关于学习超声波探伤
超声波探伤实验报告
超声波探伤实验报告引言:超声波探伤是一种常用且十分重要的无损检测技术,利用超声波的传播和反射特性来检测材料内部的缺陷,具有广泛的应用领域和丰富的研究内容。
通过本次实验,我们旨在探索超声波探伤技术的原理和应用,并通过实际操作来了解其实验过程和结果。
一、实验目的本实验的目的是研究超声波在不同材料中传播和反射的特性,以及利用超声波探伤技术检测材料中的缺陷情况。
通过实验,我们能够了解超声波在不同材料中的传播速度、反射特性以及对不同尺寸、形状的缺陷的探测敏感度。
二、实验装置和方法1. 超声波探伤仪:我们采用了一台商用的超声波探伤仪,该仪器具有较高的频率范围和分辨率,能够满足该实验的需求。
2. 实验样品:选择了不同材料(如金属、陶瓷等)的标准样品进行实验。
3. 实验过程:首先,根据实验需求选择适当的探头,将其通过声耦剂与样品表面接触。
然后,控制超声波仪器进行扫描,在实验过程中记录和分析数据。
三、实验结果和讨论1. 超声波在不同材料中的传播速度:通过实验,我们得到了不同材料中超声波的传播速度。
实验结果表明,不同材料的物理性质会影响超声波的传播速度,如金属材料具有较高的传播速度,而陶瓷材料的传播速度较低。
这些数据对于超声波探伤仪的校准和实际应用非常重要。
2. 超声波在材料中的反射特性:我们通过实验观察到在探测头将超声波引入样品后,部分超声波会被样品内的缺陷或界面反射回来。
通过检测反射回来的超声信号,我们可以推测出样品内的缺陷位置和形状。
实验结果表明,缺陷较严重的样品会导致更多的超声波反射,从而能够被更易于探测到。
3. 超声波探测缺陷的敏感度:通过在样品中加入不同尺寸和形状的缺陷,我们测试了超声波探测的敏感度。
实验结果表明,超声波探测对于较大和较深的缺陷相对较为敏感,而对于较小和浅的缺陷则有一定的探测限度。
四、结论通过本次实验,我们深入了解了超声波探伤的原理、实验方法以及应用。
实验结果证实了超声波在不同材料中的传播速度、反射特性和对不同尺寸缺陷的探测敏感度。
超声波探伤培训教程
培训教材之理论基础第一章无损检测概述无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。
主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。
射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。
射线对人体不利,应尽量避免射线的直接照射和散射线的影响。
超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。
磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。
渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。
涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。
磁粉、渗透和涡流统称为表面检测。
第二章超声波探伤的物理基础第一节基本知识超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。
物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
振动的传播过程,称为波动。
波动分为机械波和电磁波两大类。
机械波是机械振动在弹性介质中的传播过程。
超声波就是一种机械波。
机械波主要参数有波长、频率和波速。
波长?:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。
由上述定义可得:C=? f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。
次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。
超声波探伤基础知识
超声波探伤基础知识超声波探伤是一种利用超声波的传播特性来检测材料内部缺陷和结构状况的无损检测方法。
本文将介绍超声波探伤的基础知识,包括超声波的产生与传播、超声波探测原理、超声波探测设备和应用领域。
一、超声波的产生与传播超声波是一种频率高于20kHz的机械波,通常通过压电晶体或磁性材料的震动来产生。
超声波在固体、液体和气体中的传播速度不同,固体中的传播速度最快,液体次之,气体最慢。
