奥数题:数列的求和(A)
四年级奥数题:一、数列求和
一、数列求和
1、1+2+3+…+1999=?
2、3+7+11+…+99=?
3、求首项是25,公差是3的等差数列的前40项的和。
4、莎莎练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是60,但她重复计算了其中一个数字。
问莎莎重复计算了哪个数字?
5、丹丹学英语单词,第一天学会了6个单词,以后每天都比前一天多学会1个,最后一天学会了26个。
丹丹在这些天共学会了多少个单词?
6、用1320张纸由少到多地装订不同规格的练习本。
已知第一本18页,最后一本102页,而且前后两本纸张的相差页数相等,那么相邻的前后两本相差多少页?。
小学四年级数学奥数题100题附答案(完整版)
小学四年级数学奥数题100题附答案(完整版)题目1有一个数列:1,3,5,7,9,11,13,15,17,19。
求这个数列的和。
答案:这是一个等差数列,首项为1,末项为19,公差为2,项数为10。
根据等差数列求和公式:总和= (首项+ 末项)×项数÷2即:(1 + 19)×10 ÷2 = 100题目2小明从一楼走到三楼需要2 分钟,那么他从一楼走到六楼需要几分钟?答案:从一楼到三楼,实际上走了 2 层楼梯,用了2 分钟,所以走一层楼梯需要1 分钟。
从一楼到六楼需要走5 层楼梯,所以需要5 分钟。
题目3在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5 倍,差是多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 240,所以被减数= 240÷2 = 120。
又因为减数是差的5 倍,设差为x,则减数为5x,所以x + 5x = 120,解得x = 20,即差是20。
题目4两个数相除,商是8,余数是20,如果被除数和除数同时扩大10 倍,商是多少?余数是多少?答案:被除数和除数同时扩大相同的倍数,商不变,余数扩大相同的倍数。
所以商还是8,余数是20×10 = 200。
题目5鸡兔同笼,共有头100 个,脚316 只,鸡兔各有多少只?答案:假设全是鸡,那么脚有100×2 = 200 只,比实际少316 - 200 = 116 只。
每把一只鸡换成一只兔,脚就多4 - 2 = 2 只。
所以兔有116÷2 = 58 只,鸡有100 - 58 = 42 只。
题目6一块长方形草地,长18 米,宽12 米,中间有一条宽2 米的小路,求草地(阴影部分)的面积。
答案:方法一:整个长方形的面积为18×12 = 216 平方米。
小路的面积为18×2 + 12×2 - 2×2 = 56 平方米。
等差数列四年级奥数题
等差数列四年级奥数题
一、等差数列的基本概念
1. 定义
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,通常用字母公式表示。
例如数列公式就是一个等差数列,公差公式,因为公式
,公式,公式等。
2. 通项公式
对于等差数列公式,其通项公式为公式,其中公式是首项(数列的第一项),公式是项数,公式是第公式项的值。
例如在等差数列公式中,公式,公式,那么第公式项公式。
3. 求和公式
等差数列的前公式项和公式为公式,也可以写成公式。
例如求等差数列公式的和。
这里公式,公式,先求项数公式,根据公式,公式,解得公式。
再用求和公式公式。
二、四年级奥数等差数列题目及解析
1. 题目
有一个等差数列:公式,求这个数列的第公式项是多少?
2. 解析
首先确定这个等差数列的首项公式,公差公式(因为公式
,公式等)。
根据等差数列的通项公式公式,要求第公式项,即公式。
把公式,公式,公式代入通项公式可得:公式。
3. 题目
已知等差数列公式,这个数列的前公式项的和是多少?
