牛顿运动定律3

合集下载

高中物理牛顿第三定律教案大全

高中物理牛顿第三定律教案大全

高中物理牛顿第三定律教案大全高中物理牛顿第三定律教案大全一【课程分析】牛顿第三定律是反映物体间相互作用的规律,它揭示了一对作用力与反作用力大小间的定量关系和方向间的具体关系,是牛顿运动定律整体的一个基本组成部分。

牛顿第三定律作为牛顿运动定律的一个独立定律,有着极其广泛的应用,仅从解答物理习题、定性地分析一些简单的实际问题,我们就能发现牛顿第三定律所发挥的关键作用,加之本定律可设计为让学生动手实验、通过自主探索得出,从而使牛顿第三定律更具思想教育价值。

本节课的重点:理解牛顿第三定律;区分平衡力与相互作用力。

本节课的难点:准确理解牛顿第三定律的含义(如:作用力与反作用力总是大小相等,与运动状态无关。

)【学情分析】2008年11月我用该教学设计参评市级优质课评选活动,该教学设计最后面对的是一个重点学校普通班的学生,事前我通过各种途径详尽了解了所用班级的学情状况,他们思维敏捷,基础不错,由于平时老师在课堂上采取的还是传统的“满堂灌”,他们在课堂上已习惯于被动地听讲,不善于合作,不善于表现。

但是他们一旦遇到挑战性的问题,便能迅速进入一种思维亢奋状态,表现出极强的求胜欲望,敢于当众发表自己的看法,此间与老师的互动,与同学的交流也能顺利进行。

本节内容学生有良好的知识基础,如在初中就有了“力是物体间的相互作用”等认识,对牛顿第三定律涉及的现象有着丰富的生活体验,可他们对这些相关知识只是定性地了解,基本上处在记忆的层次,他们体会不到明确提出作用力和反作用力,这一问题的重要价值。

正是由于他们对定律的认识既熟悉而片面,致使他们在学习过程中容易产生麻痹心理,学习不深入,致使原有的知识缺陷得不到弥补,如:作用力与反作用力的大小相等,方向相反,作用在一条直线上,它们能抵消吗?马拉车向前运动是因为马拉车的力大于车拉马的力吗?以卵击石,蛋破石无恙,是不是石头对鸡蛋的力大于鸡蛋对石头的力呢?作用力与反作用力的性质相同吗【设计思路】“学生为主体”的教学指导思想是我进行本节课设计的出发点,为突出地落实学生在教学中的主体地位,使学生全身心地参与整个教学过程,通过创设情境,激发学生的学习兴趣,激活学生已有的生活经验;通过自主探究,让学生经历规律建立的过程,让学生在切身体验中理解规律;通过迁移应用,让学生内化知识,强化学生的应用意识,培养解决问题的能力,再通过整合知识,使学生对学过的知识系统化、条理化。

高考物理一轮复习 专题三 牛顿运动定律 考点3 连接体问题教案-人教版高三全册物理教案

高考物理一轮复习 专题三 牛顿运动定律 考点3 连接体问题教案-人教版高三全册物理教案

考点三连接体问题基础点知识点1 连接体1.定义:多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体。

连接体一般具有相同的运动情况(速度、加速度)。

如以下图所示:2.处理连接体问题的方法:整体法与隔离法,要么先整体后隔离,要么先隔离后整体。

(1)整体法是指系统内(即连接体内)物体间无相对运动时(具有相同加速度),可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,对整体列方程求解的方法。

整体法可以求系统的加速度或外界对系统的作用力。

(2)隔离法是指当我们所研究的问题涉及多个物体组成的系统时,需要求连接体内各部分间的相互作用力,从研究方便出发,把某个物体从系统中隔离出来,作为研究对象,分析其受力情况,再列方程求解的方法。

隔离法适合求系统内各物体间的相互作用力或各个物体的加速度。

3.整体法、隔离法的选取原那么(1)整体法的选取原那么假设连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量)。

(2)隔离法的选取原那么假设连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。

(3)整体法、隔离法的交替运用假设连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。

即“先整体求加速度,后隔离求内力〞。

知识点2 临界与极值1.临界问题物体由某种物理状态转变为另一种物理状态时,所要经历的一种特殊的转折状态,称为临界状态。

这种从一种状态变成另一种状态的分界点就是临界点,此时的条件就是临界条件。

在应用牛顿运动定律解决动力学的问题中,当物体的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大〞“最小〞“刚好〞“恰好出现〞或“恰好不出现〞等词语时,常常会涉及临界问题。

牛顿运动定律知识点总结

牛顿运动定律知识点总结

牛 顿 运 动 定 律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。

(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:tv a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。

