2019-2020学年四川省成都市高一下学期期末数学(文)试题(解析版)

合集下载

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。

2019-2020学年人教A版四川省蓉城名校联盟高三第二学期第二次联考(文科)数学试卷 含解析

2019-2020学年人教A版四川省蓉城名校联盟高三第二学期第二次联考(文科)数学试卷 含解析

2019-2020学年高三第二学期第二次联考数学试卷(文科)一、选择题1.已知集合A={﹣1,1,3,4},集合B={x|x2﹣4x+3>0},则A∩B=()A.{﹣1,4}B.{﹣1,1,4}C.{﹣1,3,4}D.(﹣∞,1)∪(3,+∞)2.已知复数z=,则|z|=()A.1B.C.2D.33.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知实数0<a<b,则下列说法正确的是()A.>B.ac2<bc2C.lna<lnb D.()a<()b5.已知命题p:x<2m+1,q:x2﹣5x+6<0,且p是q的必要不充分条件,则实数m的取值范围为()A.m>B.m≥C.m>1D.m≥16.若数列{a n}为等差数列,且满足3+a5=a3+a8,S n为数列{a n}的前n项和,则S11=()A.27B.33C.39D.447.已知α,β是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是()A.若m⊂α,n⊂β,且α⊥β,则m⊥nB.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βC.若m⊥α,n∥β,且α⊥β,则m⊥nD.若m⊥α,n∥β,且α∥β,则m⊥n8.已知抛物线y2=20x的焦点与双曲线﹣=1(a>0,b>0)的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A.B.C.D.9.如图,在△ABC中,=,P是BN上的一点,若m=﹣,则实数m 的值为()A.B.C.1D.210.已知实数a>0,b>1满足a+b=5,则+的最小值为()A.B.C.D.11.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三形三边的数对(x,y)的个数a;最后再根据统计数a估计π的值,那么可以估计π的值约为()A.B.C.D.12.已知=(2sin,cos),=(cos,2cos),函数f(x)=•在区间[0,]上恰有3个极值点,则正实数ω的取值范围为()A.[,)B.(,]C.[,)D.(,2]二、填空题13.实数x,y满足,则z=2x+y的最大值为.14.在△ABC中,若a:b:c=2:3:4,则最大内角的余弦值为.15.已知直三棱柱ABC﹣A1B1C1中,∠ABC=,AB=4,BC=CC1=2,则异面直线AB1与BC1所成角的余弦值为.16.已知函数f(x)=﹣x3+x+a,x∈[,e]与g(x)=3lnx﹣x﹣1的图象上存在关于x轴对称的点,则a的取值范围为.三、解答题:共70分。

2019-2020学年四川省成都市高一下学期期末考试数学(文)试题(解析版)

2019-2020学年四川省成都市高一下学期期末考试数学(文)试题(解析版)
A. B. C. D.
【答案】B
【解析】根据三视图的特点:长对正,高平齐,宽相等分析求解.
【详解】
由三视图的画法,可得侧视图如下:
故选:B
【点睛】
本题主要考查三视图,还考查了空间想象的能力,属于基础题.
3.二次不等式 的解为全体实数的条件是()
A. B. C. D.
【答案】B
【解析】根据二次函数图像的特征判断即可.
(1)求角 的大小;
(2)若在该产业园区内再规划一个核心功能区 ( 、 是边 上的点),且 , , 米,求核心功能区 面积的最小值.
【答案】(1) ;(2) 平方米.
【解析】(1)由正弦定理将 边化角可求出 ,即可求出角 ;
(2)记 ,则 ,则 ,利用正弦定理可以表示出 和 ,利用面积公式表示出面积,再根据 的取值范围即可求出 面积的最小值.
【详解】
二次不等式 的解为全体实数,即二次函数 恒成立,即二次函数图像不在 轴下方,因此需要开口向上,并且与 轴无交点或有且只有一个交点,因此 .
故选:B.
【点睛】
本题考查了一元二次不等式恒成立的问题,属于基础题.
4.已知 ,则 ()
A. B. C. D.
【答案】A
【解析】由二倍角的余弦公式可直接求解.
所以 为递增数列,故
因为 ,则 ,故
所以
【点睛】
本题主要考查数列通项与前n项和的关系,等比数列的定义,裂项相消法求和,还考查了运算求解的能力,属于中档题.
21.已知函数 .
(1)当 时,求当 时,函数 的值域;
(2)解关于 的不等式 .
【答案】(1) ;(2)答案见解析.
【解析】(1)利用 代入化简 ,再用基本不等式求值域即可;

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
19.已知复数z满足 , 的虚部为2,
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()

【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)

【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)

2019—2020学年高一年级下学期期末冲刺满分训练卷第十章 立体几何初步 期末单元测试卷(范围:新教材人教B 版 必修四 考试时间:90分钟 满分:150分)一、选择题(本题共12道小题,每小题5分,共60分)1.以下命题(其中a 、b 表示直线,α表示平面)中,正确的命题是( )A. 若//a b ,b α⊂,则//a αB. 若//a α,//b α,则//a bC. 若//a b ,b α⊥,则a α⊥D. 若//a α,b α⊂,则//a b答案及解析:1.C【分析】根据线线、线面有关定理对选项逐一分析,由此确定正确选项.【详解】对于A 选项,直线a 可能含于平面α,所以A 选项错误.对于B 选项,,a b 可能异面,所以B 选项错误.对于C 选项,由于//a b ,b α⊥,所以a α⊥,所以C 选项正确.对于D 选项,,a b 可能异面,所以D 选项错误.故选:C【点睛】本小题主要考查空间线线、线面位置关系的判断,属于基础题.2.下列命题正确的是( )A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。

B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。

C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。

D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。

答案及解析:2.B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A 选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B ,根据课本中棱柱的概念得到是正确的;对于C ,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D ,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.3.在正方体ABCD - A 1B 1C 1D 1中,动点E 在棱BB 1上,动点F 在线段A 1C 1上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O-AEF 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关答案及解析:3.B【分析】 根据等体积法以及锥体体积公式判断选择.【详解】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值,因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值,又AO ∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以,四面体O-AEF 的体积与x ,y 都无关,选B 。

2022年数学选择性必修1寒假必刷题专题04 直线和圆的方程(解答题)(解析版)

2022年数学选择性必修1寒假必刷题专题04 直线和圆的方程(解答题)(解析版)
x + (a − 2) y + a2 − 5 =0 .
(1)若 l1 ⊥ l2 ,求实数 a 的值; (2)若 l1//l2 ,求实数 a 的值. 10.(四川省宜宾市第四中学 2020-2021 学年高二上学期开学考试数学(文))已知直线 l1 :x + 3y − 5 =0 ,
直线 l2 : ax − y + 4= 0(a ∈ R) .
(1)求 BC 边上的中线所在直线的方程; (2)求 AB 边上的高线所在直线的方程.
6.(福建省普通高中 2019-2020 学年高二 1 月学业水平合格性考试)已知圆 O : x2 + y2 = 8 ,点 P0 (−1,2) ,
直线 l 过点 P0 且倾斜角为α .
1
(1)判断点 P0 与圆 O 的位置关系,并说明理由; (2)若α = 3π ,求直线 l 被圆 O 所戴得的弦 AB 的长.
24.(江西省南昌市第二中学 2020-2021 学年高二上学期第一次月考数学(文))已知以点 A(−1, 2) 为圆心
的圆与直线 m : x + 2 y + 7 =0 相切,过点 B (−2, 0) 的动直线 l 与圆 A 相交于 M,N 两点.
(1)求圆 A 的方程.
(2)当 MN = 2 19 时,求直线 l 方程.
18.(四川省资阳市 2019-2020 学年高一下学期期末)已知直线 l1 : 2x − y +1 =0 和 l2 : x − y − 2 =0 的交
点为 P .
(1)若直线 l 经过点 P 且与直线 l3 : 4x − 3y − 5 =0 平行,求直线 l 的方程; (2)若直线 m 经过点 P 且与 x 轴, y 轴分别交于 A ,B 两点,P 为线段 AB 的中点,求 OAB 的面积(其 中 O 为坐标原点).

