江苏省金湖县实验中学中考数学 分式复习教案 新人教版

合集下载

江苏省金湖县实验中学中考数学 因式分解法解一元二次方程复习教案(2) 新人教版【教案】

江苏省金湖县实验中学中考数学 因式分解法解一元二次方程复习教案(2) 新人教版【教案】

用因式分解法解一元二次方程(二)二、教学重点、难点和疑点1.教学重点:熟练掌握用公式法解一元二次方程.2.教学难点:用配方法解一元二次方程.3.教学疑点:对“选择恰当的方法解一元二次方程”中“恰当”二字的理解.三、教学步骤(一)明确目标解一元二次方程有四种方法,四种方法各有千秋,究竟选择什么方法最适当是本节课的目标.在熟练掌握各种方法的前提下,以针对一元二次方程的特点选择恰当的方法或者说是用简单的方法解一元二次方程是本节课的目的.(二)整体感知一元二次方程是通过直接开平方法及因式分解法将方程进行转化,达到降次的目的.这种转化的思想方法是将高次方程低次化经常采取的.是解高次方程中的重要的思想方法.在一元二次方程的解法中,平方根的概念为直接开平方法的引入奠定了基础,符合形如(ax+b)2=c(a,b,c常数,a≠0,c≥0)结构特点的方程均适合用直接开平方法.直接开平方法为配方法奠定了基础,利用配方法可推导出一元二次方程的求根公式.配方法和公式法都是解一元二次方程的通法.后者较前者简单.但没有配方法就没有公式法.公式法是解一元二次方程最常用的方法.因式分解的方法是独立的一种方法.它和前三种方法没有任何联系,但蕴含的基本思想和直接开平方法一样,即由高次向低次转化的一种基本思想方法.方程的左边易分解,而右边为零的题目,均用因式分解法较简单.(三)重点、难点的学习与目标完成过程1.复习提问(1)将下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项系数及常数项.(1)3x2=x+4;(2)(2x+1)(4x-2)=(2x-1)2+2;(3)(x+3)(x-4)=-6;(4)(x+1)2-2(x-1)=6x-5.此组练习尽量让学生眼看、心算、口答,使学生练习眼、心、口的配合.(2)解一元二次方程都学过哪些方法?说明这几种方法的联系及其特点.直接开平方法:适合于解形如(ax+b)2=c(a、b、c为常数,a≠0 c≥0)的方程,是配方法的基础.配方法:是解一元二次方程的通法,是公式法的基础,没有配方法就没有公式法.公式法:是解一元二次方程的通法,较配方法简单,是解一元二次方程最常用的方法.因式分解法:是最简单的解一元二次方程的方法,但只适用于左边易分解而右边是零的一元二次方程.直接开平方法与因式分解法都蕴含着由高次向低次转化的思想方法.2.练习1.用直接开平方法解方程.(1)(x-5)2=36;(2)(x-a)2=(a+b)2;此组练习,学生板演、笔答、评价.切忌不要犯如下错误①不是x-a=a+b而是x-a=±(a+b);练习2.用配方法解方程.(1)x2-10x-11=0;(2)ax2+bx+c=0(a≠0)配方法是解决代数问题的一大方法,用此法解方程尽管有点麻烦,但由此法推导出的求根公式,则是解一元二次方程最通用也是最常用的方法.此练习的第2题注意以下两点:(1)求解过程的严密性和严谨性.(2)需分b2-4ac≥0及b2-4ac<0的两种情况的讨论.此2题学生板演、练习、评价,教师引导,渗透.练习3.用公式法解一元二次方程练习4.用因式分解法解一元二次方程(1)x2-3x+2=0;(2)3x(x-1)+2x=2;解(2)原方程可变形为3x(x-1)+2(x-1)=0,∵(x-1)(3x+2)=0,∴ x-1=0或3x+2=0.如果将括号展开,重新整理,再用因式分解法则比较麻烦.练习5.x取什么数时,3x2+6x-8的值和2x2-1的值相等.解:由题意得3x2+6x-8=2x2-1.变形为x2+6x-7=0.∴(x+7)(x-1)=0.∴ x+7=0或x-1=0.即 x1=-7,x2=1.∴当x=-7,x=1时,3x2+6x-8的值和2x2-1的值相等.学生笔答、板演、评价,教师引导,强调书写步骤.练习6.选择恰当的方法解下列方程(1)选择直接开平方法比较简单,但也可以选用因式分解法.(2)选择因式分解法较简单.学生笔答、板演、老师渗透,点拨.(四)总结、扩展(1)在一元二次方程的解法中,公式法是最主要的,最通用的方法.因式分解法对解某些一元二次方程是最简单的方法.在解一元二次方程时,应据方程的结构特点,选择恰当的方法去解.(2)直接开平方法与因式分解法中都蕴含着由二次方程向一次方程转化的思想方法.由高次方程向低次方程的转化是解高次方程的思想方法.四、布置作业1.教材P.21中B1、2.2.解关于x的方程.(1)x2-2ax+a2-b2=0,(2)x2+2(p-q)x-4pq=0.4.(1)解方程①(3x+2)2=3(x+2);(2)方程(m2-3m+2)x2+(m-2)x+7=0,m为何值时①是一元二次方程;②是一元一次方程.五、板书设计12.2 用因式分解法解一元二次方程(二)四种方法练习1……练习2……1.直接开平方法…………2.配方法3.公式法4.因式分解法六、作业参考答案1.教材P.2B.1(1)x1=0,x2=;(2)x1=,x2=;2:1秒2.(1)解:原方程可变形为[x-(a+b)][x-(a-b)]=0.∴ x-(a+b)=0或x-(a-b)=0.即 x1=a+b,x2=a-b.(2)解:原方程可变形为(x+2p)(x-2q)=0.∴ x+2p=0或x-2q=0.即 x1=-2p,x2=2q.原方程可化为5x2+54x-107=0.(2)解①∵ m2-3m+2≠0..∴ m1≠1,m2≠2.∴当m1≠1且m2≠2时,此方程是一元二次方程.解得:m=1.∴当m=1时此方程是一元二次方程.。