超声波在材料中的传播路径会受到材料的性质和形状的影响。
二、超声波探测原理超声波探测原理基于超声波在材料中传播时的特性变化。
当超声波遇到材料内部的缺陷或界面时,会发生反射、散射和透射等现象。
通过测量反射和透射的超声波信号,可以判断材料内部的缺陷类型、位置和尺寸。
三、超声波探测设备超声波探测设备主要由发射器、接收器、超声探头和信号处理系统组成。
发射器产生超声波信号,并将其发送到被测材料中;接收器接收反射和透射的超声波信号,并将其转换成电信号;超声探头是传输超声波信号和接收回波信号的装置;信号处理系统对接收到的信号进行放大、滤波、增益调节等处理,以便进行分析和判断。
四、超声波探测的应用领域超声波探测广泛应用于工业领域中的材料检测和结构健康监测。
在金属材料中,超声波探测可以检测焊缝、裂纹、气孔等缺陷;在混凝土中,超声波探测可以评估混凝土的质量和强度;在医学领域,超声波探测可以用于人体组织的检测和诊断。
总结:超声波探测是一种重要的无损检测方法,具有非破坏性、高灵敏度和快速检测的特点。
通过超声波的产生与传播、探测原理、探测设备和应用领域的介绍,我们对超声波探测的基础知识有了更深入的了解。
在实际应用中,我们需要根据具体的检测要求选择合适的超声波探测方法和设备,以确保检测结果的准确性和可靠性。
超声波探伤基础知识
超声波探伤基础知识
超声波探伤是利用超声波在材料中传播和反射的特性来检测材料内部缺陷的一种无损检测技术。
以下是一些超声波探伤的基础知识:
1. 超声波:超声波是频率超过20kHz的机械波,它在材料中
的传播速度跟材料的密度、刚度等物理性质有关。
2. 超声波的传播:超声波在均匀材料中沿直线传播,当遇到界面或缺陷时会发生折射、反射和散射等现象。
3. 超声波的传感器:超声波传感器通常由压电材料制成,其中压电片会产生机械振动,将电能转换为超声波能量。
4. 超声波探头:超声波探头由超声波传感器和库仑耦合剂组成,用于将超声波能量传递到被检测材料中,并接收反射的超声信号。
5. 超声波的传播方式:超声波的常见传播方式包括纵波(沿着传播方向的振动方向与传播方向一致)和横波(沿着传播方向的振动方向与传播方向垂直)。
6. 超声波的缺陷检测:当超声波遇到材料中的缺陷(如裂纹、夹杂、气泡等),它会反射一部分能量回到探头。
通过分析反射信号的幅度、时间和形状等参数,可以判断缺陷的类型、大小和位置。
7. 超声波的图像生成:通过多次探测,将分析得到的超声信号以图像形式展示,可以获得材料内部缺陷的位置和形状信息。
超声波探伤在工业领域广泛应用,可用于检测金属、塑料、陶瓷等材料的缺陷,如焊接质量、母线接头、管道内部等。
它具有无损、快速、准确、可重复性好等优点,成为重要的材料检测技术。
超声波探伤讲义(内部培训材料)
超声波探伤是利用超声波在物质中的传播、反射和衰减等物理特性来发现缺陷的一种探伤方法。
与射线探伤相比,超声波探伤具有灵敏度高、探测速度快、成本低、操作方便、探测厚度大、对人体和环境无害,特别对裂纹、未熔合等危险性缺陷探伤灵敏度高等优点。
但也存在缺陷评定不直观、定性定量与操作者的水平和经验有关、存档困难等缺点。
在探伤中,常与射线探伤配合使用,提高探伤结果的可靠性。
超声波检测主要用于探测试件的内部缺陷。
1、超声波:频率大于20KHZ的声波。
它是一种机械波。
探伤中常用的超声波频率为0.5~10MHz,其中2~2.5MHz被推荐为焊缝探伤的公称频率。
机械振动:物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
振幅A、周期T、频率f。
波动:振动的传播过程称为波动。
C=λ*f2、波的类型:(1)纵波L:振动方向与传播方向一致。
气、液、固体均可传播纵波。
(2)横波S:振动方向与传播方向垂直的波。
只能在固体介质中传播。
(3)表面波R:沿介质表面传播的波。
只能在固体表面传播。
(4)板波:在板厚与波长相当的薄板中传播的波。
只能在固体介质中传播。
3、超声波的传播速度(固体介质中)(1) E:弹性横量,ρ:密度,σ:泊松比,不同介质E、ρ不一样,波速也不一样。
(2)在同一介质中,纵波、横波和表面波的声速各不相同 CL >CS>C R钢:CL =5900m/s, CS=3230m/s,CR=3007m/s4、波的迭加、干涉、衍射⑴ 波的迭加原理当几列波在同一介质中传播时,如果在空间某处相遇,则相遇处质点的振动是各列波引起振动的合成,在任意时刻该质点的位移是各列波引起位移的矢量和。
