人教版数学七年级上册第二章整式的加减《单元检测》(附答案)

合集下载

人教版数学七年级上册第二章整式的加减单元检测卷(含答案)

人教版数学七年级上册第二章整式的加减单元检测卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b2.去括号后结果错误的是( )A (a+2b)=a+2b B. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-14.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n5.若多项式32281x x x-+-与多项式323253x mx x+-+的差不含二次项,则m等于()A 2 B. -2 C. 4 D. -46.若多项式11x5+16x2-1与多项式3x3+4mx2-15x+13的和不含二次项,则m等于( )A 2 B. -2 C. 4 D. -47.一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是()A 3x2y-4xy2 B. x2y-4xy2 C. x2y+2xy2 D. -x2y-2xy28.单项式2x4-m y与6xy2的次数相同,则m的值为()A. 1B. 2C. 3D. 4二、填空题9.单项式−32πab c3的系数是_____,次数是_____.10.系数为-5,只含字母m、n的三次单项式有_____个,它们是______.11.单项式−22x y3的系数与次数之积为___________.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.13.化简:-[-(a+b)]-[-(a-b)]=_____.14.已知单项式6x2y4与-3a2b m+2的次数相同,则m2-2m的值为_____.15.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是_____.16.化简:3(a-13b)-2(a+12b)=_____.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?答案与解析一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b【答案】A【解析】试题分析:根据有理数a、b在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a-b<0则=(a+b)+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值2.去括号后结果错误的是( )A. (a+2b)=a+2bB. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b【答案】D【解析】【分析】根据去括号法则判断:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】A.(a+2b)=a+2b,故本选项正确;B.-(x-y+z)=-x+y-z,故本选项正确;C.2(3m-n)=6m-2n,故本选项正确;D.-(a-b)=-a+b,故本选项错误;故选D.【点睛】本题考查了去括号的法则,解题的关键是牢记法则,并能熟练运用,去括号时特别要注意符号的变化.3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-1 【答案】A【解析】试题分析:利用同类项的定义求解即可.解:∵单项式﹣x 2a ﹣1y 4与2xy 4是同类项,∴2a ﹣1=1,解得a=1,∴(1﹣a)2015=0,故选A .考点:同类项.4.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n 【答案】D【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A 、原式=(m+n )-m=n ,计算正确,故本选项错误;B 、原式=m-2m-3n=-m-3n ,计算正确,故本选项错误;C 、原式=-(4m-n )-2n=-4m+n-2n=-4m-n ,计算正确,故本选项错误;D 、原式=m-m+n=n ,计算错误,故本选项正确;故选D .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A. 2B. -2C. 4D. -4 【答案】D【解析】【分析】用减法列式,即()32281x x x -+--()323253x mx x +-+,去括号合并同类项后,令二次项的系数等于0,即可求出m 的值.【详解】()32281x x x -+--(323253)x mx x +-+ =32322813253x x x x mx x -+---+-=()328264x m x x -+--+- ∵差不含二次项,∴820m --=,∴m =-4.故选D.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x 的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.6.若多项式11x 5+16x 2-1与多项式3x 3+4mx 2-15x+13的和不含二次项,则m 等于( )A. 2B. -2C. 4D. -4【答案】D【解析】【分析】不含二次项,说明二次项的系数为0.【详解】(11x 5+16x 2-1)+(3x 3+4mx 2-15x+13)= 11x 5+16x 2-1+3x 3+4mx 2-15x+13= 11x 5+3x 3+(16+4m )x 2-15x+13,因为上式不含二次项,所以16+4m=0,解得m=-4,故选D .【点睛】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m 的方程是解答此题的关键.7.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )A. 3x 2y-4xy 2B. x 2y-4xy 2C. x 2y+2xy 2D. -x 2y-2xy 2 【答案】C【解析】试题分析:列代数式(2x 2y-xy 2)-(x 2y-3xy 2),然后去括号、合并同类项即可化简.即(2x 2y-xy 2)-(x 2y-3xy 2)=2x 2y-xy 2-x 2y+3xy 2=x 2y+2xy 2.故选C .考点:去括号,合并同类项8.单项式2x 4-m y 与6xy 2的次数相同,则m 的值为( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据两单项式的次数相同列出关于m 的方程,求出m 的值即可.【详解】∵单项式2x 4−m y 与6xy 2的次数相同,∴4−m=1,∴m=3,故答案选C.【点睛】本题考查了单项式,解题的关键是熟练的掌握单项式的相关知识点. 二、填空题9.单项式−32πab c 3的系数是_____,次数是_____. 