09秋季高数1B模拟卷答案

合集下载

2009(1)高数(B卷)(90)解答

2009(1)高数(B卷)(90)解答

广州大学2009-2010学年第一学期考试卷高等数学Ⅰ1(90学时B 卷)参考解答与评分标准一.填空题(每小题3分,本大题满分15分)1.设2,0()1sin ,0a x x f x x x x ⎧+≤⎪=⎨>⎪⎩,当常数=a 0 时,)(x f 在0x =处连续. 2.曲线21x y x =+有水平渐近线=y 12.3.曲线x y xe -=的拐点横坐标为=x 2 . 4.设)(x f 连续, 且3140()1x f t dt x -=-⎰,则(26)f = 4 .5.方程20y y y '''++=的通解为y =12()x e C C x -+.二.选择题(每小题3分, 本大题满分15分)1. 当0→x 时1是2x 的( A )无穷小. (A) 高阶; (B) 低阶; (C) 同阶; (D) 等价. 2. 函数|2|y x =-在点2x =处 ( B ).(A) 可导但不连续; (B) 连续但不可导; (C) 可导; (D) 可微. 3.设()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则( B ). (A) 当()()0f a f b <时, 存在(,)a b ξ∈,使()0f ξ=; (B) 对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=;(C) 当()()f a f b =时, 存在(,)a b ξ∈,使()0f ξ'=; (D) 存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-. 4. 若函数)(x f 在点0x x =处取得极小值, 则必有( C ). (A) 0)(0='x f ; (B) 0)(0>''x f ;(C) 0)(0='x f 或)(0x f '不存在; (D) 0)(0='x f 且0)(0>''x f . 5. 设)(x f 的导函数为sin x , 则()f x 的一个原函数是( C ). (A) 1+x sin ; (B) 1+x cos ; (C) 1x sin -; (D) 1x cos -.三.解答下列各题(每小题6分,本大题满分30分)1.1ln(arctan y x x=++,求y '.解: 2111()1()x y x x '''=+⋅+………………………4分2221()1x x x =+⋅-+211x =-+…………………………………………………………6分 2.2sin3xy ex -= ,求dy .解: 22()sin3(sin3)x xy e x e x --'''=+ …………………………………………2分222sin33cos3x x e x e x --=-+2(3cos32sin3)x x x e -=- …………………………………………………4分 2(3cos32sin3)x dy y dx x x e dx -'==-……………………………………6分3.求由方程57230y y x x +--=确定的隐函数()y f x =在0x =处的导数. 解: 把方程两边分别对x 求导数得46521210y y y x ''+--= ……………………………………………4分当0x =时,0y =,代入上式得01|2x y ='=……………………………………… 6分4.求曲线231x t y t⎧=+⎨=⎩上在参数2t =相应的点处的切线方程. 解: 切点坐标为(5,8) ……………………………………………………………1分2()33()22dy y t t t dx x t t '==='…………………………………………………4分 切线斜率为 2|3t dyk dx===………………………………………………………5分 切线方程为 83(5)y x -=-即370x y --=…………………………………6分5.计算极限30arctan limsin x x xx →-.解: 原式30arctan lim x x xx→-= ……………………………………………………2分220111lim 3x x x →-+= ………………………………………………………4分 201lim 3(1)x x →=+13= …………………………………………………6分四.解答下列各题(每小题6分,本大题满分24分)1.计算不定积分3(1)xdx x +⎰. 解: 原积分311(1)x dx x +-=+⎰2311(1)(1)dx dx x x =-++⎰⎰……………………3分 21112(1)C x x =-++++ …………………………………………6分2.计算定积分4⎰.解:令t =则2x t =, 2dx tdt =原积分23221tdt t =-⎰………………………………………………………3分 3212(1)1t dt t =++-⎰……………………………………………4分 2322[ln(1)]2t t t =++-72ln 2=+ ……………………………6分3.计算反常积分⎰∞+-0dx xe x .解: 原积分0x xde +∞-=-⎰⎰∞+-∞+-+-=0][dx e xe x x …………………………3分0[]1x e -+∞=-=………………………………………………………6分4.求微分方程24dyxy x dx+=的通解. 解: 原方程的通解为:22[4]xdx xdxy e xe dx C -⎰⎰=+⎰………………………………………3分22[4]xx exe dx C -=+⎰ ……………………………………………5分22[2]x x e e C -=+22x Ce -=+ ……………………………………6分五.(本题满分6分)证明方程32100x x +-=有且只有一个实根.证明: 令3()210f x x x =+-,则()f x 连续.因(0)10,(2)2f f =-=由零点定理知,()f x 至少有一个实零点……………………………………………………3分 因2()320f x x '=+>,故()f x 是单调增函数,从而()f x 至多有一个实零点. 因此()f x 有且只有一个实零点,即原方程有且只有一实根……………………6分 六.(本题满分10分)设曲线2x xe e y -+=与直线0,(0)x x t t ==>)及x 轴围成一曲边梯形,该曲边梯形绕x 轴旋转一周得旋转体,其体积为()v t ,在x t =处的底面积为()f t .求()lim ()t v t f t →+∞. 解: 20()tv t y dx π=⎰20()2x x te e dx π-+=⎰ ……………………………………2分 22024x x t e e dx π-++=⎰22(4)8t t e e t π-=-+………………………………4分22()()()2t t e e f t y t ππ-+==22(2)4t t e e π-=++ ………………………6分2222(4)()8lim lim ()(2)4t t t t t t e e t v t f t e e ππ-→+∞→∞--+=++222214lim 22t tt t t e e t e e --→∞-+=++………………7分 22221224lim 222t t t t t e e e e --→∞++=- ……………………………………………………8分 424112lim21t t tt e e e ---→∞++=-12= ………………………………………………10分 另解: 20()tv t y dx π=⎰20()2x x t e e dx π-+=⎰ …………………………………3分 22()()()2t t e e f t y t ππ-+==……………………………………………5分202()()limlim ()()tx x t t t t e e dxv t f t e e --→+∞→∞+=+⎰ ………………………………………6分 lim 2()t tt t t e e e e --→∞+=-2211lim 21t t t e e--→∞+=-12=…………………………………10分。

2009年全国高中数学联合竞赛一试试题及参考答案

2009年全国高中数学联合竞赛一试试题及参考答案

2009年全国高中数学联合竞赛一试试题一、填空题:本大题共8小题,每小题7分,共56分。

把答案填在横线上。

1、()()()()()()99,1_______.n f x f x f f f x f ⎡⎤===⎡⎤⎣⎦⎣⎦ 若函数且则 ()()()()()()()()()2399111111110f f f f f f f f f ⎡⎤=====⇒=⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 2、220L M A L B C M ABC BAC 45AB M A ∆∠已知直线:x+y-9=0和圆:2x +2y -8x-8y-1=0,点在直线上,、为圆上两点,在中,=,过圆心,则点横坐标范围为____。

()()2217AM 2+2232x y ≤⇒--≤⨯⇒≤≤数形结合可知x 6 3、()()0M N M N 2101,M N y y x t y x t x t t t f t f t ≥⎧⎪≤⎨⎪≤-⎩≤≤+≤≤在坐标平面上有两个区域和,为:,是随变化的区域,它由不等式所确定,的取值范围是设和的公共面积是函数,则=______。

()()22211111.01222f t t t t t t =---=-+≤≤4、1111200712213a n n n n a +++<-+++ 使不等式对一切正整数都成立的最小正整数的值是____。