几列波相遇后仍保持自己原有的频率、波长、振动方向等特性并按原来的传播方向继续前进,好象在各自的途中没有遇到其它波一样,这就是波的迭加原理,又称波的独立性原理。
⑵ 波的干涉两列频率相同,振动方向相同,位相相同或位相差恒定的波相遇时,介质中某些地方的振动互相加强,而另一些地方的振动互相减弱或完全抵消的现象叫做波的干涉现象。
超声探伤知识点总结
超声探伤知识点总结一、超声波传播和检测原理超声探伤是一种利用超声波来检测材料内部缺陷的一种非破坏性检测方法。
它利用超声波在材料中的传播特性和反射特性来发现和确定材料内部的缺陷,如裂纹、气孔、夹杂等。
超声波是一种机械波,它通过材料中的分子间的弹性传递能量,具有穿透性和反射性。
当超声波遇到材料内部的缺陷时,会发生反射、折射和散射现象,根据这些现象可以确定缺陷的位置、形状、大小等信息。
二、超声探伤设备超声探伤设备主要包括超声波发射装置、接收装置、信号处理装置和显示装置。
超声波发射装置用于产生超声波信号,一般采用压电晶体或磁致伸缩换能器。
接收装置用于接收超声波信号并将其转化为电信号,一般也采用压电晶体或磁致伸缩换能器。
信号处理装置用于放大、滤波、延迟控制等对接收到的信号进行处理,以便于分析和显示。
显示装置用于显示探测到的缺陷和材料的内部结构,一般采用示波器、闪存图像仪等。
三、超声波的传播特性超声波在材料中的传播特性受到材料的声速、密度和声衰减系数的影响。
在各种材料中,声速越大,密度越小,声衰减系数越小,超声波的穿透性越好。
另外,材料的晶粒结构、组织、应力等因素也会对超声波的传播特性产生影响。
因此,在进行超声探伤时,需要根据被测材料的性质和要检测的缺陷类型来选择合适的超声波检测方法和参数。
四、超声探伤方法根据超声波的传播方式,超声探伤方法可以分为纵波检测和横波检测。
纵波检测是指超声波在材料中的传播方向和振动方向一致的检测方式,适用于发现和定位表面和近表面的缺陷。
横波检测是指超声波在材料中的传播方向和振动方向垂直的检测方式,适用于发现和定位材料内部的缺陷。
此外,超声探伤方法还包括脉冲回波法、多普勒效应法、相控阵法、声照相法等多种技术方法,可以根据具体的应用需求和条件选择合适的方法。
五、超声探伤参数在进行超声探伤时,需要确定合适的超声探伤参数,包括超声波频率、脉冲宽度、发射能量、探头直径等。
这些参数的选择应根据被测材料的性质和要检测的缺陷类型来确定。
超声波探伤教学课件
国家标准
国家标准定义
国家标准是由国家权威机构(如国家质量监督检验检疫总局)发布, 对全国范围内通用的技术要求和规范。
主要内容
涉及超声波探伤的原理、设备要求、操作流程、结果解读等方面, 是制定其他标准的基础。
重要性
为行业提供统一的技术指导,确保探伤结果的准确性和可靠性。
行业标准
行业标准定义
行业标准是由相关行业协会或组织制定,适用于特定 行业的标准。
案例二:复合材料超声波探伤
01
总结词
复合材料超声波探伤是近年来 发展迅速的领域之一,主要检 测复合材料内部的缺陷和损伤 。
02
详细描述
复合材料超声波探伤通常采用 脉冲反射法和透射法,通过发 射超声波到复合材料中,当遇 到缺陷或损伤时,超声波会反 射回来或透射出去,从而检测 出缺陷或损伤的位置和大小。
耦合剂
耦合剂是用于在探头和被检测物 体之间传递超声波信号的介质, 其作用是减少声能损失和提高回
波信号的清晰度。
耦合剂的种类和特性应根据被检 测物体的材质、表面状态以及探
头的类型等因素进行选择。
在使用耦合剂时,应注意其清洁 度和保存方式,避免对探伤结果
产生不良影响。
03
超声波探伤技术
纵波探伤
总结词
利用超声波在介质中传播时遇到界面或缺陷 会发生反射和散射的原理,通过接收和分析 这些反射和散射信号来判断材料内部的缺陷 和异常。
超声波探伤应用
广泛应用于各种材料的检测,如金属、陶瓷 、玻璃、复合材料等,尤其在工业生产和质 量控制中具有重要的应用价值。
超声波探伤的原理
超声波的传播速度
01
在同一种介质中,超声波的传播速度是恒定的,不同介质中声
超声波探伤讲义(内部培训资料)
超声波探伤讲义(内部培训资料)超声波探伤讲义(内部培训资料)一、概述超声波探伤是一种常用的非破坏性检测技术,广泛应用于工业领域。
本讲义将介绍超声波探伤的原理、设备、操作流程以及常见的应用场景。
二、原理超声波探伤利用材料中超声波的传播和反射特性来检测物体内部的缺陷。
超声波在材料中传播时,遇到界面或缺陷时会发生折射和反射,通过接收和分析反射信号,可以判断缺陷的位置和性质。
三、设备1. 超声波探伤仪:包括发射装置、接收装置、控制系统等。
2. 控制台:用于调节探伤仪的参数和显示检测结果。