【答案】3π-,6. 【解析】试题分析:∵单项式323ab c π-数字因数是3π-,所有字母指数的和=1+3+2=6,∴此单项式的系数是3π-,次数是6.故答案为3π-,6. 考点:单项式.10.系数为-5,只含字母m 、n 的三次单项式有_____个,它们是______.【答案】两个;-5m 2n 或-5mn 2.【解析】试题分析:单项式中前面的数字因数是单项式的系数 ,单项式中所有字母的指数和是单项式的次数,因此系数为-5,只含字母m 、n 的三次单项式可以是-5m 2n 或-5mn 2.共有两个.考点:单项式的系数与次数.11.单项式−22x y3的系数与次数之积为___________.【答案】-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3;其系数与次数之积为﹣23×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.【答案】-2c【解析】【分析】根据数轴得出a<b<0<c,去掉绝对值符号,最后合并即可.【详解】∵从数轴可知:a<b<0<c,∴|a-b|+|a+b|-2|c-a|=b-a-a-b-2(c-a)=b-a-a-b-2c+2a=-2c.故答案为-2c.【点睛】本题考查了整式的加减,绝对值,数轴的应用,解此题的关键是能正确去掉绝对值符号.13.化简:-[-(a+b)]-[-(a-b)]=_____.【答案】2a【解析】【分析】先去小括号,再去中括号,最后合并整式中的同类项即可.【详解】-[-(a+b)]-[-(a-b)]=-[-a-b]-[- a+b]=a+b+a-b=2a.故答案为2a【点睛】本题考查了整式的加减、去括号法则,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.也考查了数轴与绝对值.14.已知单项式6x 2y 4与-3a 2b m+2次数相同,则m 2-2m 的值为_____.【答案】0【解析】分析】根据两个单项式的次数相同可得2+4=2+m+2,再解即可得到m 的值,进而可得答案.【详解】由题意得:2+4=2+m+2,解得:m=2,则m 2-2m=0.故答案为0.【点睛】此题主要考查了单项式,关键是掌握一个单项式中所有字母的指数的和叫做单项式的次数. 15.观察下列单项式:3a 2、5a 5、7a 10、9a 17、11a 26…它们是按一定规律排列的,那么这列式子的第n 个单项式是_____.【答案】(2n+1)21na + 【解析】【分析】先找出前3项的规律,然后通过后面的几项进行验证,找到规律得到答案即可.【详解】3a 2=(2×1+1)211a +, 5a 5=(2×2+1)221a +,7a 10=(2×3+1)231a +,… 第n 个单项式是:(2n+1)21na +, 故答案为(2n+1)21n a +.【点睛】本题考查了规律题——数字的变化类,根据前几项发现规律,通过观察发现每一项的系数与次数都与该项的序数有关是解题的关键.16.化简:3(a-13b)-2(a+12b)=_____. 【答案】a-2b【解析】【分析】先去括号,再合并同类项即可.【详解】原式=3a-b-2a-b= a-2b.故答案为a-2b【点睛】此题考查了整式的加减,即去括号,合并同类项,注意去括号时各项符号的变化.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.【答案】(1)各项的系数分别为:-5,14-,13;各项的指数分别为:21a+, ,;(2)2a=.【解析】试题分析:(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.试题解析:解:(1)-5x2a+l y2的系数是-5,次数是2a+3;14-x3y3的系数是14-,次数是6;13x4y的系数是13,次数是5;(2)因为多项式的次数是7次,可知-5x2a+1y2的次数是7, 即2a+1+2=7,解这个方程,得a=2.考点:多项式.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示) 【答案】乙旅行社收费比甲旅行社贵0.2a元.【解析】【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴3230 aba⎧⎪-⎨⎪-≠⎩==,解得:32 ab-⎧⎨-⎩==,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.【答案】k=3.【解析】【分析】先合并同类项得2x2+(k-3)xy-3y2-8,再根据题意得到k-3=0,然后解方程即可.【详解】合并同类项得2x2+(k-3)xy-3y2-8,因代数式2x2+kxy-3y2-3xy-8不含xy项,所以k-3=0,所以k=3.【点睛】本题考查了合并同类项:合并同类项就是把同类项的系数相加减,字母和字母的指数不变.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.【答案】a=0.【解析】【分析】根据题意得出3A-6B的表达式,再令x的系数为0即可.【详解】3A-6B=3(2x2+3ax-2x-1)-6(x2-x+1)=6x2+9ax-6x-3-6x2+6x-6=9ax-9,因为3A-6B的值与x取值无关,所以9a=0,所以a=0.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【解析】试题分析:(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.试题解析:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.【答案】x=±3,y=-2.【解析】【分析】直接利用同类项法则得出|x|=3,|y|=2,y-2≠0,求出即可.【详解】因为5a|x|b2与(y-2)a3b|y|是同类项,所以|x|=3,|y|=2,y-2≠0,所以x=±3,y=-2.【点睛】此题主要考查了同类项,正确把握定义是解题关键.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?【答案】共有(105x-45)人,需付(276x-126)元的租车费用.【解析】【分析】需租用x辆60座的大客车,再租用比大客车少1辆的小客车,所以共有60x+45(x-1)人,再由大客车的租金为 150元,租一辆45座的小客车的租金为126元可得出租车费用.【详解】由题意得60x+45(x-1)=(105x-45)人;150x+126(x-1)=(276x-126)(元).答:实验中学七年级师生共有(105x-45)人,需付(276x-126)元的租车费用.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题(共12小题,总分36分)1.代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是33.