3.1.1平均变化率及其求法
变化率 问题
(x1, f(x1)) A
x O x1 x2
问题2
这是某市2007年3月18日至4月20日每天最高气温 的变化图,
T (℃ )
C (34, 33.4) 30
20
10
B (32, 18.6)
A (1, 3.5) 10 20 30 34 t(d)
2 0 2
t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
例题讲解
小远从出生到第12个月的体重变化如图所示, 试分别计算小远从出生到第3个月与第6个月到 第12个月体重的平均变化率。 比较这两个时间段小远体重变化的快慢情况。
W(kg)
11 8(月)
例2 在高台跳水运动中,运动
员相对于水面的高度h(单位:
m)与起跳后的时间t(单位:s)
“形” 曲线“陡峭”程度
2.平均变化率的几何意义. 曲线上A、B两点连线的斜率。
“数” 平均变化率
已知函数 f ( x) x 2 ,分别计算 f ( x) 在下列区 间上的平均变化率:
(1)[1,3];
(2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。
4
3 2.1
2.001
34 t(天)
(1)t=32到t=34这两天的温差达到了多少?
(2)t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
定义:
f ( x2 ) - f ( x1 ) 平均变化率: 式子 x2 - x1
称为函数 f (x)从x1到 x2的平均变化率.
令△x = x2 – x1 , △ y = f (x2) – f (x1) ,则
存在函数关系 h(t)=-4.9t2+6.5t+10. 分别计算运动员在0到0.5秒时 间段,1秒到2秒时间段,以及 65 时间段内的平均 0到 秒 49 速度. (1)运动员在这段时间里是静止的吗?
人教高中数学必修一B版《函数的单调性》函数的概念与性质说课复习(函数的单调性及函数的平均变化率)
3.y=f(x)在 I 上是增函数(减函数)的充要条件
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX XX
XX XX
XX XX
XX XX
XX
XX
一般地,若 I 是函数 y=f(x)的定义域的子集,对任意 x1,x2∈I
且
x1 ≠ x2 , 记
y1
=
f(x1)
,
y2
=
f(x2)
,
Δy Δx
=
y2-y1 x2-x1
栏目 导引
因为 x2>x1>-1, 所以 x2-x1>0,(x1+1)(x2+1)>0, 因此 f(x1)-f(x2)>0, 即 f(x1)>f(x2), 所以 f(x)在(-1,+∞)上为减函数.
第三章 函 数
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX XX
XX XX
XX XX
XX XX
XX XX
XX
XX
的所有单调递减区间为( )
A.[-4,-2]
B.[1,4]
C.[-4,-2]和[1,4]
D.[-4,-2]∪[1,4] 解析:选 C.由题干图可得,f(x)在[-4,-2]上递减,在[-2,
栏目 导引
第三章 函 数
=(x1-x2)+4(xx21-x2x1)
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX XX
XX XX
3.1.1平均变化率及其求法
如何刻画一般的函数f(x)在区间[x1,x2]上 随x变化(增加或减少)的“快”与“慢”?
三 平均变化率的定义
平均变化率等于函数的增量与自变量的增量之比值。 亦即:y / x.
y f ( x2 ) f ( x1 ) 思考:平均变化率: 表示的几何意义? x x2 x1
y2 y1 f ( x2 ) f ( x1 ) 割线斜率 k x2 x1 x2 x1
一
微积分简史
微积分的创立者-----牛顿、莱布尼茨
牛顿(1643--1727)
莱布尼茨 (1646----1716)
微积分创立背景
微积分的创立主要与四类问题处理有关:
瞬时变化率、切线问题、函数极值、几何求积
第一类问题
求物体瞬时速度、加速度及运动距离 已知物体运动的路程作为时间的函数,求物体 任意时刻的速度和加速度;以及已知物体的加速度 作为时间的函数,求速度和路程。 困难在于:十七世纪所涉及的速度和加速度每时 每刻都在变化。例如,计算瞬时速度,就不能象计算 平均速度那样,用运动的距离除以运动的时间,因为 在给定的瞬刻,移动的距离和所用的时间都是 0,而 0 / 0 是无意义的。但根据物理学,每个运动的物体在 它运动的每一时刻必有速度,是不容怀疑的。
成交额随时间变化关系qqt时间的改变量t2t1成交额的改变量t2t1202小时21219小时1000100亿元300100200亿元成交额差时间差10022001950亿元小时成交额变化快慢快慢两个变化率快慢问题如何刻画一般的函数fx在区间x1x2上随x变化增加或减少的快与慢
3.1.1
平均变化率及其求法
f(x2 ) f(x2 )-f(x1 ) ( x2 , f(x2 ) )
这是平均变化率的几何意义
高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理
高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。
【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。
一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。
【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。
以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。
医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。
函数的单调性及函数的平均变化率精品课件
PPT素材:./sucai/
PPT背景:./beijing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
范文下载:./fanwen/
试卷下载:./shiti/
教案下载:./jiaoan/
PPT论坛:
PPT素材:./sucai/
PPT背景:./beijing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
范文下载:./fanwen/
试卷下载:./shiti/
教案下载:./jiaoan/
PPT论坛:
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./kejian/dili/
历史课件:./kejian/lishi/
栏目 导引
第三章 函 数
PPT模板:./moban/
PPT课件:./kejian/
语文课件:./kejian/yuwen/ 数学课件:./kejian/shuxue/
英语课件:./kejian/yingyu/ 美术课件:./kejian/meishu/
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
人教A版数学选修2-2教师用书
1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.平均变化率对于函数f(x),当自变量x从x1变到x2时,函数值从f(x1)变到f(x2),则称式子f(x2)-f(x1)x2-x1为函数f(x)从x1到x2的平均变化率.习惯上,自变量的改变量用Δx表示,即Δx=x2-x1 ,函数值的改变量用Δy表示,即Δy=f(x2)-f(x1),于是平均变化率可以表示为Δy Δx.2.导数的概念一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx,称它为函数y=f(x)在x=x0处的导数.记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.知识点一平均变化率的求法1.设函数f(x)=x2-2,当自变量由1变为1.1时,函数的平均变化率为() A.2.1 B.1.1C.2D.1解析:Δy=f(1.1)-f(1)=(1.12-2)-(12-2)=0.21,∴ΔyΔx=0.210.1=2.1,故选A.答案:A2.质点运动规律为s=2t2+5,则在时间(3,3+Δt)中,相应的平均速度等于()A.6+Δt B.12+Δt+9ΔtC.12+2Δt D.12解析:ΔsΔt=2(3+Δt)2+5-2×32-5Δt=12+2Δt,故选C.答案:C知识点二函数在某点处的导数3.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b 为常数),则()A.f′(x)=a B.f′(x)=bC.f′(x0)=a D.f′(x0)=b解析:f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limΔx→0(a+b·Δx)=a,故选C.答案:C4.求函数f(x)=3x2-x在x=2处的导数.解:∵Δy=f(2+Δx)-f(2)=3(2+Δx)2-(2+Δx)-(3×22-2)=12Δx+3Δx2-Δx=11Δx+3Δx2,∴ΔyΔx=11+3Δx,∴limΔx→0ΔyΔx=limΔx→0(11+3Δx)=11.知识点三函数变化率的应用5.质点A运动的位移与时间t的关系式为s=3t2,则在t=3的瞬时速度为()A.6 B.18C.54 D.81解析:s′=limΔt→0s(3+Δt)-s(3)Δt=limΔt→03(3+Δt)2-3×32Δt=limΔt→0(18+3Δt)=18,故选B.答案:B6.服药后,人体血液中药物的质量浓度y(单位:μg/mL)是时间t(单位:min)的函数y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f′(10)=1.5和f′(100)=-0.6,试解释它们的实际意义.解:f′(10)=1.5表示服药后10 min时,血液中药物的质量浓度上升的速度为1.5 μg/(mL·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将上升1.5 μg /mL.f′(100)=-0.6表示服药后100 min时,血液中药物的质量浓度下降的速度为0.6 μg/(mL·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将下降0.6 μg /mL.一、选择题1.在平均变化率的定义中,自变量x在x0处的增量Δx()A.大于零B.小于零C.等于零D.不等于0解析:Δx可正,可负,就是不能等于零.答案:D2.函数y=2x+1在区间[x0,x0+Δx]上的平均变化率为()A.1 B.2C.2+Δx D.1+Δx解析:ΔyΔx=[2(x0+Δx)+1]-(2x0+1)Δx=2ΔxΔx=2.答案:B3.设f(x)在x=x0处可导,则limΔx→0f(x0-Δx)-f(x0)Δx等于()A.-f′(x0) B.f′(-x0) C.f′(x0) D.2f′(x0)解析:limΔx→0f(x0-Δx)-f(x0)Δx=limΔx→0f(x0-Δx)-f(x0)-[(x0-Δx)-x0]=-limΔx→0f(x0-Δx)-f(x0)(x0-Δx)-x0=-f′(x0),故选A.答案:A4.某质点的运动方程是s=t-(2t-1)2,则在t=1 s时的瞬时速度为() A.-1 B.-3C.7 D.13解析:s=t-(2t-1)2=-4t2+5t-1,∵Δs=-4(1+Δt)2+5(1+Δt)-1-[1-(2×1-1)2]=-4(Δt)2-3Δt.limΔx→0ΔsΔt=limΔx→0(-4Δt-3)=-3.答案:B5.若函数f(x)=ax-2在x=3处的导数等于4,则a=() A.3 B.-2C.4 D.2解析:由题意知f′(3)=limΔx→0[a(3+Δx)-2]-(3a-2)Δx=limΔx→0a=a=4.答案:C二、填空题6.若f′(x0)=3,则lim Δx→0f(x0+2Δx)-f(x0)Δx=________.解析:limΔx→0f(x0+2Δx)-f(x0)Δx=2limΔx→0f(x0+2Δx)-f(x0)(x0+2Δx)-x0=2f′(x0)=6.答案:67.函数f(x)=(x-a)2,当x=a时,导数f′(a)=________.解析:f′(a)=limΔx→0f(a+Δx)-f(a)Δx=limΔx→0(a+Δx-a)2-(a-a)2Δx=lim Δx →0 (Δx )2Δx =lim Δx →0Δx =0. 答案:08.已知函数f (x )=x 2+2xf ′(0),则f ′(0)=________. 解析:f ′(0)=lim Δx →0f (0+Δx )-f (0)Δx=lim Δx →0 [(0+Δx )2+2(0+Δx )f ′(0)]-[02+2×0×f ′(0)]Δx =lim Δx →0 (Δx )2+2Δxf ′(0)Δx =lim Δx →0[Δx +2f ′(0)] =lim Δx →0 [2f ′(0)]=2f ′(0).即f ′(0)=2f ′(0). ∴f ′(0)=0. 答案:0 三、解答题9.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a =5×105 m/s 2,子弹从出发到从枪口射出时所用的时间为t 0=1.6×10-3 s .求子弹射出枪口时的瞬时速度.解:由匀变速运动公式知s =12at 2, ∴Δs =s (t 0+Δt )-s (t 0) =12a (t 0+Δt )2-12at 20 =at 0Δt +12a (Δt )2. 则Δs Δt =at 0+12a Δt .∴lim Δx →0 Δs Δt =lim Δx →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0. ∵a =5×105,t 0=1.6×10-3. ∴at 0=8×102=800(m/s).∴子弹射出枪口时的瞬时速度为800 m/s.10.(2019·蚌埠高二月考)已知某一运动物体在x s时离出发点的距离为f(x) m,且满足f(x)=23x3+x2+2x.(1)求在第1 s内的平均速度;(2)求在第1 s末的瞬时速度;(3)经过多长时间该物体的速度达到14 m/s?解:(1)物体在第1 s内的平均速度(即平均变化率)为f(1)-f(0) 1-0=113(m/s).(2) f(1+Δx)-f(1)Δx=23(1+Δx)3+(1+Δx)2+2(1+Δx)-113Δx=6+3Δx+23(Δx)2.当Δx→0时,6+3Δx+23(Δx)2→6,所以物体在第1 s末的瞬时速度为6 m/s.(3)令y=f(x)=23x3+x2+2x,则ΔyΔx=f(x+Δx)-f(x)Δx=23(x+Δx)3+(x+Δx)2+2(x+Δx)-⎝⎛⎭⎪⎫23x3+x2+2xΔx=2x2+2x+2+23(Δx)2+2x·Δx+Δx.当Δx→0时,ΔyΔx→2x2+2x+2,令2x2+2x+2=14,解得x=2(x=-3舍去),即经过2 s该物体的速度达到14 m/s.1.1.3导数的几何意义1.导数的几何意义(1)割线斜率与切线斜率设函数y=f(x)的图象如图所示,AB是过点A(x0,f(x0))与点B(x0+Δx,f(x0+Δx))的一条割线,此割线的斜率是ΔyΔx=f(x0+Δx)-f(x0)Δx.当点B沿曲线趋近于点A时,割线AB绕点A转动,它的极限位置为直线AD,这条直线AD叫做此曲线在点A处的切线.于是,当Δx→0时,割线AB的斜率无限趋近于过点A的切线AD的斜率k,则k=f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数y=f(x)在点x=x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f′(x0),相应地,切线方程为y-f(x0)=f′(x0)(x-x0).2.函数的导数当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)是x的一个函数,称f′(x)是f(x)的导函数(简称导数).f′(x)也记作y′,即f′(x)=y′=lim Δx→0f(x+Δx)-f(x)Δx.知识点一求函数在某点处的切线1.已知函数f(x)=x3-4x(x>0)的零点为x0,则函数f(x)在x=x0处的切线方程为____________.解析:函数f(x)=x3-4x(x>0)的零点x0=2,且f(2)=0,∴函数f(x)在x=2处的切线的斜率k=limΔx→0(2+Δx)3-4(2+Δx)-0Δx=limΔx→0(8+6Δx+Δx2)=8,∴切线方程为y-0=8(x-2),即y=8x-16.答案:y=8x-162.(2019·马鞍山高三模拟)如图,函数y=f(x)的图象在点P处的切线方程是y =-x+8,则f(5)+f′(5)等于________.解析:易得切点P(5,3),所以f(5)=3,k=-1,即f′(5)=-1.所以f(5)+f′(5)=3-1=2.答案:2知识点二求过某点的切线方程3.若曲线y=x3+x-2在点P处的切线平行于直线y=4x-1,则切点P的坐标为()A.(0,-1)或(1,0) B.(1,0)或(-1,-4)C.(-1,-4)或(0,2) D.(1,0)或(2,8)解析:设P(x0,y0),f′(x0)=limΔx→0(x0+Δx)3+(x0+Δx)-2-x30-x0+2Δx=3x20+1,∴3x20+1=4,∴x0=1或x0=-1,当x0=1时,y0=0;当x0=-1时,y0=-4,∴P点的坐标为(1,0)或(-1,-4),故选B.答案:B4.已知曲线y=2x2-7,求曲线过点P(3,9)的切线方程.解:设切点(x0,y0),k=f′(x0)=limΔx→02(x0+Δx)2-7-2x20+7Δx=4x0,∴切线方程为y-y0=4x0(x-x0).将(3,9)及y0=2x20-7代入,得9-2x20+7=4x0(3-x0),解得x0=2或x0=4,所以切线的斜率为8或16,切线方程为y-9=8(x-3)或y-9=16(x-3),即8x-y-15=0或16x-y-39=0.知识点三导数几何意义的综合运用5.(2019·邢台高三模拟)如图,函数y=f(x)的图象在点P(2,y)处的切线是l,则f(2)+f′(2)等于()A.-4 B.3C.-2 D.1解析:切线l的方程为x4+y4=1,即x+y-4=0.又由题意可知f(2)=2,f′(2)=-1,∴f(2)+f′(2)=2-1=1.答案:D6.(2019·辽阳高二月考)过曲线y=x2上某点P的切线满足下列条件,分别求出P点.(1)平行于直线y=4x-5;(2)垂直于直线2x-6y+5=0;(3)与x轴成135°的倾斜角.解:f′(x)=limΔx→0f(x+Δx)-f(x)Δx=limΔx→0(x+Δx)2-x2Δx=2x,设P(x0,y0)是满足条件的点.(1)∵切线与直线y=4x-5平行,∴2x 0=4,x 0=2,y 0=4, 即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直, ∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝ ⎛⎭⎪⎫-32,94是满足条件的点.(3)∵切线与x 轴成135°的倾斜角, ∴其斜率为-1.即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝ ⎛⎭⎪⎫-12,14是满足条件的点.一、选择题1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线解析:若f ′(x 0)不存在,则曲线在点(x 0,f (x 0))处的切线斜率不存在,此时切线与x 轴垂直.答案:C2.设曲线y =f (x ),若f ′(3)=0,则曲线在点(3,f (3))处的切线( ) A .