4. 解析
先确定首项公式,公差公式。
根据等差数列的前公式项和公式公式,这里公式。
把公式,公式,公式代入可得:
公式
公式
公式。
5. 题目
在一个等差数列中,首项是公式,第公式项是公式,求公差公式。
6. 解析
已知公式,公式,公式。
根据通项公式公式,把公式,公式,公式代入可得:
公式
公式
公式
解得公式。
小学五年级数学奥数题100道及答案(完整版)
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
数列求和的几种方法
数列求和的几种方法数列是数学中的重要概念,求和是数列中常见的问题之一、在数学中,求和通常用符号Σ来表示,它的形式为Σan,表示从n=1到n=N的所有项an的和。
下面将介绍数列求和的几种方法。
一、等差数列求和等差数列是一种常见的数列形式,其中每一项与前一项的差值都是固定的。
等差数列的求和可以通过以下几种方法进行计算:1. 直接求和法:对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
可以直接将等差数列的每一项相加即可求得总和Sn。
例如,等差数列1, 3, 5, 7, 9的和可以直接计算为S5 = 1 + 3 + 5 +7 + 9 = 252. 利用等差数列的性质:等差数列的前n项和Sn可以通过公式Sn= n/2 * (a1 + an)来计算,其中a1为首项,an为前n项的最后一项。
例如,等差数列1, 3, 5, 7, 9的和可以计算为S5 = 5/2 * (1 + 9) = 25、这种方法适用于已知首项和公差的等差数列。
3.利用公式:等差数列的和也可以通过公式Sn=n/2*(2a1+(n-1)d)来计算,其中a1为首项,d为公差。
这个公式可以通过展开Sn的表达式得到。
同样以等差数列1,3,5,7,9为例,可以计算为S5=5/2*(2*1+(5-1)*2)=25、这种方法适用于已知首项和项数的等差数列。
二、等比数列求和等比数列是一种每一项与前一项的比值都是固定的数列形式。
等比数列的求和可以通过以下几种方法进行计算:1. 直接求和法:对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
可以直接将等比数列的每一项相加即可求得总和Sn。
例如,等比数列2, 4, 8, 16的和可以直接计算为S4 = 2 + 4 + 8 + 16 = 30。
2.利用等比数列的性质:等比数列的前n项和Sn可以通过公式Sn=a1*(1-r^n)/(1-r)来计算,其中a1为首项,r为公比。
数列求和公式方法总结
数列求和公式方法总结数列是数学中一个重要的概念,它是由一系列按照一定规律排列的数构成的序列。
在数列中,求和是一个常见的问题,而求和公式和方法则是解决这一问题的关键。
本文将对数列求和的常见公式和方法进行总结,希望能够帮助读者更好地理解和掌握数列求和的技巧。
一、等差数列求和公式。
等差数列是指数列中相邻两项之差都相等的数列,常用的求和公式有以下两种:1. 等差数列的前n项和公式,Sn = (a1 + an) n / 2,其中a1为首项,an为末项,n为项数。
2. 等差数列的通项公式,an = a1 + (n-1) d,其中an为第n项,a1为首项,d为公差。
二、等比数列求和公式。
等比数列是指数列中相邻两项的比值都相等的数列,常用的求和公式有以下两种:1. 等比数列的前n项和公式,Sn = a1 (1 q^n) / (1 q),其中a1为首项,q为公比,n为项数。
2. 等比数列的通项公式,an = a1 q^(n-1),其中an为第n项,a1为首项,q为公比。
三、其他常见数列求和公式。
除了等差数列和等比数列外,还有一些其他常见的数列求和公式,如:1. 平方和公式,1^2 + 2^2 + 3^2 + ... + n^2 = n (n + 1) (2n + 1) / 6。
2. 立方和公式,1^3 + 2^3 + 3^3 + ... + n^3 = (n (n + 1) / 2)^2。
3. 斐波那契数列求和公式,F(n) = F(n+2) 1,其中F(n)为斐波那契数列的前n项和。
四、数列求和的常用方法。
除了利用求和公式外,还有一些常用的方法可以帮助我们求解数列的和,如:1. 数学归纳法,通过证明首项成立,然后假设第k项成立,推导出第k+1项也成立,从而得出结论。
2. Telescoping series,利用数列中相邻项之间的关系,将求和式中的部分项相互抵消,从而简化求和过程。
3. 倒序相消法,将数列按照相反的顺序排列,然后与原数列相加,利用相邻项之间的关系进行相消,从而简化求和过程。
奥数题 等差数列求和及应用一
等差数列求和及应用一等差数列的定义:一列数,如果相邻两个数的差相等,我们就说这个数列叫做等差数列;相等的差叫做这列数的公差,这列数的个数叫做项数,最小的数叫做首项,最大的数叫做末项。