多项式6x2y-3x-1的次数和常数项分别是()A 3和-1 B. 2和-1 C. 3和1 D. 2和14.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确是( )A 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m n+5n2m=" 0" D.–x =7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18.多项式23635x x-+与3231257x mx x+-+相加后,不含二次项,则常数的值是( )A. B. 3- C. 2- D. 8-9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣510.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式 ( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y211.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A. 3aB. 6a +bC. 6aD. 10a -b12.两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)A. 12aB. 32a C. a D. 54a 二、填空题(共6小题,总分18分) 13.请写出一个系数是-2,次数是3的单项式:________________.14.若5m x n 3与-6m 2n y 是同类项,则xy 的值等于_________.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________. 18.观察下面的一列单项式:2x,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________.三、解答题(共8小题,总分66分)19.化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2) a 2b -0.4ab 2-12a 2b +25ab 2. 20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a 2+4ab +4b 2)=a 2-4b 2(1)求所捂的多项式;(2)当a =-1,b =2时,求所捂的多项式的值.24.已知A =2a 2-a,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值. 25.先化简,再求值:已知a 2﹣1=0,求(5a 2+2a ﹣1)﹣2(a+a 2)的值.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案与解析一、选择题(共12小题,总分36分)1.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.多项式6x2y-3x-1的次数和常数项分别是()A. 3和-1B. 2和-1C. 3和1D. 2和1 【答案】A【解析】【分析】运用多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数即可得出答案.【详解】∵多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数∴多项式6x2y-3x-1的次数和常数项分别是:3和-1.故选A.【点睛】考查了多项式相关概念,正确把握多项式次数和常数项的定义(多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数)是解题关键.4.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y【答案】B【解析】【分析】对原式各项进行去括号变形得到结果,即可作出判断.【详解】解:A、a+(b-c)=a+b-c,错误;B、a-(b+c)=a-b-c,正确;C、m-2(p-q)=m-2p+2q,错误;D、x²-(-x+y)=x2+x-y,错误,故选B.【点睛】本题考查了去括号,熟练掌握去括号法则是解本题的关键.5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:22x y+,2ab,12,3x2+5x﹣2,abc,0,2x yx+,m中:有4个单项式:12,abc,0,m;2个多项式为:22x y+,3x2+5x-2.故选C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m=" 0" D.–x =m n+5n2【答案】C【解析】分析:根据同类项的概念及合并同类项的法则得出.详解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选C.点睛:本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-1【答案】B【解析】试题分析:本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.考点:同类项.8.多项式2x mx x+-+相加后,不含二次项,则常数的值是( )312573635x x-+与32A. B. 3- C. 2- D. 8-【答案】B【解析】由题意可知36+12m=0,解得m=-3,故选B.9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.详解】∵m-x=2,n+y=3,∴原式=m-n-x-y=(m-x)-(n+y)=2-3=-1,故选A.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.11.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A. 3aB. 6a+bC. 6aD. 10a-b 【答案】C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.12.两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A. 12a B.32a C. a D.54a【答案】C【解析】【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【详解】设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a-x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b-2y)=2a+2b-4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)-(2a+2b-4y)=4y=a,故选C.