(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。

);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。

惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。

质量是物体惯性大小的量度。

(4)牛顿第一定律描述的是物体在不受任何外力时的状态。

而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。

2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。

公式F=ma.(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,Fx =max,Fy=may, 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。

1-3、4、5牛顿运动定律

1-3、4、5牛顿运动定律
Mm r
3
r dr r dr cos rdr
Mm F G 3 r r
)
b
dr
dr
G
ra
rdr
Mm rb
rb
( G
Mm ra
) ( G
初态量
末态量
r
r
F
M
m
ra
a
弹力的功
F kxi
1 1 2 2 W kxi dxi ( kxb kxa ) xa 2 2 1 1 2 2 kxa kxb 2 2 弹簧振子 末态量 初态量
kt m
kt m
v
mg F k
(1 e

)
1-4
动能定理
机械能守恒定律
一 、功和功率
1)恒力的功
定义:力在位移方向上的投影与该物体位移大小 的乘积。
F

F
r

F F
W F// r F r cos F r
2) 变力的功
dW F dr
mg kv F ma m dt
mg kv F ma m
dv dt
初始条件:t=0 时 v=0


v
dv ( mg kv F ) m

0

t
dt
t
0
m k

v
d ( mg kv F ) ( mg kv F )
v

0

dt
0
ln( mg kv F ) 0
xb



弹簧平衡时质点为坐标原点

牛顿第三定律教案

牛顿第三定律教案

牛顿第三定律教案牛顿第三定律教案篇一一、教材分析牛顿运动定律是经典力学的基本定律,构成了经典力学的核心。

而本节要学习的牛顿第一定律又是正确理解和掌握牛顿第二、第三定律乃至整个动力学知识的基础和关键。

教材把本节安排在第六章的第一节,前面五章的内容分别是运动学和力学知识,这样安排就把学生由表面的物体是如何运动的感性认识引入到物体为什么会做这样的运动的思考中来,且符合高一学生正处在由形象思维向抽象思维转变的过渡阶段。

本节的特点是教材内容以大量的文字陈述,没有涉及到数学计算,着重物理学史教育、理想化实验思想和坚持真理、不迷信权威的科学态度的熏陶。

于是,根据对课标的要求和教材的理解,我制定的三维目标如下①知识与技能1、借助伽利略的理想实验,理解力和运动的关系,知道其主要推理过程及结论。

2、掌握牛顿第一定律,并理解其意义3、明确惯性的概念,知道质量是惯性大小的量度。

②过程与方法1、培养学生在实验的基础上通过推理得到结论的方法2、通过伽利略的理想实验,使学生受到科学方法论的教育3、通过对惯性现象的解释,培养学生灵活运用所学知识的能力③情感、态度与价值观1、通过对物理学史的简介,对学生进行严谨的科学态度的教育,了解人类认识事物的曲折性。

2、通过介绍伽利略对力和运动关系的研究,培养学生科学探究精神。

二、学情分析本节内容学生在初中阶段虽然已经学习过,但还只是停留在认识的层次上,在高中阶段学习中,除了要保持新鲜感,还需加大思维强度,注意知识的深化和科学研究方法、情感态度的教育,让学生对牛顿第一定律有更深的理解。

三、教学方法、学法及依据“教学有方,但无定法”。

选择行之有效的方法是取得良好教学效果的保证。

本课时我主要采用“实验探究法”与“科学推理”相结合来进行教学,即通过对实验现象的观察、分析,又加以科学的想象和推理,引导学生去发现知识,总结规律。

总之充分调动学生的主观能动性,让他们真正成为学习的主体。

四、教学程序高尔基说:“好奇是了解的开端和引向认识的途径。

牛顿运动定律及三大守恒定律总结

牛顿运动定律及三大守恒定律总结

牛顿运动定律及三大守恒定律小结一、牛顿运动定律1.牛顿第一运动定律2.牛顿第二定律:dtv m d dt p d F )( == 在低速运动的条件下,a m dtvd m F == 在平面直角坐标系中,其投影式为:22dt x d m dt dv m ma F x x x ===,22dt yd m dt dv m ma F y y y === 在自然坐标系中,其投影式为dt dv m ma F ==ττ,ρ2v m ma F n n ==4.牛顿第三定律:2112f f-=二、动量守恒2.质点的动量定理:1212v m v m p p I-=-=在直角坐标系中的投影式为:x x t t x x mv mv dt f I 1221-==⎰,y y t t y y mv mv dt f I 1221-==⎰3.质点系的动量定理:P d dt F =,式中,∑=ii F F 为系统所受合外力,∑=ii P P为系统的总动量。