(以下公式要求熟记)基本公式:和=(首项+末项)×项数÷2 末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1 首项=末项-(项数-1)×公差 公差=1--项数首项末项例1、 计算:1+2+3+4+…+99+100=?例2、 计算:1+3+5+7+…+1995+1997+1999=?例3、 数列4,9,14,19,…的第80项是多少?例4、 有一列数按如下规律排列:6,10,14,18,…这数列中前100个数的和是多少?例5、 求100至200之间被7除余2的所有三位数的和是多少?例6、 学校进行乒乓球选拔赛,每个参赛选手要和其他选手赛一场,⑴如果一共有10外队员,一共要进行多少场比赛?⑵一共进行了78场比赛,有多少人参加了选拔赛?例7、 小红家在一条胡同里,这条胡同门牌号从1开始,挨着号码编下去。
如果除小红家外,其余各家的门牌号加起来,减去小红家的门牌号数,恰好等于100。
问小红家的门牌是几号?全胡同里共有几家?例8、 若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只有一个盒子没有棋子,然后他外出了。
小光从每个有棋子的盒子里各拿出一个其中放在空盒里,再把盒子重新排列了一下,小明回来查看一番,没发现有人动过。
问:共有多少个盒子?家庭作业:【1】计算 ⑴ 2+4+6+8…+198+200 ⑵ 3+10+17+24+31+…+94 ⑶ 77+74+71+……+11+8+5【2】已知等差数列3,7,11,15,…,195,问这个数列共有多少项?【3】已知等差数列2,7,12,17,……它的第25项是多少?第36项是多少?【4】一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少?【5】一个等差数列,首项是4,末项是88,公差是6,这列数的总和是多少?【6】有一列数,已知第一个数是9,从第二个数起,每个数都比前一个数多4,这列数的前50个数的和是多少?【7】学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛?【8】一个物体从空中降落,第一秒落下9米,以后每秒都比前一秒多落下9米,经过10秒到达地面,这个场体原来离地面的高是多少米?【9】上体育课时,我们几个同学站成一排,从1开始顺序报数,除我以外的其他同学报的数之和减去我报的数恰好等于72。
三年级下册数学试题-奥数专题讲练:第2讲 数列求和精英篇(解析版)全国通用
第二讲数列求和知识导航德国有一位世界著名的数学家叫高斯(公元1777年-1855年)。
他上小学的时候,老师出了一个题目,1+2+…+99+100=?小高斯看了看,又想了想,很快说出结果是5050。
同学们,你们知道他是怎么算出来的吗?原来小高斯在认真审题的基础上,发现题目的特点。
像高斯的老师所出的题目那样,按一定次序排列的一列数叫做数列。
数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项;……,最后一个数叫末项。
如果一个数列从第二项开始,每一项与它前一项的差都相等,就称这个数列为等差数列。
后项与前项的差叫做这个数列的公差。
如:1,2,3,4,…是等差数列,公差为1;2,4,6,8,…是等差数列,公差为2;5,10,15,20,…是等差数列,公差为5。
进一步,小高斯发现了这样的关系:1+100=101,2+99=101,3+98=101,…,50+51=101。
一共有多少个101呢?100个数,每两个数是一对,共有50个101。
所以:1+2+3+…+98+99+100=101×50即, 和= (100+1)×(100÷2)=101×50=5050这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050由高斯的巧算可得出等差数列的求和公式:总和=(首项+末项)×项数÷2这样,由于高斯发现了巧算的方法,所以他最先得出了正确的答案。
因此,同学们要想算得正确、迅速,方法合理、灵活,不仅要掌握数与运算的定律、性质,而且要善于观察,认真审题,注意发现题目的特点。
例题精讲【例1】找找下面的数列有多少项?(1)2、4、6、8、……、86、98、100(2)3、4、5、6、……、76、77、78(3)4、7、10、13、……、40、43、46(4)2、6、10、14、18、……、82、86分析:(1)我们都知道:1、2、3、4、5、6、7、8、……、95、96、97、98、99、100 这个数列是100项,现在不妨这样去看:(1、2)、(3、4)、(5、6)、(7、8)、……、(95、96)、(97、98)、(99、100),让它们两两一结合,奇数在每一组的第1位,偶数在第2位,而且每组里偶数比奇数大,小朋友们一看就知道,共有100÷2=50组,每组把偶数找出来,那么原数列就有50项了。
四年级上册奥数试题-第五讲:数列求和(无答案)
第五讲数列求和专题解析:0,1,2,3......像这样的按一定顺序排列的数叫做数列,数列不一定从小到大,也不一定从大到小,但是每个位置的数都是确定的,数列会帮助我们理解位置与位置上所对应的数之间一一对应的关系,就像学校中每个座位所对应坐的小朋友一样。