【点睛】考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,总分18分)13.请写出一个系数是-2,次数是3的单项式:________________.【答案】-2a3(答案不唯一)【解析】分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.若5m x n3与-6m2n y是同类项,则xy的值等于_________.【答案】6【解析】【分析】根据同类项定义即可求x 、y 的值出答案.【详解】∵5m x n 3与-6m 2n y 是同类项,∴x=2,y=3∴xy=6.故答案是:6.【点睛】考查同类项的概念,解题的关键是熟练运用同类项的概念(含相同字母,且相同字母的指数也相同)求出x 、y 的值.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.【答案】1【解析】【分析】把多项式(8x 2-6ax+14)-(8x 2-6x+6)化简整理成(6-6a)x+8的形式,再根据其值与x 无关,可得关于a 的方程,解方程即可.【详解】原式=8x 2-6ax+14-8x 2+6x-6=(6-6a)x+8,∵整式(8x 2-6ax+14)-(8x 2-6x+6)的值与x 无关,∴6-6a=0,解得:a=1,故答案是:1.【点睛】考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.【答案】2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________.【答案】1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第n个单项式为__________.【答案】(-1)n+1·2n·x n【解析】分析】通过观察题意可得:n为奇数时,单项式为正数;n为偶数时,单项式为负数.x的指数为n的值,2的指数为(n-1).由此可解出本题.【详解】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.三、解答题(共8小题,总分66分)19.化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2) a2b-0.4ab2-12a2b+25ab2.【答案】(1) x2;(2)12a2b.【解析】【分析】直接合并同类项即可.【详解】(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(a2b-12a2b)+(-0.4a b2+25ab2)=12a2b.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.【答案】(1)-12;(2)-4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】(1)2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2) =2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2,当x =13,y =-3时,原式=6×13×(-3)-6×21()3×(-3)2=-6-6=-12. (2)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=(-1-1+2)a 2b +(3-4)ab 2=-ab 2,当a =1,b =-2时,原式=-1×(-2)2=-4. 【点睛】考查了整式的加减-化简求值,熟练掌握整式的运算法则是解本题的关键.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.【答案】263x x --+【解析】试题分析:==这个多项式为考点: 整式的加减22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.【答案】(1) 2a2+4ab;(2)-6.【解析】【分析】(1)根据题意列出整式相加减的式子,再去括号,合并同类项即可;(2)把3(1)中的式子即可.【详解】(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.【答案】(1)6a2+7a(2)-2 【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-12代入上式计算.试题解析:解:(1)3A﹣2B+2, =3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-12时,3A﹣2B+2=6×(-12)2+7×(-12)=-2.考点:整式的加减—化简求值;整式的加减25.先化简,再求值:已知a2﹣1=0,求(5a2+2a﹣1)﹣2(a+a2)的值.【答案】2.【解析】【分析】原式去括号整理后,将已知等式变形后代入计算即可求出值.【详解】解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.。

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)一、单选题1.单项式32πx yz -的系数和次数分别是( )A .-2,6B . -2π,5C .-2,7D .-2π ,62.多项式233321x y x y --是( )A .二次三项式B .三次二项式C .四次三项式D .五次三项式3.下列语句错误的是( )A .数字0也是单项式B .单项式a -的系数与次数都是1C .12xy 是二次单项式 D .25m n 与22nm -是同类项4.下列化简结果正确的是( )A .-4a-a=-3aB .6x 2-2x 2=4C .6x 2y-6yx 2=0D .3x 2+2x 2=5x 45.下列说法正确的是( )A .25xy 的系数是5-B .单项式a 的系数为1、次数是0C .2325a b 的次数是6D .1xy x +-是二次三项式6.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( )A .0B .-2C .2D .-17.关于多项式3x 2﹣y ﹣3xy 3+x 5﹣1,下列说法错误的是( )A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣18.下列各组中的两项,属于同类项的是( )A .32x -与2x -B .12ab -与18baC .2x y 与2xy -D .4m 与4mn9.若一个多项式减去223a b -等于222a b +,则这个多项式是( )A .222a b -+B .222a b -C .222a b -D .222a b --二、填空题10.3227x y -的系数是 .11.若2m a b 与323n a b --是同类项,则m n +的值为 . 