3. 传感器:将超声波信号传输到被检物体表面,并接收反射信号。
四、操作流程1. 准备工作:确认探伤区域、选择合适的传感器和探头,并对设备进行检查和校准。
2. 设置参数:根据被检材料的性质和缺陷类型,调节控制台上的参数,如频率、增益等。
3. 扫描检测:将传感器沿被检物体表面平稳移动,保持一定的检测速度,记录反射信号。
4. 数据分析:通过控制台或计算机软件,对采集到的数据进行分析和处理,判断是否存在缺陷。
5. 结果评估:根据分析结果,评估被检物体的质量并作出相应的判定。
五、应用场景1. 金属材料检测:超声波探伤被广泛应用于金属材料的检测,如焊接接头、铸件、锻件等。
2. 管道检测:可以通过超声波探伤检测管道内部的腐蚀、裂纹等缺陷,保证管道的安全运行。
3. 轴承检测:超声波探伤可以检测轴承内部的裂纹、磨损等问题,预防故障和损坏。
4. 建筑结构检测:超声波探伤可用于检测混凝土结构中的空洞、裂缝等缺陷,确保建筑物的安全性。
六、注意事项1. 操作人员需经过专业培训,并持证上岗。
2. 检测前需对设备进行检查和校准,确保其正常工作。
3. 根据被检材料的性质和缺陷类型,选择合适的探头和参数设置。
4. 操作过程中需保持传感器与被检物体表面的贴合度,并保持恒定的扫描速度。
5. 分析结果需结合其他检测方法或实际应用情况进行综合评估。
七、总结超声波探伤技术是一种重要的非破坏性检测方法,具有广泛的应用前景。
超声波探伤培训
声学法
声冲击法 声振动法 涡流声振动法 声发射法 超声脉冲反射法 超声透射法 超声共振法 超声表面波法 超声临界角法 电磁超声法
Sonic-Ultrasonic
Acoustic-Impact Sonic Vibration Eddy Sonic Vibration Acoustic Emission Pulse-Echo Ultrasonic Transmission Ultrasonics Resonance Ultrasonics Surface-Wave Ultrasonics Critical-Angle Ultrasonics Electromagneto-Acoustic
29
.
外壳 吸收块
电气适配器
晶片
T,2
横波
延迟块 纵波
探头线
插头 阻尼块
斜探头
(UT Einfü hrung WD Juni02, Seite 30)
30
.
20°
27,6°
塑料
塑料
47,6°
钢材
钢材
90°
24°
33,4°
两种波型
第一临界角
36,5°
塑料 钢材 45° 工作范围
57,3°
塑料 钢材 90°
(UT Einfü hrung WD Juni02, Seite 4)
4
.
射线透照方法
Penetrating Radiation 热力学方法
Thermal
X射线照相法
X-Radiography
接触测温法
Contact Thermometry
γ射线照相法
Gamma Radiography
热电势法
超声波探伤培训教程
培训教材之理论基础第一章无损检测概述无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。
主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。
射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。
射线对人体不利,应尽量避免射线的直接照射和散射线的影响。
超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。
磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。
渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。
涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。
磁粉、渗透和涡流统称为表面检测。
第二章超声波探伤的物理基础第一节基本知识超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。
物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
振动的传播过程,称为波动。
波动分为机械波和电磁波两大类。
机械波是机械振动在弹性介质中的传播过程。
超声波就是一种机械波。
机械波主要参数有波长、频率和波速。