本章我们就要来学习等差数列,以及等差数列的和知识回顾之数列求和:重点知识理解:等差数列的概念,等差数列与植树问题的相似之处,如何利用植树问题所学的知识求等差数列的某一项等【经典例题】【例题1】有四个数列如下:●1,2,4,8,16,32,64●1,1,2,3,5,8,13,21●2,4,6,8,10,12,14,16,18●21,18,15,12,9,6,3●1,5,1,5,1,5,1,5,1,5请问以上哪个数列是等差数列,不是等差数列的你能找找其中的规律吗?思维点拨:等差数列之要求相邻两项的差一样,但一定要按顺序作差随堂演练:(1)请任意说出三个有五项的等差数列(2)若公差为5,第一项是3,数列是逐渐增大的,请写出数列的前十项【例题2】求等差数列1,6,11,16......的第二十项是多少,第35项是多少?251是这个数列的第几项?思维点拨:每一个数可以代表一棵树,而数的大小可以代表树与0的距离,第几项可表示第几棵数随堂演练:1.已知数列2,5,8,11,14......,请问47是其中的第几项2.已知数列96,91,86,81......,请问第10项是多少,第16项呢?3.如果一个数列的第一项是3,最后一项是219,公差是4,请问这个数列一共有多少项?如果一等差数列的第4项为21,第6项为33,求它的第8项思维点拨:间距不变,公差也不变随堂演练:1.已知等差数列的公差为4,末项为280,数列共25项,这个数列的首项是多少?这个数列的第16项是多少?2.小剧场共有40排座位,每一排都比前一排多两个座位,最后一排有120个座位,那第一排有多少个座位?第25排有多少个座位?【例题4】数列的求和推论有自然数列1,2,3,4,5,6......99,100,求数列1+2+3+......+99+100的和。
三年级数列求和先配对奥数题
三年级数列求和先配对奥数题
以下是一个适合三年级学生的数列求和先配对的奥数题:
题目:有一个数列,它的前几个数是这样的:1、2、3、4、5、6、5、4、3、2、1。
从第一个数开始,依次取两个数相加,直到最后两个数相加为止,求所有和的总和。
解析:观察数列,我们可以看到这是一个对称的数列,中间的数是最大的数6。
因此,我们可以将数列分为两部分:前半部分和后半部分。
每一对相加的两个数,一个是前半部分的数,一个是后半部分的数。
由于数列是对称的,每一对的和都是相同的。
解答:我们可以将数列分成以下几组配对的数:(1,5),(2,4),(3,3),(4,2),(5,1),(6,6),(5,1),(4,2),(3,3),(2,4),(1,5)。
每一对的和分别是6、6、6、6、6、12、6、6、6、6、6。
因此,所有和的总和是6×10+12=72。
类似的题目可以帮助学生锻炼数列求和和观察数列规律的能力,同时也可以培养学生的逻辑思维和数学思维能力。
数列求和的七种方法
数列求和的七种方法数列求和是数学中的一个基本问题,我们经常会在数学课上遇到。
在解决数列求和的问题时,我们可以使用多种方法来计算数列的和。
下面我将介绍七种常见的方法。
第一种方法是等差数列求和。
等差数列的特点是每一项与前一项的差值都相等,我们可以使用等差数列求和公式来计算其和。
如果一个等差数列的首项为a,公差为d,有n项,则等差数列的和可以表示为Sn = (n/2)(2a + (n-1)d)。
通过这个公式,我们可以快速计算等差数列的和。
第二种方法是等比数列求和。
等比数列的特点是每一项与前一项的比值都相等,我们可以使用等比数列求和公式来计算其和。
如果一个等比数列的首项为a,公比为r,有n项,则等比数列的和可以表示为Sn = a(1 - r^n)/(1 - r)。
通过这个公式,我们可以方便地计算等比数列的和。
第三种方法是求和公式法。
对于一些特殊的数列,我们可以找到一个求和公式来计算其和。
例如,等差数列和等比数列都有对应的求和公式。
在解决数列求和的问题时,我们可以通过寻找求和公式来简化计算过程。
第四种方法是换元法。
有时候,我们可以通过将数列中的项进行变量替换来简化计算过程。
例如,我们可以将数列中的项表示为一个多项式,并对该多项式进行求和。
通过变量替换和多项式求和,我们可以迅速得出数列的和。
第五种方法是递推法。
对于一些没有明显规律的数列,我们可以使用递推法来计算其和。
递推法的思想是通过前几项的和来求解后一项的值。
通过不断累加并递推,我们可以得到数列的和。
第六种方法是分组求和法。
对于一些复杂的数列,我们可以将其划分为多个子数列,并分别计算每个子数列的和。
然后将所有子数列的和相加,即得到整个数列的和。
这个方法常常在解决难题时使用,可以将复杂问题化简为简单问题。
第七种方法是利用数学工具求和。
在现代数学中,我们有各种各样的数学工具可以用来辅助求和。
例如,我们可以使用微积分中的积分来计算一些复杂数列的和。
通过利用数学工具,我们可以更加高效地求解数列求和的问题。
(完整版)数列求和常见的7种方法
答并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.