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。

四川省成都市第七中学校2023—2024学年高一下学期期末考试语文试卷 (解析版)

四川省成都市第七中学校2023—2024学年高一下学期期末考试语文试卷 (解析版)

成都市第七中学校2023-2024学年高一下学期期末考试语文(考试时间:150分钟试卷满分:150分)一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成下面小题。

世界上所有已经发展成熟的建筑形式或者建筑体系,在现代建筑未产生之前,基本上是属于砖石结构为主的建筑系统。

只有包括日本、朝鲜等邻近地区在内的中国系建筑才以木骨架结构为主。

由于木材的寿命有其一定的限度,因此连同建筑的寿命也有其局限。

这就是博伊德所谓“年代久远的”中国古建筑出乎意料的稀少的一个主要原因。

为什么中国古建筑主要发展木骨架结构而不像其他体系那样发展砖石承重墙式结构呢?中国古代是同时掌握砖石结构技术的,正如其他的建筑体系同样懂得用木头盖房屋一样。

世界上到处都有石头,同样也到处都有树木,当然,有些地方石头多些,有些地方树木多些,木结构的采用问题的产生似乎并不起因于自然环境和地理因素。

对于中国发展木骨架结构的建筑有一些学者认为是“木”“石”的有无问题。

建筑学家刘致平在《中国建筑类型及结构》一书中说:“我国最早发祥的地区——中原等黄土地区,多木材而少佳石,所以石建筑甚少。

”但是李约瑟的看法却是“肯定不能说中国没有石头适合建造类似欧洲和西亚那样的巨大建筑物,而只不过是将它们用之于陵墓结构、华表和纪念碑,并且用来修建道路中的行人道、院子和小径”。

而在承德避暑山庄内修建的“淡泊敬诚”楠木殿所用的木材,并不是坚持就地取材的原则取在当地,而是由南方千里迢迢地运来的。

另一个看法是基于社会经济的理由。

建筑师徐敬直在他的英文本《中国建筑》一书中说:“因为人民的生计基本上依靠农业,经济水平很低,因此尽管木结构房屋很容易燃烧,20多个世纪以来仍然极力保留作为普遍使用的建筑方法。

”那么,中国古代的经济水平或者说生产力是否低于其他国家呢?肯定不是。

另外,也不是只有经济强大的国家和地区才去发展石头建筑的。

中国古代曾经有过搬弄石头来建筑房屋的时候。

(成都七中)四川省成都市七中2022-2023学年高一6月月考语文试题(解析版)

(成都七中)四川省成都市七中2022-2023学年高一6月月考语文试题(解析版)
3.下列关于园林和建筑的说法,不属于“借景”的一项是( )
A.扬州个园秋山,山顶筑亭,人在亭中,群峰移至脚下,远处树木诸景,一一招入园内。
B.学校宿舍前的云亭,与相邻的曲廊水池、校园里往来的师生一起构成动静相宜的图画。
C.塔子山公园的九天楼造型新颖独特,远看似塔,近看似楼,享有“塔山揽秀”的美誉。
D.被称为“南方大雁塔”的高邮镇国寺塔矗立在京杭运河之中,形成塔影落波尖的美景。
B.中国园林最为看重意境,如果园林设计者和建造者对中国传统国画、诗文、哲学等没有较深的造诣,会制约其造园创作。
C.中国园林讲究小中见大,含蓄不尽,因此不能建造面积较大的园林,否则就会如苏州拙政园东部新建的巨亭一样失败。
D.中国园林的“借景”初期是利用天然山水,但是随着“借景”手法的发展,所借之物越来越丰富,也可以借人造之景。
C.“借景”在中国传统园林设计中占据着重要的地位,这一手法最早是白居易在庐山建造草堂时提出并使用的。
D.中国古代思想家根据造园的特点总结出了“动观”与“静观”的理论,这一理论现今在中西园林中都有所运用。
2.下列对中国园林的造园艺术理解不正确的一项是 ( )
A.明代造园大师计成所著的《园冶》是一本有关园林艺术的著作,书中对中国古代造园所运用的“借景”手法作了总结。
故选A。
【2题详解】
本题考查学生理解文章重要概念,分析概括作者的观点态度的能力。
C.“不能建造面积较大的园林”推断错误。由材料一“近年来亦知道大园林不分区不成,亦就是用大园包小园的手法,化整为零,分中有合。这种手法正尝试用于新园林”这一说法可知,大园林可以,但是要分区。
故选C。
【3题详解】
本题考查学生分析理解文章重要概念的能力。
“借景”在园林设计中,占着极重要的位置。有些设计成功的园林,人入其中,翘首四顾,顿觉心旷神怡,妙处难言。一经分析,便可看出,主要还是在于巧妙地运用了“借景”的方法。这个方法,在我国古代造园中早已自发地应用了。不过,直到明末崇祯年间,才由计成在他所著的《园冶》一书中总结出来。他说:“园林巧于因借。”“夫借景者也,如远借、邻借、仰借、俯借、应时而借”等。清初李渔《一家言》也说“借景在因”。

【人教版】2020学年高一化学下学期期末考试试题(含解析) (2)

【人教版】2020学年高一化学下学期期末考试试题(含解析) (2)

2019学年下学期期末考试高一化学1. 关于氯化铁溶液和氢氧化铁胶体的下列叙述中,正确的是( )A. 分散质粒子都能透过滤纸B. 都具有丁达尔效应C. 分散质粒子的直径大小相同D. 它们的稳定性相同【答案】A【解析】【分析】根据溶液和胶体的区别,胶体的胶粒直径为1~100 nm,溶液的粒子直径小于1 nm;胶体具有丁达尔现象,不能透过半透膜,能透过滤纸等解答。

【详解】A.溶液和胶体的分散质粒子都能透过滤纸,A正确;B.氢氧化铁胶体具有丁达尔效应,可以用来区分胶体和溶液,B错误;C.氯化铁溶液的粒子直径小于1 nm,而胶体中粒子直径介于1~100 nm之间,C错误;D.溶液的稳定性强于胶体,胶体属于介稳体系,D错误;答案选A。

2. 在下图的实验装置中,实验开始一段时间后,对看到的现象叙述不正确的是( )A. 苹果块会干瘪B. 胆矾晶体表面有白斑C. 小试管内有晶体析出D. pH试纸变红【答案】D【解析】【详解】A、苹果块是有机物,含有碳、氢、氧等元素,浓硫酸具有脱水性,能将苹果中的氢和氧元素按水的组成脱去,故苹果块会干瘪,A正确;B、胆矾为蓝色晶体,浓硫酸具有吸水性,能将胆矾中的结晶水脱去,变成白色的无水硫酸铜,B正确;C、浓硫酸具有吸水性,能吸收硝酸钾溶液中的溶剂水,溶剂减少,溶质析出,C正确;D、pH试纸是有机物,含有碳、氢、氧等元素,浓硫酸具有脱水性,能将pH试纸中的氢和氧元素按水的组成脱去,纸张变黑,D错误;答案选D。

3. 下列各物质含少量杂质,除去这些杂质应选用的试剂或操作方法正确的是( )A. ①②③④B. ①③④C. ②③④D. ①②③【答案】C【解析】【详解】①加入氯化铁,生成KCl,引入新杂质,应加入硝酸除杂,错误;②铁可置换出铜,可除去杂质,正确;③二氧化碳与氢氧化钠溶液反应,可除去杂质,干燥后得到纯净的氢气,正确;④碳酸钙不溶于水,可用过滤的方法除去,正确。

答案选C。

4. 准确称取6.0 g铝土矿样品(含Fe2O3),加入100 mL稀硫酸中,充分反应后向滤液中加入10 mol·L-1NaOH溶液,产生沉淀的质量和加入NaOH溶液体积之间的关系如图所示。

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷  (解析版)

2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠24.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤335.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣59.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.12.若分式的值为0,则x的值为.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.16.先化简,再求值:(﹣1)÷,其中x=2020.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=.22.关于x的不等式组的整数解共有6个,则a的取值范围是.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)【分析】根据分式的定义(注意分式的分母中不含有字母,)逐个判断即可.解:A、分母中不含有字母,不是分式,故本选项不符合题意;B、分母中不含有字母,不是分式,故本选项不符合题意;C、分母中含有字母,是分式,故本选项符合题意;D、分母中不含有字母,不是分式,故本选项不符合题意;故选:C.2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.解:A、是轴对称图形,但不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:A.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【分析】根据分式有意义的条件列出不等式,解不等式得到答案.解:由题意的,2﹣x≠0,解得,x≠2,故选:D.4.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤33【分析】最高气温与最低气温之间的气温即为当天气温t(℃)的变化范围.解:当天气温t(℃)的变化范围是25≤t≤33,故选:D.5.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【分析】利用平移中点的变化规律求解即可.解:在平面直角坐标系中,将三角形各点的横坐标都加上3,纵坐标保持不变,所得图形与原图形相比,向右平移了3个单位.故选:B.6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB【分析】根据平行四边形的判定方法即可判断;解:∵AB∥CD,AB=CD,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故选:A.8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣5【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为x=﹣4,∴把x=﹣4代入整式方程,得m=﹣5,故选:D.9.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】观察函数图象得到当x≤﹣1时,函数y1=x+b的图象都在y2=kx﹣1的图象下方,所以不等式x+b≤kx﹣1的解集为x≤﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解:根据题意得当x≤﹣1时,y1≤y2,所以不等式x+b≤kx﹣1的解集为x≤﹣1.故选:D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.二、填空题(共4个小题)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:360÷40=9,即这个多边形的边数是9.12.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为65°.【分析】利用三角形的中位线的性质解决问题即可.解:∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠B=65°,∵AE=EC.CF=BF,∴EF∥AB,∴∠CFE=∠B=65°,故答案为65°.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.【分析】根据旋转的性质,知:旋转角度是90°,根据旋转的性质得出AP=AP′=3,即△PAP′是等腰直角三角形,腰长AP=3,则可用勾股定理求出斜边PP′的长.解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴△ABP≌△ACP′,即线段AB旋转后到AC,∴旋转了90°,∴∠PAP′=∠BAC=90°,AP=AP′=3,∴PP′=3.三、解答题(共6小题).15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.【分析】(1)利用提公因式、公式法进行因式分解即可;(2)利用解不等式组的解法步骤进行解答即可.解:(1)ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2;(2),解不等式①得,x≥﹣1,解不等式②得,x<3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x<3:∴非负整数解有:0,1,2.16.先化简,再求值:(﹣1)÷,其中x=2020.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式=[﹣1]÷=(﹣)÷=•=﹣,当x=2020时,原式=﹣=﹣.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【分析】(1)利用点A和A1坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1A2,B1B2,C1C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)【分析】(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)根据所需要材料的总长度l=甲的材料的总长度+乙的材料的总长度,列出函数关系式;再根据“乙种边框的数量不少于甲种边框数量的2倍”列出不等式并解答.解:(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,由题意,得﹣1=,解得:x=2,经检验x=2是原方程的解,∴(1+20%)x=2.4(米),答:制作每个甲种用2.4米材料;制作每个乙种用2米材料.(2)设应安排制作甲种边框需要a米,则安排制作乙种边框需要(640﹣a)米,由题意,得≥×2.解得a≤240,则≤100.答:应最多安排制作甲种边框100个.20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.【分析】(1)如图①,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(2)如图②,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(3)由全等三角形的性质可得∠ABP=∠AMD=30°,可得∠BMD=∠AMB+∠AMD =90°,可得点D在BA的延长线上,由直角三角形的性质和等边三角形的性质可求AP 的长.解:(1)如图①,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC﹣∠CAP,∠MAD=∠PAD﹣∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(2)如图②,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°=∠AMB,由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC+∠CAP,∠MAD=∠PAD+∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(3)∵BC为等边△ABM的高,∴∠ABC=30°,∵△BAP≌△MAD,∴∠ABP=∠AMD=30°,∴∠BMD=∠AMB+∠AMD=90°,∴∠BMD=90°,∵∠BDM=30°,∴∠DBM=60°,∴点D在BA的延长线上,如图③,∵∠BDM=30°,∠BMD=90°,∴BD=2BM=10,∴AD=BD﹣AB=5∵PA=PD=AD,∴AP=AD=5.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=0.【分析】将m3﹣3mn+4m提取公因式m,得到原式=m(m2﹣3n+4),把m2+4=3n代入,计算即可.解:∵m2+4=3n,∴m3﹣3mn+4m=m(m2﹣3n+4)=m(3n﹣3n)=0.故答案为:0.22.关于x的不等式组的整数解共有6个,则a的取值范围是﹣6≤a<﹣5.【分析】解不等式得出其解集为a<x<1,根据不等式组的整数解有6个得出其整数解得情况,从而得出字母a的取值范围.解:解不等式x﹣a>0,得:x>a,解不等式3﹣3x>0,得:x<1,则不等式组的解集为a<x<1,∵不等式组的整数解有6个,∴不等式组的整数解为0、﹣1、﹣2、﹣3、﹣4、﹣5,则﹣6≤a<﹣5,故答案为:﹣6≤a<﹣5.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.【分析】先把分式方程化为整式方程,解整式方程得到x=且x≠2,利用有理数的整除性得到a=2或3,然后根据概率公式求解.解:把分式方程﹣1=去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x=且x≠2,∴a=2或3,∴a的值使得关于x的分式方程﹣1=有整数解的概率==.故答案为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.【分析】根据函数图象中的数据可以分别求得平行四边形的边AB的长和边AB边上的高的长,从而可以求得平行四边形的面积.解:作DM⊥AB于点M,如右图1所示,由图象和题意可得,AE=7﹣4=3,EB=8﹣7=1,DE=3,∴AB=3+1=4,∵直线DE平行直线y=﹣x,∴DM=ME,∴DM=DE•sin45°=,∴平行四边形ABCD的面积是:4×=.故答案为:.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【分析】如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC =PE,推出当EP⊥AC时,QC的值最小;解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?【分析】(1)根据总运费=每件运费×运往该地的件数,即可用含x的代数式表示总运费y元;(2)根据“运往B地的件数不多于运往C地的件数,总运费不超过4000元”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出运输方案的次数,再利用一次函数的性质即可解决最值问题.解:(1)∵安排x件产品运往A地,∴安排2x件产品运往C地,安排(200﹣x﹣2x)件产品运往B地,∴总运费y=30x+8(200﹣x﹣2x)+25×2x=56x+1600.(2)依题意,得:,解得:40≤x≤42.又∵x为正整数,∴x可以取40,41,42,∴共有3种运输方案.∵在y=56x+1600中k=56>0,∴y随x的增大而增大,∴当x=40时,y取得最小值,最小值=56×40+1600=3840,此时2x=80,200﹣x﹣2x =80.即当运往A地40件、运往B地80件、运往C地80件时,总运费最低,最低总运费是3840元.27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.【分析】(1)过点B作BH⊥AD于H,先求出∠ABH=30°,进而求出BH,由平行四边形的面积公式即可得出结论;(2)先判断出∠BAE=∠CAF,进而判断出△ABE≌△ACF,即可得出结论;(3)延长AE交DC延长线于P,过点F作FG⊥AP于G,证△ABE≌△PCE(ASA),得出AE=PE,PC=AB=CD=4,求出PF=7,由含30°角的直角三角形的性质得出AG=3,由勾股定理得FG=3,PG=,则AP=AG+PG=3+,即可得出答案.【解答】(1)解:过点B作BH⊥AD于H,如图1所示:在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH===,∴S▱ABCD=AD×BH=AF×BH=5×=5;(2)证明:连接AC,如图2所示:∵AB=BC,∠B=∠EAF=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠BAE=∠CAF,∵四边形ABCD是平行四边形,AB=AC,∴四边形ABCD是菱形,∴∠ACF=∠ACB=60°,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF;(3)解:延长AE交DC延长线于P,过点F作FG⊥AP于G,如图3所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B=∠ECP,在△ABE和△PCE中,,∴△ABE≌△PCE(ASA),∴AE=PE,PC=AB=CD=4,∵CF=3DF,∴CF=3,∴PF=7,在Rt△AFG中,AF=6,∠EAF=60°,∴∠AFG=30°,∴AG=AF=3,FG===3在Rt△PFG中,由勾股定理得:PG===,∴AP=AG+PG=3+,∴AE=PE=AP=.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)由于y=﹣x+m交x轴于点A(4,0),求出m的值,可得出OA=4,OB=3,则可得出答案;(2)根据勾股定理得到AB=5=BC,得到点C(0,﹣2),求出直线AC解析式为y =x﹣2,由于P在直线y=﹣x+3上,可设点P(t,﹣t+3),即可得到结论;(3)过点M作MG⊥PQ于G,根据全等三角形的性质得到QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,推出四边形GHRM是矩形,根据矩形的性质得到HR=GM=4,可设GH=RM=k,根据全等三角形的性质得到HN=RM=k,NR=QH=2+k,得到N(t+1,t+1)根据N在直线AB:y=﹣x+3上,即可得出答案.解:(1)∵y=﹣x+m交x轴于点A(4,0),∴0=﹣×4+m,解得m=3,∴直线AB解析式为y=﹣x+3,令x=0,y=3,B(0,3);∵A(4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴==6;(2)∵OA=4,OB=3,∴AB═=5=BC,∴OC=2,∴点C(0,﹣2),设直线AC解析式为y=kx+n,∴,∴,∴直线AC解析式为y=x﹣2,∵P在直线y=﹣x+3上,∴可设点P(t,﹣t+3),∵PQ∥y轴,且点Q在y=x﹣2上,∴Q(t,t﹣2),∴d=(﹣t+3)﹣(t﹣2)=﹣t+5(0<t<4);(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ(AAS),∴QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=4,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QNM=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN(AAS),∴HN=RM=k,NR=QH=2+k,∵HR=HN+NR,∴k+2+k=4,∴k=1,∴GH=NH=RM=1,∴HQ=3,∵Q(t,t﹣2),∴N(t+1,t﹣2+3)即N(t+1,t+1),∵N在直线AB:y=﹣x+3上,∴t+1=﹣(t+1)+3,∴t=1,∴P(1,),N(2,)。