波长:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。
由上述定义可得:C= f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。
次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。
实验十五 超声波探伤
实验十五超声波探伤一、实验目的1、了解超声波探伤仪的简单工作原理。
2、掌握超声波波探伤仪的使用方法。
3、熟练探测SG-Ⅱ试块上人工缺陷。
二、工作原理超声波探伤是利用超声波在物体中的传播、反射和衰减等物理特性来发现缺陷的一种探伤方法。
超声波是由频率大于20000HZ的机械震动在弹性介质中的一种传播过程,因此超声波是机械波。
超声波是由超声波探伤仪产生的电振荡并施加于探头,利用其晶片的压电效应而获得。
当高频电压加于晶片两面电极上时,由于逆压电效应,晶片会在厚度方向上产生伸缩变形的机械振动。
若晶片与工件有良好的耦合时,机械振动就以超声波的形式传播出去,这就是发射。
反之,当晶片受到超声波作用(遇到异质界面反射回来)而发生伸缩变形时,正压电效应又会使晶片两面产生不同极性电荷,形成超生频率的高频电压,这就是接受。
利用压电效应使探头(压电晶片)发射或接受超声波,就使发现缺陷成为可能。
探伤时,超声波通过探测表面的耦合剂传入工件,超声波在传播途中若遇到缺陷时,部分超声波反射回到探头,其余的超声波传播到工件底部也反射回探头,由探头内晶片的压电效应将超声波转变为电讯号,再传至探伤仪,在荧光屏的扫描线上出现始脉冲(表面反射波T)、伤脉冲(缺陷反射波F)和底脉冲(底面反射波B)。
他们在时间扫描线上呈现的距离与工件表面、缺陷及底部之间的距离相对应,因此,便可确定缺陷所在的位置。
同时由伤脉冲的高度亦可反映缺陷的大小。
三、仪器的校准方法和步骤在使用仪器进行检测之前,首先进行校准:依据被测工件的材料、尺寸和相关标准,选择合适的探伤方法和探头,进行材料声速、探测范围和工作频率等仪器参数及探头参数的设置,并校正探头零点等。
1、探头参数设置(1)首先根据有关行业标准或现场要求,确定探伤方法和选择合适的探头。
(2)在计测主菜单中的角度值(探头折射角)。
直探头角度值设置为“0”。
(3)采用单探头工作模式时,应将收发菜单里的双探头置为“off”。
超声波探伤基础知识
超声波探伤基础知识超声波探伤是一种非破坏性检测技术,广泛应用于各个领域,如工业制造、医学诊断等。
本文将介绍超声波探伤的基础知识,包括原理、设备和应用。
一、原理超声波探伤是利用超声波在材料中传播的特性来检测材料内部的缺陷或异物。
超声波是一种机械波,具有高频率和短波长的特点,能够穿透材料并在材料内部的缺陷处发生反射、散射或透射。
通过检测超声波的传播时间、幅度和频谱等参数,可以判断材料内部的缺陷类型、位置和大小。
二、设备超声波探伤设备主要由发射器、接收器、传感器和显示器组成。
发射器负责产生超声波信号,接收器负责接收反射、散射或透射的超声波信号,传感器将超声波信号转化为电信号,显示器用于显示检测结果。
根据具体应用需求,超声波探伤设备可以选择不同的传感器和工作模式。
三、应用超声波探伤广泛应用于工业制造领域。
在金属材料的生产过程中,超声波探伤可以检测材料的内部缺陷,如裂纹、夹杂等,以保证产品的质量。
在焊接、铸造等工艺中,超声波探伤可以检测焊缝的质量,排除潜在的缺陷。
超声波探伤也广泛应用于航空航天、汽车制造、电力设备等领域。
在航空航天领域,超声波探伤可以检测飞机零部件的缺陷,如发动机叶片的裂纹,以确保飞机的安全飞行。
在汽车制造领域,超声波探伤可以检测汽车零部件的缺陷,如车轮的裂纹,以提高汽车的安全性。
在电力设备领域,超声波探伤可以检测电力设备的绝缘状况,以保证电力设备的正常运行。
总结:超声波探伤是一种非破坏性检测技术,通过利用超声波在材料中传播的特性来检测材料内部的缺陷或异物。
超声波探伤设备主要由发射器、接收器、传感器和显示器组成,可以根据具体应用需求选择不同的传感器和工作模式。
超声波探伤广泛应用于工业制造、航空航天、汽车制造和电力设备等领域,用于检测材料的内部缺陷,保证产品的质量和安全性。
超声波探伤讲义
• 超声波探伤概述 • 超声波探伤设备与工具 • 超声波探伤操作流程 • 超声波探伤结果分析 • 超声波探伤的局限性 • 超声波探伤案例分析
01
超声波探伤概述
定义与特点
定义
超声波探伤是无损检测的一种方 法,利用超声波的物理特性对材 料进行检测,以确定其内部是否 存在缺陷或异常。
