的面积.AE AF=k AEF △【详解】(1)解:因为椭圆的焦距为,则,可得,C 222c =1c =由题意可得,解得,222222111ab a b ⎧⎪⎪⎝⎭⎨+=⎪⎪-=⎩2221a b ⎧=⎨=⎩因此,椭圆的方程为.C 2212x y +=(2)解:易知点,若直线的斜率不存在,则直线轴,此时与椭圆相切,()0,1A AE AF y ⊥AF C 不合乎题意,同理可知,若直线的斜率存在,则直线的斜率不为零,AE AE 所以,直线的斜率存在,设直线的方程为,其中,AE AE 1y kx =+0k ≠联立可得,解得或,22112y kx x y =+⎧⎪⎨+=⎪⎩()222140k x kx ++=01x y =⎧⎨=⎩2224211212k x k k y k ⎧=-⎪⎪+⎨-⎪=⎪+⎩故点222412,2112k k E k k ⎛⎫-- ⎪++⎝⎭,=由题知得:,AE AF =221122k kk =++不妨设,化简方程知:,解得,0k >()()2110k k k --+=1k =,因为三角形是以为直角顶点的等腰直角三角形,故.AEF A 1629AEF AE AF S ⋅==△22.已知.2()e 2x a f x x x =--(1)若在x =0处取得极小值,求实数a 的取值范围;()f x (2)若有两个不同的极值点(),求证:(为的二阶导数)()f x 12,x x 12x x <1202x x f +⎛⎫''< ⎪⎝⎭()f x ''()f x .【答案】(1)(),1-∞(2)证明见解析【分析】(1)求出函数导数,讨论,,和四种情况,根据导数情况讨论函数0a ≤01a <<1a =1a >的单调性即可得出;(2)根据题意可得,构造函数,122x x f +⎛⎫'' ⎪⎝⎭()2121122121e 1e e x x x x x x x x x --⎡⎤-+-⎢⎥=⎢⎥-⎢⎥⎣⎦2()2e 1e (0)t t g t t t =+->利用导数即可证明.【详解】(1)由题意得,,,()e 1xf x ax =--'()00f '=()e x f x a ''=-①当时,在上单调递增,0a ≤()f x '(),-∞+∞所以当x <0时,,在单调递减;()()00f x f ''<=()f x (),0∞-当x >0时,,在单调递减;()()00f x f ''>=()f x ()0,∞+所以在x =0处取得极小值,符合题意.()f x 当时,由可得,由可得,0a >()0f x ''>ln x a >()0f x ''<ln x a <②当0<a <1时,,在单调递增,在单调递减,ln 0a <()f x '()ln ,a +∞()ln ,0a 所以当时,,在单调递减;()ln ,0x a ∈()()00f x f ''<=()f x ()ln ,0a 当时,,在单调递增;()0,x ∈+∞()()00f x f ''>=()f x ()0,∞+所以在x =0处取得极小值,符合题意.()f x ③当a =1时,知在区间单调递减,在区间单调递增,()f x '(),ln a -∞()f x '()ln ,a +∞所以在处取得最小值,即,()f x 'ln x a =()()()ln 00f x f a f '''≥==所以函数在R 上单调递增,()f x 所以在x =0处无极值,不符合题意.()f x ④当a >1时,,由①知的减区间为,ln 0a >()f x '(),ln a -∞所以当时,,在单调递增;当时,(),0x ∈-∞()()00f x f ''>=()f x (),0∞-()0,ln x a ∈,在单调递减;()()00f x f ''<=()f x ()0,ln a 所以在x =0处取得极大值,不符合题意,()f x 综上可知,实数a 的取值范围为.(),1-∞(2)为的零点,则,,,12,x x ()e 1xf x ax =--'1212e 10e 10x x ax ax ⎧--=⎨--=⎩1212e e x x a x x -=-()e x f x a ''=-,121212122212e e e e2x x x x x x x x f a x x +++-⎛⎫''=-=-⎪-⎝⎭()212121211122121221e 1e 1ee ee x x x x x x x x x x x x x x x x ----⎡⎤⎛⎫-+--⎢⎥=-= ⎪⎢⎥--⎝⎭⎢⎥⎣⎦令,构造函数,212x x t -=2()2e 1e (0)t tg t t t =+->由②知,当时,,即.1a =()()e 100x f x ax f ''=--≥=e 1x x ≥+则,()2()2e 2e 2e 2e 1e 0t t t t t g t t t '=+-=+-<所以在单调递减,故.()g t ()0,∞+()()00g t g <=故,故原不等式得证.''1202x x f +⎛⎫< ⎪⎝⎭【点睛】关键点睛:本题考查函数极值点的辨析,解题的关键是求出导数,根据导数形式正确分类讨论函数的单调性,结合极值的定义得出参数情况.。
新版人教版二年级数学下册第二次月考考试题附参考答案

新版人教版二年级数学下册第二次月考考试题附参考答案班级:姓名:分数:考试时间:90分钟题序一二三四五六七总分得分一、填空题。
(20分)1、比直角大的角叫做(____),比直角小的角叫做(____)。
正方形的四个角都是(____)角。
2、最大的三位数是(______),最小的四位数是(______),它们的和是(______),差是(______)。
3、一个三角板中有(_____)个角,其中直角有(_____)个。