12.多项式233223xy x x y -+-的次数为 .13.一个多项式与2210x x --+的和是32x -,则这个多项式为 .三、解答题14.已知关于x 的多项式32322325mx x x x x nx -+-+-不含三次项和一次项,求n m 的值. 15.先化简,再求值:223252372x x x x ⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦,其中2x =-. 四、综合题16.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式﹣2x 2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式-12x 2y 4的次数为c. (1)a = ,b = ,c = . (2)请你画出数轴,并把点A ,B ,C 表示在数轴上; (3)请你通过计算说明线段AB 与AC 之间的数量关系.17.已知整式 ()()3123a x x a ---+ .(1)若它是关于 x 的一次式,求 a 的值并写出常数项; (2)若它是关于 x 的三次二项式,求 a 的值并写出最高次项.18.计算:一个整式A 与多项式x2-x-1的和是多项式-2x2-3x+4.(1)请你求出整式A ; (2)当x=2时求整式A 的值19.已知多项式-3x m+1y 3+x 3y-3x 4-1是五次四项式,单项式3x 3n y 2的次数与这个多项式的次数相同.(1)求m ,n 的值.(2)把这个多项式按x 降幂排列.参考答案与解析1.【答案】B【解析】【解答】解:单项式32πx yz -的数字因数是2π-,所有字母的指数的和为3115++=所以该单项式的系数和次数分别是:2π-和5. 故答案为:B .【分析】根据单项式的系数和次数的定义逐项判断即可。

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,35.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案与解析一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+8【答案】D【解析】【分析】根据去括号法则及乘法分配律解答即可.【详解】由去括号法则及乘法分配律可得:-16(x-0.5)=-16x+8.故选D.【点睛】本题考查了去括号法则及乘法分配律,熟练运用去括号法则及乘法分配律是解决问题的关键.2.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式【答案】B【解析】【分析】根据单项式的有关概念进行解答即可.【详解】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.故选:B.【点睛】本题考查了单项式,单项式的系数,次数,熟记单项式的系数,次数的定义是解题的关键.3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 4【答案】C【解析】【分析】原式去括号合并后,将已知整式的值代入计算即可求出值.【详解】∵x2y=2,∴原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.故选:C.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,3【答案】C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 2【答案】B【解析】【分析】根据单项式次数的定义来求解.所有字母的指数和叫做单项式的次数.【详解】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.故选:B.【点睛】灵活掌握单项式次数的定义,根据题意列方程,是解题的关键.6.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 24【答案】B【解析】【分析】先对原式合并同类项,再把a=-5代入化简后的式子计算即可.【详解】原式=a-1,当a=-5时,原式=-5-1=-6.故选:B.【点睛】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.7.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b【答案】B【解析】试题分析:a﹣b的相反数是b﹣a,可得a﹣b和它的相反数为:(a﹣b)﹣(b﹣a)=2a﹣2b,又因为a<b,可知2a ﹣2b<0,所以|(a﹣b)﹣(b﹣a)|=2b﹣2a.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.考点:整式的加减.8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2【答案】B【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【详解】A、-2与12是同类项,所以A选项错误;B、在2m与2n中,字母不相同,它们不是同类项,所以B选项正确;C、﹣2a2b与a2b是同类项,所以C选项错误;D、与是同类项,所以D选项错误.故选B.【点睛】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.【详解】由题意知单项式2x2y m与−x n y3是同类项,∴n=2,m=3,∴m+n=5,故答案为:5.【点睛】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.【答案】-3【解析】【分析】因为单项式-a2x b m与a n b y-1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy-mn的值.【详解】∵单项式-a2x b m与a n b y-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,x=1,y=5,则xy-mn=1×5-4×2=-3.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.【答案】-5a2b【解析】【分析】先把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为:a3b3+2ab2-5a2b-7.故答案为:-5a2b.【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.【答案】4【解析】【分析】直接利用合并同类项法则得出关于m,n的等式进而求出答案.【详解】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得:m=3,n=1.故m+n=4.故答案为:4.