与x 轴平行 B .与x 轴垂直 C .与x 轴斜交D .与x 轴平行或重合解析:由导数的几何意义知,曲线f (x )在点(3,f (3))处的切线的斜率等于0,所以切线与x 轴平行或重合.答案:D3.在曲线y =x 2上切线的倾斜角为π4的点是( ) A .(0,0) B .(2,4) C.⎝ ⎛⎭⎪⎫12,14 D .(1,1)解析:Δy =(x +Δx )2-x 2=2x Δx +(Δx )2,y ′=lim Δx →0 Δy Δx =lim Δx →0 2x Δx +(Δx )2Δx =lim Δx →0 (2x +Δx )=2x .由2x =tan π4=1,得x =12,∴y =14,∴切点为⎝ ⎛⎭⎪⎫12,14.答案:C4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B.12 C .-12D .-1解析:y ′|x =1=lim Δx →0 a (1+Δx )2-a ×12Δx =lim Δx →0 (2a +a Δ x )=2a , ∵曲线在点(1,a )处的切线与直线2x -y -6=0平行, ∴2a =2,a =1. 答案:A5.设点P 是曲线y =x 3-3x +35上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,23π B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π C.⎝ ⎛⎦⎥⎤π2,23π D.⎣⎢⎡⎦⎥⎤π3,2π3解析:依题意,曲线在点P 处的切线的斜率 k =lim Δx →0 (x +Δx )3-3(x +Δx )+35-⎝ ⎛⎭⎪⎫x 3-3x +35Δx=lim Δx →0(3x 2-3+3x Δx +Δx 2) =3x 2-3≥-3,∴tan α≥-3,∴0≤α<π2或23π≤α<π,故选B. 答案:B 二、填空题6.已知曲线y =2x 2+4x 在P 处切线斜率为16,则点P 的坐标为________. 解析:设P (x 0,y 0),由题意得 y ′|x =x 0=lim Δx →0 [2(x 0+Δx )2+4(x 0+Δx )]-(2x 20+4x 0)Δ x=lim Δx →0 (2Δx +4x 0+4) =4x 0+4=16,∴x 0=3.当x 0=3时,y =2×32+4×3=30, ∴点P 的坐标为(3,30). 答案:(3,30)7.函数y =f (x )的图象在点P 处的切线方程为2x +y -9=0.若点P 的横坐标为4,则f (4)+f ′(4)=________.解析:由题意知f (4)+f ′(4)=9-2×4+(-2)=-1. 答案:-18.已知函数f (x )=ax 2+bx (a >0,b >0)的图象在点(1,f (1))处的切线的斜率为2,则8a +bab 的最小值为________.解析:依题意,lim Δx →0 a (1+Δx )2+b (1+Δx )-(a +b )Δx= lim Δx →0(2a +a Δx +b )=2a +b =2,∴8a +b ab =1a +8b =12⎝ ⎛⎭⎪⎫1a +8b (2a +b )=12⎝ ⎛⎭⎪⎫10+b a +16a b ≥12(10+216)=9, 当且仅当b a =16a b ,即a =13,b =43时,等式成立. 答案:9 三、解答题9.已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:曲线y =x 2-1在x =x 0处的切线的斜率 k 1=lim Δx →0 (x 0+Δx )2-1-(x 20-1)Δx =lim Δx →0(2x 0+Δx )=2x 0, 曲线y =1-x 3在x =x 0处的切线的斜率 k 2=lim Δx →0 1-(x 0+Δx )3-(1-x 30)Δx=lim Δx →0(-3x 20-3x 0Δx -Δx 2)=-3x 20, ∵k 1=k 2,∴2x 0=-3x 20,解得x 0=0或x 0=-23,当x 0=0时,k 1=k 2=0,曲线y =x 2-1的切点为(0,-1),其切线方程为y =-1,曲线y =1-x 3的切点为(0,1),其切线方程为y =1;当x 0=-23时,k 1=k 2=-43,曲线y =x 2-1的切点为⎝ ⎛⎭⎪⎫-23,-59,其切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y +13=0,曲线y =1-x 3的切点为⎝ ⎛⎭⎪⎫-23,3527,其切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y -11=0. 综上所述,两曲线的切线方程分别为12x +9y +13=0,36x +27y -11=0或y =-1,y =1.10.(2019·陵川高二质检)已知直线y =4x +a 和曲线y =x 3-2x 2+3相切,求切点坐标及a 的值.解:设直线l 与曲线相切于点P (x 0,y 0),则 f ′(x )=lim Δx →0 (x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx =3x 2-4x .由导数的几何意义,得k =f ′(x 0)=3x 20-4x 0=4, 解得x 0=-23或x 0=2,∴切点坐标为⎝ ⎛⎭⎪⎫-23,4927或(2,3).当切点为⎝ ⎛⎭⎪⎫-23,4927时,有4927=4×⎝ ⎛⎭⎪⎫-23+a ,∴a =12127.当切点为(2,3)时,有3=4×2+a , ∴a =-5.即a 的值为12127或-5.1.2 导数的计算 1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则(一)1.几个常用函数的导数2.基本初等函数的导数公式知识点一 利用定义求函数的导数 1.利用定义求函数y =x 的导数.解:Δy Δx =x +Δx -x Δx =Δx Δx (x +Δx +x )=1x +Δx +x ,∴y ′=lim Δx →0 Δy Δx =12x. 知识点二 利用导数公式求函数的导数 2.求下列函数的导数 (1)y =cos π3; (2)y =3x ; (3)y =x 5; (4)y =log 2x .解:(1)y ′=⎝ ⎛⎭⎪⎫cos π3′=0.(2)y ′=(3x )′=3x ln 3. (3)∵y =x 5=x 52, ∴y ′=(x 52)′=52x 32. (4)y ′=(log 2x )′=1x ln 2. 知识点三 导数的综合应用3.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A.1n B.1n +1C.n n +1D .1解析:∵y ′=(x n +1)′=(n +1)x n , ∴k =y ′|x =1=(n +1)×1n =1+n ,∴曲线在点(1,1)处的切线方程为y -1=(n +1)(x -1).令y=0,则x n=nn+1,∴x1·x2·…·x n=12×23×34×…×n-1n×nn+1=1n+1.答案:B4.曲线y=x3在点P(1,1)处的切线与y轴交点的纵坐标是() A.-2 B.2C.-3 D.3解析:∴曲线在点P(1,1)处的切线方程为y-1=3(x-1),即y=3x-2,∴切线与y轴交点的纵坐标为-2.故选A.答案:A一、选择题1.下列结论正确的是()A.若y=cos x,则y′=sin xB.若y=sin x,则y′=-cos xC.若y=1x,则y′=-1x2D.若y=x,则y′=x 2解析:若y=cos x,则y′=-sin x,∴A错;若y=sin x,则y′=cos x,∴B 错;若y =1x =x -1,则y ′=-1·x -2=-1x 2,∴C 正确;若y =x =,则y ′=12·=12x,∴D 错.答案:C2.函数y =e x 在点(0,1)处的切线方程为( ) A .y =1e x +1 B .y =e x +1 C .y =x -1D .y =x +1解析:∵y ′=e x ,∴k =f ′(0)=e 0=1,∴切线方程为y -1=1·(x -0),即y =x +1,故选D. 答案:D3.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π) C.⎣⎢⎡⎦⎥⎤π4,3π4 D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 解析:设切点P 的坐标为(x 0,y 0),切线的倾斜角为α, ∵y ′=(sin x )′=cos x , ∴k =y ′|x =x 0=cos x 0=tan α. ∵-1≤cos x 0≤1,∴-1≤tan α≤1. 又∵0≤α<π,∴0≤α≤π4或3π4≤α<π. 答案:A4.(2019·定州高三模拟)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:设函数y=f(x)的图象上两点P(x1,y1),Q(x2,y2),则由导数的几何意义可知,点P,Q处切线的斜率分别为k1=f′(x1),k2=f′(x2),若函数具有T性质,则k1·k2=f′(x1)·f′(x2)=-1.对于A选项,f′(x)=cos x,显然k1·k2=cos x1·cosx2=-1有无数组解,所以该函数具有T性质;对于B选项,f′(x)=1x(x>0),显然k1·k2=1x1·1x2=-1无解,故该函数不具有T性质;对于C选项,f′(x)=ex>0,显然k1·k2=e x1·e x2=-1无解,故该函数不具有T性质;对于D选项,f′(x)=3x2≥0,显然k1·k2=3x12·3x22=-1无解,故该函数不具有T性质.故选A.答案:A5.已知直线y=kx与曲线y=ln x相切,则k的值为()A.e B.-eC.1e D.-1e解析:∵y=ln x,∴y′=1x.设切点为(x0,y0),则k=1x0.由⎩⎨⎧y0=kx0,y0=ln x0,得⎩⎨⎧x0=e,y0=1.∴k=1e.答案:C二、填空题6.若f(x)=10x,则f′(1)=________.解析:∵f(x)=10x,∴f′(x)=10x ln 10,∴f′(1)=10ln 10.答案:10ln 107.曲线y=log2x在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.解析:y′=1x ln 2,∴∴切线方程为y=1ln 2(x-1),令x=0,得y=-1ln 2,令y=0,得x=1,∴S =12×1×⎪⎪⎪⎪⎪⎪-1ln 2=12ln 2.答案:12ln 28.(2019·寿光高二月考)设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 018(x )=________.解析:由已知f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…依次类推可得,与函数呈周期变化,且周期为4,则f 2 018(x )=f 2(x )=-sin x . 答案:-sin x 三、解答题9.(2019·泉州高二月考)已知两条曲线y 1=sin x ,y 2=cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.理由如下: 由于y 1=sin x ,y 2=cos x ,设两条曲线的一个公共点为P (x 0,y 0), 所以两条曲线在P (x 0,y 0)处切线的斜率分别为 k 1=y 1′|x =x 0=cos x 0,k 2=y 2′|x =x 0=-sin x 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.10.已知函数y =12x 2的图象在点⎝ ⎛⎭⎪⎫x 0,12x 02处的切线为l ,若l 也为函数y =lnx (0<x <1)的图象的切线,求证:3<x 0<2.证明:函数y =12x 2的导数为y ′=x ,在点⎝ ⎛⎭⎪⎫x 0,12x 02处的切线的斜率为k =x 0,切线方程为y -12x 02=x 0(x -x 0),设切线与y =ln x 相切的切点为(m ,ln m ),0<m <1, 由y =ln x 的导数为y ′=1x ,可得x0=1m,切线方程为y-ln m=1m(x-m),令x=0,可得y=ln m-1=-12x0 2,由0<m<1,可得x0>1,由m=1x0,可得12x02-ln x-1=0,令f(x)=12x2-ln x-1,x>1,∴f′(x)=x-1x>0,∴f(x)在(1,+∞)上递增,且f(2)=1-ln 2>0,f(3)=32-12ln 3-1=12(1-ln 3)<0,则有12x02-ln x-1=0的根x0∈(3,2).∴3<x0<2.1.2.2基本初等函数的导数公式及导数的运算法则(二)1.导数的运算法则设两个函数分别为f(x)和g(x)知识点一 利用导数的运算法则求导1.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析:∵f (x )=e x ln x ,∴f ′(x )=e x ln x +e x ·1x , ∴f ′(1)=e.答案:e2.求下列函数的导数(1)y=x e x+π;(2)y=2cos x2⎝⎛⎭⎪⎫sinx2-cosx2+sin xx.解:(1)y′=(x+1)e x.(2)y=2cos x2⎝⎛⎭⎪⎫sinx2-cosx2+sin xx=sin x-(1+cos x)+sin x x=sin x-cos x-1+sin x x,y′=cos x+sin x+x cos x-sin xx2=(x2+x)cos x+(x2-1)sin xx2.知识点二求复合函数的导数3.函数y=sin(2x2+x)的导数是()A.cos(2x2+x) B.2x sin(2x2+x)C.4cos(2x2+x) D.(4x+1)cos(2x2+x)解析:y′=cos(2x2+x)·(2x2+x)′=(4x+1)cos(2x2+x).故选D. 答案:D4.求下列函数的导数(1)y=ln(x2+2x);(2)y=e2x+3(x2-2x-3).解:(1)y′=1x2+2x·(x2+2x)′=2x+2x2+2x.(2)y′=(e2x+3)′(x2-2x-3)+e2x+3(x2-2x-3)′=2e2x+3(x2-2x-3)+e2x+3(2x-2)=e2x+3(2x2-2x-8)=2e2x+3(x2-x-4).知识点三导数的综合应用5.已知函数f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是( )解析:∵f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x ,∵f ′(x )为奇函数,∴排除B 、D 选项; 又f ⎝ ⎛⎭⎪⎫π2=π4-1<0,排除C 选项,故选A.答案:A6.(2019·龙岩高二月考)已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程. 解:(1)因为f (x )=ax 2+bx +3(a ≠0), 所以f ′(x )=2ax +b ,又知f ′(x )=2x -8, 所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3, 所以g ′(x )=e x sin x +e x cos x +2x -8, 所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7, 又知g (0)=3,所以g (x )在x =0处的切线方程为y -3=-7(x -0). 即7x +y -3=0.一、选择题1.下列求导正确的是( ) A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(3x +ln 3)′=3x ·ln 3+13 D .(x 2cos x )′=-2x sin x解析:⎝ ⎛⎭⎪⎫x +1x ′=x ′+⎝ ⎛⎭⎪⎫1x ′=1-1x 2,A 不正确;(3x +ln 3)′=(3x)′+(ln 3)′=3x ln 3+0=3x ln 3,C 不正确;(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x ,D 不正确.答案:B2.曲线y =xx -2在点(1,-1)处的切线方程为( )A .y =x -2B .y =-3x +2C .y =2x -3D .y =-2x +1解析:y ′=x -2-x (x -2)2=-2(x -2)2,曲线在点(1,-1)处的切线斜率故切线方程为y +1=-2(x -1),即y =-2x +1.答案:D3.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=( ) A.π6 B.π3 C.2π3D.5π6解析:f ′(x )=-3sin(3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2cos ⎝ ⎛⎭⎪⎫3x +φ+π3,∵f (x )+f ′(x )为奇函数,则φ+π3=k π+π2,k ∈Z , ∴φ=k π+π6,k ∈Z , ∵0<φ<π,∴φ=π6,故选A. 答案:A4.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .4B .-14C .2D .-12解析:由题意知g ′(1)=2,∵f ′(x )=[g (x )+x 2]′=g ′(x )+2x . ∴k =f ′(1)=g ′(1)+2×1=2+2=4. 答案:A5.设函数f (x )=ax 3+bx 2+cx +1的导函数为f ′(x ),若f ′(x )为奇函数,则有( )A .a ≠0,c =0B .b =0C .a =0,c ≠0D .a =c =0解析:∵f (x )=ax 3+bx 2+cx +1, ∴f ′(x )=3ax 2+2bx +c ,∵f ′(x )为奇函数,∴a =c =0,故选D. 答案:D6.(2019·长庆高三模拟)已知曲线y =e 2x ·cos 3x 在点(0,1)处的切线与直线l 的距离为5,求直线l 的方程________________.解析:因为y ′=(e 2x )′·cos 3x +e 2x ·(cos 3x )′=2e 2x ·cos 3x -3e 2x ·sin 3x ,所以y ′|x =0=2,所以在点(0,1)的切线方程为y -1=2(x -0),即y =2x +1.设符合题意的直线方程为y =2x +b , 根据题意,得5=|b -1|5,解得b =6或-4. 所以符合题意的直线方程为y =2x +6或y =2x -4. 答案:y =2x +6或y =2x -47.曲线y =x (3ln x +1)在点(1,1)处的切线方程为____________. 解析:∵y ′=x ′(3ln x +1)+x (3ln x +1)′= 3ln x +1+x ·3x =3ln x +4. ∴∴切线方程为y -1=4(x -1),即4x -y -3=0. 答案:4x -y -3=08.若曲线f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是________.解析:y ′=1x +2ax ,x ∈(0,+∞),∵曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线, ∴y ′=1x +2ax ≥0在(0,+∞)上恒成立, ∴a ≥-12x 2在(0,+∞)上恒成立. 令f (x )=-12x 2,x ∈(0,+∞), 则f (x )在(0,+∞)上单调递增, 又f (x )=-12x 2<0,∴a ≥0,即实数a 的取值范围是[0,+∞). 答案:[0,+∞)9.(2019·石嘴山高二期末)已知函数f(x)=ax2+ln x的导数为f′(x).(1)求f(1)+f′(1);(2)若曲线y=f(x)存在垂直于y轴的切线,求实数a的取值范围.解:(1)由题意,函数的定义域为(0,+∞),由f(x)=ax2+ln x,得f′(x)=2ax+1 x,所以f(1)+f′(1)=3a+1.