1111111221232311111012223222311111120072009.1221233k k k k k k k k k k k a a n n n ⎛⎫+++-+++ ⎪++++++⎝⎭=--=->+++++⇒+++↓⇒+<-⇒=+++5、()222210P Q ,x y a b OP OQ OP OQa b+=>>⊥∙椭圆上任意两点,,若则乘积的最小值为_______。

()()cos ,sin sin ,cos P a b Q a b OP OQ ab θθθθ⇒-⇒∙====分析: 设6、()1x +若方程lgkx=2lg 仅有一个实根,那么k 的取值范围是____。

2009-2010(1)BD

2009-2010(1)BD
解:建立坐标系如图.所论半圆的方程为
利用对称性,侧压力元素
端面所受侧压力为
即 因为

得分
评卷人
五、应用题(10分×2=20)
1、(5分)设有质量为5 kg的物体置于水平面上,受力 作用开始移动,设摩擦系数 ,问力 与水平面夹角为多少时才可使力 的大小最小?
解:克服摩擦的水平分力 ;正压力

,则问题转化为求 的最大值问题.
令 解得 因而F取最小值.
2、一水平横放的半径为R的圆桶,内盛半桶密度为的液体,求桶的一个端面所受的侧压力。(注:水深为h处的压强: ,为水的密度)
2、设2、 处(C)
A、极限不存在;B、极限存在,但不连续;C、连续,但不可导;D、可导;
3、在区间 内, 的一阶导数 ,二阶导数 <0,则 在区间 内是(B)
A、单增且凸;B、Βιβλιοθήκη 减且凸;C、单增且凹;D、单减且凹;
4、下列命题中正确的是( D )
A、若 存在,则 的连续点
B、 在 上连续,是 存在的充要条件
C、 在 处连续,则 一定存在
D、 可导是 可微的充要条件
5、 是 在 内的一个极大点,则 ( C )
A、 B、 是 的一个连续不可导点
C、存在 ,在 内, D、 必有
得分
评卷人
三、解答题(10分×4=40分)
1、求下列极限
(1) (2) (3) (4)
解: ; ;(3) ;(4)
2、求导数或微分
(1)设函数 ,求 ;(2)求椭圆 ,在点 处的切线方程。
第一题
第二题
第三题
第四题
第五题
第六题
第七题
第八题
第九题
第十题

2009年全国高中数学联赛模拟试题答案

2009年全国高中数学联赛模拟试题答案

2009年清北学堂杯·全国高中数学联赛集训模拟试题班级 姓名 得分一、选择题(本题满分36分,每小题6分)1.已知(0,1)x ∈,,a b 为给定的正实数,则1a bx x+-的最小值为( A )(A)22 (C)a b + 2.已知集合A n={}Nn m 1,7m x ,221∈+=<<+、且n nx x ,则A 6中各元素的和为( )(A) 792 (B) 890 (C) 891 (D) 990解:答案:C . A 6={}N m 1,7m x ,12864∈+=<<且x x ,当m=10时,x=71. 当m=18时,x=127.∴A 6中各元素的和为89129127)(71=⨯+.3. 已知函数6sin cos 2111)(++⎪⎭⎫ ⎝⎛+-=x b x a x f x (a 、b 为常数,且1>a ),8)1000o (l g 8=g l f ,则)2lg (lg f 的值是( )(A) 8 (B) 4 (C) -4 (D) 与a 、b 有关的数 解:答案:B.∵x b x sin cos 211a 1g(x)x+⎪⎭⎫⎝⎛+-=为奇函数,8)1000o (lg 8=g l f , 2lg lg 10lglog 1000o lg 28-==g l .∴=)1000o (lg g 8g l =-)2lg lg (g )2lg (lg g -=2,∴)2lg (lg f =)2lg (lg g +6=-2+6=4. 4. 满足20073+++=x x y 的正整数数对(x ,y )( )(A ) 只有一对(B )恰有有两对(C )至少有三对(D )不存在解:(B ) 设2007,322+=+=x b x a ,其中a ,b 均为自然数,则y=a+b ,167322004))((222⨯⨯==+-=-a b a b a b 。

因为b+a 与b-a 有相同的奇偶性,且b+a>b-a,所以⎩⎨⎧=-=+21002a b a b 或⎩⎨⎧=-=+6334a b a b 解得⎩⎨⎧==502500b a 或⎩⎨⎧==170164b a5. 设F 1,F 2是椭圆14922=+y x 的两个焦点,P 是椭圆上的点,且|PF 1| : |PF 2|=2 : 1,则三角形∆PF 1F 2的面积等于(A).(A)4 (B)13 (C) 24 (D) 213解:设椭圆的长轴、短轴的长及焦矩分别为2a 、2b 、2c ,则由其方程知a =3,b =2,c =5,故,|PF 1|+|PF 2|=2a =6,又已知[PF 1|:|PF 2|=2:1,故可得|PF l |=4,|PF 2|=2.在△PF l F 2中,三边之长分别为2,4,25,而22+42=(25)2,可见△PF l F 2是直角三角形,且两直角边的长为2和4,故△PF l F 2的面积=4. 6. 已知,,x y z R +∈,且1231x y z ++=,则23y zx ++的最小值是( D ) (A)5 (B)6 (C)8 (D)9 二、填空题(本题满分54分,每小题9分)7.如果边长顺次为25,39,52和60的四边形内接于一圆,那么此圆的周长为( )(A)62π (B)63π (C)64π (D)65π解析:设ABCD 为圆内接四边形,且AB=25,BC=39,CD=52,DA=60由圆内接四边形对角互补得∠C=180º-∠A连结BD ,在△ABD 与△BCD 中,由余弦定理,得:2222cos BD AB AD AB AD A =+-⋅∠=222cos CB CD CB CD C +-⋅∠即22256022560cos A +-⨯⨯∠=22395223952cos A ++⨯⨯⨯∠解得cos ∠A=0∴∠A=90º,故BD 为圆的直径∴65602522=+=BD ∴圆的周长为65π 8.已知整数t z y 、、、x 满足t z y x <<<,且13142222=+++t z y x ,则tz y x +++等于 .解:答案:24.∵)2221(22222x x t x z x y t z y x ---+++=+++,括号内为奇数, 又1314=65721⨯,∴1=x 且656222=++---x t x z xy ;由于4126564⨯=,可得4x -y =且4022=+--y t y z ,∴5=y ;同理可得10t 8,z ==.∴t z y x +++=24. 9.已知数列{}n a 满足21=a ,52=a ,n n n a a a -=++12 (*N n ∈), n S 是数列{}n a 的前n 项和,则2008S 的值是解:答案:8.数列{}n a 的各项依次为2,5,3,-2,-5,-3,2,5,…,呈周期性变化,周期为6,因为433462008 =÷,∴2008S =8.10. 已知椭圆221164x y +=的左右焦点分别为1F 与2F ,点P 在直线l:80x -++=上. 当12F PF ∠取最大值时,比12PF PF1.【解】 由平面几何知,要使12F PF ∠最大,则过12,F F ,P 三点的圆必定和直线l 相切于P 点。

09-10第一学期高数B1试卷A参考答案

09-10第一学期高数B1试卷A参考答案

浙江科技学院2009 -20010学年第一学期考试试卷A 卷考试科目 高等数学B1 考试方式 闭 完成时限 2小时 拟题人 审核人 批准人 年 月 日 院 年级 专业参考答案及评分标准一、选择题。

在题后括号内,填上正确答案代号(本大题共6小题,每小题3分,共18分)。

1、D;2、C;3、B;4、D;5、C;6、A二、填空题。

在题中“ ”处填上答案(本大题共7小题,每小题3分,共21分)。

1、x 2sec ; 2、xe C arctan +; 3、2; 4、0; 5、π; 6、y x cx ln =; 7、x x y C e C e 312-=+三、试解下列各题(本大题共6小题,每小题7分,共42分)。