江苏省金湖县实验中学中考数学复习教案:含有字母系数的一元一次方程

江苏省金湖县实验中学中考数学复习教案:含有字母系数的一元一次方程

含有字母系数的一元一次方程(2)1.公式变形引例:汽车的行驶速度是v(千米/小时),行驶的时间是t(小时),那么汽车行驶的路程s(千米)可用公式s=vt ①来计算。

有时已知行驶的路程s与行驶的速度v(v≠0),要求行驶的时间t。

因为v≠0,所以 t=。

②这就是已知行驶的路程和速度,求行驶的时间的公式。

类似地,如果已知s,t(t≠0),求v,可以得到v=。

③公式②,③有时也可分别写成t=sv -1;v=st-1。

以上的公式①,②,③都表示路程s,时间t,速度v之间的关系。

当v、t都不等于零时,可以把公式①变换成公式②或③。

像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形,公式变形往往就是解含有字母系数的方程。

例3 在v=v0+at中,已知v、v0、a且a≠0。

求t。

解:移项,得v-v0=at。

因为a≠0,方程两边都除以a,得。

例4在梯形面积公式S=中,已知S、b、h且h≠0,求a。

解:去分母,得2S=(a+b)h, ah=2S-bh因为h≠0,议程两边都除以h,得。

三、练习P92中练习1,2,3。

四、小结公式变形的实质是解含字母系数的方程,要求的字母是未知数,其余的字母均是字母已知数。

如例3就是把v、v0、a当作字母已知数,把t当作未知数,解关于t的方程。

五、作业作业:P93中习题9.5 A组7,8,9。

另:需要注意的几个问题1、考虑到学生的年龄特征,在解含有字母系数的方程时,一般不要求学生讨论方程的有解条件,也不要求验根。

然这并非说明解字母已知数方程时不需要去研究方程的有解条件。

这一点教师应当明确。

2、对于例题、习题中的某些公式的实际意义,教师应当掌握,但不一定向学生讲解。

习题中的B组题对全体学生不作硬性要求,对某些数学爱好者可作为选作题。

江苏省金湖县实验中学中考数学 因式分解法解一元二次方程复习教案(1) 新人教版

江苏省金湖县实验中学中考数学 因式分解法解一元二次方程复习教案(1) 新人教版

用因式分解法解一元二次方程(一)二、教学重点、难点、疑点及解决方法1.教学重点:用因式分解法解一元二次方程.式)3.教学疑点:理解“充要条件”、“或”、“且”的含义.三、教学步骤(一)明确目标学习了公式法,便可以解所有的一元二次方程.对于有些一元二次方程,例如(x-2)(x+3)=0,如果转化为一般形式,利用公式法就比较麻烦,如果转化为x-2=0或x+3=0,解起来就变得简单多了.即可得x1=2,x2=-3.这种解一元二次方程的方法就是本节课要研究的一元二次方程的方法——因式分解法.(二)整体感知所谓因式分解,是将一个多项式分解成几个一次因式积的形式.如果一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零.用因式分解法更为简单.例如:x2+5x+6=0,因式分解后(x+2)(x+3)=0,得x+2=0或x+3=0,这样就将原来的一元二次方程转化为一元一次方程,方程便易于求解.可以说二次三项式的因式分解是因式分解法解一元二次方程的关键.“如果两个因式的积等于零,那么两个因式至少有一个等于零”是因式分解法解方程的理论依据.方程的左边易于分解,而方程的右边等于零是因式分解法解方程的条件.满足这样条件的一元二次方程用因式分解法最简单.(三)重点、难点的学习与目标完成过程1.复习提问零,那么这两个因式至少有一个等于零.反之,如果两个因式有一个等于零,它们的积也就等于零.“或”有下列三层含义①A=0且B≠0②A≠0且B=0③A=0且B=02.