【点睛】此题主要考查了单项式,正确把握合并同类项法则是解题关键.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.【答案】-2(x-1)2-3(x-1)3【解析】【分析】根据互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数,可化成同类项,根据合并同类项,可得答案.【详解】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3=-2(x-1)2-3(x-1)3,故答案为:-2(x-1)2-3(x-1)3.【点睛】本题考查了合并同类项,利用互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数化成同类项是解题关键.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.【答案】-2a【解析】【分析】先由数轴上a,b的位置判断出其符号,再根据其与原点的距离距离判断出a,b绝对值的大小,代入原式求值即可.【详解】由数轴可a<0,b>0,a<b,|a|>b,所以a-b<0,a+b<0,∴|a-b|+|a+b|=-a+b-a-b=-2a,故答案为:-2a.【点睛】本题考查了数轴的概念、整式的加减、绝对值的性质等,熟练掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0是解题的关键.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.【答案】1【解析】先根据点a在数轴上的位置判断出a的符号,再去绝对值符号,合并同类项即可.解:∵由图可知,a<0,∴a﹣1<0,∴原式=1﹣a+a=1.故答案为:1.16.化简:-2a2-[3a2-(a-2)]=___________.【答案】-5a2+a-2【解析】【分析】去括号,然后合并同类项即可.【详解】-2a2-[3a2-(a-2)]= -2a2-[3a2-a+2]= -2a2-3a2+a-2=-5a2+a-2.故答案为:-5a2+a-2【点睛】本题考查整式的化简,注意去括号时符号的变化.三、解答题17.完成下表【答案】详见解析.【解析】【分析】根据单项式的系数和次数的定义解答即可.【详解】x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.填表如下:【点睛】此题考查了单项式的有关定义,熟练掌握单项式的系数和次数的的定义是解答此题的关键.18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.【答案】m+n=3或m+n=-13.【解析】【分析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.【详解】因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【解析】【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和【答案】这三名同学的年龄的和是(4m-5)岁.【解析】解:因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),则这三名同学的年龄的和为答:这三名同学的年龄的和是岁.21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键。

人教版数学七年级上册第二章整式的加减《单元综合测试题》含答案

人教版数学七年级上册第二章整式的加减《单元综合测试题》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题1.下列说法正确的是( )A. 是单项式B. πr2的系数是1C. 5a2b+ab﹣a是三次三项式D. xy2的次数是22.下列计算正确的是( )A. 6b﹣5b=1B. 2m+3m2=5m3C. ﹣2(c﹣d)=﹣2c+2dD. ﹣(a﹣b)=﹣a﹣b3.若﹣x2a y2b+5与﹣x b+5y a+1是同类项,则a、b的值分别为( )A. B. C. D.4.化简m+n﹣(n﹣m)的结果为( )A. 2m﹣2nB. ﹣2mC. 2mD. ﹣2n5.已知单项式3x m y3与4x2y n的和是单项式,则m n的值是( )A. 3B. 6C. 8D. 96.下列运算正确的是( )A. ﹣(a﹣1)=﹣a﹣1B. ﹣2(a﹣1)=﹣2a+1C. a3﹣a2=aD. ﹣5x2+3x2=﹣2x27.下列计算正确的是( )A. ﹣2﹣2=0B. 8a4﹣6a2=2a2C. 3(b﹣2a)=3b﹣2aD. ﹣32=﹣98.多项式a﹣(b﹣c)去括号的结果是( )A. a﹣b﹣cB. a+b﹣cC. a+b+cD. a﹣b+c9.下列说法正确的是( )A. 若|a|=﹣a,则a<0B. 若a<0,ab<0,则b>0C. 式子3xy2﹣4x3y+12是七次三项式D. 若a=b,m是有理数,则=10.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A. 8x2+13x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 2x2﹣5x﹣1二.填空题11.若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=_____.12.已知a﹣3b=3,则6b+2(4﹣a)的值是_____.13.已知2x+y=﹣1,则代数式(2y+y2﹣3)﹣(y2﹣4x)的值为_____.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是_____.15.若﹣7x m y4与2x9y n是同类项,则|m﹣n|=_____.16.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|=_____.三.解答题17.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?18.先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.19.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.21.先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2+3b2),其中a为最大的负整数,b为2的倒数.22.化简:2(3a2+4a﹣2)﹣(4a2﹣3a)23.先化简,后求值:,其中x在数轴上的对应点到原点的距离为个单位长度.答案与解析一.选择题1.下列说法正确的是( )A. 是单项式B. πr2的系数是1C. 5a2b+ab﹣a是三次三项式D. xy2的次数是2【答案】C【解析】【分析】根据单项式的概念、多项式的概念分别判断即可.【详解】A.