1、解:函数的定义域为(,)-∞+∞ ……………………………………1分令x y x2201'==+,得x 0= ……………………………………2分因为当x 0<时y 0'<,当x 0>时y 0'> ………………………3分 所以,函数在(,0]-∞上单调减少,在[0,)+∞上单调增加;………………4分 令x y x 22(1)0(1)-''==+,得x 1=±,此时,y ln2= ……………………5分因为当x 1<-或x 1>时y 0''<,当x 11-<<时y 0''>所以,点(1,ln2)-和(1,ln2)是曲线的两个拐点, ……………………6分 曲线在(,1]-∞-和[1,)+∞上为凸弧,在[1,1]-上为凹弧。

………………7分2t =,则有 ……………………………………2分t x te 2dt =⎰⎰ ……………………………………3分t ttt e te e t 2d 2(d )==-⎰⎰……………………………………5分t t e C 2(1)=-+……………………………………6分C 1)=-+ ……………………………………7分3、解:原式()x x t t x 21t212d 0lim0→+⎛⎫= ⎪-⎝⎭⎰ ……………………………………2分 ()x x x x x21212(2)lim2→+⋅=- ……………………………………3分()x x x212lim 12→=-+ ……………………………………4分e 2=- ……………………………………7分 4、解:令x t t tan ,22ππ=-<<,则dx t t 2sec d = …………………………2分x t x t1,,,43ππ==== …………………………………3分原式t t t t t t t 2332244sec d cos d tan sec sin ππππ==⋅⎰⎰ …………………………………4分 t t t 323441(sin )dsin sin ππππ-==-⎰ ……………………………………6分= ……………………………………7分 解二:令x t 1,=则dx t t21d =- ……………………………………2分x t x t1,1,3====……………………………………3分原式21112==……………………………………5分t121⎡=+=⎣……………………………………7分5、解:原式=xx x111()d1+∞-+⎰……………………………………2分x x1[ln ln(1)]+∞=-+……………………………………4分xx1ln1+∞=+……………………………………5分ln2=……………………………………7分解二:令xt1,=则dx tt21d=-……………………………………2分则x t x t1,1,,0==→+∞→……………………………………3分原式=tt11d1+⎰……………………………………5分t1ln(1)ln2=+=……………………………………7分解三:令x t2tan,=则dx t t t22tan sec d=…………………………2分则x t x t1,,,42ππ==→+∞→………………………………3分原式=tt2412dtanππ⎰……………………………………5分t242ln(sin)ln2ππ==……………………………………7分6、解:因为P x Q x x 2(),()==……………………………………2分 所以dx dx xxy e dx C 22()-⎰⎰=+⎰……………………………………4分C x 21()=+ arc x C x 21(sin )=+ ……………………………………6分 故方程的通解为y arc x C x21(sin )=+ ……………………………………7分解二:方程两边同乘以x 2,得x y y 22'+=……………………………………2分即x y d x x C2a r c s i n ==+ ……………………………………4分 故有 y a r c x C x 21(s i n )=+ ……………………………………6分 故方程的解为y arc x C x21(sin )=+ ……………………………………7分四、应用题(本大题共2小题,第1小题6分,第2小题7分,共13分)1、解:选y 为积分变量,y 01≤≤,曲线为yx e = …………………………2分y A e dy 1=⎰ ……………………………………4分e 1=- ……………………………………6分 解二:选x 为积分变量,曲线ln y x =与直线y 1=的交点为e (,1) ……………2分eA x dx 11(1ln )=+-⎰ ……………………………………4分ex x x 11[2l n ]=+- ……………………………………5分 e 1=- ……………………………………6分 2解:曲线ln y x =与直线y 1=的交点为e (,1) ………………………………1分eV e xdx 21ln ππ=-⎰ ……………………………………3分eee x x x d x211l n 2l n πππ=-+⎰……………………………………5分 ee e x x x 12[l n ]πππ=-+- ……………………………………6分2π= ……………………………………7分解二:(柱壳法)选y 为积分变量,y 01≤≤,曲线为yx e = …………………2分yV y e d y12π=⎰……………………………………4分 y y ye e 102[]π=- ……………………………………6分 2π= …………………………………………7分五、证明题(本题6分)(1、2两题可任选一题,如果两题全做,则按做第1题给分) 1、证明:令xxabF x f t dt dt f t 1()()()=+⎰⎰……………………………………1分 因为f x ()在[,]a b 上连续,由f x a b ()0,><, 得ab ba F a dt Fb f t dt f t 1()0,()()0()=<=>⎰⎰ …………………………2分由零点定理,a b (,)ξ∃∈,使得F ()0ξ= …………………………………3分即方程xxabf t dt dt f t 1()0()+=⎰⎰在(,)a b 内有实根. ……………………4分 又因为'F x f x f x 1()()0()=+> ……………………………………5分 所以函数F x ()在a b [,]上单调增加,故方程xxabf t dt dt f t 1()0()+=⎰⎰在(,)a b 内仅有一个实根. ……………………………………6分 2、证明一:因为xxF x x f t dt tf t dt 0()()()---=--⎰⎰…………………………2分令t u ,=-则tu t x u x 0,0,,===-= ,则有xuF x x f u du u f u du 00()()()()()()-=-------⎰⎰xx xf u du uf u du 00()()=---⎰⎰ …………………………4分若f x ()是偶函数,即f x f x ()()-=,则有 xxF x xf u du uf u du F x 0()()()()-=-=⎰⎰故F x ()也是偶函数. …………………………6分证明二:因为xxF x x f t dt tf t dt 0()()()---=--⎰⎰x x xf t dt tf t dt 0()()--=+⎰⎰ ①………………2分若f x ()是偶函数,则xf x ()为奇函数,即有xxf t d t f t d t 0()()-=⎰⎰,xxtf t dt tf t dt 0()()-=-⎰⎰ ②………………4分把②代入①得xxF x x f t dt tf t dt F x 0()()()()-=-=⎰⎰故F x ()也是偶函数. …………………………6分 证明三:因为xxF x x f t dt tf t dt 0()()()---=--⎰⎰① ……………2分且若f x ()是偶函数,则xf t dt 0()⎰为奇函数,x tf t dt 0()⎰为偶函数,即xxf t dt f t dt 00()()-=-⎰⎰,x xtf t dt tf t dt 0()()-=⎰⎰ ②……………4分把②代入①得 xxF x xf t dt tf t dt F x 00()()()()-=-=⎰⎰故F x ()也是偶函数. …………………………6分。

2009年数学一试题答案、解析

2009年数学一试题答案、解析

2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。

(1)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-等价无穷小,则()(A )11,6a b ==- (B )11,6a b ==(C )11,6a b =-=- (D )11,6a b =-=【解析与点评】考点:无穷小量比阶的概念与极限运算法则。

参见水木艾迪考研数学春季基础班教材《考研数学通用辅导讲义》(秦华大学出版社)例 4.67,强化班教材《大学数学强化 299》16、17 等例题。

【答案】A22220000sin sin 1cos sin lim lim lim lim ln(1)()36x x x x x ax x ax a x a axx bx x bx bx bx→→→→---===---- 230sin lim 166.x a ax a b b axa →==-=- 36ab =-意味选项B ,C 错误。