(2)因为曲线y=f(x)存在垂直于y轴的切线,故此时切线斜率为0,问题转化为在x∈(0,+∞)内导函数f′(x)=2ax+1x存在零点,即f′(x)=0⇒2ax+1x=0有正实数解,即2ax2=-1有正实数解,故有a<0,所以实数a的取值范围是(-∞,0).10.已知函数f(x)=1+ln x-a e x,若曲线y=f(x)在x=1处的切线与x轴平行,求实数a的值.解:∵f(x)=1+ln x-a e x,∴f′(x)=1x-a ex,x∈(0,+∞).由于曲线y=f(x)在x=1处的切线与x轴平行,∴f′(1)=1-a e=0,解得a=1 e.∴实数a=1e.1.3导数在研究函数中的应用1.3.1函数的单调性与导数1.在区间(a,b)内函数的导数与单调性有如下关系2.一般地,设函数y=f(x),在区间(a,b)上(1)如果|f′(x)|越大,函数在区间(a,b)上变化得越快,函数的图象就比较“陡峭”(向上或向下).(2)如果|f′(x)|越小,函数在区间(a,b)上变化得越慢,函数的图象就比较“平缓”(向上或向下).知识点一导数与单调性的关系1.函数f(x)在其定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象为()解析:观察函数y=f(x)的图象,从左到右单调性为先增,后减,再增,对应的导数符号为正、负、正,故选D.答案:D2.已知函数y=xf′(x)的图象如下图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是()解析:由题图知,当x <-1时,xf ′(x )<0, ∴f ′(x )>0,∴x <-1时,函数y =f (x )单调递增; 当-1<x <0时,xf ′(x )>0,∴f ′(x )<0,∴-1<x <0时,函数y =f (x )单调递减; 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,∴0<x <1时,函数y =f (x )单调递减; 当x >1时,xf ′(x )>0,∴f ′(x )>0, ∴x >1时,y =f (x )单调递增.故选C. 答案:C知识点二 求函数的单调区间 3.已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上单调递增 B .在(0,+∞)上单调递减 C .在⎝ ⎛⎭⎪⎫0,1e 上单调递增D .在⎝ ⎛⎭⎪⎫0,1e 上单调递减解析:f ′(x )=ln x +1(x >0),当0<x <1e 时,f ′(x )<0,f (x )为减函数, 当x >1e 时,f ′(x )>0,f (x )为增函数,故选D.答案:D4.(2018·天津卷)已知函数f (x )=a x ,其中a >1,求函数h (x )=f (x )-x ln a 的单调区间.解:由已知h (x )=a x -x ln a ,得h ′(x )=a x ln a -ln a . 令h ′(x )=0,解得x =0.由a >1,可知当x 变化时,h ′(x ),h (x )的变化情况如下表:所以函数). 知识点三 函数的单调性的综合应用5.(2019·张家口高三模拟)已知函数f (x )=ln x -ax 2+(2-a )x ,讨论f (x )的单调递增区间.解:f (x )的定义域为(0,+∞).f ′(x )=1x -2ax +(2-a )=-(2x +1)(ax -1)x,若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则由f ′(x )=0得x =1a ,且当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x >1a 时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增.综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞);当a >0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a .6.(2019·集美高二期中)设函数f (x )=x 2+ax -ln x ,a ∈R ,若f (x )在区间(0,1]上是减函数,求实数a 的取值范围.解:f ′(x )=2x +a -1x .因为f (x )在区间(0,1]上是减函数, 所以f ′(x )≤0对任意x ∈(0,1]恒成立,即2x+a-1x≤0对任意x∈(0,1]恒成立,所以a≤1x-2x对任意x∈(0,1]恒成立.令g(x)=1x-2x,所以a≤g(x)min,已知g(x)在(0,1]上单调递减,所以g(x)min=g(1)=-1,所以a≤-1.故实数a的取值范围为(-∞,-1].一、选择题1.函数f(x)=x3-3x在(1,+∞)上是()A.减函数B.增函数C.常数函数D.不能确定解析:f′(x)=3x2-3,当x∈(1,+∞)时,f′(x)>0,∴f(x)在(1,+∞)上是增函数.答案:B2.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是()解析:由题意知,当x <0时,f ′(x )>0,f (x )单调递增;当0<x <2时,f ′(x )<0,f (x )单调递减;当x >2时,f ′(x )>0,f (x )单调递增.∴C 符合题意.答案:C3.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是( )A .[-1,1]B .[-1,1)C .(-1,1)D .(-1,1]解析:∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 由f ′(x )<0,得-2<x <2, ∴f (x )的单调递减区间为(-2,2), ∵f (x )在区间(2m ,m +1)上单调递减, ∴(2m ,m +1)⊆(-2,2),即⎩⎨⎧2m ≥-2,m +1≤2,2m <m +1,解得-1≤m <1,∴实数m 的取值范围是[-1,1),故选B.答案:B4.已知函数y =f (x )的图象如图所示,则函数y =f ′(x )的图象可能是图中的( )解析:由函数y=f(x)的图象的增减变化趋势可判断函数y=f′(x)取值的正、负情况,如下表:x (-1,b)(b,a)(a,1)f(x)f′(x)-+-当x∈(b,a)时,函数y=f′(x)的图象在x轴上方;当x∈(a,1)时,函数y=f′(x)的图象在x轴下方.故选C.答案:C5.若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>3e x+1(e为自然对数的底数)的解集为()A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(0,+∞) D.(3,+∞)解析:不等式f(x)>3e x+1可化为f(x)·e x-e x-3>0,令h(x)=f(x)·e x-e x-3,h ′(x )=f ′(x )·e x +f (x )·e x -e x =e x [f ′(x )+f (x )-1]>0, ∴h (x )是增函数,h (0)=f (0)e 0-e 0-3=4-1-3=0, ∴h (x )>0的解集为(0,+∞),故选A. 答案:A 二、填空题6.函数f (x )=ln xx 的单调递减区间是________. 解析:f (x )=ln xx 的定义域为(0,+∞), 由f ′(x )=1-ln xx 2<0,得x >e ,∴函数f (x )=ln xx 的单调递减区间是(e ,+∞). 答案:(e ,+∞)7.若函数f (x )=(x 2+mx )e x 的单调减区间是⎣⎢⎡⎦⎥⎤-32,1,则实数m 的值为________.解析:f ′(x )=[x 2+(m +2)x +m ]e x , 因为f (x )的单调减区间是⎣⎢⎡⎦⎥⎤-32,1,所以f ′(x )=0的两个根分别为x 1=-32,x 2=1, 即⎩⎪⎨⎪⎧f ′⎝⎛⎭⎪⎫-32=0,f ′(1)=0,解得m =-32.答案:-328.过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A ,B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF |=________.解析:设B (x 1,y 1),因为y =12x 2,所以y ′=x ,y ′|x =x 1=x 1=1,可得B ⎝ ⎛⎭⎪⎫1,12,因为F ⎝ ⎛⎭⎪⎫0,12,所以直线l 的方程为y =12,故|AF |=|BF |=12-⎝ ⎛⎭⎪⎫-12=1.答案:1 三、解答题9.(2019·吉林实验中学高二检测)已知函数f (x )=ax 3-3x 2+1-3a ,讨论函数f (x )的单调性.解:由条件可知a ≠0.所以f ′(x )=3ax 2-6x =3ax ⎝ ⎛⎭⎪⎫x -2a .所以当a >0时,f ′(x )>0,得x <0或x >2a , f ′(x )<0,得0<x <2a .所以f (x )在(-∞,0),⎝ ⎛⎭⎪⎫2a ,+∞上是增函数,在⎝ ⎛⎭⎪⎫0,2a 上是减函数; 当a <0时,f ′(x )<0,得x <2a 或x >0, f ′(x )>0,得2a <x <0.所以f (x )在⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上是减函数, 在⎝ ⎛⎭⎪⎫2a ,0上是增函数. 综上,a >0时,f (x )在(-∞,0),⎝ ⎛⎭⎪⎫2a ,+∞上是增函数,在⎝ ⎛⎭⎪⎫0,2a 上是减函数; a <0时,f (x )在⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上是减函数,在⎝ ⎛⎭⎪⎫2a ,0上是增函数. 10.设函数f (x )=x ln x -a2x 2+(a -1)x (a ∈R ),f ′(x )是f (x )的导函数.(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)若f (x )在其定义域内为减函数,求实数a 的取值集合. 解:(1)∵f (x )=x ln x -a2x 2+(a -1)x ,∴g (x )=f ′(x )=ln x +1-ax +a -1=ln x -ax +a , 其定义域为(0,+∞), ∴g ′(x )=1x -a ,当a ≤0时,g ′(x )>0恒成立,∴g (x )的单调递增区间为(0,+∞),无单调递减区间; 当a >0时,由g ′(x )>0得0<x <1a , 由g ′(x )<0,得x >1a ,∴g (x )的单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞,单调递增区间为⎝ ⎛⎭⎪⎫0,1a .(2)若f (x )在其定义域内为减函数,则g (x )≤0在(0,+∞)上恒成立. 由(1)知,当a ≤0时,g (x )在(0,+∞)上单调递增,且g (1)=0, ∴x >1时,g (x )>0,不符合题意;当a >0时,g (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,∴x =1a 时,g (x )max =ln 1a +a -1=a -ln a -1≤0在(0,+∞)上恒成立即可. 令h (a )=a -ln a -1(a >0), 则h ′(a )=1-1a =a -1a , 由h ′(a )>0知a >1,由h ′(a )<0知0<a <1,∴h (a )≥h (1)=0, 又h (a )≤0,∴a =1, ∴实数a 的取值集合为{1}.1.3.2 函数的极值与导数1.极小值点与极小值如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,把点a 叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;在点x=b左侧f′(x)>0,右侧f′(x)<0,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.知识点一求函数的极值1.若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为() A.-2e-3B.1C.5e-3D.-1解析:∵f(x)=(x2+ax-1)e x-1,∴f′(x)=(2x+a)e x-1+(x2+ax-1)e x-1=(x2+2x+ax+a-1)e x-1.∵x=-2是函数f(x)的极值点,∴f′(-2)=(4-4-2a+a-1)e-3=0,解得a=-1,∴f(x)=(x2-x-1)e x-1,f′(x)=(x2+x-2)e x-1,由f′(x)>0,得x<-2或x>1,由f′(x)<0,得-2<x<1,∴f(x)的极小值为f(1)=-1,故选D.答案:D2.求下列函数的极值(1)f(x)=ln x x;(2)f(x)=2xx2+1-2.解:(1)函数f (x )=ln xx 的定义域为(0,+∞),且 f ′(x )=1-ln xx 2.令f ′(x )=0,得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:因此,x =e 是函数的极大值点,极大值为f (e)=1e ,函数f (x )没有极小值点. (2)函数的定义域为R .f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )变化情况如下表:当x =-1时,函数有极小值,且极小值为f (-1)=-3; 当x =1时,函数有极大值,且极大值为f (1)=-1. 知识点二 根据函数的极值求字母的值3.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +a 在x =1处有极值,则ab 的最大值为( )A .2B .3C .6D .9解析:f ′(x )=12x 2-2ax -2b , f ′(1)=12-2a -2b =0,∴a +b =6,∴ab ≤⎝⎛⎭⎪⎫a +b 22=9,故选D.答案:D4.已知函数f (x )=x 2-ax +ln x 在区间(0,2)内既有极大值又有极小值,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫22,92B.⎣⎢⎡⎭⎪⎫22,92 C .(22,8)D .[22,8)解析:∵f (x )=x 2-ax +ln x , ∴f ′(x )=2x -a +1x =2x 2-ax +1x.∵f (x )在区间(0,2)内既有极大值又有极小值, ∴方程2x 2-ax +1=0在(0,2)内有两个相异实根. 令g (x )=2x 2-ax +1,x ∈(0,2),则⎩⎪⎨⎪⎧0<a4<2,Δ=a 2-8>0,g (0)=1>0,g (2)=8-2a +1>0,解得22<a <92,故选A. 答案:A知识点三 极值的综合应用5.已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. 解:(1)因为f (x )=-x 3+ax 2+b , 所以f ′(x )=-3x 2+2ax =-3x ⎝ ⎛⎭⎪⎫x -2a 3.当a =0时,f ′(x )=-3x 2≤0,函数f (x )没有单调递增区间;当a >0时,令f ′(x )>0,即-3xx -2a 3>0,解得0<x <2a 3,故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,2a 3;当a <0时,令f ′(x )>0,即-3xx -2a 3>0,解得2a3<x <0,故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫2a 3,0.(2)由(1)知,a ∈[3,4]时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,2a 3,单调递减区间为(-∞,0)和⎝ ⎛⎭⎪⎫2a 3,+∞.所以f (x )极大值=f ⎝ ⎛⎭⎪⎫2a 3=4a327+b ,f (x )极小值=f (0)=b .由于对任意a ∈[3,4],函数f (x )在R 上都有三个零点, 所以⎩⎨⎧f (x )极大值>0,f (x )极小值<0,即⎩⎪⎨⎪⎧4a 327+b >0,b <0,解得-4a 327<b <0.因为对任意a ∈[3,4],b >-4a 327恒成立,所以b >⎝ ⎛⎭⎪⎫-4a 327max =-4×3327=-4.所以实数b 的取值范围为(-4,0).一、选择题1.(2019·平顶山高二调研)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )解析:因为f(x)在x=-2处取得极小值,所以当x<-2时,f(x)单调递减,即f′(x)<0;当x>-2时,f(x)单调递增,即f′(x)>0.所以当x<-2时,y=xf′(x)>0;当x=-2时,y=xf′(x)=0;当-2<x<0时,y=xf′(x)<0;当x=0时,y=xf′(x)=0;结合选项中图象知选C.答案:C2.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3处取得极值,则实数a=()A.2 B.3C.4 D.5解析:∵f(x)=x3+ax2+3x-9,∴f′(x)=3x2+2ax+3.∵f(x)在x=-3处取得极值,∴f′(-3)=27-6a+3=0,解得a=5,故选D.答案:D3.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=0解析:f′(x)=3x2+2ax+b,其图象开口向上,若x0是f(x)的极小值点,则f(x)先增,后减,再增.f(x)在(-∞,x0)上先增后减,C错.答案:C4.如图是函数f(x)=x3+bx2+cx+d的大致图象,则x21+x22等于()A.23 B.43C.83D.4解析:由题意知f(0)=d=0,f(1)=13+b×12+c×1=b+c+1=0,f(2)=23+b×22+c×2=4b+2c+8=0.则b=-3,c=2.∴f(x)=x3-3x2+2x.f′(x)=3x2-6x+2.由图象可知x1,x2是方程3x2-6x+2=0的两根,∴x21+x22=(x1+x2)2-2x1x2=4-43=83.答案:C5.若函数y=x3-2ax+a在(0,1)内有极小值,则实数a的取值范围是() A.(0,3) B.(-∞,3)C .(0,+∞)D.⎝ ⎛⎭⎪⎫0,32 解析:y ′=3x 2-2a .∵有极值,∴a >0. 令3x 2-2a =0, 解得x =±2a3.∵函数在(0,1)内有极小值. ∴0<2a 3<1,解得0<a <32.答案:D 二、填空题6.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,给出关于函数f (x )极值的四个命题:①无极大值点,有四个极小值点;②有三个极大值点,两个极小值点;③有两个极大值点,两个极小值点;④有四个极大值点,无极小值点.其中正确命题的序号是________.解析:由导函数f ′(x )的图象知,从x 轴上方到x 轴下方,与x 轴的交点是极大值点,从x 轴下方到x 轴上方,与x 轴的交点是极小值点,因此函数y =f (x )有两个极大值点和两个极小值点.故只有③正确.答案:③7.(2019·南阳高三模拟)若f (x )=e x -kx 的极小值为0,则k =________. 解析:因为f (x )=e x -kx 的定义域为R ,所以f ′(x )=e x -k , 当k ≤0时,f ′(x )>0,f (x )在R 上单调递增,所以f (x )无极值. 当k >0时,由f ′(x )=0,得x =ln k ; 令f ′(x )>0,得x >ln k ; 令f ′(x )<0,得x <ln k ,所以f (x )极小=f (ln k )=e ln k -k ln k =k (1-ln k )=0, 所以1-ln k =0,即k =e. 答案:e8.已知函数f (x )=mx -1+ln x 在[e ,+∞)上存在极值点,则实数m 的取值范围为______________.解析:∵f (x )=mx -1+ln x ,∴f ′(x )=-m (x -1)2+1x. ∵函数f (x )在[e ,+∞)上存在极值点, ∴-m (x -1)2+1x=0成立, 即m =(x -1)2x =x +1x -2,x ∈[e ,+∞), ∵m =x +1x -2在[e ,+∞)上单调递增, ∴m ≥e +1e -2,即实数m 的取值范围为⎣⎢⎡⎭⎪⎫e +1e -2,+∞.答案:⎣⎢⎡⎭⎪⎫e +1e -2,+∞三、解答题9.(2018·天津卷)设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程;。