例1 解方程x2+2x=0.解:原方程可变形x(x+2)=0……第一步∴ x=0或x+2=0……第二步∴ x1=0,x2=-2.教师提问、板书,学生回答.分析步骤(一)第一步变形的方法是“因式分解”,第二步变形的理论根据是“如果两个因式的积等于零,那么至少有一个因式等于零”.分析步骤(二)对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一元一次方程,这两个一元一次方程的解就是原一元二次方程的解.用此种方法解一元二次方程叫做因式分解法.由第一步到第二步实现了由二次向一次的“转化”,达到了“降次”的目的,解高次方程常用转化的思想方法.例2 用因式分解法解方程x2+2x-15=0.解:原方程可变形为(x+5)(x-3)=0.得,x+5=0或x-3=0.∴ x1=-5,x2=3.教师板演,学生回答,总结因式分解的步骤:(一)方程化为一般形式;(二)方程左边因式分解;(三)至少一个一次因式等于零得到两个一元一次方程;(四)两个一元一次方程的解就是原方程的解.练习:P.22中1、2.第一题学生口答,第二题学生笔答,板演.体会步骤及每一步的依据.例3 解方程3(x-2)-x(x-2)=0.解:原方程可变形为(x-2)(3-x)=0.∴ x-2=0或3-x=0.∴ x1=2,x2=3.教师板演,学生回答.此方程不需去括号将方程变成一般形式.对于总结的步骤要具体情况具体分析.练习P.22中3.(2)(3x+2)2=4(x-3)2.解:原式可变形为(3x+2)2-4(x-3)2=0.[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0即:(5x-4)(x+8)=0.∴ 5x-4=0或x+8=0.学生练习、板演、评价.教师引导,强化.练习:解下列关于x的方程6.(4x+2)2=x(2x+1).学生练习、板演.教师强化,引导,训练其运算的速度.练习P.22中4.(四)总结、扩展1.因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”四、布置作业教材P.21中A1、2.教材P.23中B1、2(学有余力的学生做).2.因式分解法解一元二次方程的步骤是:(1)化方程为一般形式;(2)将方程左边因式分解;(3)至少有一个因式为零,得到两个一元二次方程;(4)两个一元一次方程的解就是原方程的解.但要具体情况具体分析.3.因式分解的方法,突出了转化的思想方法,鲜明地显示了“二次”转化为“一次”的过程.五、板书设计12.2 用因式分解法解一元二次方程(一)例1.……例2……二、因式分解法的步骤(1)……练习:……(2)…………(3)……(4)……但要具体情况具体分析六、作业参考答案教材P.21中A1(1)x1=-6,x2=-1(2)x1=6,x2=-1(3)y1=15,y2=2(4)y1=12,y2=-5(5)x1=1,x2=-11,(6)x1=-2,x2=14教材P.21中A2略(1)解:原式可变为:(5mx-7)(mx-2)=0 ∴ 5mx-7=0或mx-b=0又∵ m≠0(2)解:原式可变形为(2ax+3b)(5ax-b)=0∴ 2ax+3b=0或 5ax-b=0∵ a≠0教材P.23中B1.解:(1)由y的值等于0 得x2-2x-3=0变形为(x-3)(x+1)=0 ∴ x-3=0或x+1=0∴ x1=3,x2=-1(2)由y的值等于-4得x2-2x-3=-4方程变形为x2-2x+1=0∴(x-1)2=0解得 x1=x2=1∴当x=3或x=-1时,y的值为0 当x=1时,y的值等于-4教材P.23中B2证明:∵ x2-7xy+12y2=0∴(x-3y)(x-4y)=0∴ x-3y=0或x-4y=0∴ x=3y,或x=4y。