再由21cos lim 3x a axbx →-=-存在,故有1cos 0(0)a ax x -→→,故a=1,D 错误,所以选A 。

(2)如图,正方形{(,)|||1,||1}x y x y ≤≤被其对角线划分为四个区域,(1,2,3,4),cos KK K D D k I y xdxdy ==⎰⎰,则14max{}K K I ≤≤=()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。

对称性与轮换对称性在几分钟的应用是水木艾迪考研数学重点打造的技巧之一。

参见水木艾迪考研数学春季班教材《考研数学通用辅导讲义----微积分》例 12.3、12.14、12.16、12.17,强化班教材《大学数学同步强化 299》117 题,以及《考研数学三十六技》例 18-4。

09级高数(下)期末考试题及参考答案

09级高数(下)期末考试题及参考答案

09级高数(下)期末考试题及参考答案一、选择题(每小题2分, 共计12分) 1. 微分方程 是( B )(A )可分离变量方程 (B )齐次方程 (C )一阶线性方程 (D )伯努利方程2. 函数 的定义域是( A )(A )}1),{(22<+=y x y x D (B )}1),{(22≥+=y x y x D (C )}1),{(22=+=y x y x D (D )}1),{(22≤+=y x y x D 3. 对于函数 , 在点 处下列陈述正确的是( C )(A )偏导数存在⇒连续 (B )可微⇔偏导数存在 (C )可微⇒连续 (D )可微⇔偏导数连续4. 设 : 则三重积分 等于( B )(A )4⎰⎰⎰202013cos sin ππρϕϕρϕθd d d (B )⎰⎰⎰ππρϕϕρϕθ202013cos sin d d d(C )⎰⎰⎰2012sin ππρϕρϕθd d d (D )⎰⎰⎰ππρϕϕρϕθ2013cos sin d d d5. 设有界闭区域D 由分段光滑曲线L 所围成, L 取负方向, 函数 在D 上具有一阶连续偏导数, 则 A (A )⎰⎰∂∂-∂∂Ddxdy x Q y P )((B )⎰⎰∂∂-∂∂Ddxdy x P y Q )( (C )⎰⎰∂∂-∂∂D dxdy y Q x P )( (D )⎰⎰∂∂-∂∂D dxdy y P x Q )( 二、填空题(每小题2分, 共计12分) 1. 微分方程 的通解为___ ____.2. 设函数 , 则 。

3. 交换积分次序后, ____ ____4. 设平面区域D : , 则5.设曲线L 是连接 和 的直线段, 则曲线积分 ____ 6. 函数 在 处的泰勒级数为____ _____. 三、求解下列问题(每题7分, 共63分) 1. 求微分方程 的通解 解:令 , 则 , , 分离变量: 两边积分, 得 即 , , 2.设 , 求222y xy x y x x z +++=∂∂,222y xy x y x y z +++=∂∂所以 =∂∂+∂∂y z y x z x 2222y xy x xy x +++2222yxy x y xy ++++2= 3. 设 , 且 具有二阶连续偏导数.求 解: , ,)(2221212112xf f y f xf f yx z++++=∂∂∂2221211)(xyf f f y x f ++++= 4. 求椭球面 在点(1, 1, 1)处的切平面方程和法线方程。

2009年全国高中数学联赛试题及解答

2009年全国高中数学联赛试题及解答


x1 + x1 x2
x2 = k − =1 0
2

0
所以 x1 , x2 同为正根,且 x1 x2 ,不合题意,舍去.
综上可得 k 0 或 k = 4 为所求.
11
7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最 后一行仅有一个数,第一行是前100 个正整数按从小到大排成的行,则最后一行的数是(可以 用指数表示).
条.………14 分
11
2. (本小题 15 分)已知 p , q (q 0) 是实数,方程 x2 − px + q = 0 有两个实根 , ,数列an 满足 a1 = p , a2 = p2 − q , an = pan−1 − qan−2 (n = 3,4 , ) (Ⅰ)求数列an 的通项公式(用 , 表示);
比为 的等比数列.
数列bn 的首项为: b1 = a2 − a1 = p2 − q − p = ( + )2 − − ( + ) = 2 . ( 所以 bn = 2 n−1 = n+1 ,即 an+1 − an = n+1 n = 1,2 , ) .所以 an+1 = an + n+1 (n = 1,2 , ) . ① 当 = p2 − 4q = 0 时 , = 0 , a1 = p = + = 2 , an+1 = an + n+1 (n = 1,2 , ) 变 为
(Ⅱ)若
p
=1

q
=
1 4
,求 an
的前
n
项和.

2009~2010学年第二学期《高等数学BII》半期试题参考答案

2009~2010学年第二学期《高等数学BII》半期试题参考答案

2009~2010学年第二学期《高等数学BII》半期试题参考答案西南交通大学2009-2010学年第(二)学期半期考试题一、单项选择题(共5个小题,每小题4分,共20分).1.累次积分cos 2(cos ,sin )d f r r rdr πθθθθ??可表示成【 D】(A )100(,)dy f x y dx ?(B )10(,)dy f x y dx(C )10(,)dx f x y dy ?(D )10(,)dx f xy dy ?解:根据该二重积分可知,积分区域为半圆域:01,0x y ≤≤≤≤,所以应选D 。

2. 两直线1112y z x λ+--==与11x y z +=-=相交,则必有【 D 】(A )1λ= (B )32λ=(C )54λ=- (D )54λ=解:直线11x y z +=-=的参数方程为:11x t y t z t =-??=+??=?,将此参数方程代入直线1112y z x λ+--==,得2122t t t λ+--==,解得654t λ=??=??,故应选(D )。

3.极限332200lim x y x y x xy y →→+-+=【 A 】(A) 0 (B) 1 (C)12(D)不存在极限解;因为33222222000000()()lim lim lim()0x x x y y y x y x y x xy y x y x xy y x xy y →→→→→→++-+==+=-+-+,故应选(A )。

4.曲面2xyz =的切平面与三个坐标面所围四面体的体积V =【 C 】 (A) 3 (B) 6 (C) 9 (D) 12解:设曲面2xyz =在第一卦限的任意一个切点为(,,)x y z ,则切平面方程为:班级学号姓名密封装订线密封装订线密封装订线()()()0yz X x xz Y y xy Z z -+-+-=,其中2xyz =,即36yzX xzY xyZ xyz ++==,则该切平面与三个坐标轴的交点分别为:6(,0,0)yz,6(0,,0)xz ,6(0,0,)xy ,则该切平面与三个坐标面所围四面体的体积221666363696()2V yz xz xy xyz ====,故应选(C )。

2009年全国高中数学联赛一试(试题参考答案及评分标准)

2009年全国高中数学联赛一试(试题参考答案及评分标准)