人教版高中数学选修一课件 《变化率问题》
3
背景介绍
早在十七世纪,欧洲资本主义发展初期,由于工场
的手工业向机器生产过渡,提高了生产力,促进了
科学技术的快速发展,其中突出的成就就是数学研
第3章 导数及应用
3.1.1 变化率问题
1
变化率 问题
内容:函数平均变化率的概念,求函数平均 变化率的一般步骤.
应用
求函数在某区间上的平均 变化率
求函数在某点附近的平均 变化率
2
本课主要学习平均变化率的概念及内涵,掌握求平均变 化率的一般步骤.在问题引入、概念形成及概念深化都是 采用情境探究的方法,将有关情境材料提供给学生,学生 通过对这些材料进行分析、思考、提炼、探究,获得对平 均变化率概念的了解.然后在探究的基础上,组织学生研 讨自己在探究中的发现,通过互相交流、补充、研讨,使 学生对平均变化率的认识从感性的认识上升到理性认识, 获得一定水平层次的科学概念。针对平均变化率的求法 给出3个例题,通过解决具体问题强调正确应用平均变化 率的重要性。
2.若函数f(x)为常函数时,△y=0
3.变式
y x
f (x2 ) f (x1) x2 x1
f (x1 x) x
f (x1)
11
观察函数f(x)的图象平均变化率
表示什么?
y f(x2) f(x2)-f(x1)=△y
Y=f(x) B
直线AB 的斜率
f(x1) O
A
x2-x1=△xx
称为函数f(x)从x1到x2的平均变化率 若设Δ x=x2-x1, Δ y=f(x2)-f(x1) 则平均变化率为
常用计算公式表
常用计算公式表以下是一份常用计算公式表,包含了各个领域常见的公式,可以帮助读者快速查找和应用这些公式。
1. 数学公式1.1 代数公式- 二次方程求根公式:对于二次方程ax²+bx+c=0,其根可以通过公式x=(-b±√(b²-4ac))/(2a)求得。
- 四则运算法则:加法、减法、乘法和除法的基本法则,用于计算数值运算。
1.2 几何公式- 长方形的面积公式:面积 = 长 ×宽。
- 圆的面积公式:面积= πr²,其中r为半径。
- 三角形的面积公式:面积 = 0.5 ×底 ×高。
1.3 概率与统计公式- 概率公式:概率 = 事件发生次数 / 总次数。
- 标准差公式:标准差= √(每个数与平均数之差的平方和的均值)。
2. 物理公式2.1 牛顿力学- 牛顿第二定律:力 = 质量 ×加速度。
- 动能公式:动能 = 1/2 ×质量 ×速度²。
- 万有引力公式:F = G × (m1 × m2) / r²,其中F为两物体之间的引力,G为引力常数,m1和m2为物体的质量,r为它们之间的距离。
2.2 热力学- 热力学第一定律:ΔU = Q - W,其中ΔU为系统内能的变化,Q为热量,W为对外界的功。
- 热力学第二定律:熵增原理,熵在自然过程中总是增加的。
2.3 光学- 折射定律:n₁sinθ₁= n₂sinθ₂,其中n₁和n₂为两种介质的折射率,θ₁和θ₂为入射角和折射角。
3. 化学公式3.1 反应速率公式- 反应速率的平均变化率:Δ[R]/Δt = Δ[R]/Δt,其中[R]表示反应物浓度,t表示时间。
- 速率常数公式:速率 = k[A]ⁿ[B]ᵐ,其中k为速率常数,[A]和[B]为反应物浓度,ⁿ和ᵐ为反应物的反应级数。
3.2 pH计算公式- pH = -log[H⁺],其中[H⁺]表示酸性溶液中的氢离子浓度。
第三章 3.1导数的概念与运算
1.平均变化率一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商f (x 0+Δx )-f (x 0)Δx =ΔyΔx ,称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率.2.函数y =f (x )在x =x 0处的导数 (1)定义称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b )可导.这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数f ′(x ).于是,在区间(a ,b )内,f ′(x )构成一个新的函数,我们把这个函数称为函数y =f (x )的导函数,记为f ′(x )或y ′(或y ′x ). 4.基本初等函数的导数公式y =f (x ) y ′=f ′(x ) y =c y ′=0y =x n (n ∈N +) y ′=nx n -1,n 为正整数 y =x u (x >0,u ≠0且u ∈Q )y ′=ux u -1,u 为有理数y =a x (a >0,a ≠1)y ′=a x ln ay =log a x (a >0,a ≠1,x >0)y ′=1x ln ay =sin x y ′=cos x y =cos xy ′=-sin x5.导数的四则运算法则 设f (x ),g (x )是可导的,则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0). 6.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A .0B .3C .4D .-73答案 B解析 ∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.有一机器人的运动方程为s =t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( )A.194B.174C.154D.134 答案 D5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 答案 (1,1)解析 y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2 (m >0),因为两切线垂直,所以k 1k 2=-1,所以m=1,n =1,则点P 的坐标为(1,1).题型一 导数的运算例1 求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x +e ; (4)y =ln x x 2+1;(5)y =ln(2x -5).解 (1)∵y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , ∴y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′ =(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1.(2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义命题点1 已知切点的切线方程问题例2 (1)函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0(2)曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.答案 (1)C (2)13解析 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.(2)∵y ′=-2e-2x,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示, 其中直线y =-2x +2与y =x 的交点为A (23,23),∴三角形的面积S =12×1×23=13.命题点2 未知切点的切线方程问题例3 (1)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0D .2x -y -1=0(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0 D .x -y +1=0答案 (1)D (2)B解析 (1)对y =x 2求导得y ′=2x .设切点坐标为(x 0,x 20),则切线斜率为k =2x 0.由2x 0=2得x 0=1,故切线方程为y -1=2(x -1), 即2x -y -1=0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点3 和切线有关的参数问题例4 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 D解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D. 命题点4 导数与函数图象的关系例5 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的,且图象是下凸的; 当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的,且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0C .3x -y -2=0或3x -4y +1=0D .3x -y -2=0或4x -3y +1=0(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)C (2)-e解析 (1)由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3. 又b =a 3,则b =1,所以切点P 的坐标为(1,1). 故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1), 即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∴切线方程为y -x 30=3x 20(x -x 0),∵P (a ,b )在曲线y =x 3上,且a =1,∴b =1.∴1-x 30=3x 20(1-x 0), ∴2x 30-3x 20+1=0, ∴2x 30-2x 20-x 20+1=0,∴(x 0-1)2(2x 0+1)=0, ∴切点为⎝⎛⎭⎫-12,-18, ∴此时的切线方程为y +18=34⎝⎛⎭⎫x +12, 综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0,故选C. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.4.求曲线的切线方程条件审视不准致误典例 (12分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 易错分析 由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况. 规范解答解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.[4分](2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .[7分]由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.[10分]综上,a =1或a =164.[12分]温馨提醒 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要对该点是否为切点进行讨论.[方法与技巧]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程. [失误与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练 (时间:35分钟)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1 D .e答案 B解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x .∴f ′(1)=2f ′(1)+1, 则f ′(1)=-1.2.(2015·保定调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N +,则f 2 016(x )等于( ) A .-sin x -cos x B .sin x -cos x C .-sin x +cos x D .sin x +cos x 答案 B解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x =f 1(x ),∴f n (x )是以4为周期的函数,∴f 2 016(x )=f 4(x )=sin x -cos x ,故选B.4.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( )A .0B .1C .2D .3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+3×(-13)=0. 6.在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.答案 -3解析 y =ax 2+b x 的导数为y ′=2ax -b x2, 直线7x +2y +3=0的斜率为-72.由题意得⎩⎨⎧ 4a +b 2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧ a =-1,b =-2,则a +b =-3. 7.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________.答案 9 解析 先设切点为M (x 0,y 0),则切点在曲线上有y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3, 又切线l 过A 、M 两点,所以k =y 0-16x 0, 则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2,从而实数a 的值为a =k =-2-16-2=9. 8.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0C .4x +2y -1=0D .4x -2y -1=0答案 A解析 y ′=-e x (e x +1)2=-1e x +1e x +2, 因为e x >0,所以e x +1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号), 则e x +1ex +2≥4, 故y ′=-1e x +1ex +2≥-14当(x =0时取等号). 当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为(0,12), 切线的方程为y -12=-14(x -0), 即x +4y -2=0.故选A.9.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14. ∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.10.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎨⎧ 2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.B 组 专项能力提升(时间:25分钟)11.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( ) A.14 B.12C .1D .4 答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=a x, 由f ′(14)=g ′(14),得12×(14)12-=a 14, 可得a =14,经检验,a =14满足题意. 12.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为( )A.⎝⎛⎭⎫32,2B.⎝⎛⎭⎫32,134C.⎝⎛⎭⎫52,134D.⎝⎛⎭⎫52,2答案 B解析 设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g (1)+g (2)2×1=-x 20+3x 0+1=-⎝⎛⎭⎫x 0-322+134,∴P 点坐标为⎝⎛⎭⎫32,134时,S 普通梯形最大. 13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2. 14.已知曲线f (x )=x n +1(n ∈N +)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________.答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log2 016(x1x2…x2 015)=-1.15.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在k,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解(1)由已知得f′(x)=3ax2+6x-6a,∵f′(-1)=0,∴3a-6-6a=0,∴a=-2.(2)存在.由已知得,直线m恒过定点(0,9),若直线m是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).∵g′(x0)=6x0+6,∴切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
高二数学 3.1.1变化率问题与导数概念导学案 新人教A版选修1-1