4.动量守恒定律,如果系统受合外力为零,即0==∑ii F F ,常矢量===∑∑ii i ii v m P P动量守恒定律的分量式:如果系统在某个方向上受合外力为零,如0==∑iixx FF ,则系统在该方向上的动量保持不变,常量===∑∑iixi iix x vm P P .5.碰撞,碰撞前后系统总动量保持不变的碰撞称为弹性碰撞,两物体碰撞后连成一体,具有相同速度的碰撞称为完全非弹性碰撞。

三、机械能守恒1.功:r d F dA ⋅=,⎰⋅=b ar d F A,功率 v F p ⋅=2.质点的动能定理:ka kb E E A -= 质点系动能定理,ka kb E E A -=+内外A3.作用力与反作用力的功: ⎰⋅=bar d f A 21214.保守力,作功与路径无关的力称为保守力。

⎰=⋅0r d f保守5.势能。

P E A ∆-=保重力势能 m g h E P =重;万有引力势能 r GmM E P 1-=引;弹性势能 221kx E P =弹 6.系统的功能原理:a b E E A A -=+非保内外7.机械能守恒定律:如果0=+非保内外A A ,则常量=+=P K E E E 四、角动量守恒1.质点的角动量:p r v m r L⨯=⨯=质点组的角动量:i i ii i i ip r v m r L⨯=⨯=∑∑2.质点所受的力矩:F r M⨯=质点系所受的力矩:外外i i iF r M⨯=∑3. 角动量定理质点的角动量定理: dt Ld M =质点系的角动量定理:dtLd M=外4.角动量守恒定律质点的角动量守恒定律:如果0=M ,则0=dtLd,亦即常量=L 质点系的角动量守恒定律:如果0=外M ,则0=dtLd,亦即常量=⨯=⨯=∑∑i i ii i i ip r v m r L。

牛顿的三大定律

牛顿的三大定律

三大定律分别是:牛顿第一运动定律、牛顿第二运动定律、牛顿第三运动定律。

一、牛顿三大定律1.牛顿第一运动定律牛顿第一运动定律,又称惯性定律。

第一定律说明了力的含义:力是改变物体运动状态的原因。

表述为:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。

2.牛顿第二运动定律牛顿第二运动定律:第二定律指出了力的作用效果:力使物体获得加速度。

表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。

3.牛顿第三运动定律牛顿第三运动定律:第三定律揭示出力的本质:力是物体间的相互作用。

表述是:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

二、牛顿三大定律的影响牛顿运动定律是建立在绝对时空以及与此相适应的超距作用基础.上的所谓超距作用,是指分离的物体间不需要任何介质,也不需要时间来传递它们之间的相互作用.也就是说相互作用以无穷大的速度传递。

除了上述基本观点以外,在牛顿的时代,人们了解的相互作用。

如万有引力、磁石之间的磁力以及相互接触物体之间的作用力,都是沿着相互作用的物体的连线方向,而且相互作用的物体的运动速度都在常速范围内。

三、牛顿三大定律的相关知识1.牛顿运动定律中的各定律互相独立,且内在逻辑符合自洽一致性。

其适用范围是经典力学范围,适用条件是质点、惯性参考系以及宏观、低速运动问题。

牛顿运动定律阐释了牛顿力学的完整体系,阐述了经典力学中基本的运动规律,在各领域上应用广泛。

2.牛顿运动定律是力学中重要的定律,是研究经典力学甚至物理学的基础,阐述了经典力学中基本的运动规律。

该定律的适用范围为由牛顿第-运动定律所给出惯性参考系,并使人们对物理问题的研究和物理量的测里有意义。

3.牛顿运动定律只适用宏观问题。

当考察的物体的运动线度可以和该物体的德布罗意波相比拟时,由粒子运动不确定性关系式可知,该物体的动里和位置已不能同时准确获知,故牛顿动力学方程缺少准确的初始条件而无法求解,即经典的描述方法由于粒子运动不确定性关系时已经失效或者需要修改。

牛顿三大定律是什么 知识点有哪些

牛顿三大定律是什么 知识点有哪些

牛顿三大定律是什么知识点有哪些
有很多的同学是非常想知道,牛顿三大定律是什幺,知识点有哪些,小
编整理了相关信息,希望会对大家有所帮助!
1 牛顿第三定律有哪些1,惯性定律:一切物体再不受外力作用时,总保持
匀速直线运动状态或静止状态。