江苏省金湖县实验中学中考数学等式和它的性质复习教案(2)新人教版

江苏省金湖县实验中学中考数学等式和它的性质复习教案(2)新人教版

等式和它的性质(2)教学目的1、掌握等式的两条性质,会用等式的性质将等式进行变形。

做到深入理解,熟练运用。

教学分析重点:等式的两条基本性质的熟练运用。

难点:等式基本性质2,“等式的两边都除以同一个数(除数不能是0)”,在具体运用中学生容易犯错误,尤其是除数为字母表示的数。

突破:理解性质,弄清概念。

教学过程一、复习1、什么是等式?说出等式的两条性质。

2、按照下列条件,写出仍能成立的等式,并说明根据等式的哪一条性质:(1)若-a+b-1=-a+1,两边都加上a+1(2)若-3m=1, 两边都除以-3,(3)若x+1=0, 两边都除以x,(4)若u-2=0, 两边都除以u,这里是为了强调性质2中的特殊点,即不可以除以0,不可以除以一个整式。

二、新授1、在上节学习的基础上,本节课通过练习进一步巩固和熟练。

例1 在下列横线内用符号“=”或“≠”连接:(1)如果x+a=b,那么x__b-a;(2)如果x=y,那么y __x,x-y__0;(3)如果x=y,y=5,那么x__5;(4)如果x=3,那么2(x-3)__5(x-3)(5)如果5a=2a,那么a__0.以上都应填上“=”,通过(2)指出等式的对称性,通过(3)指出等式的传递性,(5)有告诫作用。

