1 映射与函数

合集下载

高数高等数学1.1映射与函数

高数高等数学1.1映射与函数
1 2 1 O 1 1 2 x
说明 (1) 分段函数对应不同的区间,函数有不同的表达式. (2) 分段函数表示一个函数,不是几个函数. (3) 分段函数的定义域是各分区间的定义域的并集.
1 例6 设 f ( x ) 2 1 解 f ( x) 2
0 x1
求 f ( x 2) .

2( x 2) 1, 0 x 2 1 f ( x 2) 4 ( x 2), 1 x 2 2
2 x 5, 2 x,
2 x 1 1 x 0
.
几个特殊的函数举例 (1)常函数
开区间
( a , b ) { x a x b}
o
闭区间
a
b
x
[a , b ] { x a x b }
o
a
b
x
半开区间
[a , b ) { x a x b}
( a , b] { x a x b }
无限区间
有限区间
称a, b为区间的端点, 称b-a为这些区间的长度.
1, 当 x > 0 0, 当x = 0
1 ,
1
当x<0
y4
3 2 1
o
-1
x
x sgn x x
(4)取整函数 y x
[x]表示不超过x 的最大整数
-4 -3 -2 -1 o -1 1 -2 -3 -4
2 3 4
x
(5)狄利克雷函数
y
1 1 当x是有理数时 • y D( x ) o• 0 当x是无理数时 无理数点
f (sin x ) (sin x )3 1

高等数学上册1.1 映射与函数

高等数学上册1.1 映射与函数
第一节 映射与函数
一、映 射
二、函 数
第一章 函数与极限
一、映射
1. 映射的概念
定义1
设 X 、Y 是两个非空集合, 若存在一个法则 , 使得对X中
每个元素, 按法则 , 在Y中有唯一确定的与之对应, 则称
为从 X 到 Y 的映射. 记作 : X→Y.

X
定义域
D =X
第一节 映射与函数



()


()=
若既是满射又是单射, 则称为双射或一一映射.
第一节 映射与函数
第一章 函数与极限
注 映射又称为算子, 在不同数学分支中有不同的名称.


Y
非空集X
上的泛函
数集Y
非空集X
上的变换
非空集Y
实数集X
上的函数
实数集Y
第一节 映射与函数
第一章 函数与极限
2. 逆映射与复合映射
注 分段函数是一个函数,不是多个函数.
第一节 映射与函数
第一章 函数与极限
2. 函数的几种特性
设函数 = () 的定义域为D , 且数集 ⊂ D 或区间 I ⊂ D .
(1) 有界性
∀ ∈ , ∃ > 0, 使 () ≤, 称 () 在上有界.否则称无界.
∀ > 0, ∃0 ∈ , 使|( 0)|≥M, 称() 在I上无界.
<0
第一章 函数与极限
例8 设为任一实数,不超过的最大整数称为的整数部分,记作[].
例如:
5
= 0,
7
阶梯曲线
2 = 1, [π] = 3, [−1] = −1, [−3.5] = −4.
求函数 = [] 的定义域和值域并画图.

高一数学第二单元1:映射与函数(附答案)

高一数学第二单元1:映射与函数(附答案)

高一(上)数学单元同步练习及期末试题(三)(第三单元 映射与函数)[重点难点]1. 了解映射的概念及表示方法,能识别集合A 与B 之间的一种对应是不是从集合A 到集合B 的映射;了解一一映射的概念。