2,加速度定律:物体运动的加速度与作用在物体上所有外力的合力成正比,与物体的质量成反比。

3,作用与反作用定律:两物体间的作用力和反作用力总是作用在一条直线上,大小相等方向相反。

牛顿运动定律是由牛顿(Sir Isaac Newton)总结于17 世纪并发表于《自然哲学的数学原理》的牛顿第一运动定律(Newton’s first law of motion)即惯性定律(law of inertia)、牛顿第二运动定律(Newton’s second law of motion)和牛顿第三运动定律(Newton’s third law of motion)三大经典力学基本定律的总称。

1 牛顿第三定律的知识点是什幺对牛顿第一定律的理解
(1)揭示了物体不受外力作用时的运动规律
(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量
有关
(3)肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物
体运动的原因
(4)牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛
顿第二定律的特例。

牛顿第三定律说课稿

牛顿第三定律说课稿

牛顿第三定律说课稿说课流程图一、教材分析:本节《牛顿第三定律》选自人教版必修1第四章第五节。

本章牛顿运动定律作为动力学的核心内容,是经典力学的基础,更是整个高中物理学习所必须掌握的重要知识。

其中,牛顿第一、二定律的研究对象多是单个的受力物体,它们只能解决一个物体、一个系统的力与运动的关系,牛顿第三定律则揭示了自然界物体之间普遍存在的联系性和相互性,就像一座桥梁,把一个物体受到的力与其它物体受到的力联系起来,独立的反映了力学规律的另一侧面,是对牛顿第一、二定律有效的补充,拓宽了我们解题的视野。

同时,牛顿第三定律与前面第三章学习的力紧密相关,是在其基础上对相互作用力的更深入的探究,也是我们以后研究碰撞问题、学习动量守恒定律等知识的基础。

可见,牛顿第三定律,承前而启后,地位非常重要。

并且在日常生活、社会生产、科学技术等方面牛顿第三定律应用极其广泛,学习它有重要的现实意义。

在高考考纲中,牛顿运动定律及其应用,是Ⅱ级要求。

牛顿第二定律是考察的重点,而牛顿第一定律和牛顿第三定律在牛顿第二定律的应用中得到完美的体现,与斜面、轻绳、轻杆、轻弹簧、圆周运动等内容综合的题目紧密相连。

二、学情分析:从知识角度分析,学生对相互作用力并不陌生,他们有足够的生活经验,并且,初中阶段,学生已经对物体间的相互作用问题有了定性地学习,也知道相互作用和一对平衡力是不同的,但是,他们对这一知识的了解,基本上处于记忆的层面,缺乏深入的理解和灵活的应用。

因此迫切需要进一步的学习,来弥补认知的不足。

从能力角度分析,高一年级大部分学生已经有了初步的观察思考能力、实验探究能力、分析解决问题能力和归纳总结能力,他们主动性较强,学习热情高,有参与意识,利于本节的实验探究教学。

三、设计理念:本节课以学案为前导,根据新课标的要求,开展探究式教学,创造性地使用教材,灵活地使用教学设计,充分发挥学生的主体地位和教师的主导作用,采取由定性到定量,逐步深入、分层探究的设计思路,教师通过引导、实验、提问的形式,引起学生对知识的思考,对实验现象的观察、分析、讨论,同时又让学生自行设计实验并进行探索,培养学生独立思考、勇于创新、团结协作的科学态度。

牛顿运动定律微分方程

牛顿运动定律微分方程

牛顿运动定律微分方程一、引言牛顿运动定律是描述物体在力作用下运动规律的基本定律,而微分方程则是数学工具中描述变化和关系的重要方法之一。

本文将结合牛顿运动定律,探讨其微分方程形式及其应用。

二、牛顿运动定律回顾牛顿运动定律是牛顿力学的核心内容,包括三个定律:1. 第一定律,也称为惯性定律,指出物体在没有外力作用时保持匀速直线运动或静止状态。

2. 第二定律,也称为运动定律,表明物体受到的力与其加速度成正比,且与物体的质量成反比。

3. 第三定律,也称为作用-反作用定律,指出两个物体之间的相互作用力大小相等、方向相反。

三、牛顿运动定律的微分方程形式根据牛顿运动定律可推导出微分方程形式,以描述物体在力作用下的运动。

1. 对于一维运动,根据第二定律可得到:F = ma = m(dv/dt),其中F为作用在物体上的力,m为物体的质量,a为物体的加速度,v为物体的速度,t为时间。

该方程可以进一步变换为:F = m(d^2x/dt^2),其中x为物体的位移。

这是物体在一维情况下的牛顿运动定律微分方程形式。

2. 对于二维或三维运动,可将物体的运动分解为各个方向上的独立运动,并分别应用牛顿运动定律得到相应的微分方程。

四、牛顿运动定律微分方程的应用牛顿运动定律微分方程在物理学和工程学中有广泛的应用,以下是几个常见的应用领域:1. 力学研究:通过解牛顿运动定律微分方程,可以研究物体在不同力作用下的运动规律,例如自由落体、抛体运动等。