特点
根据被检测工件的大小和形状,选择 合适的探头,并确定其频率和焦距。
探伤操作
在被检测工件表面涂抹耦合剂,然后将探头放置在工件 上,确保声学接触良好。
对工件进行全面扫描,观察显示屏上的波形和回波,注 意任何异常现象或回波缺失。
选择合适的扫描速度和增益设置,以便更好地显示缺陷 回波。
根据需要调整扫描速度、增益和其他参数,以便更好地 识别和记录缺陷。
探头、聚焦探头等。
耦合剂
耦合剂是用于将超声波从探头 传递到被检测材料的介质。
耦合剂的作用是消除空气间隙, 减少声能损失,提高检测精度。
常用的耦合剂有水、机油、甘 油等,根据不同的检测材料和 环境选择合适的耦合剂。
试块
试块是用于模拟被检测材料,验证超声波探伤仪和探头的性能和准确性的标准样品。
试块通常由与被检测材料相同或相似的材料制成,具有已知的缺陷类型和位置。
01
02
03
识别方法
通过观察超声波回波信号 的波形、幅度和传播时间 等特征,判断是否存在缺 陷。
识别精度
依赖于超声波探头的性能、 操作人员的技能和经验, 以及检测对象的材料特性 等因素。
识别可靠性
通过多次重复检测和比较 不同探头的检测结果,可 以提高缺陷识别的可靠性。
缺陷定位与定量
定位方法
01
根据超声波传播时间和波速计算缺陷的位置,通常采用自动或
超声探伤方法讲义
C型超声探伤
总结词
C型超声探伤采用三维图像显示,能够更全面地反映物体的内部情况。
详细描述
C型超声探伤通过发射超声波并接收回波信号,形成三维图像,能够全面地展示物体的内部结构。该方法具有更 高的分辨率和准确性,但设备成本和操作难度较高。
D型超声探伤
总结词
D型超声探伤是一种新型的超声探伤方法,采用数字化技术提高检测精度和可靠性。
超声探伤方法讲义
• 超声探伤概述 • 超声探伤的基本原理 • 超声探伤的方法与技术 • 超声探伤的应用领域 • 超声探伤的挑战与解决方案 • 超声探伤案例研究
01
超声探伤概述
定义与特点
定义
超声探伤是一种利用超声波对材 料进行无损检测的方法,通过检 测材料内部或表面的缺陷,评估 其质量和完整性。
散பைடு நூலகம்衰减
超声波在传播过程中遇到 不同介质的小颗粒或气体 时,会发生散射现象,导 致能量衰减。
吸收衰减
超声波在传播过程中由于 介质的热传导和分子振动 而逐渐减少,称为吸收衰 减。
多次反射衰减
超声波在传播过程中遇到 界面时发生的多次反射会 导致能量逐渐减少。
03
超声探伤的方法与技术
A型超声探伤
总结词
A型超声探伤是最早的超声探伤方法, 通过显示波形来反映物体的内部情况。
详细描述
A型超声探伤采用一维波形显示,通 过观察波形可以判断物体的内部是否 存在缺陷。该方法操作简单,成本低, 但显示的信息较为有限。
B型超声探伤
总结词
B型超声探伤采用二维图像显示,能够更直观地反映物体的内 部结构。
详细描述
B型超声探伤通过发射超声波并接收回波信号,形成二维图像 ,能够清晰地显示物体的内部结构。该方法具有较高的分辨 率和准确性,但设备成本较高。
超声探伤心得(优秀4篇)
超声探伤心得(优秀4篇)超声探伤心得篇1超声探伤心得:一次难忘的体验自从我接触超声探查技术以来,就一直对其精准、无创的特性抱有深深的敬意。
它以非侵入性、高分辨率的优势,成为心脏疾病诊断的重要工具。
近日我有幸体验了一次超声探查,让我对这一技术有了更深的理解。
这次体验发生在二月的一个午后,地点是我市一家大型综合性医院。
陪同我的是与我关系甚好的李医生,他也是这次超声探查的主治医师。
负责我的探查工作的是一位年轻的张护士,她在探查过程中始终保持沉着冷静,让我在紧张的氛围中感到一丝安慰。
在准备阶段,李医生详细解释了探查过程,并为我设定了探查参数。
在探查过程中,张护士通过超声仪的显示屏,详细解释了我心脏的结构和动态。
虽然我对超声探查有一定了解,但亲眼目睹探查过程,感受心脏的搏动,我还是感到一阵紧张。
然而,张护士的镇定和耐心让我逐渐放松下来。
这次超声探查的结果显示,我心脏的结构存在一定问题,需要进一步治疗。
李医生向我解释了问题的严重性,并提出了治疗建议。
这次探查让我深刻感受到了医学科技的重要性,也让我对健康问题有了更深的警觉。
总结这次体验,我收获了宝贵的知识和深刻的感受。
超声探查的精准性和无创性让我对医学科技有了新的认识。
同时,我也感受到了医护人员的专业和耐心,他们的高效协作和专业精神让我深受感动。
这次体验让我更加珍惜健康,同时也让我对未来充满期待。
超声探伤心得篇2超声探伤是一种利用超声波在介质中的传播特性来检测和评估材料和结构的方法。