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。

2019-2020学年成都市高一下学期期末数学试卷(文科)

2019-2020学年成都市高一下学期期末数学试卷(文科)

2019-2020学年成都市高一下学期期末数学试卷(文科)一、单选题(本大题共12小题,共60.0分)1.等比数列{a n}中,若a3=4,则a2⋅a4=()A. 8B. 16C. 32D. 642.已知四棱锥P−ABCD的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是()A. 2B. 3C.D. 33.设对任意实数x>0,y>0,若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为()A. √6+24B. 2+√24C. √6+√24D. 234.若cosα2=√63,则cos2α=()A. 13B. 79C. −79D. −135.各项都是正数的等比数列{a n},若a2,12a3,2a1成等差数列,则a3+a4a4+a5的值为()A. 2B. 2或−1C. 12D. 12或−16.在△ABC中,角A,B,C所对的边分别是a,b,c,若cosC>ba,则△ABC的形状是()A. 等腰三角形B. 锐角三角形C. 钝角三角形D. 直角三角形7.在△ABC中,a=3,b=4,c=5,则sin2AsinC=()A. 125B. 1225C. 2425D. 238.设x∈R,且a=3x2−x+1,b=2x2+x−1,则a与b的大小关系为()A. a>bB. a=bC. a<bD. 不确定,与x取值有关9.一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是()A. 8B. 16C. 16√2D. 32√210.已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为()A. a n=2nB. a n={3 n=12n n≥2C. a n=2n−1D. a n=2n+111.在三角形ABC中,已知B=60度,C=45度,BC=8,AD垂直于BC于D,则AD长为()A. B. C. D.12.()A. B. C. D.二、单空题(本大题共4小题,共20.0分),π]的值域为______ .13.函数y=3sinx+4cosx,x∈[π214.△ABC中,内角A,B,C的对边分别为a,b,c,若A=π,b2=c⋅(c+a),则B=______.615.已知递增的等差数列{a n}的首项a1=1,且a1、a2、a4成等比数列.则数列{a n}的通项公式为______ ;则a2+a5+a8+⋯+a3n−1+⋯+a3n+8的表达式为______ .16.已知x+y=40且x和y都是正数,则xy的最大值为______.三、解答题(本大题共6小题,共70.0分)17.已知(1)求数列{}的通项公式(2)数列{}的首项b1=1,前n项和为T n,且,求数列{}的通项公式.18.如图,三棱柱ABC−A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=√6,(理科做)求二面角B−AC−A1的余弦值.(文科做)求三棱锥A−CA1B的体积.19.已知cosα=−45,sinβ=−34,α∈(π2,π),β∈(π,32π),求cos(α−β)20.在数列{a n}中,满足点P(a n,a n+1)是函数f(x)=3x图象上的点,且a1=3.(1)求{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和S n.21.已知二次函数,满足,且方程有两个相等的实根。

2019-2020学年四川省成都市蓉城名校联盟高一下学期期末(文科)数学试卷 (解析版)

2019-2020学年四川省成都市蓉城名校联盟高一下学期期末(文科)数学试卷 (解析版)

2019-2020学年四川省成都市蓉城名校联盟高一第二学期期末数学试卷(文科)一、选择题(共12小题).1.下列几何体是旋转体的是()A.五棱柱B.六棱锥C.八棱台D.球2.已知a>b,则下列不等式成立的是()A.2a>b B.a>2b C.|a|>b D.a>|b|3.已知水平放置的△ABC按斜二测画法得到的直观图为△A'B'C',如图,若A'B'=3,A'C'=2,则△ABC的面积为()A.3B.6C.3D.64.若α∈(0°,180°),且cos(α+20°)cos20°+sin(α+20°)sin20°=,则tanα=()A.B.C.﹣D.﹣5.一个简单组合体的三视图如图所示,正视图、侧视图和俯视图中的圆半径都为3,正视图和侧视图的下半部分都为正方形,则该几何体的体积为()A.54πB.63πC.72πD.90π6.已知{a n}为等比数列,且a1=32,a2a3=128,设b n=log2a n,数列{b n}的前n项和为S n,则S n的最大值为()A.13B.14C.15D.167.若x>,则3x+的最小值为()A.7B.4C.9D.28.已知数列{a n}的前n项和为S n,且满足a n+1=,a1=﹣2,则S97=()A.﹣B.﹣C.﹣D.﹣79.△ABC中,AB=2,BC=,AC=,则△ABC的面积为()A.B.C.D.10.已知数列{a n}满足a1=2,a n+1﹣a n=2n,则a9=()A.510B.512C.1022D.102411.已知sin(α+)=,则sin(﹣2α)=()A.B.C.﹣D.﹣12.已知等差数列{a n}的前n项和为S n,且S99=,函数f(x)=sin2x﹣3cos2x+,则f(a1)+f(a2)+…+f(a99)=()A.66B.33C.99D.88二、填空题:本题共4小题,每小题5分,共20分.13.求值:=.14.△ABC中,BC=6,AC=2,∠BAC=90°,把△ABC绕直线AB旋转一周,则形成的旋转体的侧面积为.15.关于x的不等式tx2+tx+5>0的解集为R,则实数t的取值范围是.16.已知数列{a n}的前n项和为S n,且满足a1=3,2S n=(n+1)a n,设b n=a n a n+1()n,则数列{b n}的最大项的值为.三、解答题:本题共6小题,共70分。

成都市重点名校2019-2020学年高一下学期期末考试数学试题含解析

成都市重点名校2019-2020学年高一下学期期末考试数学试题含解析
【答案】A
【解析】
,对应点 ,在第四象限.
二、填空题:本题共4小题
13.已知两个正实数x,y满足 =2,且恒有x+2y﹣m>0,则实数m的取值范围是______________
【答案】(-∞,1)
【解析】
【分析】
由x+2y (x+2y)( ) (1 ),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.
14.圆 上的点 到直线 的距离的最小值是______.
【答案】
【解析】
【分析】
求圆心到直线的距离,用距离减去半径即可最小值.
【详解】
圆C的圆心为 ,半径为 ,
圆心C到直线的距离为: ,
所以最小值为:
【详解】
解:由 ,
得 ,
∵ ,
∴ ,

即 ,
则 ,
∵ ,
∴ ,
∴ ,即 ,
则 ,
故选D.
【点睛】
本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.
2.下列各角中与 角终边相同的角是
A. B. C. D.
【答案】B
【解析】
【分析】
分析:利用等比中项求解.
详解: ,因为 为正,解得 .
点睛:等比数列的性质:若 ,则 .
10.角 的终边过点 ,则 等于()
A. B. C. D.
【答案】B
【解析】
由三角函数的定义知,x=-1,y=2,r= = ,∴sinα= = .
11.在 中,角 的对边分别为 ,若 ,则 ()
A. B. C. D.
, , , ,

2019-2020学年四川省成都市温江中学高一下学期期中数学试卷(文科) (解析版)

2019-2020学年四川省成都市温江中学高一下学期期中数学试卷(文科) (解析版)