2. 理解函数的概念,明确确定函数的三个要素;掌握函数的三种表示方法;理解函数的定义域、函数值和值域的意义,会求某些函数的定义域、函数值和简单函数的值域。

3. 理解函数的单调性和奇偶性的概念;掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程。

4. 了解反函数的概念及互为反函数的函数图像间的关系;会求一些简单函数的反函数。

一、选择题1.已知集合P={40≤≤x x },Q={20≤≤y y },下列不表示从P 到Q 的映射是( )(A )f ∶x →y=21x (B )f ∶x →y=x 31 (C )f ∶x →y=x 32(D )f ∶x →y=x2.下列命题中正确的是( )(A)若M={整数},N={正奇数},则一定不能建立一个从集合M 到集合N 的映射(B)若集合A 是无限集,集合B 是有限集,则一定不能建立一个从集合A 到集合B 的映射 (C)若集合A={a},B={1,2},则从集合A 到集合B 只能建立一个映射 (D)若集合A={1,2},B={a},则从集合A 到集合B 只能建立一个映射3.集合A={x R x x ∈≠,1}⋃{x R x x ∈≠,2},集合B=(-∞,-1)⋃(1,2)⋃(2,+∞),则A 、B 之间的关系是( ) (A )A=B (B )A ⊆B (C )A ⊇B (D )A ⊂B 4.下列函数中图像完全相同的是( ) (A )y=x 与y=2x (B )y=xx 与0x y = (C )y=(x )2与y=x (D )y=)1)(1(11-+=-⋅+x x y x x 与 5.f(x)是一次函数且2f(1)+3f(2)=3,2f(-1)-f(0)=-1,则f(x)等于( )(A )9194+x (B )36x -9 (C )9194-x (D )9-36x 6.若f(x)=21x x+,则下列等式成立的是( )(A )f()()1x f x= (B )f(x 1)=-f(x)(C )f(x 1)=)(1x f (D ))(1)1(x f x f -= 7.函数y=2122--+-+x x xx的定义域是( ) (A )-21-≤≤x (B )-21≤≤x (C )x>2 (D )x 1≠ 8.函数y=122+-x x 的值域是( )(A )[0,+∞] (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ]9.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图像是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图像是抛物线,其中正确的命题个数是( )(A )1 (B )2 (C )3 (D )410.已知g(x)=1-2x,f[g(x)]=)0(122≠-x xx ,则f(21)等于( ) (A )1 (B )3 (C )15 (D )3011.下列函数中值域是R +的是( )(A )y=132+-x x (B )y=2x+1(x>0) (C )y=x 2+x+1 (D )y=112-x12.若函数y=f(x)的定义域为(0,2),则函数y=f(-2x)的定义域是( ) (A )(0,2) (B )(-1,0) (C )(-4,0) (D )(0,4) 13.函数y=13+-+x x 的值域是( )(A)(0,2] (B)[-2,0] (C)[-2,2] (D)(-2,2) 14.下列函数中在(-∞,0)上单调递减的是( ) (A )y =1-x x (B )y=1-x 2(C )y=x 2+x (D )y=-x -115.设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2),f(-π)、f(3)的大小顺序是( )(A )f(-π)>f(3)>f(-2) (B )f(-π)>f(-2)>f(3) (C )f(-π)<f(3)<f(-2) (D )f(-π)<f(-2)<f(3)16.函数y=xx ++-1912是( ) (A )奇函数 (B )偶函数(C )既是奇函数又是偶函数 (D )非奇非偶数17.函数y=4(x+3)2-4的图像可以看作由函数y=4(x-3)2+4的图象,经过下列的平移得到( ) (A )向右平移6,再向下平移8 (B )向左平移6,再向下平移8 (C )向右平移6,再向上平移8 (D )向左平移6,再向上平移818.若函数f(x)=x 2+bx+c 对任意的实数t,都有f(2+t)=f(2-t),那么( ) (A )f(2)<f(1)<f(4) (B )f(1)<f(2)<f(4) (C )f(2)<f(4)<f(1) (D )f(4)<f(2)<f(1)19.f(x)=x 5+ax 3+bx-8且f(-2)=0,则f(2)等于( ) (A )-16 (B )-18 (C )-10 (D )10 20.命题(1)y=R x d cx b ax ∈++(且x c d -≠)与y=)(cax R x a cx b dx ≠∈-+-且互为反函数;(2)函数y=f(x)的定义域为A ,值域为C ,若其存在反函数,则f 必是A 到C 上的一一映射;(3)偶函数一定没有反函数;(4)f(x)与f -1(x )有相同的单调性,其中正确命题的个数是( ) (A )1 (B )2 (C )3 (D )4 二、填空题1.若一次函数f(x)的定义域为[-3,2],值域为[2,7],那么f(x)= 。