解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°
(1)试用 表示a ;
3.数列 中, 且满足
⑴求数列 的通项公式;
⑵设 ,求 ;
=
=
=
=5
[例14]在各项均为正数的等比数列中,若 的值.
解:设
由等比数列的性质 (找特殊性质项)
和对数的运算性质 得
(合并求和)
=
=
=10
七、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.
[例15]求 之和.
…………..②(反序)
又因为
①+②得(反序相加)
=89
∴S=44.5
题1已知函数
(1)证明: ;
(2)求 的值.
解:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,
两式相加得:
所以 .
练习、求值:
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
[例7]求数列的前n项和: ,…
解:设
将其每一项拆开再重新组合得
(分组)
当a=1时, = (分组求和)
数列求和常用的五种方法
数列求和常用的五种方法在数学学科中,数列是指一系列按照一定规律排列的数字。
数列求和是数学中常见的问题之一,有多种求解方法可以帮助我们计算数列的和。
在本文中,我将介绍五种常见的数列求和方法。
1.等差数列求和公式:等差数列是指数列中的每个元素与前一个元素之差保持不变的数列。
如果数列的首项为a,公差为d,一共有n项,则其求和公式如下:Sn=n/2×(2a+(n-1)d)其中Sn表示数列的和。
这个公式可以通过首项、末项和项数来快速求出数列的和。
2.等比数列求和公式:等比数列是指数列中的每个元素与前一个元素之比保持不变的数列。
如果数列的首项为a,公比为r,一共有n项,则其求和公式如下:Sn=a×(1-r^n)/(1-r)其中Sn表示数列的和。
这个公式可以通过首项、末项和项数来快速求出数列的和。
3.平方和公式:平方和公式用于求解平方数列的和。
平方数列是指数列中的每个元素是前一个元素的平方。
如果数列的首项为a,一共有n项,则其和为:Sn=(2a^3-a-n)/6这个公式可以帮助我们计算平方数列的和,避免了逐个相加的繁琐过程。
4.等差数列求和的几何解释:我们可以将等差数列的求和问题用几何的方法解释。
对于等差数列,每个元素与前一个元素之差保持不变,可以将数列中的元素排列成一个等差数列。
我们可以将等差数列首尾相接,形成一个首项为1,公差为d的数列。
则等差数列的和可以看作是这个等差数列形成的图形的面积。
利用等差数列的几何解释,我们可以得到等差数列求和的公式:Sn=n/2×(a+l),其中l为数列的末项。
5.积数列求和公式:积数列是指数列中的每个元素是前一个元素与公比之积。
如果数列的首项为a,公比为r,一共有n项,则其和为:Sn=a×(1-r^n)/(1-r)这个公式类似于等比数列求和公式,但是是针对积数列而用的。
以上是数列求和的五种常见方法。
每种方法都适用于不同类型的数列,可以根据数列的特点选择合适的方法来求解数列的和。
数列的奥数题
数列的奥数题数列是数学中的重要概念,其在奥数竞赛中经常出现,考察学生对数列的理解和运用能力。
本文将通过解析一道数列的奥数题,来帮助读者更好地理解数列的概念和解题方法。
题目描述:已知数列 {an} 满足 a1 = 1,an = an-1 + 2n - 1,(n ≥ 2),求数列的第n 项的表达式。
解题分析:首先,我们可以观察数列的前几项来找出规律。
根据题目给出的条件,我们可以计算前几项的值:a1 = 1a2 = a1 + 2*2 - 1 = 4a3 = a2 + 2*3 - 1 = 9a4 = a3 + 2*4 - 1 = 16通过观察前几项,我们可以猜测数列的通项表达式与n 的平方有关。
为了验证我们的猜想,我们使用数学归纳法证明。
数学归纳法是数学中常用的证明方法,可以用来证明递推关系式在所有自然数上成立。
下面我们使用数学归纳法来证明数列的通项表达式。
证明:(1)当 n = 1 时,根据题目给出的条件,a1 = 1。
由此可知,当 n = 1 时,数列的第一项符合条件。
(2)假设当n = k (k ≥ 1) 时,数列的第 k 项符合条件。
即 ak = k^2。
(3)我们证明当 n = k+1 时,数列的第 k+1 项也符合条件。
根据题目给出的条件,an = an-1 + 2n - 1。