以下是超声探伤的一些心得:1.原理简单易懂:超声探伤利用了声波在介质中的传播特性,如波速、频率和波幅等。
这些参数的变化可以反映材料和结构的缺陷或损伤。
2.高效快速:超声探伤是一种非破坏性的检测方法,可以在不损坏材料或结构的情况下进行检测。
此外,超声探伤的检测速度相对较快,可以同时检测多个点。
3.精度高:超声探伤可以检测出微小的缺陷,如气孔、裂纹等。
此外,超声探伤还可以通过计算机辅助技术进行精确的测量和分析。
《超声波探伤》自学笔记
特点:波速快,穿透力强,反射或散射敏感性差,可用于粗晶材料。定位方便。
横 波 法
按表 波面 形波 分法
板 波 法
定义:将纵波通过楔块、水等介质倾斜入射至试件探测面,利用波型转换得到 横波进行探伤的方法。又称斜射法。
运用:主要用于管材、焊缝的探伤。其它试件探伤时作为一种有效的辅助手段。
定义:使用表面波进行探伤的方法,称表面波法。 运用:主要用于表面光滑的试件。
共振:当策动力频率P与受迫振动物体固有频率ω0相同时,受迫振动的振幅达到最大值,这种现象称为共振。
二、波动
波动:振动的传播过程,称为波动。
波动的分类
机械波:在弹性力的相互作用下,质点的振动以一定的速度由近到远的传播,形成机械波。 电磁波
4
产生机械波必须具备的两个条件
要有作机械振动的波源。 要有能传播机械振动的弹性介质。
分
类 穿透法:依据脉冲波或连续波穿透试件之后能量变化来判断缺陷情况的一种方法。
共振法:依据试件的共振特性,来判断缺陷情况和工件厚度变化情况的方法。
13
定义:使用直探头发射纵波,进行探伤的方法。又称垂直入射法,简称垂直法。
纵 运用:主要用于铸造、锻压、轧材及其制品的探伤。
波 法
敏感缺陷:平行于探测面的缺陷。
分
交叉式:用于发现焊缝中的横向缺陷。
多探头法:通过增加声束来提高探伤速度或发现各种取向的缺陷。
15
直接接触法:探头与试件探测面之间,涂有很薄的耦合剂层,可看作是两者直接接触。
按
接
触
全浸没式
方 式 分
按探伤方式分
喷液式
局部浸没式 满溢式
类
通水式
液浸法
高液层法 按液层厚度分
超声波探伤基础知
超声波的产生
• 人们把声源震动在介质 (如空气等)中的传播过 程,称为波动,简称波。
12
波是物质的一种运动形式,可分为电磁波和 机械波两类。
电磁波
电磁波是交变电磁场在空间的传播过程,如无 线电波、红外线灯。
波 的 分 类
机械波
机械波是指机械振动在弹性介子中的传播过程, 如水波、超声波等。
13
31
4
反射法探伤方法
T
T
B
T
B
F
F
a、无缺陷
b、有小缺陷
c、有大缺陷
5
反射法的优缺点
优点:适应范围广,探伤灵敏度高,缺陷定 位准确,操作方便。
缺点:反射波受缺陷取向的影响,超声波在 传播过程中衰减大,对近表面缺陷的探测 能力差。
6
穿透法探伤原理
• 一个探头发射的超声波透过整个工件被另 一个探头接收,根据超声波在工件中的能 量变化来判断缺陷或工件质量。
超声波探伤的优点
1.穿透能力强,可测厚度大。 2.检测灵敏度高。 3.可适用多种波型,各种探头作不同方向的
探测,能探出工件内部和表面各种取向的 缺陷。 4.指向性好,能方便准确地对缺陷定位。 5.检测速度快,费用低。
10
超声波探伤的缺点
1.探测的结果受人的因素影响。 2.探测表面要求加工。 3.受工件形状晶粒和组织部均匀性的限制。 4.定位精度差。
产生机械波的条件
产生机 械波必 要的两 个条件
要有作机械振动的振源 要有能传递机械振动的弹性介质
14
超声波的特性
• 在超声波探伤中运用最广泛的是利用某些 压电材料(如石英等)的压电效应,来实 现超声波的发射和接收。
15
超声波探伤工作总结
超声波探伤工作总结引言超声波探伤作为一种非破坏性检测技术,在工业生产和科学研究中广泛应用。
本文对我在超声波探伤工作中的经验和总结进行了归纳和分享,旨在提供一些有助于改进工作效率和质量的建议。
背景介绍超声波探伤是一种利用超声波在材料中传播和反射特性进行缺陷检测的方法。
通过发送超声波脉冲,并记录其在被测材料中的传播和反射情况,可以判断材料中存在的缺陷类型、位置和大小等重要参数。
工作流程1.准备工作:在进行超声波探伤工作之前,需要对设备进行检查和校准,确保其正常工作和准确度。
同时,还需要对待检测的材料进行了解和准备,包括材料的类型、尺寸、厚度等关键信息。
2.探头选择:根据待测材料的特性和探测要求,选择合适的超声波探头。
探头的频率和形状会影响到信号的分辨率和透射能力,因此选择合适的探头非常重要。
3.参数设定:根据材料的特性和探测要求,设定合适的超声波发射参数,包括脉冲宽度、发射脉冲重复频率等。