大一高数知识点映射与函数

大一高数知识点映射与函数

大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。

在这篇文章中,我们将重点讨论高数中的映射与函数。

一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。

在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。

映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。

映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。

即不同的元素在映射中有不同的对应元素。

2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。

即每一个元素都有对应的映射元素。

3. 一一映射:即又是单射又是满射的映射。

二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。

函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。

函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。

2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。

3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。

4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。

5. 对称性:函数是否具有关于某个轴的对称性。

三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。

下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。

2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。

3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。

4. 三角函数:包括正弦函数、余弦函数和正切函数等。

5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。

函数、映射的概念

函数、映射的概念

函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。

(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。

2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。

显然值域是集合B的子集。

3、构成函数的三要素:定义域,值域,对应法则。

值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。

注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。

•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。

1-1 映射与函数

1-1 映射与函数

例: f ( x ) x 2 在[0, )上单调增加
在 ( , 0]上单调减少 在 ( , )上不是单调的
函数的几种特性
3.函数的奇偶性
设函数f (x) 的定义域D关于原点对称
如果对于任一 x D, f ( x ) f ( x )恒成立
那么称函数f (x)为偶函数
四则运算
函 数
构造 复合映射
构造
基本初等函数
基本初等函数与初等函数
基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 初等函数 由常数和基本初等函数经过有限次四则运算和有限次
的函数复合步骤所构成并可用一个式子表示的函数
否则称为非初等函数
概念
概念 初等函数
逆映射
集 合 区 邻 间 域
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射 若对X中任意两个不同的元素
则称f为X到Y的单射 若映射 f 既是满射又是单射, 则称 f 为一一映射或双射. X f
它们的像
逆映射 若f 是从X到Y的单射,可定义一个从 对每个 规定
到X的新映射g
这x满足
这个映射g称为f的逆映射,记作 注 (1) 只有单射才存在逆映射 (2) 逆映射
1 y f ( x ), x f ( D) y f ( x ), x D 的反函数记成 一般地,
注 (1) f 在D上单调增加(减少),f 1 必定存在
1 且 f 在f (D)上也单调增加(减少)
(2) 函数y=f (x)与其反函数 y f 1 ( x ) 的图形 关于直线y=x对称
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D

《高等数学》第一节:映射与函数

《高等数学》第一节:映射与函数
[1,1] [ 0, ]
[

, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x

2


2
0

2
x
| arctanx |
定义域 (,)

2

2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos

,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!

映射与函数

映射与函数

1 ≤2}, x (3)A={x|0≤y ≤2},对应法则f :x→y= 3
(4)A={1,2,3},B={2,4,8}, (4)A={1,2,3},B={2,4,8},对应法则 f :x→y=2x (5)A={平面 内的圆} B={平面 (5)A={平面α内的圆},B={平面α内的 矩形} 对应法则“作圆的内接矩形” 矩形},对应法则“作圆的内接矩形”
四种有界区间: 四种有界区间: 表示{x|a≤x≤b} 叫闭区间; {x|a≤x≤b}, 1)[a,b] 表示{x|a≤x≤b},叫闭区间; 表示{x|a {x|a< b},叫开区间; 2)(a,b) 表示{x|a<x<b},叫开区间; 表示{x|a x≤b},叫左开右闭区间; {x|a< 3)(a,b] 表示{x|a<x≤b},叫左开右闭区间; 表示{x|a≤x b},叫左闭右开区间。 {x|a≤x< 4)[a,b) 表示{x|a≤x<b},叫左闭右开区间。 五种无界区间: 五种无界区间: 表示{x|x≥a} {x|x≥a}; 1)[a,+∞) 表示{x|x≥a}; 表示{x|x a}; {x|x> 2)(a,+∞) 表示{x|x>a}; )(表示{x|x≤a} {x|x≤a}; 3)(-∞,a] 表示{x|x≤a}; )(表示{x|x a}; {x|x< 4)(-∞,a) 表示{x|x<a}; )(表示实数集R 5)(-∞,+∞) 表示实数集R;
• 如果函数中含有分式,那么函数的分母必须不 如果函数中含有分式, 分式 为零。 为零。 • 如果函数中含有偶次根式,那么根号内的式 如果函数中含有偶次根式, 偶次根式 子必须不小于零。 子必须不小于零。 • 零的零次幂没有意义。 零的零次幂没有意义。 零次幂没有意义
练习 1、函数 f ( x ) =

高数0101映射与函数

高数0101映射与函数
点a叫做邻域的中心, 叫做邻域的半径.
U (a , ) { x a x a } (a , a ).

a
a
o
a
x
点a的去心邻域, 记作 U (a , ) { x 0 x a }.