代入 n = k+1 的值,即 ak+1 = ak +2(k+1) - 1 = k^2 + 2k + 1 = (k+1)^2。
由此可知,当 n = k+1 时,数列的第 k+1 项符合条件。
综上所述,根据数学归纳法原理,我们可以得出结论:数列的第 n项的表达式为 an = n^2。
通过以上证明,我们得出数列的通项表达式为 an = n^2。
这是一个二次幂数列,每一项都是对应自然数的平方。
当我们知道数列的通项表达式后,就可以轻松计算数列的任意项了。
总结:数列是奥数题中常见的题型,解题时需要观察数列前几项,找出规律,并使用数学归纳法进行证明。
数列求和7种方法
数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。
3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。
例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。
二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。
6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。
三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。
数列求和题型及解题方法
数列求和题型及解题方法
数列求和是数学中的一个重要概念,其题型和解题方法有很多种。
以下是一些常见的数列求和题型及其解题方法:
1. 等差数列求和
等差数列是一种常见的数列,其相邻两项的差是常数。
等差数列的求和公式为:S = n/2 (a1 + an),其中n是项数,a1是首项,an是尾项。
例如:1+2+3+...+n=n(n+1)/2
2. 等比数列求和
等比数列是一种常见的数列,其相邻两项的比是常数。
等比数列的求和公式为:S = a1 (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。
例如:1+2+4+...+2^(n-1)=2^n-1
3. 错位相减法
对于一些等差数列和等比数列的混合数列,可以使用错位相减法来求和。
具体做法是将原数列的每一项都乘以一个适当的常数,使得新数列成为等差数列或等比数列,然后使用相应的求和公式进行计算。
例如:100+101+102+...+999=99/2=44550
4. 分组求和法
对于一些项数较多、难以直接求和的数列,可以将它们分成若干组,每组有有限项,然后分别求每组的和,最后将各组的和相加即可。
例如:(1+2+3)+(4+5+6)+(7+8+9)=9+18+27=54
5. 倒序相加法
对于一些奇偶项相间的数列,可以将正序和倒序分别求和,再将两个和相加,即可得到原数列的和。
例如:(1+2+3+4)+(3+2+1)=8+6=14
以上是一些常见的数列求和题型及其解题方法,掌握这些方法对于解决数列求和问题非常有帮助。
数列求和知识点和典型例题
数列求和知识点和典型例题数列求和是数学中的一个基础概念,它常常出现在学习数学的初中和高中阶段。
掌握数列求和的知识点和解题方法,对于数学学习的进一步发展和应用都有着重要的意义。
本文将从数列求和的基本概念、求和公式和典型例题三个方面进行详细的介绍。
一、数列求和的基本概念数列是按照一定规律排列的一组数,求和即为对数列中的数进行加法运算得到的结果。
对于有限项的数列求和可以通过逐项相加的方法得到,而对于无限项的数列求和则需要根据数列的规律进行推导得到求和公式。
二、数列求和的公式1.等差数列求和公式等差数列指的是一个数列中任意两项之间的差值都相等。
对于等差数列,其求和公式为:Sn = (a1 + an)*n/2,其中Sn为数列的前n项和,a1为首项,an为末项。
这个公式的推导可以通过将数列从首项到末项排列,再从末项到首项排列再相加得到。
2.等比数列求和公式等比数列指的是一个数列中任意两项之间的比值都相等。
对于等比数列,其求和公式为:Sn=(a1*(1-q^n))/(1-q),其中Sn为数列的前n项和,a1为首项,q为公比。
这个公式可以通过将数列前n项与公比相乘得到一个新的等差数列,并用等差数列的求和公式进行计算得到。
3.平方数列求和公式平方数列指的是一个数列中每一项都是前一项的平方。
对于平方数列,其求和公式为:Sn=1^2+2^2+...+n^2=n*(n+1)*(2n+1)/6、这个公式可以通过数学归纳法进行推导得到。