2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分) 1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦ ,则()()991f = . 【答案】110【解析】 ()()()1f x f x ==,()()()2fx f f x ==⎡⎤⎣⎦……()()99fx =故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在A B C ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线A C 的距离sin 45d AM =︒,由直线A C 与圆M 相交,得2d ≤解得36a ≤≤.3.在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知()f t S =阴影部分面积AOB OCD BEF S S S ∆∆∆=-- ()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++ 对一切正整数n 都成立的最小正整数a 的值为 .【答案】 2009 【解析】 设()1111221f n n n n =++++++ .显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y ab+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】22222a ba b+【解析】 设()cos sin P O P O P θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin abO Pθθ=+① 222221sin cos abO Qθθ=+②①+②得 22221111abOPOQ+=+.于是当OP OQ ==OP OQ 达到最小值22222a ba b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .【答案】0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩ 当且仅当kx > ① 10x +> ② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-±⎣④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112k x =-=.(ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦ 323232n n a --=+⨯……()121212n n a n --=+-⨯()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随一旅客820∶到车站,则它候车时间的数学期望为 (精确到分).【答案】 27 【解析】 旅候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612xy+=交于不同两点A ,B ,与双曲线221412xy-=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834km x x k+=-+()()()222184344480km km∆=-+->① ………………………………………………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223km x x k+=-()()()2222243120km km∆=-+-+>② ………………………………………………8分因为0A C B D +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得 2282343km km kk-=+-.所以20km =或2241343kk-=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<因m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k <<.因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-= ,, (Ⅰ)求数列{}n a 的通项公式(用α,β表示); (Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n = ,,,整理得()112n n n n a a a a βαβ----=-令1n n n b a a β+=-,则()112n n b b n α+== ,,.所以{}n b 是公比为α的等比数列. 数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以21n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n = ,,.所以11n n n a a βα++=+()12n = ,,.①当240p q ∆=-=时,αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n = ,,变为11n n n a a αα++=+()12n = ,,.整理得,111n nn na a αα++-=,()12n = ,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1nn a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n = ,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n = ,,. 所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--.于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n nn n s -+=+++++ 234112341222222n n nn s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n nn s +=-.……………………………………………………………………………15分 方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β.①当0αβ=≠时,通项()()1212n n a A A n n α=+= ,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故()1nn a n α=+.……………………………………………………5分②当αβ≠时,通项()1212n n n a A A n αβ=+= ,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数y =的最大和最小值.【解析】 函数的定义域为[]013,.因为y =≥=当0x =时等号成立.故y的最小值为13分又由柯西不等式得22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤ 所以11y ≤. ………………………………………………………………………………10分由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11. (15)分。