2019-2020学年四川省成都市温江中学高一第二学期期中数学试卷(文科)一、选择题(共12小题).1.cos45°cos15°﹣sin45°sin15°=()A.B.C.D.2.已知数列{a n}是等差数列,且a1+a4+a7=9,则a4的值为()A.3B.6C.8D.93.若m<n<0,则下列不等式中不成立的是()A.|m|>|n|B.m2>n2C.>D.m3>n34.在△ABC中,a,b,c分别是角A,B,C的对边,A=45°,B=15°,c=3,则a =()A.B.2C.3D.45.已知等差数列{a n}的前n项和为S n,a1=﹣3,2a4+3a7=9,则S7的值等于()A.21B.1C.﹣42D.06.已知等比数列{a n}中,a1=1,a2a12=2a7+3,则a13=()A.36B.9C.12D.187.已知x,y∈R+,且满足+=1,则x+3y的最小值为()A.9B.10C.12D.168.在△ABC中,a,b,c分别是角A,B,C的对边,若b=2c,,,则△ABC 的面积为()A.1B.3C.D.9.已知tanα=3,则sin2α+sin2α=()A.B.C.﹣D.﹣10.已知函数f(x)=sin x+sin(x+),则f(x)的最小值为()A.﹣B.0C.﹣D.11.已知S n是等差数列{a n}的前n项和,且a n≠1,若S2020=1010,f(x)=,则f(a1)×f(a2)×…×f(a2020)=()A.34040B.31010C.32020D.112.已知数列{a n}的前n项和为S n,且满足3a1+32a2+……+3n a n=n(n∈N*),若对于任意的x∈R,n∈N*,不等式S n<x2+ax+1恒成立,则实数a的取值范围为()A.[﹣,]B.(﹣,)C.(﹣∞,﹣]∪[,+∞)D.(﹣∞,﹣)∪(,+∞)二、填空题(共4小题).13.不等式x﹣x2≥0的解集是.14.在△ABC中,a,b,c分别是角A,B,C的对边,若b sin B+c sin C+c sin B﹣a sin A=0,则cos A=15.已知正项等比数列{a n},其前n项和为S n,S2=6,S3=7,则a n=.16.在△ABC中,a,b,c分别是角A,B,C的对边,若c=3b cos A.则的最小值为.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}的公差为d,前n项和为S n,且3a2+2a5=27,a1+S4=17.(1)求d和a n;(2)求数列{}的前n项和M n.18.已知α为锐角,cos(α+)=.(1)求sinα和cosα的值;(2)求tan(2α+)的值.19.已知数列{a n}满足:a1=2,当n≥2时,a n﹣a n﹣1=2n;数列{b n}满足:b1=a2,b n+1=2b n.(1)求数列{a n}和{b n}的通项公式;(2)设c n=nb n,求数列{c n}的前n项和S n.20.为了更好地维护我国海洋权益,近年来我国在一些海岛上修建飞机场.在我国某海域有一海岛,该岛的顶部为平地,大致形状由一个直角三角形和一个半圆构成.如图,AB =km,BC=2km,∠ABC=.现计划修建一条飞机跑道AP(不考虑宽度),点P在半圆弧上(不含B点),设∠PBC=θ.(1)用θ表示AP的长度,并写出θ的取值范围;(2)求AP的最大值.21.已知△ABC的三个内角A,B,C所对的三边依次为a,b,c,且a﹣c=b•cos C.(1)求角B;(2)若△ABC的面积为2,求b2+3c2+ac的最小值及取最小值时a,c的值.22.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2n+1.(1)求a n和S n;(2)设数列{S n}的前n项和为T n,若不等式T n﹣t•2n≥0对于n∈N*恒成立,求t的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos45°cos15°﹣sin45°sin15°=()A.B.C.D.【分析】观察所求的式子,发现满足两角和与差的余弦函数公式,故利用此公式化简,再利用特殊角的三角函数值即可求出值.解:cos45°cos15°﹣sin45°sin15°=cos(45°+15°)=.故选:A.2.已知数列{a n}是等差数列,且a1+a4+a7=9,则a4的值为()A.3B.6C.8D.9【分析】由已知结合等差数列的性质即可直接求解.解:因为数列{a n}是等差数列,由等差数列的性质可知a1+a4+a7=3a4=9,故选:A.3.若m<n<0,则下列不等式中不成立的是()A.|m|>|n|B.m2>n2C.>D.m3>n3【分析】根据条件,取m=﹣2,n=﹣1,可知D不成立.解:因为m<n<0,故取m=﹣2,n=﹣1,(﹣2)3<(﹣1)3,故选项D不成立.故选:D.4.在△ABC中,a,b,c分别是角A,B,C的对边,A=45°,B=15°,c=3,则a =()A.B.2C.3D.4【分析】先利用三角形内角和求出角C,再利用正弦定理即可算出结果.解:∵A=45°,B=15°,∴C=120°,又∵A=45°,c=3,由正弦定理,得,故选:C.5.已知等差数列{a n}的前n项和为S n,a1=﹣3,2a4+3a7=9,则S7的值等于()A.21B.1C.﹣42D.0【分析】利用等差数列{a n}的通项公式求出d=1,由此能求出S7.解:等差数列{a n}的前n项和为S n,a1=﹣3,2a4+3a7=9,∴2(﹣5+3d)+3(﹣3+6d)=9,∴S7=7×(﹣3)+=0.故选:D.6.已知等比数列{a n}中,a1=1,a2a12=2a7+3,则a13=()A.36B.9C.12D.18【分析】利用等比数列通项公式解得q6=3,由此能求出a13.解:∵等比数列{a n}中,a1=1,a4a12=2a7+3,∴q•q11=2q6+5,∴a13=q12=9.故选:B.7.已知x,y∈R+,且满足+=1,则x+3y的最小值为()A.9B.10C.12D.16【分析】利用“乘1法”与基本不等式的性质即可得出.解:∵+=1,∴x+3y=(x+3y)()当且仅当且+=4,即x=y=4时取等号,故选:D.8.在△ABC中,a,b,c分别是角A,B,C的对边,若b=2c,,,则△ABC 的面积为()A.1B.3C.D.【分析】由已知利用余弦定理可求b,c的值,根据三角形的面积公式即可求解.解:∵b=2c,,,∴由余弦定理a2=b2+c3﹣2bc cos A,可得6=b2+c2﹣bc=5c2+c2﹣2c•c=3c6,解得c=,可得b=2,故选:D.9.已知tanα=3,则sin2α+sin2α=()A.B.C.﹣D.﹣【分析】由题意利用同角三角函数的基本关系,二倍角公式,求得要求式子的值.解:∵已知tanα=3,则sin2α+sin2α====,故选:A.10.已知函数f(x)=sin x+sin(x+),则f(x)的最小值为()A.﹣B.0C.﹣D.【分析】由条件利用两角和与差的三角函数,求得f(x)=sin(x+),根据正弦函数的值域,求得f(x)的值域.解:函数f(x)=sin x+sin(x+)=sin x+sin x+cos x=(sin x+cos x)=sin(x+),当x=2kπ﹣,k∈Z时,f(x)取得最小值为﹣,故选:A.11.已知S n是等差数列{a n}的前n项和,且a n≠1,若S2020=1010,f(x)=,则f(a1)×f(a2)×…×f(a2020)=()A.34040B.31010C.32020D.1【分析】由已知结合等差数列的性质可求a1+a2020=1,且f(x)×f(1﹣x)=×=9,代入即可求解.