高中数学 3.1.1变化率问题与导数概念导学案知识梳理1.在高台跳水运动中,运动员在t 1≤t ≤t 2这段时间里的位置为s 1≤s ≤s 2,则他的平均速度为 .2.已知函数y =f(x),令Δx = ,Δy = ,则当Δx ≠0时,比值 =ΔfΔx ,称作函数f(x)从x 1到x 2的平均变化率. 3.物体在某一时刻的速度称为 .4.一般地,如果物体的运动规律是s =s (t ),那么物体在时刻t 的瞬时速度v ,就是物体在t 到t +Δt 这段时间内,当Δt →0时平均速度的极限,即v =lim Δt →0 ΔsΔt= 5.一般地,函数y =f (x )在x =x 0处的瞬时变化率是 =lim Δx →0 ΔfΔx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)= . 学习过程1.平均变化率[例1] 求函数y =x 3在x 0到x 0+Δx 之间的平均变化率,并计算当x 0=1,Δx =12时平均变化率的值.[分析] 直接利用概念求平均变化率,先求出表达式,再直接代入数据就可以得出相应的平均变化率.应用变式1某质点沿曲线运动的方程为f(x)=-2x2+1(x 表示时间,f(x)表示位移),则该质点从x =1到x =2时的平均速度为 ( )A .-4B .-8C .6D .-6 2.瞬时变化率[例2] 以初速度v 0(v 0>0)垂直上抛的物体,t 秒时的高度为s (t )=v 0t -12gt 2,求物体在时刻t 0处的瞬时速度.应用变式2一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t2,求此物体在t =2时的瞬时速度.3.利用定义求函数某点处的导数[例3] 根据导数定义求函数y =x 2+1x+5在x =2处的导数.应用变式3求y =f(x)=123++x x 在x =1处的导数.[例4] 设f (x )在x 0处可导,求lim Δx →0 f (x 0-Δx )-f (x )Δx的值.课堂巩固训练 一、选择题1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx等于( )A .4B .4xC .4+2ΔxD .4+2(Δx)22.如果质点A 按规律s =2t3运动,则在t =3秒时的瞬时速度为 ( )A .6B .18C .54D .813.当自变0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数 ( ) A .在区间[0x ,1x ]上的平均变化率 B .在0x 处的变化率 C .在1x 处的导数 D .在区间[0x ,1x ]上的导数4.已知f(x)=x x 32-,则f ′(0)= ( )A .Δx -3B .(Δx)2-3ΔxC .-3D .0 二、填空题5.已知函数f(x)=ax +4,若f ′(1)=2,则a 等于______.6.球的半径从1增加到2时,球的体积平均膨胀率为____________. 三、解答题7.枪弹在枪筒中的运动可以看作匀加速直线运动,如果它的加速度是a =5×105m/s2,枪弹从枪口射出所用的时间为1.6×10-3s.求枪弹射出枪口时的瞬时速度.课后强化作业 一、选择题1.在函数变化率的定义中,自变量的增量Δx 满足( )A .Δx <0B .Δx >0C .Δx =0D .Δx ≠0 2.函数在某一点的导数是( )A .在该点的函数的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率3.在x =1附近,取Δx =0.3,在四个函数①y =x ②y =x 2③y =x 3④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①4.质点M 的运动规律为s =4t +4t 2,则质点M 在t =t 0时的速度为( )A .4+4t 0B .0C .8t 0+4D .4t 0+4t 25.函数y =x +1x在x =1处的导数是( )A .2B.52C .1D .0 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( )A .3B .4C .5D .78.f (x )在x =x 0处可导,则lim Δx →0 f (x 0+Δx )-f (x 0)Δx( ) A .与x 0,Δx 有关 B .仅与x 0有关,而与Δx 无关 C .仅与Δx 有关,而与x 0无关 D .与x 0,Δx 均无关9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b10.f (x )在x =a 处可导,则lim h →0 f (a +3h )-f (a -h )2h等于( ) A .f ′(a ) B.12f ′(a ) C .4f ′(a ) D .2f ′(a )二、填空题11.f (x 0)=0,f ′(x 0)=4,则lim Δx →0 f (x 0+2Δx )-f (x 0)Δx=________. 12.某物体做匀速运动,其运动方程是s =vt +b ,则该物体在运动过程中其平均速度与任何时刻的瞬时速度关系是________.13.设x 0∈(a ,b ),y =f (x )在x 0处可导是y =f (x )在(a ,b )内可导的________条件.14.一球沿斜面自由滚下,其运动方程是S =t 2(S 的单位:m ,t 的单位:s),则小球在 t =5时的瞬时速度为______. 三、解答题15.一物体作自由落体运动,已知s =s (t )=12gt 2.(1)计算t 从3秒到3.1秒、3.01秒,两段内的平均速度;2)求t =3秒时的瞬时速度.16.若f ′(x )=A ,求lim h →0f (x +h )-f (x -2h )h.17.求函数y =x 在x =1处的导数.18.路灯距地面8m ,一个身高1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影C 沿某直线离开路灯,(1)求身影的长度y 与人距路灯的距离x 之间的关系式;(2)求人离开路灯第10秒时身影的瞬时变化率.3.1.2导数的几何意义 学习目标1.知识与技能:了解导函数的概念,理解导数的几何意义.2.过程与方法:会求导函数,根据导数的几何意义,会求曲线上某点处的切线方程.学习重、难点重点:导数的几何意义.难点:对导数几何意义的理解. 知识梳理1.导数的几何意义 ①割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是ΔyΔx= 当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋近于过点A 的切线AD 的斜率k ,即k = = ②导数的几何意义函数y =f(x)在点x 0处的导数的几何意义是曲线y =f(x)在点P(x 0,f(x 0))处的切线的 .也就是说,曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率是 .相应地,切线方程为 . 2.函数的导数 学习过程1.求割线的斜率[例1] 过曲线y =f(x)=3x 上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx =0.1时割线的斜率.2.用定义求切线方程[例2] 已知曲线C :y =13x 3+43.(1)求曲线C 上的横坐标为2的点处的切线方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点?应用变式1 已知曲线y =23x 上一点A(1,2),则点A 处的切线斜率等于 ( ) A .2 B .4 C .6+6Δx2D .63.求切点坐标[例3] 抛物线y =2x 在点P 处的切线与直线2x -y +4=0平行,求P 点的坐标及切线方程.应用变式2 若抛物线y =2x 与直线2x -y +m =0相切,求m.4.导数几何意义的应用[例4] 若抛物线y =42x 上的点P 到直线y =4x -5的距离最短,求点P 的坐标.应用变式3 求抛物线y =42x 上的点到直线y =4x -5的距离的最小值.[例5] 曲线y =3x 在x 0=0处的切线是否存在,若存在,求出切线的斜率和切线方程;若不存在,请说明理由.应用变式4已知曲线y =4x在点(1,4)处的切线与直线l 平行且距离等于17,则直线l 的方程为( )A .4x -y +9=0或4x -y +25=0B .4x -y +1=0C .4x +y +9=0或4x +y -25=0D .以上都不对 [例6] 试求过点M(1,1)且与曲线y =3x +1相切的直线方程.课堂巩固训练 一、选择题1.曲线y =-22x +1在点(0,1)处的切线的斜率是( )A .-4B .0C .4D .不存在2.曲线y =12x 2-2在点(1,-32)处切线的倾斜角为( )A .1 B.π4 C.5π4 D .-π43.若曲线y =h(x)在点P(a ,h(a))处的切线方程为2x +y +1=0,那么 ( ) A .h ′(a)=0 B .h ′(a)<0 C .h ′(a)>0 D .h ′(a)不确定 4.曲线y =3x 在点P 处的切线斜率为3,则点P 的坐标为( )A .(-2,-8)B .(1,1),(-1,-1)C .(2,8)D .(-12,-18)二、填空题5.已知曲线y =1x -1上两点A (2,-12),B (2+Δx ,-12+Δy ),当Δx =1时,割线AB 的斜率为________.6.P 是抛物线y =x 2上一点,若过点P 的切线与直线y =-12x +1垂直,则过点P 的切线方程为________.三、解答题7.求曲线y =1x -x 上一点P (4,-74)处的切线方程.课后强化训练 一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( )A .9B .6C .-3D .-12.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .60°3.函数y =-1x 在点(12,-2)处的切线方程是( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线6.设f (x )为可导函数且满足lim x →0 f (1)-f (1-2x )2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-27.在曲线y =x 2上的点________处的倾斜角为π4( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角 D .钝角9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1)10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________.12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________.14.曲线y =x 3+x +1在点(1,3)处的切线是________. 三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.17.求过点(2,0)且与曲线y =1x相切的直线方程.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标.3.2导数的计算3.2.1几个常用函数的导数及基本初等函数的导数公式 学习目标1.知识与技能:了解常数函数和幂函数的求导方法和规律,会求任意y =x α(α∈Q)的导数.2.过程与方法:掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 学习重、难点重点:常数函数、幂函数的导数难点:由常见幂函数的求导公式发现规律,得到幂函数的求导公式. 知识梳理1.若f(x)=c ,则f ′(x)= .若f(x)=nx (n ∈N*),则f ′(x)= .2.若f(x)=sinx ,则f ′(x)= .若f(x)=cosx ,则f ′(x)= . 3.若f(x)=xa ,则f ′(x)=.若f(x)=xe ,则f ′(x)= .4. 若f (x )=log a x ,则f ′(x )= .若f (x )=ln x ,则f ′(x )= . 学习过程1.导数公式的直接应用[例1] 求下列函数的导数.(1)y =2a (a 为常数). (2)y =12x . (3)y =cosx.应用变式1求下列函数的导数(1)y =1x2 (2)y =3x (3)y =2x(4)y =log 2x2.求某一点处的导数 [例2] 求函数f (x )=1x在x =1处的导数.应用变式2 已知f (x )=n x1,且f ′(1)=-13,求n .3.利用导数求切线的斜率及方程 [例3] 求过曲线y =cos x 上点P ⎥⎦⎤⎢⎣⎡21,3π且与在这点的切线垂直的直线方程.应用变式3 求曲线y =32x 的斜率等于12的切线方程.课堂巩固训练 一、选择题1.函数f(x )=0的导数是 ( )A .0B .1C .不存在D .不确定2.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=03.已知函数f (x )=1x,则f ′(-2)=( )A .4B.14 C .-4 D .-144.下列结论中不正确的是 ( )A .若y =3,则y ′=0B .若y =1x,则y ′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′|x =1=3二、填空题5.曲线y =xn 在x =2处的导数为12,则n 等于________. 6.若函数y =sint ,则y ′|t =6π=________. 三、解答题7.求抛物线y =2x 上的点到直线x -y -2=0的最短距离.课后强化训练 一、选择题1.lim Δx →0 (1+Δx )2-1Δx表示( ) A .曲线y =x 2的斜率 B .曲线y =x 2在点(1,1)处的斜率C .曲线y =-x 2的斜率D .曲线y =-x 2在(1,-1)处的斜率2.若y =cos 2π3,则y ′=( )A .-32B .-12C .0D.123.下列命题中正确的是( )①若f ′(x )=cos x ,则f (x )=sin x ②若f ′(x )=0,则f (x )=1 ③若f (x )=sin x ,则f ′(x )=cos xA .①B .②C .③D .①②③ 4.若y =ln x ,则其图象在x =2处的切线斜率是( )A .1B .0C .2D.125.已知直线y =kx 是y =ln x 的切线,则k 的值为( )6.已知函数f (x )=21x ,则'⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛21f =( )7.y =1x在点A (1,1)处的切线方程是( )A .x +y -2=0B .x -y +2=0C .x +y +2=0D .x -y -2=08.下列结论中正确的个数为( )①y =ln2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2xln2 ④y =log 2x ,则y ′=1x ln2A .0B .1C .2D .3 9.下列结论中不正确的是( )A .若y =0,则y ′=0B .若y =33x ,则y ′=-1x 3xC .若y =-x ,则y ′=-12xD .若y =3x 3,则y ′=3x 210.若y =sin x ,则y ′|x =π3=( )A.12 B .-12 C.32D .-32二、填空题11.曲线y =ln x 与x 轴交点处的切线方程是 .12.质点沿直线运动的路程与时间的关系是s =5t ,则质点在t =32时的速度等于 .13.在曲线y =4x2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为 .14.y =10x在(1,10)处切线的斜率为 . 三、解答题 15.已知曲线C :y =x 3(1)求曲线C 上点(1,1)处的切线方程(2)在(1)中的切线与曲线C 是否还有其它公共点?16.求下列函数的导数(1)y =ln x (2)y =1x4 (3)y =55x17.已知点P (-1,1),点Q (2,4)是曲线y =x 2上两点,求与直线PQ 平行的曲线y =x 2的切线方程.18.求过曲线y =sin x 上的点P ⎥⎦⎤⎢⎣⎡22,4π且与在这点处的切线垂直的直线方程.3.2.2 导数的运算法则 学习目标能利用给出的基本初等函数的导数公式表和导数的四则运算法则求简单函数的导数 学习重、难点重点:导数的四则运算及其运用. 难点:导数的四则运算法则的推导. 知识梳理1.设函数f(x)、g(x)是可导函数,(f(x)±g(x))′= ;(f(x)·g(x))′= . 2.设函数f (x )、g (x )是可导函数,且g (x )≠0,()()'⎥⎦⎤⎢⎣⎡x g x f = 学习过程1.导数公式法则的直接应用 [例1] 求下列函数的导数:(1)y =()()112-+x x ;(2)y =x x sin 2;(3)y =1x +2x 2+3x 3;(4)y =x tan x -2cos x .应用变式1求下列函数的导数:(1)y =2x -2+3x -3 (2)y =(2x 2+3)(3x -2) (3)y =x -sin x 2·cos x 22.求导法则的灵活运用[例2] 求函数y =sin 4x4+cos 4x4的导数.应用变式2求函数y =-sin x2(1-2sin 2x4)的导数.3.利用导数求有关参数[例3] 偶函数f(x)=e dx cx bx ax ++++234的图象过点P(0,1),且在x =1处的切线方程为y =x -2,求y =f(x)的解析式.应用变式3已知抛物线y =72-+bx ax 通过点(1,1),过点(1,1)的切线方程为4x -y -3=0,求a 、b 的值.[例4] 给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3,其中正确的个数是 ( )A .1B .2C .3D .4 课堂巩固训练 一、选择题1.函数y =2sinxcosx 的导数为 ( )A .y ′=cosxB .y ′=2cos2xC .y ′=2(sin2x -cos2x)D .y ′=-sin2x2.函数f (x )=1x 3+2x +1的导数是( )A.1(x 3+2x +1)2B.3x 2+2(x 3+2x +1)2C.-3x 2-2(x 3+2x +1)2D.-3x2(x 3+2x +1)2 3.函数y =(x -a)(x -b)在x =a 处的导数为 ( )A .abB .-a(a -b)C .0D .a -b 4.函数y =x ·lnx 的导数是 ( )A .x B.1xC .ln x +1D .ln x +x二、填空题5.函数y =143223-+-x x x 的导数为 6.函数y =xsinx -cosx 的导数为__________________. 三、解答题7.函数f(x)=123+--x x x 的图象上有两点A(0,1)和B(1,0),在区间(0,1)内求实数a ,使得函数f(x)的图象在x =a 处的切线平行于直线AB.课后强化作业 一、选择题1.函数y =cos xx的导数是( )A .-sin x x 2B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 22.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1033.曲线运动方程为s =1-t t2+2t 2,则t =2时的速度为( )A .4B .8C .10D .124.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x 5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos x B .y =x sin x C .y =1x +2x D .y =1cos x6.函数y =sin ⎪⎭⎫⎝⎛-x 4π的导数为( ) A .-cos ⎪⎭⎫ ⎝⎛+x 4π B .cos ⎪⎭⎫ ⎝⎛-x 4π C .-sin ⎪⎭⎫ ⎝⎛-x 4π D .-sin ⎪⎭⎫⎝⎛+x 4π7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x=x 0处( )A .可导B .不可导C .不一定可导D .不能确定 8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6 D .-5x 49.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6 10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1 二、填空题11.若函数f (x )=1-sin xx,则f ′(π)= .12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是 .13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )= .14.设f (x )=ln a 2x(a >0且a ≠1),则f ′(1)= . 