2009—数一真题、标准答案及解析

2009—数一真题、标准答案及解析

2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==-. (B)11,6a b ==. (C)11,6a b =-=-. (D)11,6a b =-=.(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max kk I ≤≤=(A)1I .(B)2I . (C)3I .(D)4I .(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)x(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则 (A )当1nn b∞=∑收敛时,1n nn a b∞=∑收敛. (B )当1nn b∞=∑发散时,1n nn a b∞=∑发散.(C)当1nn b∞=∑收敛时,221n nn a b∞=∑收敛. (D)当1nn b∞=∑发散时,221n nn a b∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基 122331,,αααααα+++的过渡矩阵为(A)101220033⎛⎫⎪ ⎪ ⎪⎝⎭.(B)120023103⎛⎫⎪⎪ ⎪⎝⎭.(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭.(D)111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. (6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为()A **32O B A O ⎛⎫ ⎪⎝⎭.()B **23OB A O ⎛⎫⎪⎝⎭. ()C **32O A BO ⎛⎫⎪⎝⎭.()D **23O A BO ⎛⎫⎪⎝⎭.(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =(A)0.(B)0.3. (C)0.7.(D)1.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为 (A)0.(B)1.(C)2.(D)3.二、填空题:9~14小题,每小题4分,共24分.(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ . (10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12xy C C x e =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = .(11)已知曲线(2:0L y x x =≤≤,则Lxds =⎰ .(12)设(){}222,,1x y z xy z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13)若3维列向量,αβ满足2Tαβ=,其中Tα为α的转置,则矩阵Tβα的非零特征值为 .(14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = . 三、解答题:15~23小题,共94分. (15)(本题满分9分) 求二元函数()22(,)2ln f x y xy y y =++的极值.(16)(本题满分9分)设n a 为曲线ny x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (Ⅰ)求1S 及2S 的方程(Ⅱ)求1S 与2S 之间的立体体积. (18)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(19)(本题满分10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰,其中∑是曲面222224x y z ++=的外侧.(20)(本题满分11分)设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足21A ξξ=的2ξ. 231A ξξ=的所有向量2ξ,3ξ.(Ⅱ)对(Ⅰ)中的任意向量2ξ,3ξ证明1ξ,2ξ,3ξ无关.(21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求{}10p X Z ==;(Ⅱ)求二维随机变量(),X Y 概率分布.(23)(本题满分11 分) 设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…n X 是来自总体X 的简单随机样本.(Ⅰ)求参数λ的矩估计量; (Ⅱ)求参数λ的最大似然估计量.2009年全国硕士研究生入学统一考试数学一试题解析一、选择题:1~8小题,每小题4分,共32分.(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==-. (B)11,6a b ==. (C)11,6a b =-=-. (D)11,6a b =-=.【答案】 A.【解析】2()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除(B)、(C). 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除(D). 所以本题选(A ). (2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max kk I ≤≤=(A)1I .(B)2I . (C)3I .(D)4I .【答案】 A.【解析】本题利用二重积分区域的对称性及被积函数的奇偶性.24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函数是关于x 的偶函数,所以{}1(,),012cos 0x y y x x I y xdxdy ≥≤≤=>⎰⎰;x{}3(,),012cos 0x y y x x I y xdxdy ≤-≤≤=<⎰⎰.所以正确答案为(A).(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)(C)(D)【答案】D.【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增.③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为(D ).(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则(A )当1nn b∞=∑收敛时,1n nn a b∞=∑收敛. (B )当1nn b∞=∑发散时,1n nn a b∞=∑发散.(C)当1nn b∞=∑收敛时,221n nn a b∞=∑收敛. (D)当1nn b∞=∑发散时,221n nn a b∞=∑发散.【答案】C. 【解析】方法一:举反例:(A)取(1)nn n a b ==- (B )取1n n a b n ==(D )取1n n a b n==故答案为(C ).方法二:因为lim 0,n n a →∞=则由定义可知1,N ∃使得1n N >时,有1n a <又因为1nn b∞=∑收敛,可得lim 0,n n b →∞=则由定义可知2,N ∃使得2n N >时,有1n b <从而,当12n N N >+时,有22n nn a b b <,则由正项级数的比较判别法可知221n nn a b∞=∑收敛.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基 122331,,αααααα+++的过渡矩阵为(A)101220033⎛⎫⎪ ⎪ ⎪⎝⎭.(B)120023103⎛⎫⎪⎪ ⎪⎝⎭.(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭.(D)111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. 【答案】A.【解析】因为()()1212,,,,,,n n A ηηηααα=,则A 称为基12,,,n ααα到12,,,n ηηη的过渡矩阵.则由基12311,,23ααα到122331,,αααααα+++的过渡矩阵M 满足 ()12233112311,,,,23M ααααααααα⎛⎫+++= ⎪⎝⎭12310111,,22023033ααα⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭所以此题选(A).(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为()A **32O B A O ⎛⎫ ⎪⎝⎭.()B **23OB A O ⎛⎫⎪⎝⎭. ()C **32O A BO ⎛⎫ ⎪⎝⎭.()D **23O A BO ⎛⎫⎪⎝⎭. 【答案】B.【解析】根据CC C E *=,若111,C C C CC C*--*==分块矩阵O A B O ⎛⎫⎪⎝⎭的行列式221236O A A B B O ⨯=-=⨯=(),即分块矩阵可逆 11116601O B BO A OA O A OB B O B B O AO A O A **---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭1236132O B O B AO A O ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭故答案为(B ).(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =(A)0.(B)0.3. (C)0.7.(D)1.【答案】C.【解析】因为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭, 所以()()0.710.322x F x x -⎛⎫'''=Φ+Φ ⎪⎝⎭, 所以()()10.30.352x EX xF x dx x x dx +∞+∞-∞-∞⎡-⎤⎛⎫'''==Φ+Φ ⎪⎢⎥⎝⎭⎣⎦⎰⎰()10.30.352x x x dx x dx +∞+∞-∞-∞-⎛⎫''=Φ+Φ ⎪⎝⎭⎰⎰而()0x x dx +∞-∞'Φ=⎰,()()11221222x x x dx u u u du +∞+∞-∞-∞--⎛⎫''Φ=+Φ= ⎪⎝⎭⎰⎰ 所以00.3520.7EX =+⨯=.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为 (A)0.(B)1.(C)2.(D)3.【答案】 B. 【解析】()()(0)(0)(1)(1)1[(0)(1)]21[(00)(1)]2Z F z P XY z P XY z Y P Y P XY z Y P Y P XY z Y P XY z Y P X z Y P X z Y =≤=≤==+≤===≤=+≤==⋅≤=+≤=,X Y 独立1()[(0)()]2Z F z P X z P X z ∴=⋅≤+≤(1)若0z <,则1()()2Z F z z =Φ(2)当0z ≥,则1()(1())2Z F z z =+Φ0z ∴=为间断点,故选(B ).二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ . 【答案】"'"12222xf f xyf ++.【解析】''12z f f y x∂=+⋅∂,2"'""'"1222212222z xf f yx f xf f xyf x y ∂=++⋅=++∂∂. (10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12xy C C x e =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = .【答案】2xy xe x =-++.【解析】由12()xy c c x e =+,得121λλ==,故2,1a b =-=微分方程为''2'y y y x -+=设特解*y Ax B =+代入,',1y A A ==220,2A AxB x B B -++=-+==∴ 特解 *2y x =+∴ 12()2xy c c x e x =+++把 (0)2y = , '(0)0y =代入,得120,1c c ==- ∴ 所求2xy xe x =-++ (11)已知曲线(2:0L y x x =≤≤,则Lxds =⎰ .【答案】136【解析】由题意可知,2,,0x x y x x ==≤≤,则ds ==,所以()201148Lxds x ==+⎰11386==(12)设(){}222,,1x y z xy z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .【答案】415π. 【解析】 方法一:2122220sin cos z dxdydz d d d ππθϕρϕρϕρ=⎰⎰⎰⎰⎰⎰()21240cos cos d d d ππθϕϕρρ=-⎰⎰⎰30cos 1423515d πϕπϕπ=⋅-⋅=⎰方法二:由轮换对称性可知2z dxdydz Ω=⎰⎰⎰2x dxdydz Ω=⎰⎰⎰2y dxdydz Ω⎰⎰⎰ 所以,()212222400011sin 33z dxdydz x y z dxdydz d d r dr ππϕθϕΩΩ=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰ 14002214sin sin 33515d r dr d πππππϕϕϕϕ=⋅⋅=⎰⎰⎰(13)若3维列向量,αβ满足2Tαβ=,其中Tα为α的转置,则矩阵Tβα的非零特征值为 .【答案】2.【解析】2Tαβ=()2T T βαββαββ∴==⋅, T βα∴的非零特征值为2.(14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = . 【答案】1-. 【解析】2X kS -+为2np 的无偏估计22()E X kX np -∴+=2(1)1(1)(1)11np knp p np k p pk p p k ∴+-=∴+-=∴-=-∴=-三、解答题:15~23小题,共94分. (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值. 【解析】2(,)2(2)0x f x y x y '=+= 2(,)2ln 10y f x y x y y '=++=故10,x y e= =2212(2),2,4xxyy xyf y f x f xy y''''''=+ =+ = 则12(0,)12(2)xxef e ''=+,1(0,)0xyef ''=,1(0,)yy ef e ''=.0xxf ''>而2()0xy xx yy f f f ''''''-< ∴二元函数存在极小值11(0,)f e e=-.(16)(本题满分9分)设n a 为曲线ny x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.【解析】由题意,n y x =与n+1y=x 在点0x =和1x =处相交,所以112111111a ()()001212nn n n n xxdx x x n n n n +++=-=-=-++++⎰, 从而1111111111S lim lim(-)lim()23122+22Nn nN N N n n a a N N N ∞→∞→∞→∞=====-++=-=++∑∑2211111111111111=)22+1232N 2N+123456n n n S a n n ∞∞-====--++-=-+-+∑∑()( 由2(1)1(1)2nn x x n-++-+ln(1+x)=x- 取1x =得22111ln(2)1()11ln 2234S S =--+=-⇒=-.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (Ⅰ)求1S 及2S 的方程(Ⅱ)求1S 与2S 之间的立体体积.【解析】(I )1S 的方程为222143x y z ++=, 过点()4,0与22143x y +=的切线为122y x ⎛⎫=±- ⎪⎝⎭, 所以2S 的方程为222122y z x ⎛⎫+=- ⎪⎝⎭.(II )1S 与2S 之间的体积等于一个底面半径为32、高为3的锥体体积94π与部分椭球体体积V 之差,其中22135(4)44V x dx ππ=-=⎰.故所求体积为9544πππ-=. (18)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--. 根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足:在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'00()(0)x f x f f x ξ-=-……()*又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====-故'(0)f +存在,且'(0)f A +=.(19)(本题满分10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰,其中∑是曲面222224x y z ++=的外侧.【解析】2223/2()xdydz ydxdz zdxdy I x y z ∑++=++⎰⎰,其中222224x y z ++= 2222223/22225/22(),()()x y z x x x y z x y z ∂+-=∂++++① 2222223/22225/22(),()()y x z y y x y z x y z ∂+-=∂++++②2222223/22225/22(),()()z x y z z x y z x y z ∂+-=∂++++③ ∴①+②+③=2223/22223/22223/2()()()0()()()x y zx x y z y x y z z x y z ∂∂∂++=∂++∂++∂++ 由于被积函数及其偏导数在点(0,0,0)处不连续,作封闭曲面(外侧)222211:.016x y z R R ∑++=<<有 1132223/233313434()3xdydz ydxdz zdxdyxdydz ydxdz zdxdy R dV x y z R R R ππ∑∑∑Ω++++====⋅=++⎰⎰⎰⎰⎰⎰⎰⎰⎰(20)(本题满分11分)设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭ 1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足21A ξξ=的2ξ. 231A ξξ=的所有向量2ξ,3ξ.(Ⅱ)对(Ⅰ)中的任意向量2ξ,3ξ证明1ξ,2ξ,3ξ无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数.解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫ ⎪⎛⎫ ⎪ ⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)22221k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关. (21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意 2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数. (Ⅰ)求{}10p X Z ==;(Ⅱ)求二维随机变量(),X Y 概率分布.【解析】(Ⅰ)在没有取白球的情况下取了一次红球,利用压缩样本空间则相当于只有1个红球,2个黑球放回摸两次,其中摸了一个红球12113324(10)9C P X Z C C ⨯∴====⋅.(Ⅱ)X ,Y 取值范围为0,1,2,故()()()()()()()()()1111332311116666111223111166661122116611221166110,0,1,0461112,0,0,136311,1,2,10910,291,20,2,20C C C C P X Y P X Y C C C C C C C P X Y P X Y C C C C C C P X Y P X Y C C C C P X Y C C P X Y P X Y ⋅⋅========⋅⋅⋅⋅========⋅⋅⋅=======⋅⋅====⋅======(23)(本题满分11 分) 设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…,n X 是来自总体X 的简单随机样本.(Ⅰ)求参数λ的矩估计量; (Ⅱ)求参数λ的最大似然估计量【解析】 (1)由EX X =而22022ˆx EX x e dx X Xλλλλ+∞-===⇒=⎰为总体的矩估计量 (2)构造似然函数()()12111L ,.....,;;nii nnx nn i i i i x x f x x eλλλλ=-==∑==⋅⋅∏∏取对数11ln 2ln ln n ni i i i L n x x λλ===+-∑∑令111ln 222001n i n ni i i i i d L n n x d x x n λλλ====⇒-=⇒==∑∑∑ 故其最大似然估计量为2Xλ''=.。