分母含有字母x,不是单项式,此选项错误;B.πr2的系数是π,不是1,此选项错误;C.5a2b+ab﹣a是三次三项式,此选项正确;D.xy2的次数是3,不是2,此选项错误.故选C.【点睛】本题主要考查了单项式、多项式的概念,需要注意的是π不是字母,是常数.2.下列计算正确的是( )A. 6b﹣5b=1B. 2m+3m2=5m3C. ﹣2(c﹣d)=﹣2c+2dD. ﹣(a﹣b)=﹣a﹣b【答案】C【解析】【分析】根据去括号法则以及合并同类项法则一一判断即可.【详解】A.6b-5b=b,故此选项错误;B.2m与3m2不是同类项,不能合并,故此选项错误;C.-2(c-d)=-2c+2d,故此选项正确;D.-(a-b)=-a+b,故此选项错误,故选:C.【点睛】考查去括号法则以及合并同类项法则,掌握法则是解题的关键.3.若﹣x2a y2b+5与﹣x b+5y a+1是同类项,则a、b的值分别为( )A. B. C. D.【答案】A【解析】【分析】由同类项的定义列出关于a、b的二元一次方程组,解方程组即可求得a、b的值. 【详解】由同类项的定义可得:,解得:.故选A.【点睛】本题主要考查同类项的概念以及二元一次方程组的解法.4.化简m+n﹣(n﹣m)的结果为( )A. 2m﹣2nB. ﹣2mC. 2mD. ﹣2n【答案】C【解析】【分析】原式去括号合并即可得到结果.【详解】解:原式=m+n-n+m=2m,故选:C.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.5.已知单项式3x m y3与4x2y n的和是单项式,则m n的值是( )A. 3B. 6C. 8D. 9【答案】C【解析】【分析】由同类项的定义可以求出m、n的值,再进行幂的运算即可.【详解】由题意可得3x m y3与4x2y n为同类项,∴,∴m n=23=8.故选C.【点睛】两项之和为单项式,那么这两项必为同类项,本题关键在于利用这个知识点解题.6.下列运算正确的是( )A. ﹣(a﹣1)=﹣a﹣1B. ﹣2(a﹣1)=﹣2a+1C. a3﹣a2=aD. ﹣5x2+3x2=﹣2x2【答案】D【解析】【分析】本题主要利用整式的加减运算法则依次进行判断.【详解】A.﹣(a﹣1)=﹣a+1,此选项错误;B.﹣2(a﹣1)=﹣(2a﹣2)=﹣2a+2,此选项错误;C.a3﹣a2≠a,此选项错误;D.﹣5x2+3x2=﹣2x2,此选项正确.故选D.【点睛】本题主要考查整式的加减运算法则:(1)有括号,先去括号;(2)有同类项,再合并同类项. 还需注意的是如果括号前面是减号,那么括号里面的加减号要变号.7.下列计算正确的是( )A. ﹣2﹣2=0B. 8a4﹣6a2=2a2C. 3(b﹣2a)=3b﹣2aD. ﹣32=﹣9【答案】D【解析】【分析】本题主要利用整式的加减运算法则依次进行判断.【详解】A.﹣2﹣2=﹣4,此选项错误;B.8a4﹣6a2≠2a2,8a4与6a2不是同类项,不能进行合并同类项运算;C.由乘法分配律可得3(b﹣2a)=3b﹣6a,此选项错误;D.﹣32=﹣9,此选项正确.故选D.【点睛】本题主要考查整式的加减运算,乘法分配律的运用以及幂的运算.8.多项式a﹣(b﹣c)去括号的结果是( )A. a﹣b﹣cB. a+b﹣cC. a+b+cD. a﹣b+c【答案】D【解析】【分析】根据去括号规律:括号前是“-”号,去括号后时连同它前面的“-”号一起去掉,括号内各项都要变号可得答案.【详解】a-(b﹣c)=a﹣b+c.【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.9.下列说法正确的是( )A. 若|a|=﹣a,则a<0B. 若a<0,ab<0,则b>0C. 式子3xy2﹣4x3y+12是七次三项式D. 若a=b,m是有理数,则=【答案】B【解析】【分析】根据绝对值的性质,有理数的乘法法则,多项式中次数最高的项的次数叫做多项式的次数,等式性质进行分析即可.【详解】A、若|a|=-a,则a≤0,故原题说法错误;B、若a<0,ab<0,则b>0,故原题说法正确;C、式子3xy2-4x3y+12是四次三项式,故原题说法错误;D、若a=b,m是不为0有理数,则,故原题说法错误.故选B.【点睛】此题主要考查了多项式、绝对值、有理数的乘法和等式的性质,关键是掌握各知识点.10.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A. 8x2+13x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 2x2﹣5x﹣1【答案】D【解析】【分析】列出式子,再运用整式的加减运算法则计算出结果即可.【详解】5x2+4x﹣1﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x﹣1.故选D.【点睛】本题主要考查整式的加减运算法则,需注意的是去括号的时候要考虑符号的变更.二.填空题11.若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=_____.【答案】1【解析】【分析】合并同类项可得:4x2y3+2ax2y3=(4+2a)x2y3,进而得出4+2a=4b,整理得a-2b=﹣2,将a﹣2b整体代入要求的式子计算出结果即可.【详解】∵4x2y3+2ax2y3=(4+2a)x2y3=4bx2y3,∴4+2a=4b,∴2a﹣4b=﹣4,∴a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1.故答案为1.【点睛】本题主要考查整式的加减运算法则以及整体代入的思想.12.已知a﹣3b=3,则6b+2(4﹣a)的值是_____.【答案】2【解析】【分析】把所求的式子去括号后,进行整理,然后将a-3b作为一个整体代入进行求值即可.【详解】∵a-3b=3,∴-2(a-3b)=-6,∴6b+2(4-a)=6b+8-2a=-2(a-3b)+8=-6+8=2,故答案为:2.【点睛】本题考查了代数式的求值,利用了“整体代入法”求代数式的值.13.已知2x+y=﹣1,则代数式(2y+y2﹣3)﹣(y2﹣4x)的值为_____.【答案】-5【解析】试题解析:原式当2x+y=−1时,原式=−2−3=−5.故答案为:−5.点睛:原式去括号合并得到最简结果,把已知等式代入计算即可求出值.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是_____.【答案】-2b【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b-c>0,a-c>0,则原式=-b-a-b+c+a-c=-2b,故答案为:-2b【点睛】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.15.若﹣7x m y4与2x9y n是同类项,则|m﹣n|=_____.【答案】5【解析】【分析】由同类项的定义分别求出m、n的值,再计算出|m﹣n|即可.【详解】由同类项的定义可得,∴|m﹣n|=|9﹣4|=5.