三、数列求和的典型例题1.求等差数列1,3,5,7,...的前100项和。
解:根据等差数列的求和公式,a1=1,an=2n-1,n=100。
代入公式得到Sn = (1 + (2*100-1))*100/2 = 5050。
2.求等差数列2,5,8,11,...的前50项和。
解:根据等差数列的求和公式,a1=2,an=3n-1,n=50。
代入公式得到Sn = (2 + (3*50-1))*50/2 = 14753.求等比数列1,2,4,8,...的前10项和。
三年级奥数题:数列问题
三年级奥数题:数列问题
数列题目是三年级奥数的难点之一,许多同学对于这类型的题目掌握的还不是很好,下面就是小编为大家整理的三年级奥数数列题目,希望对大家有所帮助!
第一篇:斐波那契数列
斐波那契数列为1,1,2,3,5,8,13,那么数列的第100项与前98项之和的差是多少?
解答:因为第100项等于第99项与第98项之和,所以第100项与前98项之和的差等于第99项与前97项之和的差.同理第99项与前97项之和的差等于第98项与前96项之和的差,……依次类推,可得第100项与前100项之和的差等于第3项与前1项的差,即为第2项,所以第100项与前98项之和的差是.
第二篇:填完数列
按照数列的变化规律在括号里填上合适的数:3,1,6,2,12,3,24,4,(),()。
【答案解析】第1个数、第3个数、第5个数、第7个数……依次为:3,6,12,24,…又组成一个新的数列,后一个数是前一个数的2倍。
因此,第9个数应填48;同样,第2个数、第4个数、第6个数、第8个数……依次为:1,2,3,4,…,也组成一个新的数列,后一个数比前一个数大1。
因此,第10个数应填5
第三篇:等差数列
对于数列4、7、10、13、16、19……,第10项是多少?49是这个数列的第几项?第100项与第50项的差是多少?
【答案解析】可以观察出这个数列是公差是3的等差数列.根据刚刚学过的公式:第n项=首项+公差×(n-1),项数=(末项-首项)÷公差+1,第n项-第m项=公差×(n-m);第10项为:4+3×(10-1)=4+27=31,49在数列中的项数为:(49-4)÷3+1=16,第100项与第50项的差:3×(100-50)=150。
小学奥数知识点总结之数列求和
小学奥数知识点总结之数列求和
小学奥数知识点总结之数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的.公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)公差;
数列和公式:sn,=(a1+an)n2;
数列和=(首项+末项)项数2;
项数公式:n=(an+a1)d+1;
项数=(末项-首项)公差+1;
公差公式:d=(an-a1))(n-1);
公差=(末项-首项)(项数-1);
关键问题:确定已知量和未知量,确定使用的公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的求和
一、填空题
1. 1~1991这1991个自然数中,所有的奇数之和与所有的偶数之和的差是______.
2. 计算:
1-3+5-7+9-11+…-1999+2001=______. 3. 计算:
100+99+98-97-96+95+94+93-92-91+…
+10+9+8-7-6+5+4+3-2-1=______. 4. 计算:
1992+2
1-131+221-331+421-531+…+199021-19913
1=______.
5. 100与500之间能被9整除的所有自然数之和是______.
6. 如左下图,一个堆放铅笔的V 形架的最下层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支.这个V 形架上共放了______支铅笔.
7. 一堆相同的立方体堆积如下图所示.第一层1个,第二层3个,第三层6个,……,第10层有______个立方体.
8. 下面数列中各数呈现一定规律,其中第五项是几?
1,2,5,10,( ),26,37…. 9. 数列:
5.01,
6.02,
7.01, 5.02, 6.01, 7.02, …前20项的和是______. 10. 计算:
______
25
20120
15115
10110
515
11=⨯+
⨯+
⨯+
⨯+
⨯.