a
左 邻域 :

a
a
y x2 1
x0 x0
y 2x 1
分段点 连结点
三、函数的几何特性
1 函数的有界性:
设X D, 若M 0, 使得对 x X , 有 f ( x ) M 成立,
则称函数f ( x )在X上有界, 否则称无界. 上界, 下界
y M y=f(x) o x 有界 X M y
求反函数的步骤
y f ( x) x f 1 ( y) y f 1 ( x).
2 反函数、复合函数
反函数 复合函数 设有函数链 y f (u ), u D1 ① ②
且 g ( D) D 1

称为由①, ②确定的复合函数 , u 称为中间变量. 注意: 构成复合函数的条件 g ( D) D 1 不可少.
• 函数的表示方法: 公式法 表格法 图示法
单值函数与多值函数:
已知x 2 y 2 1表示xoy坐标平面上的单位圆 , 由方程x 2 y 2 1可解出 y 1 x 2
问y与x的关系怎么称呼?
按定义, 函数是单值函数, 类似地, 称此处y与x处的关系为多值函数.
单值函数与多值函数: 如果给定一个法则,当自变量在定义域内 任取一个数值时,对应的函数值不总是唯一的, 称这种法则确定了一个多值函数.
例如, 函数链 : y arcsinu , 可定义复合函数

高数课件-映射与函数

高数课件-映射与函数

义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射

主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1

一函数与映射的基本概念

一函数与映射的基本概念

一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。

例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。

3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|,半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。

映射和函数的分类与性质

映射和函数的分类与性质

映射和函数的分类与性质一、映射的概念与性质1.映射:从集合A到集合B的一种规则,使得A中任意一个元素x,在B中都有唯一的元素y与之对应。

2.映射的性质:a)单射性(一一对应):对于A中的任意两个不同元素x1、x2,在B中对应的元素y1、y2也不同,即y1 ≠ y2。

b)满射性(覆盖):对于B中的任意元素y,存在A中的元素x与之对应。

c)域和值域:映射的定义域为集合A,值域为集合B中所有可能的输出值。

二、函数的分类1.线性函数:形如y = kx + b(k、b为常数)的函数,其中k≠0。

2.非线性函数:不包括线性函数的函数,如二次函数、指数函数、对数函数等。

3.单调函数:a)单调递增函数:对于定义域内的任意两个不同元素x1、x2,若x1 < x2,则f(x1) ≤ f(x2)。

b)单调递减函数:对于定义域内的任意两个不同元素x1、x2,若x1 < x2,则f(x1) ≥ f(x2)。

4.奇函数与偶函数:a)奇函数:满足f(-x) = -f(x)的函数。

b)偶函数:满足f(-x) = f(x)的函数。

三、函数的性质1.连续性:函数在每一点上都存在极限,且极限值等于函数值。

2.可导性:函数在某一点可导,意味着在该点处存在切线,且切线斜率等于函数导数值。

3.周期性:函数满足f(x + T) = f(x),其中T为函数的周期。

4.奇偶性:根据奇函数和偶函数的定义,函数的奇偶性决定了其在y轴对称或关于原点对称。

四、映射与函数的关系1.函数是特殊的映射:函数是一种映射,具有单射性、满射性和域值域的概念。

2.函数的定义域和值域:函数的定义域为映射的输入集合,值域为映射的输出集合。

五、映射和函数的应用1.数学领域:在数学分析、线性代数、概率论等领域中,映射和函数是基本概念,用于描述变量之间的关系。

2.物理学:在物理学中,函数用于描述物理量随另一物理量的变化规律,如速度与时间的关系。

3.计算机科学:在计算机科学中,函数用于实现算法,映射概念用于哈希表等数据结构的设计。

高等数学-第一章-第一节-映射与函数

高等数学-第一章-第一节-映射与函数

若函数
为单射, 则存在逆映射
称此映射 为 f 的反函数 .
习惯上,
的反函数记成
性质: 1) y=f (x) 单调递增 (减) 其反函数
且也单调递增 (减) .
2) 函数
与其反函数
的图形关于直线
对称 .
例如 , 指数函数 对数函数
它们都单调递增, 其图形关于直线
互为反函数 , 对称 .
(2) 复合函数 — 复合映射的特例
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有
(满射)
说明:
映射又称为算子. 在不同数学分支中有不同的惯用 名称. 例如,
X (≠ )
Y (数集) f 称为X 上的泛函
X (≠ )
X
f 称为X 上的变换
X (数集 或点集 )
R
f 称为定义在 X 上的为函数
当x= 0 当x< 0
例5. 求
解: 当 则
当 则
当 则
反函数
时, 时, 时,
的反函数及其定义域. 定义域为
课后小结
1. 集合及映射的概念 2. 函数的定义及函数的二要素
定义域 对应规律
3. 函数的特性
有界性, 单调性,
奇偶性, 周期性 4. 初等函数的结构
课后习题
1. 设