同时,也需要设定接收参数,包括增益、滤波器设置等,以获得清晰的回波信号。
4.数据采集:将设定好的超声波探头放置在待测材料表面,并启动数据采集。
通过超声波传播和反射,记录回波信号,并将其转换为电信号进行处理和分析。
5.数据处理:对采集到的回波信号进行处理和分析,通过波形图和声像图等方式直观地展示材料的缺陷情况。
同时,也可以进行信号处理和算法计算,如峰值检测、峰-谷分析等,以获得更准确的检测结果。
6.缺陷评价:根据数据处理结果,对材料中存在的缺陷进行评价和判断。
根据缺陷的形状、位置和大小等信息,进行缺陷等级划分和分类,并提出相应的处理建议。
7.报告编写:根据检测结果和评价,编写超声波探伤报告。
报告中应包含材料信息、探测参数、数据处理结果、缺陷评价和处理建议等内容,确保报告的完整性和可读性。
工作经验及总结在实际的超声波探伤工作中,我积累了一些经验和总结,以提高工作效率和准确度:•预先了解材料信息:在进行超声波探伤前,对待检测材料进行充分的了解非常重要,包括材料的类型、表面处理、厚度、存在的可能缺陷类型等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于学习超声波探伤,和轧辊日常维护的报告
通过这几天的学习,学习情况如下:
超声波探伤原理:
超声波探伤是利用超声波在物质中的传播、反射和衰减等物理特性来发现缺陷的一种探伤方法。
与射线探伤相比,超声波探伤具有灵敏度高、探测速度快、成本低、操作方便、探测厚度大对人体和环境无害,特别对裂纹、未熔合等危险性缺陷探伤灵敏度高等优点。
但也存在操作者的水平和经验有关缺点。
在探伤中,常与射线探伤配合使用,提高探伤结果的可靠性。
超声波检测主要用于探测试件的内部缺陷。
表面波是超声波的一种,由于表面波的能量集中于表面下2个波长之内, 检查表面裂纹灵敏度极高,因此得到了广泛应用。
我们这次学的也是以表面波探伤为主:
当介质表面受到交变应力作用时,产生沿介质表面传播的波称为表面波。
表面波是具有纵波和横波双重性质的波,可看做振动平行表面的纵波和振动垂直表面的横波合成。
表面波探伤方法:
将磨好的轧辊表面污迹、油、切削液等痕迹擦拭干净;然后涂上润滑油,作用为润滑和隔离空气。
轧辊表面粗糙度不能高于0.8Ra,探头在移动过程中应稍作摆动避免倾斜裂纹的漏检。
为保证灵敏度应匀速移动,探头移动速度小于等150m/s。
较大的划伤会引起缺陷波。
除支承辊外其他轧辊都可以用二纵一环探伤法,支承辊面积大可以采用四纵两环的探伤法
轧辊缺陷判定:
缺陷波高不大于20%结合磁粉检测可以放行使用。
缺陷波高大于20%时须重新磨削。
对异常波定位:
用手指顺探头检测位置摸,跟异常波重合的地方为异常波的位置。
目视不到的用磁粉进行探测。
轧辊的日常维护影响轧辊寿命的因素:
减少轧制事故:
冷轧辊一般有Cr合金钢经过淬火及低温回火,低温回火的温度通常不超过170篊,发生粘钢等重大事故时,局部温度可以达到800篊甚至更高。
轧辊表面受热后,马氏体基体会分解成碳化物和铁素体,体积收缩,造成表面局部的拉应力,诱发表面裂纹,即使裂纹没有立即产生,热影响区的强度大大降低,在随后轧制中提前产生疲劳裂纹,这是轧辊表面裂纹的主要来源。
所以改善轧辊的使用环境是提高轧辊使用寿命的前提。
加强检测:
轧辊表面是否有缺陷,仅肉眼观测是不够的,尤其是遭遇轧制事故经受到过热冲击的轧辊,经常会没有明显开裂,但轧辊表面或浅表层已经有损伤,如热影响区和微裂纹,这些缺陷只有通过表面探伤的方法才能将其检查出来。
辊身的磨削:
大量实践证明,磨削不当同时也是产生表面烧伤和裂纹的重要来源,磨削量过大或过少,砂轮硬度过高;常规换辊的磨削量最少为0.1mm。
磨掉表面疲劳层;事故辊为0.4mm以上,彻底磨掉裂纹和热影响区。
事故辊的维护:
由于现场和现场人员平衡等问题,要求对所有换下的轧辊进行表面探伤检测,对中小型冷轧厂显然会有较大得到困难。
但对事故辊建立《事故轧辊的修磨程序》并实施跟踪,对提高轧辊使用寿命是必须的,事故轧辊应连续跟踪三次以上。
减少剥落的产生:
热冲击剥落,剥落在粘钢等事故后直接产生。
局部遭受断带、粘钢等强烈冲击。
应当控制轧制事故。
端部环状剥落,辊身端部整个淬硬层环状剥落。
淬火残余应力和工作应力过大。
应当减少残余应力;改善端部结构
区域点状剥落,在一定的区域内出现大量的点状剥落。
接触疲劳大,换辊周期过长。
应当调整换辊周期。
经过这次学习,我们受益匪浅;希望公司能多组织类似的学习。
丰富我们的技术含量,引进先进的技术水平。
基板厂:。