2. 振动系统:振动系统中的物体受到弹簧力或重力的作用,可以通过牛顿运动定律微分方程描述其振动过程,如简谐振动、受阻尼力作用的振动等。

3. 电路分析:电路中的元件受到电压和电流的作用,可以通过牛顿运动定律微分方程描述电路中元件的响应,如电感、电容和电阻等元件的电流和电压关系。

4. 控制系统:控制系统中的物体受到外部控制力的作用,可以通过牛顿运动定律微分方程描述其动态响应,如机械控制系统、自动驾驶系统等。

牛顿运动定律学习 (3)

牛顿运动定律学习 (3)

Fy = ma y
F n = ma
n
v = m r
第二章 牛顿定律
例1 阿特伍德机 (1)如图所示滑轮和绳子的质量均 不计, 不计,滑轮与绳间的摩擦力以及滑轮与 轴间的摩擦力均不计. 轴间的摩擦力均不计.且 m1 > m2 . 求 重物释放后,物体的加速度和绳的张力. 重物释放后,物体的加速度和绳的张力. 解 以地面为惯性系 画受力图、 画受力图、选取坐标如图
(1)作用力、反作用力互为对方存在的条件,同时 作用力、反作用力互为对方存在的条件, 产生,同时消失。 产生,同时消失。 (2)作用力、反作用力分别作用在相互作用的两个 作用力、 物体上,因此不能互相抵消。 物体上,因此不能互相抵消 (3)作用力、反作用力属同种性质的力。 作用力、反作用力属同种性质的力。
F
mg sinθ = ma cosθ N − mgcosθ = masinθ
此种方法更简单。 此种方法更简单。
解得: 解得:
a = gtgθ
N = mg / cosθ
第二章 牛顿定律
雨滴下落时受空气阻力, 例3 雨滴下落时受空气阻力,若阻力与其速度 大小成正比,求雨滴的速度并讨论其最终速度。 大小成正比,求雨滴的速度并讨论其最终速度。 解 设雨滴质量为m 设雨滴质量为 取坐标如图
v t
F0 − kt ∴ dv = dt m
F0 k 2 F0 − kt 积分: 积分: t dt v = t − ∫ dv = ∫ m 2m m 0 0 dx 有 v= 由 dx = vdt dt x t F0 k 2 F0 2 k 3 t )dt x = t − t ∫ dx = ∫ ( t − m 2m 0 0 2m 6m
第二章 牛顿定律
4.应用举例 4.应用举例

第四章5牛顿第三定律

第四章5牛顿第三定律
引力或都是斥力;相同. (3)两个.
1.作用力和反作用力可总结为“四同三异”.
项目
作用力与反作用力的关系
1.等大:大小相等,不能认为只有物体处 于平衡状态时作用力和反作用力才大小相 等
四同 2.共线:作用在一条线上 3.同时:同时产生、同时变化、同时消失, 不能认为先有作用力后有反作用力
4.同性质:不同性质的力不可能成为作用 力和反作用力的关系
解析:人走路或游泳时,对地或对水都施加向后的力, 另一方给人施加动力,故 A 对,B 错;作用力与反作用 力总是同时产生,同时变化的,不存在谁先谁后,故 C、 D 均错.
答案:A
拓展二 一对相互作用力和一对平衡力的区别
如图所示,一位同学用水平推力 F 把一块木块紧压 在竖直墙上,使木块处于静止状态.
判断正误
1.相互作用的一对力中,称哪一个力为作用力是任 意的.(√)
2.作用力和反作用力的受力物体是同一物体.(×) 3.作用力和反作用力的合力为零.(×)
小试身手 1.如图所示,P 和 Q 叠放在一起,静止在水平桌面 上.在下列各对力中属于作用力和反作用力的是( )
A.P 所受的重力和 Q 对 P 的支持力 B.Q 所受的重力和 Q 对 P 的支持力
C.火箭飞出大气层后,由于没有了空气,火箭虽向后 喷气也不会产生推力
D.卫星进入轨道后和地球间不存在作用力和反作用力 解析:火箭发射后仍受到地球的引力,火箭受到的推力
不是空气的反作用力,而是喷出气体的反作用力,故 A 正确,
B、C 错误;卫星进入轨道之后也与地球之间存在相互的引
力,D 错误.
答案:A
答案:A
1.关于作用力、反作用力和一对平衡力的认识,正确 的是( )
A.一对平衡力的合力为零,作用效果相互抵消,一对 作用力与反作用力的合力也为零,作用效果也相互抵消