解:由题意可得,S2020=1010(a1+a2020)=1010,∴a1+a2020=1,∴f(x)×f(1﹣x)=×=2,故选:C.12.已知数列{a n}的前n项和为S n,且满足3a1+32a2+……+3n a n=n(n∈N*),若对于任意的x∈R,n∈N*,不等式S n<x2+ax+1恒成立,则实数a的取值范围为()A.[﹣,]B.(﹣,)C.(﹣∞,﹣]∪[,+∞)D.(﹣∞,﹣)∪(,+∞)【分析】由3a1+32a2+……+3n a n=n(n∈N*)⇒当n≥2时,有3a1+32a2+……+3n﹣1a n﹣1=n﹣1,两式相减整理得:3n a n=1,即a n=(n≥2),再由a1=也适合,得到a n 与S n.再由对于任意的x∈R,n∈N*,不等式S n<x2+ax+1恒成立,得到:(x2+ax+1)min=1﹣≥,解出a即可选出正确选项.解:∵3a1+32a2+……+3n a n=n(n∈N*),∴当n≥4时,有3a1+32a2+……+3n﹣5a n﹣1=n﹣1,又当n=1时,有3a1=3,解得a1=;∵对于任意的x∈R,n∈N*,不等式S n<x8+ax+1=(x+)2+1﹣恒成立,∴a∈[﹣,].故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.不等式x﹣x2≥0的解集是{x|0≤x≤1}.【分析】不等式x﹣x2≥0化为x2﹣x≤0,利用一元二次不等式的解法即可得出.解:不等式x﹣x2≥0化为x2﹣x≤0,化为x(x﹣1)≤0,解得5≤x≤1.故答案是:{x|0≤x≤1}.14.在△ABC中,a,b,c分别是角A,B,C的对边,若b sin B+c sin C+c sin B﹣a sin A=0,则cos A=﹣【分析】先由正弦定理得到,再利用余弦定理即可算出结果.解:由b sin B+c sin C+c sin B﹣a sin A=0,角化边得,即,故答案为:﹣.15.已知正项等比数列{a n},其前n项和为S n,S2=6,S3=7,则a n=23﹣n.【分析】由正项等比数列前n项和公式,列出方程组求出a1=4,q=,由此能求出a n 的值.解:∵正项等比数列{a n},其前n项和为S n,S2=6,S3=7,由题意得q≠1,解得a1=4,q=,故答案为:23﹣n.16.在△ABC中,a,b,c分别是角A,B,C的对边,若c=3b cos A.则的最小值为.【分析】由正弦定理知,==,将c=3b cos A中的边化为角,并结合正弦的两角和公式,可推出2sin B cos A=sin A cos B,再把角化为边有cos A=,代入所求的代数式,然后利用基本不等式的性质即可得解.解:由正弦定理知,==,∵c=3b cos A,∴sin C=3sin B cos A=sin(A+B)=sin A cos B+cos A sin B,∴=+=•+=+≥6=,当且仅当=即a=b时,等号成立.故答案为:.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}的公差为d,前n项和为S n,且3a2+2a5=27,a1+S4=17.(1)求d和a n;(2)求数列{}的前n项和M n.【分析】(1)首先利用等差数列的性质求出数列的通项公式.(2)利用(1)的结论,进一步利用裂项相消法的应用求出数列的和.解:(1)等差数列{a n}的公差为d,前n项和为S n,且3a2+8a5=27,a1+S4=17.则:,解得d=2,a1=1,(2)由(7)得:,所以.18.已知α为锐角,cos(α+)=.(1)求sinα和cosα的值;(2)求tan(2α+)的值.【分析】(1)由题意利用同角三角函数的基本关系,两角和差的三角公式,求得sinα和cosα的值.(2)先求得tanα的值,再利用二倍角公式求得tan2α的值,再利用两角和的正切公式求得tan(2α+)的值.解:(1)∵已知α为锐角,cos(α+)=,故(α+)为锐角,故sin(α+)==,cosα=cos[(α+)﹣]=cos(α+)cos+sin(α+)sin=+=.∴tan(2α+)==239.19.已知数列{a n}满足:a1=2,当n≥2时,a n﹣a n﹣1=2n;数列{b n}满足:b1=a2,b n+1=2b n.(1)求数列{a n}和{b n}的通项公式;(2)设c n=nb n,求数列{c n}的前n项和S n.【分析】(1)直接利用叠加法和等比数列的定义的应用求出数列的通项公式.(2)利用(1)的结论,进一步利用乘公比错位相减法的应用求出数列的和.解:(1)数列{a n}满足:a1=2,当n≥2时,a n﹣a n﹣1=4n;所以a n﹣1﹣a n﹣2=2(n﹣1),a n﹣2﹣a n﹣2=2(n﹣2),…,a2﹣a1=7×2,所以a n=2(1+2+3+..+n)=(首项符合通项).数列{b n}满足:b1=a5=,b n+1=2b n.所以.所以①,①﹣②得=,整理得:.20.为了更好地维护我国海洋权益,近年来我国在一些海岛上修建飞机场.在我国某海域有一海岛,该岛的顶部为平地,大致形状由一个直角三角形和一个半圆构成.如图,AB =km,BC=2km,∠ABC=.现计划修建一条飞机跑道AP(不考虑宽度),点P 在半圆弧上(不含B点),设∠PBC=θ.(1)用θ表示AP的长度,并写出θ的取值范围;(2)求AP的最大值.【分析】(1)根据几何关于及余弦定理即可求出AP的长度,结合图形可得到θ的取值范围;(2)根据三角函数的图象与性质求出AP的最大值即可.解:(1)连接线段CP,∴在△BPC中,解得BP=2cosθ(km),∴在△ABP中,由余弦定理,可得AP2=AB2+BP2﹣2•AB•BP•cos∠ABP==由点P在半圆弧上(不含B点)可知,(5)设函数,由三角函数性质,可得﹣,∴AP的最大值为.21.已知△ABC的三个内角A,B,C所对的三边依次为a,b,c,且a﹣c=b•cos C.(1)求角B;(2)若△ABC的面积为2,求b2+3c2+ac的最小值及取最小值时a,c的值.【分析】(1)利用正弦定理将原式边角互化,消去A,化归为关于B,C的三角函数式,即可求出cos B的值,最终求出B;(2)根据(1)知B的余弦值、正弦值,利用面积公式求出ac、利用余弦定理将b2+3c2+ac 中的b消去,最后利用基本不等式求最小值.解:(1)由正弦定理得a﹣c=b•cos C可化为:,,因为sin C≠0,(2)由题意知:S=,又.当且仅当,即a=4,c=4时取等号.故当a=4,c=2时,原式取得最小值32.22.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2n+1.(1)求a n和S n;(2)设数列{S n}的前n项和为T n,若不等式T n﹣t•2n≥0对于n∈N*恒成立,求t的取值范围.【分析】(1)直接利用数列的递推关系式的应用求出数列的通项公式,再利用分组法求出数列的和.(2)利用函数的单调性和恒成立问题的应用求出参数的取值范围.解:数列{a n}的前n项和为S n,且满足S n=2a n﹣2n+1①,当n=1时,a1=S1=5a1﹣1,解得a5=1.①﹣②得:a n=2a n﹣2a n﹣1+1﹣2,整理得a n=2a n﹣1+2,所以数列{a n+2}是以a1+2=3为首项,2为公比的等比数列.则S n=a1+a2+…+a n==.所以==6×(2n﹣1)﹣n3﹣4n.所以6×(2n﹣6)﹣n2﹣4n≥t•2n恒成立,设函数f(n)=,则,所以函数g(n)=为单调递增函数,当n=2时,g(2)=.所以恒成立,只需满足,即.。