4、小蚂蚱一次跳4格,2次跳8格,3次跳(____)格,乘法算式是(_____),4次跳(____)格,乘法算式是(______)。
5、比直角小的角叫(______)角,比直角大的角叫(______)角。
6、8040读作:(_________________);三千零五写作:(____________)7、一条裤子73元,一件上衣比一条裤子贵14元,买一件上衣至少要带(____)张。
8、在()里填上“>”或'<”。
6×6(______)30 9(______)81÷9 6千克(______)500克2千克(______)3000克5×3(______)5×4÷59、在中有________个角,其中有________个直角。
10、正方形有________个直角,3个正方形共有________个直角。
二、我会选(把正确答案前面的序号填在()里)(10分)1、椅子摇晃了,常常在椅子下边斜着钉木条,这是运用了()。
A.三角形的稳定性能B.四边形容易变形的特性2、在有余数的除法中,除数是5,商是6,被除数最大是( )。
A.30 B.34 C.353、动物园里有15只老虎,猴子比老虎多12只,这两种动物一共有( )只。
A.27 B.39 C.424、一个密码锁由五个数字组成,每一位数字都是0~9之中的一个,小春只记得其中的三个,则他最多试()次就能打开锁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019--2020学年度第二学期
二年级数学月考测试试卷
一、填一填。
(第4、10小题各4分,其余每小题2分,共24分) 1、在8÷4=2中,被除数是( ),除数是( ),商是( ),
读作:( )。
2、下面有( )个一组,可以分成( )组。
3 平均分成2份,每份有( )个;如果平均分成3份,每份有( )个。
4、4×( )=12 18÷( )=3
24-( )=8 ( )÷4 =4
5、18本练习本平均分给6个人,每人( )本,列式为:( )
6、风车转动是一种( )现象,升降国旗是一种( )现象。
7、根据“四七二十八”写出两道除法算式。
( )÷( )=( ) ( )÷( )=( ) 8、( )除以5的商还是5。
这个数在算式中叫( ) 9、15里面有( )个3;18里面有( )个6。
10、用4、5、20这三个数,写出两道乘法算式和两道除法算式。
( )×( )=( ) ( )×( )=( )
( )÷( )=( ) ( )÷( )=( )
学 号
姓 名
班 级
二、选一选。
(将正确答案的序号填在括号里,5分。
)
1、下面算式中商最大的算式是()。
①12÷2 ②36÷9 ③20÷4
2、下列运动是平移的是()。
①举重②钟表指针的转动③荡秋千
3、下列3种笔中,()最便宜。
①4元1支②9元3支③25元5支
4、24÷6的结果和()是一样的
①12÷2 ②12÷3 ③18÷6
5、12里面有几个4?算式是()
①3×4=12 ②12÷3 ③12÷4
三、判断对错(对的打√,错的打×)(6分)
1、把9个梨子放在3个盘子里,每个盘子里一定是3个。
()
2、任何一道乘法口诀都可以写出两道不同的除法算式。
()
3、计算7×8和56÷8时用同一句口诀。
()
4、圆不是轴对称图形。
()
5、除数和商都是5,被除数是1。
()
6、计算3×6和18÷6都要用到乘法算式,口诀是二五一十。
()
四、我会算。
(共8分)
30÷6= 24+4= 5×9= 25÷5=
15÷5= 8×6= 35-7= 9×7=
42÷6= 62-20= 25÷5= 8÷8=
49÷7= 6 ×4= 21÷3= 6×6=
五、我会列式计算(12分)
1、除数是5,被除数是20,商是多少?
2、10里面有几个2 ?
3、把18平均分成3份,每份是多少?
4、两个乘数都是6,积是多少?
六、我会看图写算式。
( 12分)
( )×( )=( ) ( )÷( )=( )
口诀:()
七、数据收集与整理。
(12分)
丁丁调查班里同学们最喜欢吃的水果,除了丁丁每位同学都选择了一张水果卡片。
(1)数一数,填一填。
(5分)
(2)喜欢()的人数最多,喜欢()的人数最少。
(2分)
(3)丁丁的班级一共有()人。
(2分)
(4)请你提出一个数学问题并解答。
(3分)
八、解决问题。
(第3题6分,其余每题5分,共21分)
1、妈妈用20元买了5个同样大小的苹果,每个苹果多少元?
2、36个小朋友,平均分成6个小组,每个小组有几人?
3、有10 根孔雀羽毛,插在2 个花瓶里。
一个花瓶里插6 根,
另一个花瓶里插几根?
4、一件衣服有5颗纽扣,6件衣服一共有多少颗纽扣?
参考答案
一、填一填。
1、8 4 2 (6除以4等于2)
2、15 3 5
3、6 4
4、3 6 16 16
5、3 18÷6=3
6、旋转平移
7、28÷4=7 28÷7=4
8、25 被除数
9、5 3
10、4×5=20 5×4=20 20÷4=5 20÷5=4
1、①
2、①
3、②
4、②
5、③
三、判断对错
1、×
2、×
3、√
4、×
5、×
6、√
四、我会算。
5 28 45 5
3 48 28 63
7 42 5 1
7 24 7 36
五、我会列式计算
1、20÷5=4
2、10÷2=5
3、18÷3=6
4、6×6=36
六、我会看图写算式。
( 12分)
1、6×3=18 18÷6=3 18 ÷3=6
2、2×6=12 12÷6=2 二六十二
七、数据收集与整理。
1、苹果5个,橘子9个,梨子3个,西瓜1个,草莓4个
2、橘子西瓜
3、一共有(22)人。
4、略
八、解决问题。
1、20÷5=4(元)
2、36÷6=6(人)
3、10-6=4(根)
4、5×6=30(颗)。