第三章第三节牛顿第三定律

第三章第三节牛顿第三定律

第三章第三节 牛顿第三定律1、应用牛顿第二定律解决的两类基本问题(1)已知物体的受力情况,求解物体的运动情况解决这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的位置、速度及运动轨迹。

过程如下:(2)已知物体的运动情况,求解物体的受力情况解决这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。

过程如下:2、正交分解法在牛顿运动定律中的应用所谓正交分解法是指把一个矢量分解在两个互相垂直的坐标轴上的方法。

正交分解法是一种常用的矢量运算方法。

其实质是将复杂的矢量运算转化为简单的代数运算,从而简洁方便地解答问题。

正交分解法是运用牛顿运动定律解题的最基本方法,物体在受到三个或三个以上的不在同一直线上的力作用时,一般都用正交分解法。

表示方法⎩⎨⎧=+++==+++=y y 3y 2y 1y x x 3x 2x 1x ma F F F F maF F F F注意:为减少矢量的分解,建立坐标系时,确定x 轴正方向有两种基本方法。

(1)分解力而不分解加速度分解力而不分解加速度,通常以加速度a 的方向为x 轴正方向建立直角坐标系,将物体所受的各个力分解在x 轴和y 轴上,分别求得x 轴和y 轴上的合力y x F F 和。

根据力的独立作用原理,各个方向上的力分别产生各自的加速度,得方程组:.0F ,ma F y x == (2)分解加速度而不分解力若物体受几个互相垂直的力作用,应用牛顿定律求解时,若分解的力太多,比较繁琐,所以在建立直角坐标系时,可根据物体的受力情况,使尽可能多的力位于两坐标轴上,分解加速度a 得到y x a a 和,根据牛顿第二定律得方程组.ma F maF y y x ⎩⎨⎧==说明:①在建立正交坐标系时,不管选取哪个方向为x 轴正方向,所得的最后结果都一样。