四川省成都市郫都区2019-2020学年高一上学期第一次月考数学试题(解析版)

四川省成都市郫都区2019-2020学年高一上学期第一次月考数学试题(解析版)

四川省成都市郫都区2019-2020学年高一上学期第一次月考数学试题第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的,并将正确选项的序号填涂在答题卷上.1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =M N ⋂()( ) A. {}12, B. {}23, C. {}24, D. {}14, 『答案』D 『解析』{}{}2,3,()1,4U M N M N ⋂=∴⋂=2.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( )A. B.C. D.『答案』B『解析』因为对A 不符合定义域当中的每一个元素都有象,即可排除;对B 满足函数定义,故符合;对C 出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D 因为值域当中有元素没有原象,故可否定. 故选B .3.下面各组函数中是同一函数的是( )A. ()()2f xg x ==B. ()()2111x f x g x x x -==+-,C. ()()f x x g x ==,D. ()()f xg x ==『答案』C『解析』A .()f x =定义域为R,()2g x =的定义域为[)0,+∞,故不是同一函数;B .()211x f x x -=-的定义域为{}|1x x ≠,()g x 的定义域为R ,故不是同一函数;C .()()f x x g x ==,R ,且()g x x ==,故是同一函数;D .()f x =[)1,+∞,()g x =(][),11,-∞-+∞,故不是同一函数.故选:C.4.已知集合{}{}01,453,A x x B x x =<<=-<若A B =( )A. (]0,1B. (),2-∞C. ()0,1D. ()1,2『答案』B『解析』因为453x -<,所以2x <,所以{}|2B x x =<,所以{}()|2,2AB x x =<=-∞.故选:B.5.下列四个函数中,在()0,+∞上为增函数的是( ) A. ()3f x x =- B. 2()3f x x x =- C. 1()f x x=-D. ()f x x =-『答案』C『解析』对于A 选项,()f x 在()0,+∞上递减,不符合题意.的对于B 选项,()f x 在30,2⎛⎫ ⎪⎝⎭上递减,在3,2⎛⎫+∞⎪⎝⎭上递增,不符合题意. 对于C 选项,()f x 在()0,+∞上为增函数符合题意. 对于D 选项,()f x 在()0,+∞上递减,不符合题意. 故选:C.6.若函数f (x )=2x +单调递增区间是( ) A. ()0,∞+ B. (),-∞+∞C. [)2,+∞D. [)2,-+∞ 『答案』D『解析』因为()2f x x =+的图象如下图所示,所以()f x 单调递增区间为[)2,-+∞.故选:D.7.若函数()27f x x ax =++在[]1,2上是增函数,则实数a 的取值范围是( )A. (,2]-∞-B. [2,)-+∞C. (,4]-∞-D. [4,)-+∞『答案』B『解析』因为()f x 的对称轴为2ax =-,且()f x 的开口向上, 所以()f x 的单调递增区间为,2a ⎡⎫-+∞⎪⎢⎣⎭,又因为()f x 在[]1,2上是增函数, 所以12a-≤,所以2a ≥-即[)2,a ∈-+∞. 故选:B.的的8.函数21y x =-的定义域是,则其值域是( )A. ()1,0,22⎛⎤-∞⋃ ⎥⎝⎦B. (],2-∞C. [)1,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭D. ()0,+∞『答案』A『解析』由函数的解析式可知,函数在(),1-∞和[)2,5上单调递减.当(),1x ∈-∞时(),0y ∈-∞,当[)2,5x ∈时1,22y ⎛⎤∈ ⎥⎝⎦9.已知()21,02,0x x f x x x ⎧+≤=⎨->⎩,若()10f x =,则x 等于( )A. 3B. -5C. 3或-5D. -3『答案』D『解析』当0x ≤时,()2110f x x =+=,解得3x =±,所以3x =-符合,当0x >时,()210f x x =-=,解得5x =-,所以x 无解, 综上可知:x 的值为3-. 故选:D.10.直角梯形OABC ,被直线x t =截得的图形的面积()S f t =的大致图象是( )A. B.C. D.『答案』C『解析』由题意可知,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时,()()11212212f t t t =⨯⨯+-⋅=-,()2,0121,12t t f t t t ⎧<≤∴=⎨-<≤⎩,当01t <≤时,函数的图象是一段抛物线段;当12t <≤时,函数的图象是一条线段,结合不同段上函数的性质,可知选项C 符合,故选C.11.已知()223,03,0x x x f x x x x ⎧+≥=⎨-+<⎩,则不等式()()224f x f x -<-的解集为( )A. ()1,6-B. ()6,1-C. ()3,2-D. ()2,3-『答案』C『解析』()f x 的图象如下图所示:由图象可知:()f x 在R 上单调递增,因为()()224f x f x-<-,所以224x x -<-,所以260x x +-<即()()320x x +-<,所以解集为:()3,2-. 故选:C.12.函数()y f x =是R 上的增函数,且其图象经过点()0,1A -和点()3,1B ,则不等式()11f x +<的解集补集为( )A. ()1,2-B. ()1,4C. ()[),14,-∞-+∞ D. (][),12,-∞-⋃+∞『答案』D『解析』因为()11f x +<,所以()111f x -<+<,又因为()()01,31f f =-=,所以()()()013f f x f <+<,又因为()y f x =是R 上的增函数,所以013x <+<,所以12x -<<, 所以解集为()1,2-,其补集为(][),12,-∞-⋃+∞. 故选:D.第II 卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分13.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有 人.『答案』『解析』两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.14.若集合{}{},,,A a b A B a b =⋃=,则满足条件的集合B 有_________个『答案』4 『解析』 『分析』根据AB 的结果,判断出集合,A B 的关系,从而确定出集合B 的个数.『详解』因为{},A B a b A ⋃==,所以B A ⊆,所以B =∅或{}a 或{}b 或{},a b , 所以集合B 的个数为4. 故答案为:4.15.已知函数()()0f x ax b a =+≠的定义域和值域都是[]1,0-,则a b +=_________『答案』1或2-『解析』当0a >时,()f x 在[]1,0-上递增,所以()()1100f a b f b ⎧-=-+=-⎪⎨==⎪⎩,所以10a b =⎧⎨=⎩满足条件,所以1a b +=;当0a <时,()f x 在[]1,0-上递减,所以()()1001f a b f b ⎧-=-+=⎪⎨==-⎪⎩,所以11a b =-⎧⎨=-⎩满足条件,所以2a b +=-,综上可知1a b +=或2-. 故答案为:1或2-.16.若[]x 表示不大于x 的最大的整数,如[][][]22,3.13, 2.63==-=-,已知函数()[]15,,,42f x x x ⎡⎤=∈⎢⎥⎣⎦则()f x 的值域是_________『答案』{}0,1,2『解析』当1,14x ⎡⎫∈⎪⎢⎣⎭时,()0f x =,当[)1,2x ∈时,()1f x =,当52,2x ⎡⎫∈⎪⎢⎣⎭时,()2f x =,所以()f x 的值域为:{}0,1,2. 故答案为:{}0,1,2.三、解答题:本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤 17.已知{}{3,|1A x a x a B x x =≤≤+=<-或}5x >. (1)若2a =-,求AB ;(2)若A B ⊆,求实数a 的取值范围.解:(1)因为2a =-,所以{}|21A x x =-≤≤,又{|1B x x =<-或}5x >, 所以{}|21AB x x =-≤<-;(2)因为A B ⊆且A ≠∅,{|1B x x =<-或}5x >, 所以31a +<-或5a >,所以()(),45,a ∈-∞-+∞.18.已知函数()223,f x x x =--(1)先将函数()y f x =写成分段函数形式,再在给出的直角坐标系中画出()f x 的图象; (2)根据图象写出函数()y f x =单调区间; (3)求函数()f x 的值域.解:(1)当0x ≥时,()223f x x x =--,当0x <时,()223f x x x =+-,所以()2223,023,0x x x f x x x x ⎧--≥=⎨+-<⎩,作出图象如下图:;(2)由图象可知:()f x 的单调减区间:(),1-∞-和[)0,1,()f x 的单调增区间:[)1,+∞和[)1,0-上递增;(3)由图象可知当x →+∞时,()f x →+∞, 又因为()()()min 114f x f f =-==-, 所以()f x 的值域为[)4,-+∞.19.已知二次函数()f x 满足()()()02121f ,f x f x x =+-=-. (1)求函数()f x 的解析式; (2)求函数()f x 在[]3,5时的最值.解:(1)设()()20f x ax bx c a =++≠,因为()02f =,所以2c =,因为()()121f x f x x +-=-,所以()()()22112221a x b x ax bx x ⎡⎤++++-++=-⎣⎦,所以221ax a b x ++=-,所以221a a b =⎧⎨+=-⎩,所以12a b =⎧⎨=-⎩,所以()222f x x x =-+;(2)因为()222f x x x =-+,()f x 的对称轴为1x =,且()f x 的开口向上,所以()f x 在[]3,5上递增,所以()()2min 332325f x f ==-⨯+=,()()2max 5525217f x f ==-⨯+=.所以最小值为5,最大值为17.20.已知函数()1f x x x=+(1)请用单调性的定义证明()y f x =在区间[)1,+∞上的单调性; (2)若1a x x≤+在区间[]2,4上恒成立,求a 的取值范围. 解:(1)任取121x x ≤<,所以()()()()()121221121212121212111x x x x x x f x f x x x x x x x x x x x --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 因为121x x ≤<,所以12121210,0,0x x x x x x ->-<>, 所以()()120f x f x -<,所以()()12f x f x <, 所以函数()f x 在[)1,+∞上单调递增;(2)因为函数()f x 在[)1,+∞上单调递增,所以()()min 152222f x f ==+=, 又因为1a x x ≤+在区间[]2,4上恒成立,所以min 1a x x ⎛⎫≤+ ⎪⎝⎭,所以52a ≤,即5,2a ⎛⎤∈-∞ ⎥⎝⎦.21.已知二次函数()y f x =在1x =-处取得最小值为3-,且满足15(2)4f =. 求函数()y f x =的解析式;当函数()y f x =在[23,2](1)a a a -+-+>上的最小值是94-时,求a 的值. 解:(1)设二次函数2()=(0)y f x ax bx c a =++≠∵二次函数()y f x =在1x =-处取得最小值为3-,且满足15(2)4f =∴3a b c -+=-,-12b a =-,15424a b c ++=, 解得:339,,424a b c ===-,∴ 2339()424f x x x =+-,(2)∵当函数()y f x =在[23,2](1)a a a -+-+>上的最小值是94-,且对称轴为1x =-,高中数学月考试题11 ∴①当21a -+≤-时,即3a ≥,最小值为:9(2)4f a -+=-,解得:4,2a a ==(舍去),②当231a -+≥-时,即2a ≤,最小值为:9(23)4f a -+=-,解得:35,22a a ==(舍去),综上:4a =,或32a =. 22.已知定义在区间()0,∞+上的函数f (x )满足()()x f f x f y y ⎛⎫=- ⎪⎝⎭,且当1x >时,()0f x <.(1)求f (1)的值;(2)判断f (x )的单调性.(3)若(2)1f =-,解不等式(1)2f x ->解:(1)令1x y ==,所以()()()111101f f f f ⎛⎫==-= ⎪⎝⎭,所以()10f =; (2)令210x x <<,所以()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭, 又因为121x x >,所以120x f x ⎛⎫< ⎪⎝⎭,所以()()12f x f x <, 所以()f x 在()0,∞+上单调递减;(3)因为()()()1120112f f f ⎛⎫=-=--= ⎪⎝⎭, 又因为()()11122112422f f f f ⎛⎫ ⎪⎛⎫⎛⎫==-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以124f ⎛⎫= ⎪⎝⎭, 因为(1)2f x ->,所以()114f x f ⎛⎫-> ⎪⎝⎭,又因为()f x 在()0,∞+上单调递减, 所以11410x x ⎧-<⎪⎨⎪->⎩,所以51,4x ⎛⎫∈ ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
二次不等式 的解为全体实数,即二次函数 恒成立,即二次函数图像不在 轴下方,因此需要开口向上,并且与 轴无交点或有且只有一个交点,因此 .
故选:B.
【点睛】
本题考查了一元二次不等式恒成立的问题,属于基础题.
4.已知 ,则 ()
A. B. C. D.
【答案】A
【解析】由二倍角的余弦公式可直接求解.
A. B. C. D.
【答案】A
【解析】在等式 两边取倒数,可推导出数列 为等差数列,确定该数列的首项和公差,进而可求得 .
【详解】
当 且 ,在等式 两边取倒数得 ,
,且 ,所以,数列 为等差数列,且首项为 ,公差为 ,
因此, .
故选:A.
【点睛】
本题考查利用倒数法求数列通项,考查计算能力,属于基础题.
所以 ,
所以 ,
故选:D
【点睛】
本题主要考查等比数列的通项公式的应用以及数列的单调性的应用,属于基础题.
6.将 化简为 ( , , )的形式为()
A. B. C. D.
【答案】A
【解析】将 化为 ,然后逆用差的正弦公式即可得出.
【详解】
.
故选:A.
【点睛】
本题考查差的正弦公式的逆用,属于基础题.
7.在 中,角 , , 所对的边分别为 , , ,若 ,则 为()
2019-2020学年四川省成都市高一下学期期末(文)数学试题
一、单选题
1.等比数列 满足 , ,则 ()
A.81B.-81C.243D.-243
【答案】A
【解析】按等比数列的通项公式算第五项即可.
【详解】
, .
故选:A
【点睛】
此题为简单题,考查等比数列通项公式.
2.某正方体被截去部分后剩余几何体的直观图如图所示,则该几何体的侧视图为()
【详解】