a, b, c 为常数, 且
2. 逆映射与复合映射 (1) 逆映射的定义 定义: 若映射
使
为单射, 则存在一新映射 其中
称此映射 为 f 的逆映射 . 习惯上 ,
的逆映射记成
例如, 映射
其逆映射为
(2) 复合映射 引例.

教学设计1第2课时映射与函数

教学设计1第2课时映射与函数

教学设计1第2课时映射与函数一、教学内容本节课的教学内容来自小学数学教材《数学》的第七章第一节,主要内容包括映射与函数的概念、特点和运用。

具体内容有:1. 映射的概念:介绍映射是一种数学关系,是一种从一种数学对象到另一种数学对象的规则。

2. 函数的概念:介绍函数是一种特殊的映射,具有输入和输出的关系,每个输入都对应一个唯一的输出。

3. 映射与函数的特点:介绍映射和函数的单射、满射和一一对应的特性。

4. 映射与函数的运用:介绍如何运用映射和函数解决实际问题,如坐标系中的点与坐标的对应关系。

二、教学目标1. 学生能够理解映射和函数的概念,掌握它们的基本性质。

2. 学生能够运用映射和函数解决实际问题,提高解决问题的能力。

3. 学生能够培养逻辑思维能力,提高对数学概念的理解和运用能力。

三、教学难点与重点1. 教学难点:映射和函数的概念及其性质的理解和运用。

2. 教学重点:掌握映射和函数的概念,能够运用映射和函数解决实际问题。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:通过生活中的实际例子,如地图上的位置对应关系,引导学生思考数学中的映射和函数概念。

2. 概念讲解:讲解映射和函数的概念,引导学生理解映射和函数的基本性质。

3. 例题讲解:通过具体的例题,解释映射和函数的概念及其运用。

4. 随堂练习:学生独立完成随堂练习,巩固映射和函数的概念。

5. 小组讨论:学生分组讨论如何运用映射和函数解决实际问题,分享解题思路。

7. 课后作业:布置相关的作业题目,让学生进一步巩固映射和函数的概念。

六、板书设计板书设计如下:映射与函数1. 映射的概念:数学关系,从一种数学对象到另一种数学对象的规则。

2. 函数的概念:特殊的映射,具有输入和输出的关系,每个输入都对应一个唯一的输出。

3. 映射与函数的特性:单射、满射、一一对应。

4. 映射与函数的运用:解决实际问题,如坐标系中的点与坐标的对应关系。

高等数学1-1映射与函数

高等数学1-1映射与函数
下列函数中相同的是:( )
A : y 1 cos 2x ,y 2 cos x
B: y
1 x 1 x
,y
1 x 1 x
C:y
2x
, y 1 x 1 x
1 x 1 x
D : y ln x2, y 2 ln x
EX2
下列函数能否复合为函数 y f [g( x)],
称为由函数y与u构成的复合函数,它的定义域为D, 变量u称为中间变量.
讨论: 函数
何时可复合?ຫໍສະໝຸດ 可得复合函数显然 不能构成复合函数 .
复合函数可以由两个以上的函数经过复合构成.
例如 y cot x , 2
(1)基本初等函数:幂函数,指数函数,对数函数, 三角函数和反三角函数统称为基本初等函数.
第一节 映射与函数
一、集合 二、映射 三、函数
一、集合
1.集合概念 P1-2 2.集合的运算
定义 给定两个集合 A, B,
并集

定义下列运算:
交集

差集

余集
3.区间和邻域: 区间—P3-4
邻域-- 设a与是两个实数 , 且 0. 数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心, 叫做这邻域的半径 .
幂函数、指数函数、对数函数 三角函数、反三角函数
(2)初等函数:由常数及基本初等函数经过有 限次四则运算和复合步骤所构成 ,并可用一个 式子表示的函数 ,称为初等函数 .
小结
基本概念 集合, 区间, 邻域 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 复合函数 基本初等函数与初等函数
EX1
g( x)的值域与 f (u) 的定义域之交集是空集.