牛顿三大运动定律

牛顿三大运动定律

牛顿三大运动定律牛顿力学三大定律分别是:惯性定律、加速度定律和作用力与反作用力定律。

介绍如下:1、惯性定律任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。

说明:物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。

物体的这种性质称为惯性。

所以牛顿第一定律也称为惯性定律。

第一定律也阐明了力的概念。

明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。

因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,不是和速度相联系的。

在日常生活中不注意这点,往往容易产生错觉。

注意:牛顿第一定律并不是在所有的参照系里都成立,实际上它只在惯性参照系里才成立。

因此常常把牛顿第一定律是否成立,作为一个参照系是否惯性参照系的判据。

2、加速度定律物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。

加速度定律定量描述了力作用的效果,定量地量度了物体的惯性大小。

它是矢量式,并且是瞬时关系。

要强调的是:物体受到的合外力,会产生加速度,可能使物体的运动状态或速度发生改变,但是这种改变是和物体本身的运动状态有关的。

真空中,由于没有空气阻力,各种物体因为只受到重力,则无论它们的.质量如何,都具有的相同的加速度。

因此在做自由落体时,在相同的时间间隔中,它们的速度改变是相同的。

3、作用力与反作用定律两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。

说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。

物体之间的相互作用是通过力体现的。

并且指出力的作用是相互的,有作用必有反作用力。

它们是作用在同一条直线上,大小相等,方向相反。

另需要注意:作用力和反作用力是没有主次、先后之分。

同时产生、同时消失。

这一对力是作用在不同物体上,不可能抵消。

牛顿运动第三定律-作用反作用定律

牛顿运动第三定律-作用反作用定律

牛顿运动第三定律-作用反作用定律牛顿运动定律是物理学的基础,其中第三定律,也被称为作用反作用定律,是许多运动学理论的基础。

它的核心内容是:在相互作用的两个物体之间,它们对产生的力的大小相等,方向相反。

这个定律在生活和工作中有广泛的应用,同时也是现代机器的工作原理之一。

一、作用反作用定律基础作用反作用定律也可以描述为“每个动作都有相等而反向的反应”。

它的基础在于,在物理学中,力的描述是如何将物体从一个状态转移到另一个状态。

一个物体的状态包括其位置、速度和方向等。

力描述了在一个时间点,物体所处的状态发生变化。

二、作用反作用定律的作用在物理学中,许多问题都可以使用作用反作用定律来解决。

例如,在机器学中,机器的运动都是基于运动部件之间的作用反作用原理实现的。

这将有助于让机器工作更高效和准确。

此外,我们还可以利用作用反作用原理来解释许多日常生活中的现象。

例如,当人们使用划艇棒推动划艇时,船就会向前推进。

这个动作的力量来自于人的手臂运动,但这个力量是以相等而反向的方式作用于人和船上的系统之间的。

三、物体运动的实例为了更好地理解作用反作用原理,我们可以考虑下面几个例子。

1. 电脑的使用:人使用手指敲打键盘就可以在电脑上输入字母和数字。

在此过程中,按键与人的手指的互相作用使得电脑屏幕上的字母/数字得以输入。

2. 弹簧测力计:弹簧测力计是一种可以测量一个物体的力的仪器。

当一个物体施加力于弹簧测力计的支撑面上时,弹簧就会产生一个相等和反向于施加的力的反向反力。

3. 力棒:力棒是一种可以通过测量其同向挠度的仪器来测量物体施加的力。

当一个物体施加力于力棒上时,它会产生一个相等和反向的反力,这个反力将使得力棒产生一定程度的挠度。

总的来说,作用反作用定律是物理学和机器学运动理论中基础而重要的部分。

它可以帮助我们更好地理解力和运动之间的关系,并在各种不同的工程和生活应用中发挥着重要作用。

3第三章牛顿运动定律

3第三章牛顿运动定律

第三章 牛顿运动定律一、牛顿第一定律1.牛顿第一定律导出了力的概念力是改变物体运动状态的原因。

(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。

(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。

)2.牛顿第一定律导出了惯性的概念一切物体都有保持原有运动状态的性质,这就是惯性。

惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。

质量是物体惯性大小的量度。

3.牛顿第一定律描述的是理想化状态牛顿第一定律描述的是物体在不受任何外力时的状态。

而不受外力的物体是不存在的。

物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例。

二、牛顿第三定律1.区分一对作用力反作用力和一对平衡力一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。

不同点有:作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。

2.一对作用力和反作用力的冲量和功一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量一定为零,但作的总功可能为零、可能为正、也可能为负。

这是因为作用力和反作用力的作用时间一定是相同的,而位移大小、方向都可能是不同的。

三、牛顿第二定律1.定律的表述物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,既F =ma (其中的F 和m 、a 必须相对应)特别要注意表述的第三句话。

因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。

明确力和加速度方向,也是正确列出方程的重要环节。

若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。

牛顿第三定律的教学评价

牛顿第三定律的教学评价

牛顿第三定律的教学评价牛顿第三定律是反映物体间相互作用的规律,它揭示了一对作用力与反作用力大小间的定量关系和方向间的具体关系,是牛顿运动定律整体的一个基本组成部分。

牛顿第三定律作为牛顿运动定律的一个独立定律,有着极其广泛的应用,仅从解答物理习题、定性地分析一些简单的实际问题,我们就能发现牛顿第三定律所发挥的关键作用,加之本定律可设计为让学生动手实验、通过自主探索得出,从而使牛顿第三定律更具思想教育价值。

本节课在教学设计时注意以学生为主体,注重提高学生的基本科学素养,倡导学生的自主性、探究性、合作性,让学生主动参与,激发学生的学习兴趣,同时,本节课在设计上有以下亮点。

1、探究性实验设计。

本节课涉及到两个实验,一个探究性实验,一个演示实验,充分调动了学生积极性的作用。

学生利用弹簧测力计自主探究作用力与反作用力间的关系,再利用dis实验系统进一步研究作用力与反作用力间的关系,同学们注意观察屏幕上图线(两个力传感器的相互作用力随时间变化的曲线)的变化情况,并由此进一步总结作用力和反作用力之间的关系,这样结论更有说服力。

2、Auron学案的撰写。

在导学案的编写过程中,努力将学生参与课堂的部分拓展,由教师提供相关器材和点拨指导,提出问题,让学生进行合作探究。

通过学生的实验观察、分析、总结等一系列活动发现科学概念、科学规律。

3、不足之处:因时间关系板书得较为简洁,牛顿第三定律的内容没有在黑板上完整板书出来。

板书的字也是我需要再进行练习的。

这些不足之处均是我在以后教学中要不断去改进和提高的。

牛顿第三定律在力学分析中起著一个切换研究对象的促进作用,即为通过谋反作用力去获得作用力。

必须全面重新认识物体间的运动规律,必须研究物体之间的相互作用、相互影响。

本节教材总体设计思路:由对“作用力和反作用力”的定性描述至定量探究,再至对相互作用力的性质的深入细致探究,最后再鼓励学生认知一对相互作用力与一对平衡力的区别,助推学生逐步形成对牛顿第三定律的深刻重新认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组训练5----3、4、6、7多选
1如图所示,将质量为m=0.1kg 的物体用两个完全一样的弹簧固定在升降机内,当升降机以4m/s 2
的加速度加速向上运动时,上面弹簧对物体的拉力为0.4N ;当升降机和物体都以8m/s 2的加速度向
上运动时,上面弹簧的拉力为( )
A 0.6N
B 0.8N
C 1.0N
D 1.2N
2 如图所示,小球从高处下落到竖直放置的轻弹簧上,从接触弹簧开始到将弹簧压缩到最短的过程中,
下列叙述正确的是( )
A 小球的速度一直减小
B 小球的加速度先减小后增大
C 小球的最大加速度一定等于重力加速度
D 小球的加速度一直增大
3 木块A 、B 质量分别重50N 、60N ,它们与水平面的动摩擦因数均为0.25,夹在A 、B 之间的轻弹簧被压缩了2cm ,弹簧的劲度系数为400N/m 。