三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5);(2)1+x 1-x +1-x 1+x;(3)f (x )=ln x +2xx 2.16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).17.设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.18.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图象都过点 P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.3.3导数在研究函数中的应用 3.3.1函数的单调性与导数知识梳理1.设函数y =f(x)在区间(a ,b)内可导,(1)如果在区间(a ,b)内,f ′(x)≥0,则f(x)在此区间是 的;(2)如果在区间(a ,b)内,f ′(x)≤0,则f(x)在此区间内是 的.2.如果函数y =f(x)在x 的某个开区间内,总有f ′(x)>0,则f(x)在这个区间上严格增加,这时该函数在这个区间为 ;如果函数当自变量x 在某区间上,总有f ′(x)<0,则f(x)在这个区间为 . 学习过程1.用导数求函数的单调区间 [例1] 求下列函数的单调区间(1)f(x)=133+-x x (2)f (x )=x +b x(b >0)应用变式1求下列函数的单调区间:(1)f(x)=x x x 9323-+ (2)f(x)=sinx -x ,x ∈(0,π)2.利用导数证明不等式[例2] 已知x >1,求证x >lnx.应用变式2已知:x >0,求证:x >sinx.3.已知函数的单调性,确定参数的取值范围[例3] 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)内单调递减,在(6,+∞)上单调递增,试求a 的范围. 应用变式3已知f (x )=13x 3+12ax 2+ax -2(a ∈R ).若函数f (x )在(-∞,+∞)上为单调递增函数,求a 的取值范围.[例4] 已知函数f(x)=32x a x-,x ∈(0,1],a>0,若f(x)在(0,1]上单调递增,求a 的取值范围.课堂巩固训练 一、选择题1.函数f(x)=2x -sinx 在(-∞,+∞)上 ( ) A .是增函数 B .是减函数C .在(0,+∞)上增,在(-∞,0)上增D .在(0,+∞)上减,在(-∞,0)上增 2.函数y =xlnx 在区间(0,1)上是 ( )A .单调增函数B .单调减函数C .在(0,1e )上是减函数,在(1e,1)上是增函数D .在(0,1e )上是增函数,在(1e,1)上是减函数3.若在区间(a ,b)内有f ′(x)>0,且f(a) ≥0,则在(a ,b)内有 ( )A .f(x)>0B .f(x)<0C .f(x)=0D .不能确定 4.在下列函数中,在(0,+∞)内为增函数的是( ) A .sin2xB .x xeC .3x x -3D .-x +ln(1+x)二、填空题5.函数f(x)=x x -3的增区间是 和 ,减区间是 . 6.已知函数y =322++x ax 在(-1,+∞)上是减函数,则a 的取值范围是 . 三、解答题7.已知函数f(x)=83++ax x 的单调递减区间为(-5,5),求函数f(x)的递增区间.课后强化作业 一、选择题1.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为增函数的一个充分条件是( )A .b 2-4ac >0B .b >0,c >0内部C .b =0,c >0D .b 2-3ac >02.函数f (x )=2x 2-ln x 的单调递增区间是( )A .(0,12)B .(0,24)C .(12,+∞)D .(-12,0)及(0,12)3.(2009·广东文,8)函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 4.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛2,0π B.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛2,0πC.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛ππ,2 D.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛ππ,2 5.函数f (x )=ax 3-x 在R 上为减函数,则( )A .a ≤0B .a <1C .a <2D .a ≤136.已知a >0,函数f (x )=-x 3+ax 在[1,+∞)上是单调减函数,则a 的最大值为( )A .1B .2C .3D .4 7.设f (x )在(a ,b )内可导,则f ′(x )<0是f (x )在(a ,b )上单调递减的( )A .充分不必要条件你B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若函数y =x 2-2bx +6在(2,8)内是增函数,则( )A .b ≤2B .b <2C .b ≥2D .b >2 9.(2009·湖南文,7)若函数y =f (x )的导函数...在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )10.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能为( )二、填空题11.函数y =x 3-x 2-x 的单调递增区间为 .12.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是 .13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是 .14.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围 .三、解答题 15.讨论函数f (x )=bxx 2-1(-1<x <1,b ≠0)的单调性.16.已知曲线y =x 3+3x 2+6x -10,点P (x ,y )在该曲线上移动,在P 点处的切线设为l . (1)求证:此函数在R 上单调递增;(2)求l 的斜率的范围.17.已知向量a =(x 2,x +1),b =(1-x ,t ),若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.18.设函数f (x )=(ax 2-bx )e x(e 为自然对数的底数)的图象与直线ex +y =0相切于点A ,且点A 的横坐标为1.(1)求a ,b 的值;(2)求函数f (x )的单调区间,并指出在每个区间上的增减性.3.3.2函数的极值与导数,函数的最大(小)值与导数知识梳理1.已知函数y =f(x)及其定义域内一点x.对于包含x0在内的开区间内的所有点x ,如果都有,则称函数f(x)在点0x 处取得,并把0x 称为函数f(x)的一个;如果都有,则称函数f(x)在点0x 处取得 ,并把0x 称为函数f(x)的一个 .极大值与极小值统称为 ,极大值点与极小值点统称为 .2.假设函数y =f(x)在闭区间[a ,b]上的图象是一条 ,该函数在[a ,b]上一定能够取得 与 ,该函数在(a ,b)内是 ,该函数的最值必在 取得. 3.当函数f(x)在点0x 处连续时,判断f(0x )是否存在极大(小)值的方法是: (1)如果在0x 附近的左侧,右侧,那么f(0x )是极值;(2)如果在0x 附近的左侧 ,右侧 ,那么f(0x )是极 值; (3)如果f ′(x)在点0x 的左右两侧符号不变,则f(0x ) 函数f(x)的极值. 学习过程1.利用导数求函数的极值[例1] 求函数y =133+-x x 的极值.应用变式1函数y =x x x 9323--(-2<x <2)有( )A .极大值为5,极小值为-27B .极大值为5,极小值为-11C .极大值为5,无极小值D .极大值为-27,无极小值 2.利用导数求函数的最大值与最小值[例2] 求函数f(x)=1223+-x x 在区间[-1,2]上的最大值与最小值.应用变式2求函数f(x)=2824+-x x 在[-1,3]上的最大值与最小值.3.求函数极值的逆向问题[例3] 已知f(x)=cx bx ax ++23(a ≠0)在x =±1时取得极值,且f(1)=-1, (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.应用变式3设a >0,(1)证明f (x )=ax +b1+x2取得极大值和极小值的点各有1个;(2)当极大值为1,极小值为-1时,求a 和b 的值.[例4] 已知函数f(x)=c bx x ax -+44ln (x>0)在x =1处取得极值-3-c ,其中a 、b 、c 为常数.(1)试确定a ,b 的值;(2)若对任意x>0,不等式f(x)≥22c -恒成立,求c 的取值范围.[例5] 已知f(x)=2233a bx ax x +++在x =-1时有极值0,求常数a 、b 的值.课堂巩固训练 一、选择题1.若函数y =f(x)是定义在R 上的可导函数,则f ′(x)=0是x0为函数y =f(x)的极值点( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.函数f (x )=x 2-x +1在区间[-3,0]上的最值为 ( )A .最大值为13,最小值为34B .最大值为1,最小值为-17C .最大值为3,最小值为-17D .最大值为9,最小值为-19 3.函数y =3x +1 的极大值是( )A .1B .0C .2D .不存在4.y =f(x)=a x x +-2332的极大值是6,那么a 等于 ( ) A .6 B .0 C .5D .1二、填空题5.(2009·辽宁文,15)若函数f (x )=x 2+ax +1在x =1处取极值,则a = .6.函数y =x ·ex 的最小值为________. 三、解答题7.设y =f (x )为三次函数,且图象关于原点对称,当x =12时,f (x )的极小值为-1,求出函数f (x )的解析式.课后强化作业 一、选择题1.设x 0为f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=0B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为0 2.对于可导函数,有一点两侧的导数值异号是这一点为极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数y =2-x 2-x 3的极值情况是( )A .有极大值,没有极小值B .有极小值,没有极大值C .既无极大值也无极小值D .既有极大值也有极小值4.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个5.下列命题:①一个函数的极大值总比极小值大;②可导函数导数为0的点不一定是极值点;③一个函数的极大值可以比最大值大;④一个函数的极值点可在其不可导点处达到,其中正确命题的序号是( )A .①④B .②④C .①②D .③④ 6.函数y =|x -1|,下列结论中正确的是( )A .y 有极小值0,且0也是最小值B .y 有最小值0,但0不是极小值C .y 有极小值0,但不是最小值D .因为y 在x =1处不可导,所以0既非最小值也非极值7.函数f (x )=x (1-x 2)在[0,1]上的最大值为( )A.239B.229C.329D.388.已知函数f (x )=x 3-px 2-qx 的图像与x 轴切于(1,0)点,则函数f (x )的极值是( )A .极大值为427,极小值为0B .极大值为0,极小值为427C .极大值为0,极小值为-427D .极大值为-427,极小值为09.已知函数y =|x 2-3x +2|,则( )A .y 有极小值,但无极大值B .y 有极小值0,但无极大值C .y 有极小值0,极大值14D .y 有极大值14,但无极大值10.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c ) 二、填空题11.函数y =2xx 2+1的极大值为____________,极小值为____________.12.函数y =x 3-6x +a 的极大值为____________,极小值为____________.13.函数y =x -x 3(x ∈[0,2])的最小值是________.14.已知函数f (x )=x (x -c )2在x =2处取极大值,则常数c 的值为________. 三、解答题15.已知函数f (x )=x 3-3x 2-9x +11.(1)写出函数的递减区间;(2)讨论函数的极大值或极小值,如有试写出极值.16.求下列函数的最值(1)f (x )=3x -x 3(-3≤x ≤3); (2)f (x )=sin2x -x ⎪⎭⎫ ⎝⎛≤≤-22ππx .17.已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数.18.(2010·江西理,19)设函数f (x )=ln x +ln(2-x )-ax (a >0).(提示:[ln(2-x )]′=-12-x)(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.3.4生活中的优化问题举例学习过程1.面积、容积最大问题[例1] 在边长为60cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?应用变式1已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的长和宽.2.利用导数解决几何中的问题[例2]将一段长为100cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截法使正方形与圆面积之和最小?应用变式2已知圆柱的表面积为定值S,求当圆柱的容积V最大时圆柱的高h的值.3.获利最大[例3]某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆,本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.应用变式3某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=3x4x+32(x∈N+).[例4] 甲、乙两地相距s 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b ;固定部分为a 元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?课堂巩固训练一、选择题1.三次函数当x =1时,有极大值4;当x =3时,有极小值0,且函数过原点,则此函数是( )A .y =x x x 9623++B .y =x x x 9623+-C .y =x x x 9623--D .y =x x x 9623-+2.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( )A .0<b <1B .b <1C .b >0D .b <123.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80000 (x >400),则总利润最大时,每年生产的产品是 ( ) A .100 B .150 C .200 D .300 4.设底为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为 ( ) A.3V B.32V C.34VD .23V二、填空题5.面积为S 的一切矩形中,其周长最小的是________.6.函数f(x)=)2(2x x -的单调递减区间是________.三、解答题7.用边长为120cm 的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?课后强化作业一、选择题1.将8分解为两个非负数之和,使其立方之和为最小,则分法为( )A .2和6B .4和4C .3和5D .以上都不对2.某箱子的容积与底面边长的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的容积最大时,箱子底面边长为( )A .30B .40C .50D .以上都不正确3.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( ) A .6 B .8 C .10 D .124.内接于半径为R 的球且体积最大的圆锥的高为( )A .RB .2R C.43R D.34R 5.要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积为最大,则高为( )A.33cmB.1033cmC.1633cmD.2033cm 6.圆柱形金属饮料罐的容积一定时,为了使所用材料最省,它的高与底半径应为( )A .h =2RB .h =RC .h =2RD .h =2R7.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .508.设圆柱的体积为V ,那么其表面积最小时,底面半径为( )A.3V B.3V π C.34V D .23V 2π9.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203C .-1D .-8 10.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大为( )A .2πr 2B .πr 2C .4πr 2 D.12πr 2 二、填空题11.把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.12.将长为l 的铁丝剪成2段,各围成长与宽之比为21及32的矩形,则面积之和的最小值为________.13.做一个容积为256的方底无盖水箱,它的高为________时最省料.14.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为___.三、解答题15.某公司规定:对于小于或等于150件的订购合同,每件售价为200元,对于多于150件的订购合同,每超过一件,则每件的售价比原来减少1元,试问订购多少件的合同将会使公司的收益最大?16.如图,水渠横断面为等腰梯形,水的横断面面积为S ,水面的高为h ,问侧面与地面成多大角度时,才能使横断面被水浸湿的长度最小?17.某厂生产某种产品的固定成本(固定投入)为2500元,已知每生产x件这样的产品需要再增加可变成本C(x)=200x+136x3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?18.用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为21,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?。
平均变化率
函数的平均变化率
学习目标:理解函数的平均变化率的概念,并会求此变化率. 新知:
1. 函数的平均变化率的定义:
函数y=f(x)在点
0=x x 及其附近有定义,令=x ∆ ,00=y-y =(x)-(x )=y f f ∆
,则当 时,比值 叫做函数y=f(x)在0x 到0+x x ∆之间的平均变化率。
2. 平均变化率的计算公式: 尝试应用
1. 若函数f(x)在12[,]x x 内的平均变化率为0,能否说明函数f(x)没有发
生变化?
2. 平均变化率的计算公式中x ∆,y ∆的值是否可为任意实数?