高数第一章函数与极限知识点总结

高数第一章函数与极限知识点总结

1.2.1 数列极限的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2
数列的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7.2
...................................... 5
1.7.3
定 ......................................... 5
1.8 函数的

...................................... 5
1.8.1 函数的
映射的定义
映射 g
映射的
g 的值域 Rg
f f 的定
1
义域
Rg ∈ D f

映射 g f 的

g◦ f


映射 f ◦ g 与 g ◦ f
映射 的 f ◦g f ◦g 与 g◦ f
1.1.2 函数
函数的概念
定义 1.4. 设数集 D ∈ R,则称映射 f : D → R 为定 义在 D 上的函数,通常简记为 y = f (x),x ∈ D, 其中 x 称为自变量,y 称为因变量,D 称为定义 域,记作 D f , 即 D f = D。
). 如果
lim f (x) = a
x→x0
且 a > 0(或 a < 0), 所以 ∃(正整数 N), 当 n > N, 都有 xn > 0(或 xn < 0).

同济7版高等数学精品智能课件-第1章-第1节-集合、映射、函数

同济7版高等数学精品智能课件-第1章-第1节-集合、映射、函数
例2 设 X = {(x , y) | x2 + y2 = 1},Y = {(x , 0) | |x| 1 },
f : XY,则对每个 (x , y) X,有唯一确定的(x , 0) Y 与之对应.显然f 是一个映射,定义域 Df = X ,值域 Rf = Y .在几何上,这个映射表示将平面上一个圆心在 原点的单位圆上的点投影到 x 轴上的区间 [ -1 , 1 ]上.
第一节 映射与函数
注意
(1) 映射 g 和 f 能构成复合映射的条件是:Rg Df . (2) 映射 g 和 f 构成复合映射是有顺序的,f g 有 意义时, g f 可能没意义,即使它们同时都有意义,但 不一定表示同一映射.
三、函数
第一节 映射与函数
1. 函数的概念
定义 设数集合 D R ,则称映射 f : D R为定义 在 D 上的函数,通常简记为
y
1 (x , y)
-1 O x 1 x -1 (x , -y)
第一节 映射与函数
例3

f
:
π 2
,
π 2
[1
,
1]
,
对每个
x
π 2
,
π 2
,
f (x) = sin x .则f 是一个映射,定义域
Df
π 2
,
π 2
,
y
值域 Rf = [ -1 , 1 ] .
1
π 2
f (x) = sin x
二、映射
第一节 映射与函数
1. 映射的概念
定义 设 X , Y 是两个非空集合, 若存在一个对应
规则 f , 使得 x X , 有唯一确定的 y Y 与之对应,
则称 f 为从 X 到 Y 的映射, 记作 f : X Y .

原创1:第2课时 映射与函数(导学式)

原创1:第2课时 映射与函数(导学式)

探究点1
分段函数的概念
分段函数:在定义域的不同子区间上有不同解析表达式的函数.
问题1:分段函数的对应关系不同,那么分段函数是由几个函数构成
的吗?
提示:不是.分段函数的定义域只有一个,只不过在定义域的不同子
区间上对应关系不同而已,是一个函数.
探究点1
分段函数的概念
问题2:分段函数的定义域和值域如何求?
对应自己的身高;

(4)A={x|0≤x≤2},B={y|0≤y≤6},对应关系f:x→y= .

典例精讲:题型三:映射的概念
[解析]
(1)A中元素3在对应关系f的作用下与3的差的绝对值为0,
而0∉B,故不是映射.
(2)因为一个圆有无数个内接矩形,即集合A中任何一个元素在集
合B中有无数个元素与之对应,故不是映射.
一个元素,在集合B中都有唯一的元素和它对应.A→B的对应有“多
对一”“一对一”“一对多”,前两种对应是A到B的映射,而最后一
种不是A到B的映射.
课堂练习
1.设映射f:A→B,则下列命题中,正确的是(
)
A.A中每个元素在B中必有唯一元素与其对应
B.B中每个元素在A中必有元素与其对应
C.B中每个元素在A中的对应元素唯一
第二章
函数
§2.1.1 函数
第二课时 映射与函数
高中数学必修1·精品课件
学习目标
1. 通过具体实例,了解简单的分段函数,并能简单应用;
2. 会求分段函数的解析式和函数值,会画分段函数的图象(重点);
3. 了解映射的概念及它与函数的联系(难点).
引入课题
我国是水资源比较匮乏的国家,为了提倡节约用水,某城市对
用户的自来水收费实行阶梯水价,收费标准如下表所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x0 x0
y x2 1
y 2x 1
3. 函数的几种特性 1). 函数的有界性 定义2. 设函数 y f ( x ), x X ,若
M 0 , x X ,都有: | f ( x ) M | 则称 f ( x ) 是 X 上的有界函数。
y
M y=f(x) o -M M