2009年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案解析)

2009年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案解析)

2009年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)学校:___________姓名:___________班级:___________考号:___________则集合二、填空题三、解答题(I)证明:M是侧棱SC的中点;22.设函数()3233f x x bx cx =++在两个极值点(Ⅰ)求b c 、满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点区域;参考答案:设三棱柱111ABC A B C -的侧棱与底面边长为分别在1Rt A AD 和1Rt A DB V 中,由勾股定理,可知211222A B BD A D =+=,在1A AB △中,由余弦定理,得11cos 2θ+=所以异面直线AB 与1CC 所成的角的余弦值为故选:D .8.A【分析】利用余弦函数的对称中心及给定条件列式,再经推理计算即可得解【详解】因函数y =3cos(2x +φ)的图象关于点于是得(2),6k k Z πϕπ=--∈,显然(k ϕ=而2k =时,6πϕ=-,||6πϕ=,当3k =时,所以|φ|的最小值为6π.故选:A 9.B【详解】设切点00(,)P x y ,则,又00010,12x a y x a ∴+=∴==-∴=,故答案选10.C11.D【详解】[方法一]:(1)f x +与(1)f x -都是奇函数,∴(1)(1)f x f x --=--,∴函数()f x 关于点2[1(1)]4T =--=的周期函数.(f x ∴--奇函数.故选D.[方法二]:(1)f x +与(1)f x -都是奇函数,∴(1)(1)f x f x --=--,由(1)f x ∴-+=由(1)(1)f x f x --=--,得()f x f =-进而可得()()4f x f x +=,可见(f 不成立,而D 成立的理由如下:(f【详解】设MN x =,则NC EB ==在RT MEB ∆中, MBE ∠在RT MNE ∆中由2ME NE =解得1x =,从而12MN SD =(Ⅱ)建系如图)得,又,,设分别是平面、的法向量,则且,即且分别令得,即,∴的大小.由已知有利用累差迭加即可求出数列的通项公式()知,=而,又是一个典型的错位相减法模型易得=)(())联立方程组与,可得,所以方程由两个不等式正根由此得到解得,所以r的范围为(Ⅱ)不妨设E与M的四个交点坐标分别为设直线AC,BD的方程分别为,解得点p的坐标为设t=,由t=及(1)可知由于四边形ABCD为等腰梯形,因而其面积将代入上式,并令,得求导数,令,解得当时,,当,;当时,当且仅当时,由最大值,即四边形ABCD的面积最大,故所求的点P的坐标为()22.(Ⅰ)(II )证明见解析.【详解】分析(I )这一问主要考查了二次函数根的分布及线性规划作可行域的能力.大部分考生有思路并能够得分.()2363f x x bx c =++'由题意知方程()0f x ¢=有两个根12x x 、1[10],x ∈-且,2[1,2].x ∈则有()10f '-≥,()00f '≤,()()1020f f ''≤≥,故有下图中阴影部分即是满足这些条件的点(),b c 的区域.(II)这一问考生不易得分,有一定的区分度.主要原因是含字母较多,不易找到突破口.此。

20092010学年第一学期《高等数学1》考试参考答案与评分标准

20092010学年第一学期《高等数学1》考试参考答案与评分标准

20092010学年第一学期《高等数学1》考试参考答案与评分标准2009-2010学年第一学期《高等数学1》考试参考答案与评分标准一、选择题(每小题4分,共24分。

在每小题的四个备选答案中选出一个正确答案,请将其代码填写在题后的括号内。

错选、多选或未选均无分)1.当0x x →时,)(x α、)(x β都是无穷小,则当0x x →时( )不一定是无穷小.(A) )()(x x βα+, (B) )()(22x x βα+ , (C) [])()(1ln x x βα⋅+, (D) )()(2x x βα。

【解】 应选D 。

2. 设a 不是π的整数倍,极限ax ax ax -→⎪⎭⎫⎝⎛1sin sin lim 的值是( ).(A ) 1, (B )e , (C )ae cot ,(D )ae tan 。

【解】 应选C 。

事实上ax a x ax a x a a x a x -→-→⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛11sin sin sin 1lim sin sin limaa x a x ax a a x a a x sin 1sin sin sin sin sin sin sin sin 1lim ⋅---→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=aa e sin 1cos ⋅=ae cot =。

3. 函数⎪⎩⎪⎨⎧=≠-+=0 ,0 ,1sin )(2x a x x e x x f ax 在0=x 处连续,则=a ( ).(A )1, (B ) 0, (C )e (D )1-。

【解】 应选D 。

事实上由于()a e a x x e x x f axx axx x 212cos lim 1sin lim )(lim 2020+=⋅+=-+=→→→,而af =)0(,要使函数)(x f 在0=x 处连续,必需且只需)0()(lim 0f x f x =→,即a a =+21,解得1-=a 。

4. 设函数)(x f 在点a x =处可导,那么极限=--+→hh a f h a f h )2()(lim 0( ). (A ) )(3a f ', (B ))(2a f ',(C) )(a f ', (D ))(31a f ' 。

2009—2010第一学期《高等数学B1》期末考试试题解

2009—2010第一学期《高等数学B1》期末考试试题解

经济与管理学院团支书联席会2009—2010 第一学期《高等数学B1》期末考试一试题一、( 42 分)试解以下各题:(洛必达) 1、计算 limx arctan x 。

x 3x 0e1x arctan x11 x 2111limlim。

解、 lim e x 31333x 0x 03x 2e xx 03e x (1 x 2 )(常系数线性齐次) 2、求微分方程 y6y9y 0 的通解。

解、特点方程269 0 ,二重根 3 。

方程的通解 y(C 13xC 2x)e 。

(部分为奇函数积分) 3、计算 1x 2( 11x 2sin x )dx 。

111 x2 sin x)dx 11x 2 1 x 2sin xdx12dx 2 。

解、x 2 (1x 2 dx x11113(无常积分,根号换元,分部积分exdx 。

)4、计算 0解、e x dx0 2te t dt2te t2e t dt2e t2 。

xt cosu1 u du 自t1 至t5、求曲线一段弧的长度。

ut siny21udu解、 xcost , y sint , stt(基cos 2 t sin 2 t dt112ln 。

2 t 2 t 2 2 dt ln t 11 t2本函数的高阶导) 6、设 yx 21,求 y ( n ) 。

3x 2解、 y111, y (n )( 1)n n!( 1)n 1n!。

x 23x 2 x 1 x 2n 1( x 2) n 1( x 1)二、( 8 分)已知 ue xy,此中 yf ( x ) 由方程 y e t 2dtx 2cos tdt ( * )确立,du 求。

dx对( * )两边对一致变量 X 求导解、du xy y222x cos x 2duxy2x 2 cos x 2,三、(8 分)设x1 1, x n 1 1x n( n 1,2, ) ,试证明数列x n 收敛,并求1 x nlim x n。