考点把握
考点 求平均变化率
例
2
00(x)=+2+f x x x x x ∆求函数在到之间的平均变化率。
跟踪演练:2(x)=5+622+f x x ∆求函数在到之间的平均变化率。
练习
1. 00=(x),x x +y=
f x x ∆∆求函数y 当自变量由改变到时,( ) A 0(x +)f x ∆ B 0(x )+f x ∆ C 0(x )f x ∆ D
00(x +)-(x )f x f ∆ 2.若函数2f(x)=-1x ,当自变量x 由1变为1.1时函数的平均变化率为
3.在x=1附近取231=0.3,=,=,=,=x x
y x y x ∆函数y x y 中,平均变化率最大的是
4.已知2=s 2t ,t 从3秒到3.1秒的平均速度是多少?。
3.1. 导数的概念
2、函数f(x)在x=x0处的瞬时变化率怎样表示? 、函数 ( ) 处的瞬时变化率怎样表示?
f ( x0 + ∆x) − f ( x0 ) 函数f( ) 处的平均变化率: 函数 (x)在x=x0处的平均变化率: ( x0 + ∆x) − x0 函数f( ) 处的瞬时变化率: 函数 (x)在x=x0处的瞬时变化率:
1、瞬时速度 、
在高台跳水运动中,运动员在不同时刻的速度是不同的, 在高台跳水运动中,运动员在不同时刻的速度是不同的, 我们把物体在某一时刻的速度称为瞬时速度 瞬时速度( 我们把物体在某一时刻的速度称为瞬时速度(instantaneous Velocity)。 )
运动员的平均速度不一定能反映他( 运动员的平均速度不一定能反映他(她)在某一时刻的瞬时速度,那么 在某一时刻的瞬时速度, 如何求运动员的瞬时速度呢?比如, 时的瞬时速度是多少 时的瞬时速度是多少? 如何求运动员的瞬时速度呢?比如,t=2时的瞬时速度是多少?
lim
f ( x0 + ∆x) − f ( x0 ) f ( x0 + ∆x) − f ( x0 ) ∆f = lim = lim . ∆x → 0 ∆x → 0 ∆x ( x0 + ∆x) − x0 ∆x
我们称它为函数y=f(x)在x=x0处的导数(derivative), 在 处的导数( 我们称它为函数 ), 记作 f '( x0 ) 或 y ' |x = x0 ,即 f ( x0 + ∆x) − f ( x0 ) f '( x0 ) = lim . ∆x → 0 ∆x 由导数的定义,可知: 由导数的定义,可知: 高度h关于时间 的导数就是运动员的瞬时速度 关于时间t的导数就是运动员的瞬时速度; 高度 关于时间 的导数就是运动员的瞬时速度; 气球半径r关于体积 的导数就是气球的瞬时膨胀率 关于体积V的导数就是气球的瞬时膨胀率。 气球半径 关于体积 的导数就是气球的瞬时膨胀率。 实际上,导数可以描述任何事物的瞬时变化率, 实际上,导数可以描述任何事物的瞬时变化率, 如效率、点密度、国内生产总值( 如效率、点密度、国内生产总值(GDP)的增长率等等。 )的增长率等等。
函数的平均变化率
函数的平均变化率一【学习目标】:1.通过实例了解函数平均变化率的意义2.掌握求函数)(x f 在0x 到x x +0之间的平均变化率 二、【学习重难点】:1. 函数平均变化率意义的理解;2. 求函数)(x f 在0x 到x x +0之间的平均变化率三、【自主学习】:1、在教材中,我们利用山坡的陡峭程度来理解函数的平均变化率,即将登山者的水平位置用来表示,竖直位置用来表示,构造出)(x f y =的函数关系。
〔1〕如果山坡是一条直线,则)(x f y =的陡峭程度用直线的来表示,为什么. 〔2〕如果山坡是曲线,则)(x f y =的陡峭程度如何表示. 2、函数的平均变化率一般地,函数)(x f y =,,记作 ,,则当商的平均变化率。
注意〔1〕0)(x x f 在处是否有意义;〔2〕y x ∆∆、的含义、求法及围; 〔3〕平均变化率的大小、符号是由谁决定四、【课探究】问题1 掌握求函数)(x f y =的平均变化率的过程与方法,并注意上述三点。
1、求函数2x y =在以下区间上的平均变化率。
〔1〕],[00x x x x ∆+∈;〔2〕]4,1[∈x变式:求()221y f x x ==+在0x 到0x x +∆之间的平均变化率,并求当011,2x x =∆=时平均变化率的值。
2、求函数xy 1=在],[00x x x x ∆+∈的平均变化率〔0000≠∆+≠x x x ,且〕, 思考:假设]4,1[∈x ,]4,1[-∈x 是否能求出函数的平均变化 3、求函数x y =在)0(00>=x x x 附近的平均变化率。
五、【当堂检测】1、在平均变化率的定义中,自变量的增量x ∆满足〔 〕A x ∆>0B x ∆< 0C ≠∆x 0D x ∆= 02、质点运动规律s= 2t +3,则当*=2,x ∆=0.1时,y ∆的值为 〔 〕 A 0.40 B 0.41 C 0.43 D 0.443、在*=1附近,取x ∆=0.3,在四个函数○1y=* ○2y=2x ○3 y= 3x ○4 y=x1中,平均变化率最大的是 〔 〕A ○1B ○2C ○3D ○4 4、函数y=x2、当自变量*由2变到23,函数值的增量y ∆为 。
第一部分 第3章 3.1 3.1.1 平均变化率
3.1导数的概念3.1.1 平均变化率某病人吃完退烧药,他的体温变化如下:问题1:试比较时间x 从0 min 到20 min 和从20 min 到30 min 体温变化情况,哪段时间体温变化较快?提示:从20 min 到30 min 变化快. 问题2:如何刻画体温变化的快慢? 提示:用平均变化率.问题3:平均变化率一定为正值吗? 提示:不一定.可正、可负、可为零.1.平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.2.平均变化率与曲线变化关系平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.对平均变化率的理解(1)由平均变化率的定义知,平均变化率可正、可负、可为零. (2)平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢.[对应学生用书P36][例1] 已知函数f ((1)求函数f (x )在区间[1,1.1]上的平均变化率; (2)求函数f (x )在区间[2,2.01]上的平均变化率. [思路点拨] 直接利用平均变化率的定义求解即可. [精解详析] (1)f (1.1)-f (1)1.1-1=2×1.12-2×120.1=0.420.1=4.2.(2)f (2.01)-f (2)2.01-2=2×2.012-2×220.01=8.080 2-80.01=0.080 20.01=8.02.[一点通] 求函数f (x )在区间[x 1,x 2]上的平均变化率的步骤: 第一步:求x 2-x 1; 第二步:求f (x 2)-f (x 1); 第三步:由定义得出f (x 2)-f (x 1)x 2-x 1.1.如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12. (2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)342.求函数y =f (x )=x 2在x =1,2,3附近的平均变化率,取Δx 都为13,哪一点附近的平均变化率最大?解:在x =1附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx =2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx =4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx=6+Δx .当Δx =13时,k 1=2+13=73,k 2=4+13=133,k 3=6+13=193.由于k 1<k 2<k 3,所以在x =3附近的平均变化率最大.[例2] 已知气球的体积为V (单位:L)与半径r (单位:dm)之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 时半径r 的平均变化率,哪段半径变化较快(精确到0.01)?此结论可说明什么意义?[思路点拨] 首先由球的体积公式变形得到函数r (V )的解析式,再根据求平均变化率的步骤运算.[精解详析] (1)∵V =43πr 3,∴r 3=3V 4π,r = 33V 4π,∴r (V )= 33V4π.(2)函数r (V )在区间[0,1]上的平均变化率约为r (1)-r (0)1-0=33×14π-01≈0.62(dm/L). 函数r (V )在区间[1,2]上的平均变化率约为r (2)-r (1)2-1=- 33×24π-33×14π≈0.16(dm/L).显然体积V 从0 L 增加到1 L 时,半径变化快,这说明随着体积的增加,气球的半径增加的越来越慢.[一点通] 平均变化率在实际问题中有很大作用,要把实际问题中的量与函数中的量对应起来,从而能利用平均变化率的定义来解决实际问题.3.已知某一细菌分裂的个数随时间t s 的变化满足函数关系式f (t )=3t +1,分别计算该细菌在[1,2],[3,4],[5,6]时间段内分裂个数的变化率,由此你能得出什么结论?解:细菌分裂的个数在[1,2]内的平均变化率为 f (2)-f (1)2-1=32-3=6, 细菌分裂的个数在[3,4]内的平均变化率为 f (4)-f (3)4-3=34-33=54. 细菌分裂的个数在[5,6]内的平均变化率为 f (6)-f (5)6-5=36-35=486. 由此得出随时间的增加,细菌分裂的个数增加速度越来越快. 4.某商户2017年上半年的销售收入如图所示:试说明该商户1月到2月和2月到6月的经营情况.解:1月到2月,销售收入的平均变化率为6-22-1=4(万元/月),2月到6月,销售收入的平均变化率为12-66-2=1.5(万元/月).因为4>1.5,故可说明该商户1月到2月的销售情况较好,2月到6月销售迟缓.平均变化率近似地刻画了曲线在某一区间上的变化趋势,平均变化率的绝对值反映了曲线在给定的区间上变化的快慢,平均变化率的绝对值越大,曲线在该区间上的变化越快;反之则慢.[对应课时跟踪训练(十五)]1.函数f (x )=1x 在x =1到x =2之间的平均变化率为________.解析:f (2)-f (1)2-1=12-11=-12.答案:-122.某人服药后,人吸收药物的情况可以用血液中药物的浓度c (单位:mg/mL)来表示,它是时间t (单位:min)的函数,表示为c =c (t ),下表给出了c (t )的一些函数值:解析:c (70)-c (30)70-30=0.90-0.9840=-0.002.答案:-0.0023.在曲线y =x 2+1的图象上取一点(1,2)及附近一点(1+Δx,2+Δy ),则ΔyΔx=________.解析:Δy Δx =(1+Δx )2+1-(1+1)1+Δx -1=2Δx +(Δx )2Δx =Δx +2.答案:Δx +24.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1.1,2.21),则该曲线在[1,1.1]上的平均变化率为________.解析:2.21-21.1-1=0.210.1=2.1.答案:2.15.函数y =f (x )=ln x +1从e 到e 2的平均变化率为________. 解析:因为Δy =f (e 2)-f (e)=(ln e 2+1)-(ln e +1)=1,Δx =e 2-e , 所以Δy Δx =1e 2-e .答案:1e 2-e6.已知自由落体运动的位移s (m)与时间t (s)的关系为s =f (t )=12gt 2,计算t 从3秒到3.1秒、3.001秒、3.000 1秒各段时间内的平均速度(g =9.8 m/s 2).解:设Δt =(t +d )-t 指时间改变量,Δs =f (t +d )-f (t )指位移改变量. 则Δs =f (t +d )-f (t )=12g (t +d )2-12gt 2=gtd +12gd 2,v =Δs Δt =gtd +12gd 2d =gt +12gd ,所以t 从3秒到3.1秒的平均速度v =29.89(m/s); t 从3秒到3.001秒的平均速度v =29.404 9(m/s); t 从3秒到3.000 1秒的平均速度v =29.400 49(m/s).7.路灯距地面8 m ,一个身高为1.6 m 的人以84 m/min 的速度在地面上从路灯在地面上射影点C 沿某直线离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式; (2)求人离开路灯的第一个10 s 内身影的平均变化率.解:(1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD ∥BE ,则AB AC =BECD ,即y y +x =1.68,所以y =f (x )=14x .(2)在[0,10]上身影的平均变化率为: f (10)-f (0)10-0=14×10-14×010=14.即人离开路灯的第一个10 s 内身影的平均变化率为14.8.若函数y =f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1,得Δx ≥-2.又因为Δx >0,即Δx 的取值范围是(0,+∞).。
人教B版高中数学选修(1-1)-3.1教学教案:函数的平均变化率2
3.1.1 平均变化率一.教材依据函数的平均变化率二.设计思想指导思想:(1)用已知探究未知的思考方法(2)用逼近的思想考虑问题的思考方法.设计理念:为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数.随着对函数的深入研究,产生了微积分.导数概念是微积分的基本概念之一,导数是对事物变化快慢的一种描述,是研究客观事物变化率和优化问题的有力工具.理解和掌握导数的思想和本质显得非常重要.正如《数学课程标准(实验)解读》中所说的,以前是,“先讲极限概念,把导数作为一种特殊极限来讲,于是,形式化的极限概念就成了学生学习的障碍,严重影响了对导数思想和本质的认识和理解;”“….这样造成的结果是:因为存在着夹生饭现象,大学不欢迎;中学感受不到学导数的好处,反而加重了学生的负担,因此也不欢迎.” 故为了让学生充分认识导数的思想和本质,先要理解和掌握平均变化率的概念.在设计这节课时,我把重点放在(1)通过大量实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;(2)掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法.三.教学目标1.通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;2.掌握平均变化率的概念及其计算步骤,体会逼近的思想和用逼近的思想思考问题的方法;3.掌握求函数在指定区间上的平均变化率,能利用平均变化率解析生活中的实际问题;4.通过分析实例,初步探究由平均变化率过渡到瞬时变化率的过程,让学生体会用已知探究未知的思考方法.四.教学重点1.通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;2.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法;五.教学难点1.如何从数学的角度描述吹气球过程中的现象“随着气球内空气容量的增加,气球的半径增加得越来越慢?”2.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法;六.教学准备1.认真阅读教材、教参,寻找有关资料;2.向有经验的同事请教;3.从成绩好的学生那里了解他们预习的情况和困惑的地方.七.教学过程1.教学基本流程:。
人教B版高中数学【选修1-1】第3章-3.1-3.1.1函数的平均变化率-课件
课 标 解 读
1.通过实际例子理解平均变化率的概念. 2.会求函数的平均变化率.(重点) 3.理解平均变化率在实际问题中的意义.(难点)
函数的平均变化率
【问题导思】 1.函数 f(x)=2x 在 x1=1 到 x2=2 的平均变化率是多少?
fx2-fx1 2×2-2×1 【提示】 = =2. x2-x1 2-1
Δy 【思路探究】 先求 Δx=x2-x1,再求 Δy,化简 即可. Δx
【自主解答】
(1)①∵Δx=-1-(-3)=2,
Δy=f(-1)-f(-3) =[3× (-1)+1]-[3× (-3)+1]=6, Δy 6 ∴ = =3, Δx 2 即 f(x)在-3 到-1 之间的平均变化率为 3.
②∵Δx=-1-(-3)=2, Δy=g(-1)-g(-3) =[2× (-1)2+1]-[2× (-3)2+1]=-16, Δy -16 ∴ = =-8, Δx 2 即 g(x)在-3 到-1 之间的平均变化率为-8.
试分析 f(x)与 g(x)在-3 到-1 之间的平均变化率大小, 并说明 其含义.
【解】 显然 3>-8,但是|3|<|-8|, 这说明函数 f(x)在[-3, -1]上缓慢上升, 而函数 g(x)在区间[- 3,-1]上迅速下降.
平均变化率的比较
π 试比较正弦函数 y=sin x 在 x=0 和 x= 附近的平均变 2 化率的大小.
(2)①∵Δy=f(1+Δx)-f(1) =[3× (1+Δx)+1]-(3×1+1)=3Δx, Δy 3Δx ∴ = =3, Δx Δx 即 f(x)在 1 到 1+Δx 之间的平均变化率为 3. ②∵Δy=g(1+Δx)-g(1) =[2× (1+Δx)2+1]-(2×12+1)=4Δx+2(Δx)2,
3.1.1 平均变化率
联想到用
斜率来量化直 10 A (1, 3.5)
线的倾斜程度,
我们用比值:
2 O2
10
20
30 34 t/s
yC yB 33.4 18.6 xC xB 34 32
来近似地量化B,C之间这一段曲线的陡峭程度,
并称该比值为位移在区间[32,34]上的平均变化率.