第一册:函数,极限,连续,导数,微分,不 定积分,定积分及其应用,常微分方程; 第二册:向量代数和空间解析几何,多元函 数微分学,重积分,线面积分和级数。

返回
教师姓名:姚 翠 珍 Tel. 68912131(o) Rm 847(中教)
Email address:czyao@
参考书:吉米多维奇数学分析习题集 分析中的反例
y
y f ( x)
y
y f ( x)
f ( x)
f ( x )
-x o x
f ( x)
x
-x o
f ( x )
奇函数
x
x
偶函数
Sept. 21 Wed.
Review
区间,邻域的概念; 映射:满射,单射,一一映射,逆映射,复合映射; 函数概念; 函数特性:有界性,单调性,奇偶性,周期性。

例. 设 f ( x ) 是定义在 ( l , l )( l 0 ) 内的任意函数,且
F ( x ) f ( x ) f ( x ) G ( x ) f ( x ) f ( x ) 证明: F ( x ) 是偶函数, G ( x ) 是奇函数,且 f ( x )可以 唯一表示成 F ( x ) 与 G ( x ) 的和之半。
§8 函数的连续性 §9 闭区间上连续函数的性质
本章讨论:
映射,函数,极限和函数的连续性等基本概念, 其内容是研究微积分的最必需的基础知识。
§1 映射与函数

集合 映射 函数
一 集合(set)
概念,集合运算,区间与邻域。
区间:(interval)
( a , b ) { x | a x b} [ a , b ] { x | a x b}
y f (u) , 及函数 u ( x ), x X 函数 u ( x ) 的值域记为 ( X ),若 ( X ) U , 则在 X 上可以确定一个函数 y f ( ( x )) 称为 f 与 的复合函数,记作 f uU
x 自变量, u 中间变量, y 因变量,
例 1. 符号函数:
1, x 0 , y sgn x 0 , x 0 , 1, x 0 .
2. Dirichlet 函数:
3. y [x ] ,表示不超过
1, y 0,
x为有理数, x为无理数 .
x 的最大整数。
4.
2 x 1, f ( x) 2 x 1,
函数是从实数集到实数集的映射。
或函数是量与量之间的依赖关系。
定义1. 假定在某个变化过程中有 x 和 y 两个变量, x 的变化域为 X 。假如对 X 中的每一个 x 值, 根据某种对应规则 f ,变量 y 有唯一确定的值与 之对应,则称 y 是 x 的函数(function), 记作:y=f(x)
( f g )( x ) f [ g ( x )] 1 sin 2 x | cos x |
三 函数(function)
初等数学:研究对象为常量,是常量的数学; 高等数学:研究对象是事物的运动规律和现象的 变化规律,是变量的数学。
实例
1 . 在重力作用下,物体从 离地面 h 米处自由落 下,不计空气阻力,下 落路 程 s 与时间 t 满 足关系 1 2 s gt ,其中 0 t 2 2h 。 g
f ( x2 )
f ( x1 )
f ( x1 )
f ( x2 )
o
X
o
x
x
X
3). 函数的奇偶性 定义4. 设函数 y f ( x )在 X 内有定义,若对 x X , 都有
f ( x ) f ( x ) 或 f ( x ) f ( x ) 则称 y f ( x ) 在 X 内是奇函数或偶函数。
Sept. 19 Mon.
数学分析
教 室: Mon. Wed. Fri. 中教407 第1节 7:50-9:25pm 第3节 1:30-3:05am 第1节 7:50-9:25am


课程简介 教师姓名 参考书 交作业时间 最后成绩 答疑时间
教材:高等数学(同济大学编)
本课程主要内容有极限论,微分学,积分学 和级数论等,它包括: 1.数学分析:一元函数微积分学 多元函数微积分学 级数; 2. 向量代数,空间解析几何; 3. 常微分方程。
U ( a ) { x a x a }.