例2 按照下列条件,写出仍能成立的等式:(1)由3x =4x-1,两边都减去3x;(2)由a+3=b,两边都乘以m;(3)由mx=my,两边都除以m。

解:(1)0=4x-3x-1; (2)(a+3)m=bm;(3)当m≠0时,x=y,当m=0时,0不能做除数,不能进行变形。

注意:把等式的两边同除以某个字母,要查一下它会不会等于0,字母做除数,字母取值应保证分母不为零。

三、练习P187B:1。

四、小结1、等式的性质课本中有两条,还有等式的对称性和传递性。

五、作业1、P187:B:2,3。

2、基础训练同步练习2。

江苏省金湖县实验中学中考数学 一元二次方程根的判别式复习教案(2) 新人教版

江苏省金湖县实验中学中考数学 一元二次方程根的判别式复习教案(2) 新人教版

一元二次方程的根的判别式(二)二、教学重点、难点、疑点及解决方法1.教学重点:运用判别式求出符合题意的字母的取值X围.2.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.三、教学步骤(一)明确目标上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a ≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.”这个结论可以看作是一个定理.在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的,可作为定理用.本节课的目标就是利用其逆定理,求符合题意的字母的取值X围,以及进行有关的证明.(二)整体感知本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.(三)重点、难点的学习及目标完成过程1.复习提问(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?2.将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则△>0;如果方程有两个相等的实数根,则△=0;如果方程没有实数根,则△<0.”即根据方程的根的情况,可以决定△值的符号,‘△’的符号,可以确定待定的字母的取值X围.请看下面的例题:例1 已知关于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值时(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(1)方程无实数根.解:∵ a=2, b=-4k-1,c=2k2-1,∴ b2-4ac=(-4k-1)2-4×2×(2k2-1)=8k+9.方程有两个不相等的实数根.方程有两个相等的实数根.方程无实数根.本题应先算出“△”的值,再进行判别.注意书写步骤的简练清楚.练习1.已知关于x的方程x2+(2t+1)x+(t-2)2=0.t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?学生模仿例题步骤板书、笔答、体会.教师评价,纠正不精练的步骤.假设二项系数不是2,也不是1,而是k,还需考虑什么呢?如何作答?练习2.已知:关于x的一元二次方程:kx2+2(k+1)x+k=0有两个实数根,求k的取值X围.和学生一起审题(1)“关于x的一元二次方程”应考虑到k≠0.(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到△≥0.由k≠0且△≥0确定k的取值X围.解:∵△=[2(k+1)]2-4k2=8k+4.原方程有两个实数根.学生板书、笔答,教师点拨、评价.例求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根.分析:将△算出,论证△<0即可得证.证明:△=(-2m)2-4(m2+1)(m2+4)=4m2-4m4-20m2-16=-4(m4+4m2+4)=-4(m2+2)2.∵不论m为任何实数,(m2+2)2>0.∴ -4(m2+2)2<0,即△<0.∴(m2+1)x2-2mx+(m2-4)=0,没有实根.本题结论论证的依据是“当△<0,方程无实数根”,在论证△<0时,先将△恒等变形,得到判断.一般情况都是配方后变形为:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……从而得到判断.本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨.此种题型的步骤可归纳如下:(1)计算△;(2)用配方法将△恒等变形;(3)判断△的符号;(4)结论.练习:证明(x-1)(x-2)=k2有两个不相等的实数根.提示:将括号打开,整理成一般形式.学生板书、笔答、评价、教师点拨.(四)总结、扩展1.本节课的主要内容是教科书上黑体字的应用,求符合题意的字母的取值X围以及进行有关的证明.须注意以下几点:(1)要用b2-4ac,要特别注意二次项系数不为零这一条件.(2)认真审题,严格区分条件和结论,譬如是已知△>0,还是要证明△>0.(3)要证明△≥0或△<0,需将△恒等变形为a2+2,-(a+2)2……从而得到判断.2.提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力.四、布置作业1.教材P.29中B1,2,3.2.当方程x2+2(a+1)x+a2+4a-5=0有实数根时,求a的正整数解.(2、3学有余力的学生做.)五、板书设计12.3 一元二次方程根的判别式(二)一、判别式的意义:……三、例1……四、例2……△=b2-4ac …………二、方程ax2+bx+c=0(a≠0)(1)当△>0,……练习1……练习2……(2)当△=0,……(3)当△<0,……反之也成立.六、作业参考答案方程没有实数根.B3.证明:∵△=(2k+1)2-4(k-1)=4k2+5当k无论取何实数,4k2≥0,则4k2+5>0∴△>0∴方程x2+(2k+1)x+k-1=0有两个不相等的实数根.2.解:∵方程有实根,∴△=[2(a+1)]-4(a2+4a-5)≥0即:a≤3,a的正整数解为1,2,3∴当a=1,2,3时,方程x2+2(a+1)x+a2+4a-5=0有实根.3.分析:“方程”是一元一次方程,还是一元二次方程,需分情况讨论:(2)当2m-1≠0时,∵无论m取何实数8(m-1)2≥0,即△≥0.∴方程有实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式
教学过程
一、复习
1、引言:我们已经学过了整式,知道可用整式表示某些数量关系;学习了整式四则运算,在此基础上学习了一元一次方程的解法和列方程解应用题,但是有些数量关系,只用整式表示是不够的。