.ቤተ መጻሕፍቲ ባይዱ
故选:A.
【点睛】
本题考查二倍角的余弦公式的应用,属于基础题.
5.已知单调递减的等比数列 中, ,则该数列的公比 的取值范围是()
A. B. C. D.
【答案】D
【解析】根据等比数列 单调递减,得到 , ,再根据 , 求解.
【详解】
因为等比数列 单调递减,
所以 , ,
因为 ,
所以 ,
又因为 ,
二、填空题
13.求值:cos75°cos15°﹣sin75°sin15°=.
【答案】0
【解析】试题分析:根据题意,利用余弦的和差公式可得cos75°cos15°﹣sin75°sin15°=cos90°,利用特殊角的三角函数值可得答案.
解:根据题意,原式=cos75°cos15°﹣sin75°sin15°=cos90°=0,
12.已知 、 、 为 的三内角,且角 为锐角,若 ,则 的最小值为()
A. B. C. D.1
【答案】C
【解析】将 化为关于 的式子,然后利用基本不等式可以求出最小值.
【详解】
在 中, ,


,
角 为锐角, ,

当且仅当 ,即 时,等号成立,
的最小值为 .
故选:C.
【点睛】
本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.
11.夏季是暴雨和洪水高发季节,需要做好各项防汛工作.为更好地考察防汛抗洪实地情况,某校高一数学兴趣小组前往某水库实地测量其大坝相关数据.如图所示, 是该大坝的坡面,该小组在坝底所在水平地面的 处测得坝顶 的仰角为 ,对着大坝在水平地面上前进 后到达 处,测得仰角为原来的2倍,继续在水平地面上前进 后到达坡底 处,测得仰角为原来的4倍,则该大坝的高度为()
A. B. C. D.
【答案】B
【解析】根据三视图的特点:长对正,高平齐,宽相等分析求解.
【详解】
由三视图的画法,可得侧视图如下:
故选:B
【点睛】
本题主要考查三视图,还考查了空间想象的能力,属于基础题.
3.二次不等式 的解为全体实数的条件是()
A. B. C. D.
【答案】B
【解析】根据二次函数图像的特征判断即可.
A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形
【答案】C
【解析】用余弦定理求最大边所对角.
【详解】
,可设 ,
最大角为C, ,
所以C为钝角.
故选:C
【点睛】
此题也可以直接求 判断其符号,从而确定角C是钝角、锐角、直角.
8.若 ,则下列说法正确的是()
A. B. C. D.
【答案】C
【解析】根据 ,取 , , ,则可排除错误选项.
故答案为0.
【考点】两角和与差的余弦函数.
14.在 中,若角 , , ,则角 ______.
【答案】
【解析】利用正弦定理求得 ,再由 ,得 即可.
【详解】
由正弦定理 得 ,得 , 或 ,
又因为 ,所以 ,故 .
故答案为: .
【点睛】
本题考查了正弦定理和大边对大角,属于基础题.
15.二十四节气作为我国古代订立的一种补充历法,在我国传统农耕文化中占有极其重要的位置,是古代劳动人民对天文、气象进行长期观察、研究的产物,凝聚了古代劳动人民的智慧.古代数学著作《周髀算经》中记载有这样一个问题:从夏至之日起,小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪这十二个节气的日影子长依次成等差数列,若大暑、立秋、处暑的日影子长的和为18尺,立冬的日影子长为10.8尺,则夏至的日影子长为______尺.
A. B. C. D.
【答案】B
【解析】由题意及仰角的定义,利用数形结合的思想,利用图形中角与角的联系,求出 ,即可得出结论.
【详解】
由已知 ,
在 中, ,
在 中, ,

同理可得 ,
,即 ,

同理可得 ,

,结合题意可知 ,即 ,
.
故选:B.
【点睛】
本题考查了学生会从题意中抽取出图形进而分析问题,考查了学生们解三角形的能力,属于中档题.
【详解】
解:把平行四边形 还原回原图形,过程如下:
在平面直角坐标系中,在 轴上截取 ,且使 为 的中点,
在 轴上截取 ,过 向左左 轴的平行线段 ,使 ,
连接 , ,可得平行四边形 .
∵ , ,∴ .
∴平行四边形 为菱形.
故选:A.
【点睛】
本题考查斜二测法,掌握斜二测法的规则是解题基础.
10.已知数列 满足 ,且 ,则 的第 项为()
【详解】
根据 ,取 , , ,
则A错误;
,B错误;
,D错误;
排除错误选项.
故选:C.
【点睛】
本题考查不等式的性质,可用特殊值排除法.
9.把四边形 按斜二测画法得到平行四边形 (如图所示),其中 , ,则四边形 一定是一个()
A.菱形B.矩形C.正方形D.梯形
【答案】A
【解析】根据斜二测画法把直观图还原回原图形,即可得到四边形 一定是一个菱形.
相关文档
最新文档