系统置于水平地面上静止不动。

现有F=10N 的水平拉力作用在木块B 上,如图所示,力F 的作用后( )
A 木块A 所受的摩擦力大小为15N
B 木块A 的加速度为0
C 木块B 所受的摩擦力大小为12.5N
D 木块B 的加速度是0.5m/s 2
4 如图所示,质量均为m 的两个木块P 、Q 叠放在水平地面上,P 、Q 接触面的倾角为θ,现在Q 上加一水平推力F , 使P 、Q 保持相对静止一起向左加速直线运动,下列说法正确的是( )
A .物体Q 对地面的压力一定为2mg
B .若Q 与地面间的动摩擦因数为μ,则2F mg
μ= C .若P 、Q 之间光滑,则加速度a = gtanθ
D .若运动中逐渐减小F ,则地面与Q 间的摩擦力也逐渐减小
5 带式传送机是在一定的线路上连续输送物料的搬运机械,又称连续输送机。

如图4所示,一条足够长的浅色水平传 送带自左向右匀速运行。

现将一个木炭包无初速度地放在传送带上,木炭包在传送带上将会留下一段黑色的径迹。

下 列说法正确的是 ( )
A .黑色的径迹将出现在木炭包的左侧
B .木炭包的质量越大,径迹的长度越短
C .木炭包与传送带间动摩擦因数越大,径迹的长度越短
D .传送带运动的速度越大,径迹的长度越短
6 如图所示,长木板放置在水平面上,一小物块置于长木板中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面的动摩擦因素为3
μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度大小a 可能是( )
A g a μ=
B 3
2g a μ= C 3g a μ= D 3
2g m F a μ-=
7 如图7所示,一名消防员在模拟演习训练中,沿着长为12 m 的竖立在地面上的钢管向下滑.已知这名消防队员的质量为60 kg ,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3 s ,g 取10 m/s 2,那么该消防队员 ( )
A .下滑过程中的最大速度为4 m/s
B .加速与减速过程的时间之比为1∶2
C .加速与减速过程中所受摩擦力大小之比为1∶7
D .加速与减速过程的位移之比为1∶4
8 2012年11月,我国舰载机在航母上首降成功。

设某一载舰机质量为m = 2.5×104 kg ,速度为
v 0=42m/s ,若仅受空气阻力和甲板阻力作用,飞机将在甲板上以a 0=0.8m/s 2的加速度做匀减速运动,
着舰过程中航母静止不动。

(1)飞机着舰后,若仅受空气阻力和甲板阻力作用,航母甲板至少多长才能保证飞机不滑到海里?
(2)为了让飞机在有限长度的跑道上停下来,甲板上设置了阻拦索让飞机减速,同时考虑到飞机尾钩挂索失败需要复飞的情况,飞机着舰时并不关闭发动机。

图示为飞机勾住阻拦索后某一时刻的情景,此时发动机的推力大小为F= 1.2×105N,减速的加速度a1=20m/s2,此时阻拦索夹角θ=106°,空气阻力和甲板阻力保持不变,求此时阻拦索承受的张力大小?
9 如图8所示,两套完全相同的小物块和轨道系统,轨道固定在水平桌面上.物块质量m=1 kg,轨道长度l=2 m,物块与轨道之间的动摩擦因数μ=0.2.现用水平拉力F1=8 N、F2=4 N同时拉两个物块,分别作用一段距离后撤去,使两物块都能从静止出发,运动到轨道另一端时恰好停止.(g=10 m/s2)求:
(1)在F1作用下的小物块加速度a1多大?
(2)在F1作用下的小物块位移s多大?
(3)从两物块运动时开始计时直到都停止,除了物块在轨道两端速度都为零之外,另有某时刻t两物块速度相同,则t 为多少?
答案:
1 A
2 B
3 BD
4 AC
5 C
6 CD
7 BC
8 (1)1102.5m (2)5×105N
9 (1)6 m/s2(2)0.5 m(3)0.816 s。

相关文档
最新文档