x
a a a 0 点 a的去心的 邻域 , 记作 U ( a ).
U ( a ) { x 0 x a }.
二 映射(mapping)
1 概念
定义1 设 X ,Y 为非空集合,若存在一个法则 f ,使对
x X ,按法则 f
,在Y 中有唯一确定的元素
f
与之对应,则称 (mapping), 记作: f : X Y
为从
X
到Y 的映射
其中 y 称为元素 x在映射 f下的像,记 作:
f ( x ), 即 y f ( x )
元素 x 称为 y 的一个原像,X 称为映射 f 的定 义域(domain),记作: D f X中所有元素的像组成的集合称为 f 的值域 (range),记作: R f 或 f ( X )
3 f : [ , ] [ 1,1], 对 x [ , ], f ( x ) sin x , 2 2 2 2 D f [ , ], R f [ 1,1]. 2 2
定义2 若 R f Y , 则称 f 为 X 到 Y 上的映射或满射;
返回
交作业时间与地点: 每周一下午:2:30——5:30 中心教学楼 Rm 812
作业要求全交。
最后成绩: 作业 10 % +期中 20 % +期末 70 % 答疑时间:Mon. & Wed. 3:30pm-5:00pm 地点:中教-405 Preview+review+exercise
几个常用符号
o
x
X
例 求下列函数的定义域
x ); 1. y arcsin(log 10
2 2 x 2. 设 f ( x ) ln ,求 f ( x ) f ( ) 的定义域; x 2 x x sin x 3. y sin x 和 y 。 x
2. 函数的表示法 1). 公式法,表格法,图形法; 2). 分段函数: 对于其定义域内自变量不同的值,不能用一个统一 的数学表达式表示。
约定:定义域是自变量所能取的使算式有意 义的一切实数值。
两个要素:定义域; 对应关系(即函数关系)。
函数图形:全体这样的点
M ( x, y ) ( x, f ( x ))
y
构成的集合
{M ( x , f ( x )) | y f ( x ), x X }
y
( x, y)
x
称为函数 y f (x ) 的图形。
若对每个 y R f ,规定 g ( y ) x ,满足 f ( x ) y,
定义4 设有两个映射
g : X Y1 , f : Y2 Z 其中 Y1 Y2 , 则由 g 与 f 可以确定一个从 X 到 Y 的法则,它将每个 x X 映成 f [ g ( x )] Z , 称这个映射为由映射 g 与 f 构成的复合映射, 记作: f g ,即 f g:X Z
y
x
X
x0
o -M X
x
2). 函数的单调性 定义3. 设函数 y f ( x ) 在 X 上有定义,且 x1 x 2
时,有 f ( x1 ) f ( x 2 ) 或 f ( x1 ) f ( x 2 ),则称在 X 上单调递增或单调递减 , X 称为 f ( x ) 的单调 区间。等式不成立时, 称为严格单调性。 y y f (x ) y f (x ) y
f
Df
XYRf来自意:1 . 三个要素:定义域 D f X ;值域范围 R f Y ;对应法则: f;
2 . 对 x X , x 的像 y 是唯一的;对 y R f , y 的原像不一定唯一。

1 f ( x ) x 2 , D f R , R f { y | y 0} 除 y 0 的原像 x 0 外,所有原像不唯一;
g
Y2
f
f (X )
X
Z
注意:
R g f ( X ) Y2 D f

g : R [ 1,1], x R , g ( x ) sin x f : [ 1,1] [0,1], u [ 1,1], f ( u ) 1 u 2
f g : R [ 0,1], 对 x R ,有
2 X {( x , y ) | x 2 y 2 1}, Y {( x ,0 ) || x | 1}, f : X Y , ( x , y ) X , 有唯一确定的 ( x ,0 ) Y 与之对应,将平面上圆 心在原点的单位圆周上 的点投影到 x 轴的区间上 [ 1,1];

3l 2

l 2
l 2
3l 2
4. 复合函数与反函数 函数运算:
设 f ( x ), g ( x ) 在 X 上有定义,则 f ( x ) g( x ) , 也是 X 上的函数 f ( x ) g( x ) , f ( x) ( g ( x ) 0) g( x )
相关文档
最新文档