2、例题:甲、乙两人做某种机器零件。

已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。

求甲、乙每小时各做多少个?。

3、分析:设甲每小时做x 个零件,那么乙每小时做(x-6)个。

甲做90个所用的时间是90÷x (或 )小时,乙做60个的用的时间是[60÷(x-6)](或6
60-x )小时,根据题意列方程
x 90=6
60-x 可以看出
x 90、660-x 都不是整式。

列出的方程也不是已学过的方程。

学习本章内容就可以正确认识这样的式子及方程,从而解决问题。

二、新授
1.分式 在算术里,两个数相除可以表示用分数的形式。

分数中的分子相当于被除数,分数中的分母相当于除数。

因为零不能做除数,所以分数中的分母不能是零。

在代数里,整式的除法也有类似的表示。

如前面的例题中,(90÷x )小时可表示成x
90
小时,[60÷(x-6)]小时可表示成6
60-x 小时。

又如n 公顷麦田共收小麦m 吨,平均每公顷产量(m ÷n )吨,可用式子
n m 吨表示。

再如轮船的静水速度为a 千米/小时。

水流速度为b 千米/小时,轮船在逆流中航行s 千米所需时间[s ÷(a-b )]小时,可用式子b
a s -小时表示。

x
90、660-x 、n m 、b a s - 的分母中都含有字母。

一般地,用A 、B 表示两个整式,A ÷B 可以表示成B
A 的形式。

如果
B 中含有字母,式子B
A 叫做分式。

基中A 叫做分式的分子,
B 叫做分式的分母。

可见,上列各式都是分式。

由分式的意义可以知道:
(1)分式是两个整式的商。

其中分子是被除式,分母是除式。

在这里分数线可理解为除号,还含有括号的作用。

(2)分式的分子可以含字母,也可以不含字母,但分母必须含字母。

式子90
x 、606-x 、4
y x -都不是分式,因为它们的分母都没有字母。

(3)在分式里,分母代数式的值随式中字字母取值的不同而变化。

字母所取的值有可能使分母为零。

因为分式的分母相当于整式除法的除式,所以分母如果是零,则分式没有意义。

因此在分式中,分母的值不能是零,例如在x
90里,x ≠0;在b a s -里,a ≠b 。

例1 当x 取什么值时,下列分式有意义?
(1)2-x x ; (2)1
41+-x x 。

解:(1)由x-2≠0得x ≠2,即当x ≠2时,分式
2-x x 有意义。

(2)由4x+1≠0得x ≠4
1-时,分式141+-x x 有意义。

例2:当x 是什么数时,分式
522-+x x 的值是零? 解:由分子x+2=0,得x=-2。

而当x=-2时,分母2x-5=-4-5≠0,
所以当x=-2时,分式5
22-+x x 的值是零。

问题:(1)分式的值为零就是分式没有意义吗?
(2)只要分子的值是零,分式的值就是零吗?以5
102--x x 为例回答此题。

三、练习
练习: P60中练习1,2,3,4。

四、小结
1、本课学习了什么是分式。

2、本课还学习了使分式有意义的条件及使分式为0的未知数值的求法。

3、要特别注意分式中作为分母的代数式的值不得为零的教学。

在分数里,分数的分母是一个具体的数,是否为零一目了然;而在分式里,要明确其是否有意义,就必须分析,讨论分母中所含字母不能取哪些值,以避免分母的代数式的值为零。

五、作业
1、P61 习题9.1 A组1~4。

2、综合练习:同步练习。

相关文档
最新文档