n证、 x2 1 1 x1 1 。

考研高数1试题及答案

考研高数1试题及答案

考研高数1试题及答案考研高数1模拟试题一、选择题(每题4分,共40分)1. 下列函数中,满足条件f(-x) = f(x)的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)答案:B2. 设函数f(x)在点x=a处连续,且lim (x->a) [f(x) - f(a)]/(x-a) = L,那么f(x)在x=a处的导数为:A. LB. aC. f(a)D. 不存在答案:A3. 设数列{an}满足an+1 = an + 1/n^2,若a1=1,则a5的值为:A. 2B. 5/4C. 11/4D. 3答案:C4. 曲线y = x^2在点(1,1)处的切线斜率为:A. 2B. 1C. 0D. -1答案:A5. 设函数f(x)在区间(a,b)内单调递增,则其反函数f^(-1)(x)在区间(b,a)内:A. 单调递增B. 单调递减C. 无单调性D. 不存在答案:B6. 微分方程dy/dx + y^2 = 0的通解为:A. y = CxB. y = C/xC. y^2 = CxD. y = Cxe^x答案:B7. 设函数f(x)在区间[a,b]上连续,若f(x)在(a,b)内单调递增,则定积分∫[a,b] f(x)dx的值:A. 一定为正B. 一定为负C. 可以为零D. 可以是正也可以是负答案:C8. 设函数f(x)在点x=0处可导,且f'(0)=1,则lim (x->0) [xsin(1/x) - cos(1/x)]/x^2为:A. 0B. 1C. -1D. 不存在答案:B9. 若级数∑[n=1,∞) (a_n^2)收敛,则级数∑[n=1,∞) a_n必定:A. 收敛B. 发散C. 条件不足,无法判断D. 绝对收敛答案:C10. 设函数f(x)在区间[a,b]上二阶可导,且f''(x)≥0恒成立,则f(x)在[a,b]上是:A. 单调递增B. 单调递减C. 凸函数D. 凹函数答案:C二、填空题(每题4分,共20分)11. 若函数f(x) = ∫[a, x] g(t) dt,则f'(x) = __________。

2009年全国高中数学联合竞赛一试试题解析

2009年全国高中数学联合竞赛一试试题解析

(2)

p = 1, q
=
1 ,求 4
{an}
的前
n
项和.
解答
(1) 由于 α + β = p, αβ = q,则 an = (α + β)an−1 − αβan−2
⇒ an − αan−1 = β(an−1 − αan−2) ⇒ {an+1 − αan} 是公比为 β 的等比数列.
且 a2 − αa1 = (α + β)2 − αβ − α(ßα +™β) = β2 ⇒ an+1 − αan = βn+1.
β
β −
α

ß an

βn+1 ™ β−α
是公比为
α
的等比数列.
α 1−
β
β n+1
此时
a1
=
α
+
β
=
β2 β
− −
α2 α

a1

β
β2 −α
=
α2 −
β−α

an
β n+1 −
β − α
=
αn+1 −
β−α

an
=
β n+1 β
− −
αn+1 α
=
αn+1 α
− −
βn+1 . β
(2)

α + β αβ =
为等腰直角三角形,且 |OB| = t, |CF | = 2 − (t + 1)
=
1
− t,于是
S△OAB
+
S△DCF

2009-2010第一学期《高等数学》试卷(B)卷答案.

2009-2010第一学期《高等数学》试卷(B)卷答案.

第 1 页共4页福建工程学院2009~2010学年第一学期期末考试试卷审批表课程名称高等代数考试班级09信息与计算科学参加考试学生人数81任课教师唐晓文命题教师唐晓文试卷类型(A、BB考试形式开卷()闭卷(√)答卷纸(张草稿纸(张1审核人意见审核人签名:教研室意见(签字系(部意见(签字试题参考答案及评分标准一、填空题(每小题5分,共15分)1、-32;2、;3、8;4、;5、.二、选择题(每小题5分,共15分)1、B2、A3、B4、D5、C三、(12分)解: = -----4分一个极大线性无关组, -----4分, ------4分第 2 页四、(10分解:------5分------5分五、(10分)解:由即-------3分可得, -------2分由 -------4分-------1分第3页六、(14分)解:对方程组的增广矩阵施行初等行变换------5分得方程的特解, ------2分对应齐次方程的基础解系,------5分通解 ------2分七、证明题:(第1、2小题各7分,第3小题10分,共24分)1.(1)证明:因为线性无关,所以线性无关,而线性相关,故可由线性表示. -------3分(2)不可以,如果可以由线性表示,而又可由线性表示,则可由线性表示.可得线性相关,与线性无关矛盾,所以不可由线性表示. -------4分2.证明:由题设,从而,+, -------3分又从而,-------3分所以,+. -------1分第 4 页3. 证明:(1)因为是对应的齐次线性方程组的一个基础解系,故线性无关, -------2分若线性相关,则可由线性表示,设为,因此是齐次线性方程组的一个解, -------2分与是非齐次线性方程组的一个解矛盾,故线性无关. -------1分(2)设,即.------2分因为线性无关, -------1分所以得 -------1分故线性无关. -------1分。

2009年普通高等学校招生全国统一考试(广东卷)数学试题及详细解答 (理科) (B卷)word版

2009年普通高等学校招生全国统一考试(广东卷)数学试题及详细解答 (理科) (B卷)word版

绝密★启用前 试卷类型:B2009年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式13V sh =,其中S 是锥体的底面积,h 是锥体的高 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.巳知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有A .3个 B.2个 C.1个 D.无穷个1.解:}31|{≤≤-=x x M ,},5,3,1{ =N ,所以 }3,1{=N M 故,选B2.设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i =A.8 B.6 C.4 D.22. 解:因为12-=i ,i i -=3, 14=i ,所以满足1=ni 的最小正整数n 的值是4。

故,选C3.若函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,其图像经过点)a ,则()f x =A.2log x B.12log x C.12x D.2x 3.解:由函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,可知x x f a log )(=,又其图像经过点)a ,即a a a=log ,所以a=21, x x f 21log )(=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国石油大学(北京)远程教育学院2009年秋季
期 末 考 试 模 拟 卷
《高等数学(一)》标准答案B(闭卷)
一、选择题(每题4分,共20分)
1、A
2、B
3、C
4、D
5、B
二、填空题 (每题5分,共25分)
1、2- ;
2、1 ;
3、arctan x C + ;
4、 0 ;
5、 2x y Ce = 三、解答题(本大题共6个题,共55分)
1、(本题满分8分) 解:由题意可得,⎪⎩⎪⎨⎧≤-≤>-1
400
92
x x
解得⎩⎨⎧≤-≤>1403x x 或者⎩⎨⎧≤-≤-<1403
x x
所以函数的定义域为 [4,5]
2、(本题满分8分)
解:)0(f '000--=→x f x f x )
()(lim
0lim(1)(2)(1000)x x x x →=---
1000!=
3、(本题满分10分)
解:令5()74F x x x =--, ()F x 在[]1,2上连续
(1)100F =-<, (2)140F =>
由零点定理可得,在区间)2,1(内至少有一个ξ,使得函数
()F ξ0475=--=ξξ,
即方程0475=--x x 在区间)2,1(内至少有一个实根。

4、(本题满分10分)
解:方程两端对x 求导,得0='++'y x y y e y
将点(0,1)代入上式,得e
y 1)1,0(-=' 从而可得:切线方程为11+-
=x e
y 5、(本题满分9分) 解:将原方程化为 2(32)dy x dx =+
两边求不定积分,得 2(32)dy x dx =+⎰⎰,于是32y x x c =++ 将0|1x y ==代入上式,可得 1c =,
故原方程的特解为321y x x =++。

6、(本题满分10分)
解:作平面区域,如图示
y
解方程组⎩
⎨⎧==2x y x y 得交点坐标:(0,0),(1,1) 所求阴影部分的面积为:dx x x S )(⎰-=102=1
03232⎥⎦⎤⎢⎣⎡-x x =61。

相关文档
最新文档