S/m
30
虽然点A,
B之间的位移差 20
某人走路的第1秒到第34秒的位移时间图象如图所示:
S/m 30
20
10 A (1, 3.5)
2
O2
10
C(34, 33.4) B (32, 18.6)
20
30 34 t / s
问题1:从A到B的位移是多少?从B到C的位移是多少?
问题2:从A到B这一段与从B到C这一段,你感觉哪一段的 位移变化得较快?
11:00至11:30价格的平均变化率为
17.5116.59 7.886(元 / 小时) 7 / 60
14:07至15:00价格的平均变化率为
17.5117.51 0(元 / 小时) 53/ 60
回顾反思
1.平均变化率
一般地,函数 f (x) 在区间上 [x1, x2 ] 的平均变化率为
f ( x2 ) f (x1) x2 x1
平均变化率不能脱离区间而言,不同区间上平均变化率 可能不同.
平均变化率可正可负可为零,正负号分别表示变化量的增 加或减少,平均变化率的绝对值的大小反映变化量变化的快慢 程度.
平均变化率的几何意义:连接区间两端点直线的斜率.
2.反思 平均变化率近似地刻画了曲线在某区间上的变
10 0
10 0
2020-2021高中数学第一册学案:第3章 3.1 3.1.2 第2课时函数的平均变化率含解析
2020-2021学年高中数学新教材人教B版必修第一册学案:第3章3.1 3.1.2 第2课时函数的平均变化率含解析第2课时函数的平均变化率学习目标核心素养1.理解斜率的含义及平均变化率的概念.(重点)2.掌握判断函数单调性的充要条件.(重点、难点)通过利用函数f(x)的平均变化证明f(x)在I上的单调性,提升数学运算和培养逻辑推理素养.科考队对“早穿棉袄午穿纱,围着火炉吃西瓜”这一独特的沙漠气候进行科学考查,如图是某天气温随时间的变化曲线.请根据曲线图思考下列问题:问题(1)在区间[6,17]对应的曲线上任取不同两点A(x1,y1),B(x2,y2),ΔyΔx=y2-y1x2-x1一定大于零吗?(2)如果在区间[2,10]对应的曲线上任取不同两点C(x3,y3),D(x4,y4),错误!=错误!一定大于零吗?1.直线的斜率(1)定义:给定平面直角坐标系中的任意两点A(x1,y1),B(x2,y2),当x1≠x2时,称错误!为直线AB的斜率;(若记Δx=x2-x1,相应的Δy=y2-y1,当Δx≠0时,斜率记为ΔyΔx),当x1=x2时,称直线AB的斜率不存在.(2)作用:直线AB的斜率反映了直线相对于x轴的倾斜程度.2.平均变化率与函数单调性若I是函数y=f(x)的定义域的子集,对任意x1,x2∈I且x1≠x2,记y1=f(x1),y2=f(x2),错误!=错误!错误!,则:(1)y=f(x)在I上是增函数的充要条件是错误!>0在I上恒成立;(2)y=f(x)在I上是减函数的充要条件是错误!<0在I上恒成立.当x1≠x2时,称ΔfΔx=错误!为函数y=f(x)在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均变化率.通常称Δx为自变量的改变量,Δy为因变量的改变量.[拓展](1)注意自变量与函数值的对应关系,公式中,若Δx =x2-x1,则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f (x2)。
帮你认识变化率
帮你认识变化率导数的概念这一节内容中谈到了两个变化率,一个是平均变化率,还有一个是瞬时变化率,这两个变化率有着什么样的特点呢?一、平均变化率与瞬时变化率1.平均变化率事物的变化率往往是相关的两个量的变化量的比值。
如:气球的膨胀率为半径的变化量比体积的变化量;位移的变化率为位移变化量比时间变化量。
如果某个问题中的函数关系用()f x 表示,那么问题的变化率可用式子2121()()f x f x x x --表示,我们把这个式子称为函数()f x 从1x 到2x 的平均变化率,简记作f x ∆∆。
(1)平均变化率是指函数值的“增量”(即“改变量”)f ∆与相应的自变量的“增量”x ∆的比,这也给出了平均变化率的求法。
(2)平均变化率的几何意义为函数()f x 图象上两点11(,())x f x 、22(,())x f x 的割线的斜率。
(3)某段时间内的平均速度v (即平均变化率),描述的是在这段时间内运动速度的平均状态。
2.瞬时变化率在实际问题中,非匀速直线运动的瞬时速度、化学反应速度、物体温度变化速度以及几何曲线切线的斜率等实质上都是瞬时变化率。
(1)瞬时速度:平均速度实际就是平均变化率,当t ∆趋近于0时,总存在一个常数0v 与商00()()S t t S t t+∆-∆无限接近。
这个常数反映了物体在某时刻运动的快慢。
(2)切线斜率:实质就是当x ∆趋近于0时,曲线()y f x =在00[,]x x x +∆上的平均变化率与一个常数A 无限接近,常数A 就是曲线在此位置的切线的斜率。
我们对上面分析的两个方面进行抽象、归纳、延伸,即撇开这些量的实际意义,捉住它们在数量关系上的共性,就是瞬时变化率的概念。
3.必须注意的几个问题(1)正确理解曲线的切线的定义,即:过曲线()y f x =上的一点P 作曲线的割线PQ ,当Q 点沿着曲线无限趋近于P 点时,若割线PQ 趋近于某一确定的直线PT ,则这一确定的直线PT 称为曲线()y f x =在点P 处的切线。
变化率问题教学设计(广水市一中数学组王伟)
§变化率问题广水市一中王伟一.教学内容解析内容:平均变化率的概念及其求法。
内容解析:本节课是高中数学(选修2-2)第一章导数及其应用的第一节1.1变化率与导数中的1.1.1变化率问题。
本节内容通过分析研究气球膨胀率问题、高台跳水问题,总结归纳出一般函数的平均变化率概念,在此基础上,要求学生掌握函数平均变化率解法的一般步骤。
平均变化率是个核心概念,它在整个高中数学中占有及其重要的地位,是研究瞬时变化率及其导数概念的基础。
在这个过程中,注意特殊到一般、数形结合等数学思想方法的渗透。
教学重点:函数平均变化率的概念。
二.目标和目标解析新课标对“导数及其应用”内容的处理有了较大的变化,它不介绍极限的形式化定义及相关知识,而是按照:平均变化率—瞬时变化率—导数的概念—导数的几何意义这样的顺序来安排,用“逼近”的方法定义导数,这种概念建立的方式形象、直观、生动又容易理解,突出了导数概念的本质。
平均变化率是本章的一个重要的基本概念,本节课是《导数及其应用》的起始课,对导数概念的形成起着奠基作用。
目标:理解平均变化率的概念及内涵,掌握求平均变化率的一般步骤。
目标解析:1.经历从生活中的变化率问题抽象概括出函数平均变化率概念的过程,体会从特殊到一般的数学思想,体现了数学知识来源于生活,又服务于生活。
2.通过函数平均变化率几何意义的教学,让学生体会数形结合的思想。
3.通过例题的解析,让学生进一步理解函数平均变化率的概念。
三.教学问题诊断分析吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,这两个实例的共同点是背景简单。
从简单的背景出发,既可以利用学生原有的知识经验,又可以减少因为背景的复杂而可能引起的对数学知识学习的干扰,这是有利的方面。
但是如何从具体实例中抽象出共同的数学问题的本质是本节课教学的关键。
教学难点:如何从两个具体的实例中归纳总结出函数平均变化率的概念。
四.教学支持条件分析利用多媒体辅助教学,突出重点提高学习效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三类问题
求已知函数的最大最小值。
十七世纪初期,伽利略断定,在真空中以 45 角
发射炮弹时,射程最大。 研究行星运动也涉及最大最小值问题。
困难在于:原有的初等计算方法已不适于解决研 究中出现的问题,但新的方法尚无眉目。
第四类问题
求曲线长、曲面面积、物体重心及物体之间的引力 (求曲线的长度、曲线所围成的面积、曲面所围成的体积、物体的重心、
成交额随时间变化关系 Q = Q(t) 时间的改变量 t2- t1 成交额的改变量Q2-Q1 成交额差/时间差 成交额变化快慢 2-0=2(小时) 100-0=100(亿元) 21-2=19(小时) 300-100=200(亿元)
10.53(亿元/小时) 100/2 = 50(亿元/小时) 200/19
2013年11时间的成交额变化快,为什么?
C(21,300)
B(2,100)
A(0,0)
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
t
问:怎么量化0—2时与 2—21时成交额变化快 (图象陡峭)、慢(图象平缓)?
20
0 1
2
3
4
5 天数
四
本课小结
从“形”刻画
课后作业:
1、与同学交流你探究“气球膨胀率问题”及“跳水问题”的 心得。
课外作业: 1、搜寻有关微积分历史的资料,跟你的同学交流。 2、四人一小组,写一篇有关生活中变化率问题的小文章。
t(s)
0
3
7
14
20
平 均 变 化 率 是 曲 线 陡 峭 程 度 的 数 量 化
探究.拓展:
平均变化率的变化与函数图象的形状有何联系?
y 减小 割线斜率 k 减小 曲线变“平缓” x
y 增大 割线斜率 k 增大 曲线变“陡峭” x
曲 线 陡 峭 程 度 是 平 均 变 化 率 的 视 觉 化
时间的改变量 t2- t1 成交额的改变量T2-T1 成交额差/时间差 成交额变化快慢
100/2 = 50(亿元/小时) >200/19
10.53(亿元/小时)
慢
快
问题2
路程随时间变化关系S= S(t )
时间的改变量 Δt=t2- t1 路程的改变量Δs=S2-S1
9-0=9(s) 60-0=60(m) 60/9 6.7(m/s) 慢
>
快
慢
问题2
为什么该人的运动s-t图不是直线段?
如何从该s-t图分析他路程随时间的变化快慢?
B(24,100) S(t2) A(21,70) S(t1)
O(0,0)
t1
t2
“陡峭(变化快)”? 24-21=3(s)
问:为什么0---t1图像比t1---t2“平缓”? 如何量化图象“平缓(变化慢)”
探究· 拓展
德国著名心理学家
艾宾浩斯的遗忘曲线
记忆保持量(百分数)
100
80
60 40 艾宾浩斯遗忘曲线
时间间隔 刚刚记忆完毕 20分钟之后 1小时之后 8-9小时之后 1天后 2天后 6天后 一个月后 ……
记忆保持量 100% 58.2% 44.2% 35.8% 33.7% 27.8% 25.4% 21.1% ……
3.1.1
平均变化率及其求法
一
微积分简史
微积分的创立者-----牛顿、莱布尼茨
牛顿(1643--1727)
莱布尼茨 (1646----1716)
微积分创立背景
微积分的创立主要与四类问题处理有关:
瞬时变化率、切线问题、函数极值、几何求积
第一类问题
求物体瞬时速度、加速度及运动距离 已知物体运动的路程作为时间的函数,求物体 任意时刻的速度和加速度;以及已知物体的加速度 作为时间的函数,求速度和路程。 困难在于:十七世纪所涉及的速度和加速度每时 每刻都在变化。例如,计算瞬时速度,就不能象计算 平均速度那样,用运动的距离除以运动的时间,因为 在给定的瞬刻,移动的距离和所用的时间都是 0,而 0 / 0 是无意义的。但根据物理学,每个运动的物体在 它运动的每一时刻必有速度,是不容怀疑的。
(2)从x1到x2的平均变化率。
2 变式训练:求函数 f ( x) 2x 1 在下列区间的平均变化率
(1) [1,1.0003] 4.0006
(2) [1,1.0002] 4.0004
(3) [1,1.0001] 4.0002
某物体的运动速度随时间的变化情况如下图所示
例题2
V(m/s)
(1)求0s-3s的速度平均变化率? (2)求3s-7s的速度平均变化率? (3)求7s-14s的速度平均变化率? (4)求14s-20s的速度平均变化率?
提示:
16 12 8 6
v 12 0 (1)a 4(m / s 2 ) t 3 0 v 16 12 (2)a 1(m / s 2 ) t 73
v 8 16 8 (3)a = 1.14(m / s 2 ) t 14 7 7
v 68 1 (4)a = 0.33(m / s 2 ) t 20 14 3
如何刻画一般的函数f(x)在区间[x1,x2]上 随x变化(增加或减少)的“快”与“慢”?
三 平均变化率的定义
平均变化率等于函数的增量与自变量的增量之比值。 亦即:y / x.
y f ( x2 ) f ( x1 ) 思考:平均变化率: 表示的几何意义? x x2 x1
y2 y1 f ( x2 ) f ( x1 ) 割线斜率 k x2 x1 x2 x1
时间的改变量 Δt=t2- t1
路程随时间变化关系S= S(t )
21-0=21(s) 70-0=70(m) 70/21=3.3 (m/s)
路程的改变量Δs=S2-S1
路程差/时间差(Δs/Δt)
速度变化快慢
<
100-70=30(m) 30/3= 10 (m/s)
慢
快
问题1
成交额随时间变化关系 Q = Q(t) 2-0=2(小时) 100-0=100(亿元) 21-2=19(小时) 300-100=200(亿元)
第二类问题
求曲线的切线。 这个问题的重要性来源于好几个方面:纯几何问
题、光学中研究光线通过透镜的通道问题、运动物体
在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个 没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接 触于一点而且位于曲线的一边的直线”。这个定义对 于十七世纪所用的较复杂的曲线已经不适应了。
例1变式训练:求函数 f ( x) 2x 1
2
在下列区间的平均变化率:
(1)[1,1.0003] (2)[1,1.0002] (3)[1,1.0001]
4.0006 4.0004 4.0002
Δx=0.0003 Δx=0.0002 Δx=0.0001
Δy 发现Δx越接近于0, Δx 越接近4
11-9=2(s)
路程差/时间差(Δs/Δt)
路程变化快慢
<
100-60=40(m) 40/2=20(m/s) 快
两个变化率(快慢)问题
Q(t2 ) Q(t1 ) (1)成交额[t1 , t2]平均变化率(快慢)问题: t2 t1 S (t2 ) S (t1 ) (2)路程在[t1 , t2]平均变化率(快慢)问题: t2 t1
f(x2 ) f(x2 )-f(x1 ) ( x2 , f(x2 ) )
这是平均变化率的几何意义
f(x1 )
x2-x1 ( x1 , f(x1 ) ) x1 x2
求函数f(x)平均变化率的步骤:
一、求自变量的增量Δx=x2-x1 二、求函数的增量Δy=f(x2)-f(x1)
例题1
已知f(x)=2x2+1,求: (1)从x=1到x=2的平均变化率;
一个体积相当大的物体作用于另一个物体上的引力。)
y 困难在于:欧多克斯的穷竭法虽然被阿基米德熟 练地用来求出了很多图形的面积及几何体的体积,但 它毕竟是一种有限且相当复杂的几何方法,已不能解 决第四类问题。 b x o a
二
变化率问题
问题1
成交额Q(t) (亿元) 400 350 300 250 200 150 100 50