二、解答题
11. 如下图,三角形每边2等分时,顶点向下的小三角形有1个;每边4等分时,顶点向下的小三角形有6个;每边10等分时,顶点向下的小三角形有几个? 20等分呢?
12. 计算: 98.087.076.065.054.043.032.02
1.0 +++++++ 13. 求值: ?
928
128
154
110
1
7
40
14
10
11
88
=+++++
14. 求1991个自然数,其中一个是1991,使它们的倒数之和恰好为1(这些自然数不都相同).
数列的求和答案
1.
(1+3+
…
+1991)-(2+4+
…
+1990)=1+(3-2)+(5-4)+
…
+(1991-1990)=1+1+…+1=996 2.
1-3+5-7+9-11+
…
-1999+2001=1+(5-3)+(9-7)+(13-11)+
…
+(2001-1999)
=1+2+2+…+2=1001
3. 100+99+98-97-96+95+94+93-92-91+…+10+9+8-7-6+5+4+3-2-1 =100+(99-97)+(98-96)+95+(94-92)+(93-91)+…
+10+(9-7)+(8-6)+5+(4-2)+(3-1) =(100+95+…+10+5)+2+2+…+2=40
2202
)5100(⨯+⨯+=105×10+80=1130
4. 1992+2
1-13
1+22
1-33
1+42
1-53
1+…+19902
1-19913
1
=[(2-1)+(4-3)+ …+(1992-1991)]+[(2
1-
3
1
)+(
2
1-
3
1
)+ …
+(2
1-3
1)]
=996+996×(2
1-3
1)
=996+996×6
1=996+166=1162
5. 100到500之间9的倍数有9×12,9×13,…,9×55,共55-12+1=44个,它们的和是 2
44)495108
(⨯+=13266.
6. V 型架上铅笔总数是
1+2+3+…+120=2
121120
⨯=7260(支).
7. 第一层有1个;第二层有1+2=3个;第三层有1+2+3=6个;…;第十层有 1+2+3+…+10=2
1110
⨯=55(个).
8. 这个数列相邻两项的差组成奇数数列:
1,3,5,7,9,11,…,故第五项是10+7=17. 9. 20÷3=6…2.前20项之和为
(5+6+7)×6+5+6+(0.01+0.02)×10=119.3 . 10. 511⨯+1051⨯+15101⨯+
20
151⨯+
25
201⨯=
5
1+
5
1×
(5
1-10
1+10
1-15
1+
15
1-20
1+
20
1-
25
1)
=5
1+5
1×(5
1-25
1)=5
1+5
1×
254=
125
29.
11. 三角形每边二、三、四等分后,每排所产生的顶角向下的小三角形的个数是1,2,3.同样,三角形每边10等分时,顶角向下的小三角形有 1+2+3+ (9)
2
109⨯=45(个).
三角形每边20等分后,产生的顶角向下的小三角形有 1+2+3+…+19=2
2019⨯=190(个).
12.
3
211⨯⨯=(
2
11⨯-
3
21⨯)×2
1;
4
321⨯⨯=(
3
21⨯-
4
31⨯)×2
1;
(100)
99981⨯⨯=(
99
981⨯-
100
991⨯)×2
1.
相加得
3
211⨯⨯+
4
321⨯⨯+…+
100
99981⨯⨯=2
1(
2
11⨯-
100
991⨯)=
19800
4949.
13. 15
21⨯+48
51⨯+7
11
81
⨯+1014
111⨯+1317141⨯+16
20
171
⨯ =(1+4+7+10+13+16)+(
5
21⨯+
8
51
⨯+
11
81
⨯+14
111⨯+
17
141⨯+
20
171⨯)
=2
6)161(⨯++(2
1-51+51-8
1+…+
17
1-
20
1)×3
1=51+(2
1-20
1)×3
1=51
20
3.
14. 因为
2
11⨯+
321⨯+
431⨯+…+
1991
19901⨯
=1-2
1+2
1-3
1+3
1-4
1+…+1990
1-
1991
1
=1-1991
1.
所以
2
11⨯+
3
21⨯+
4
31⨯+…+
1991
19901⨯+
1991
1=1.
1×2,2×3,3×4,…,1990×1991和1991这1991个自然数满足要求.。