故答案为5.【点睛】本题主要考查同类项的定义以及绝对值的计算.16.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|=_____.【答案】2c-a-b【解析】试题分析:根据数轴可得:a<c<0<b,所以a-c<0,b-c>0,所以│a-c│-│b-c│=c-a-(b-c)= c-a-b+c=2c-a -b.考点:数轴、绝对值、有理数的大小比较.三.解答题17.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【答案】(1)﹣2x2+6;(2)5;【解析】【分析】(1)由题意可先去括号,再合并同类项计算即可;(2)设“”是a,代入原式得到(a﹣5)x2+6,再根据“该题标准答案的结果是常数”,即可解答.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题考查了整式的加减,解题的关键是掌握合并同类项及去括号法则.18.先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【答案】x2﹣2y2;﹣1【解析】试题分析:根据整式的加减法则,先去括号,然后合并同类项,化简后再代入求值即可. 试题解析:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2)=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.19.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【答案】(1)﹣x2+8xy﹣7y﹣9;(2)y=0【解析】【分析】(1)根据整式的运算法则即可求出答案.(2)根据题意将A-2B化简,然后令含x的项的系数为0即可求出y的值.【详解】(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=0【点睛】考查整式的运算法则,解题的关键是熟练运用整式的运算法则.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.【答案】8bc﹣7ac﹣6ab;【解析】【分析】根据题意可知A=2bc+ac–2ab–(2ab–3bc+4ac),求出A后再计算A–(2ab–3bc+4ac)即可得正确答案.【详解】由题意可知:A+(2ab–3bc+4ac)=2bc+ac–2ab,A=2bc+ac–2ab–(2ab–3bc+4ac)=2bc+ac–2ab–2ab+3bc–4ac=5bc–3ac–4ab,∴A–(2ab–3bc+4ac)=5bc–3ac–4ab–2ab+3bc–4ac=8bc–7ac–6ab.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.21.先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2+3b2),其中a为最大的负整数,b为2的倒数.【答案】【解析】【分析】首先利用乘法分配律将2(a2﹣b2)化为2 a2-2b2,再利用整式的加减运算法则进行化简,由a为最大的负整数可得a=﹣1,由b为2的倒数可得b=,将a、b的值分别代入化简后的式子计算出结果即可.【详解】原式=5a2+3b2+2a2﹣2b2﹣5a2﹣3b2=2a2-2b2,∵a为最大的负整数,b为2的倒数,∴a=﹣1,b=,∴原式=2×(﹣1)2﹣2×()2=2﹣=.【点睛】本题主要考查整式的加减运算法则、负整数、倒数的概念,熟练掌握整式的运算法则是关键.22.化简:2(3a2+4a﹣2)﹣(4a2﹣3a)【答案】2a2+11a﹣4.【解析】【分析】先由乘法分配律以及去括号法则去括号,然后再合并同类项即可.【详解】原式=6a2+8a-4-4a2+3a=2a2+11a﹣4.【点睛】本题主要考查整式的加减运算法则,需注意的是如果括号前面是减号,那么括号里面的加减号要变号.23.先化简,后求值:,其中x在数轴上的对应点到原点的距离为个单位长度.【答案】【解析】先去括号,再合并,根据题意可知x有两个值,然后分别把x的值代入化简后的式子计算即可.解:原式=﹣x3+x﹣2﹣x+1=﹣x3﹣1,又∵x到原点的距离为个单位长度,∴x=±,当x=时,原式=﹣﹣1=﹣;当x=﹣时,原式=﹣1=.。

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)一、单选题(每题3分,共24分) 1.下列代数式书写规范的是( )A .22x yB .2m n ÷C . 5a ⨯D .213a 2.多项式22325xy xy -+的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .3,33.若单项式242ab c -3的系数、次数分别是m 、n ,则( ) A .m=23,n=6 B .-m=23,n=6 C .m=23,n=7 D .-m=23,n=7 4.下列说法中,不正确...的是( ) A .13xy - 是整式 B .22+R R ππ是二次二项式C .多项式233a b ab --的三次项的系数为3- D .263+1x x -的项有 26 3 1x x -,, 5.若2110x +=,则42x +=( )A .19B .20C .21D .226.已知25x y -+=,则23(2)6125x y x y --+-的值是( )A .40B .100C .20-D .57.若12m x y -与2n x y 的和仍是单项式,则m n 的值( )A .3B .6C .8D .98.当1x =时,代数式334ax bx -+的值为7,则当=1x -时,这个式子的值为( )A .7B .6C .2D .1二、填空题(每题3分,共24分) 9.单项式235x yz π-的系数是 10.已知320a b -++=,则2+a b = .11.一个两位数的个位数字为m ,十位数字为n ,则这两位数表示为 .12.多项式25323ab a π+-的次数是 .三、解答题(共72分)17.化简:(1)3245a a +--;(2)()()22235x x +--;(3)()()22643241m m m m --+-+.18.先化简,再求值:()()22222825a b ab a b ab a b -+----,其中1a =-和13b =.19.有理数a ,b ,c 在数轴上的位置如图,化简a c a b c b -++--.20.若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m n +的值.21.如果关于x ,y 的单项式2m ax y 与235m bx y -的次数相同.(1)求m 的值.(2)若23250m m ax y bx y +=﹣且0xy ≠,求20132(25)m a b ++的值.22.已知22321A a ab a =+--和21B a ab =-+-.(1)若1a =-,15b =求()432A A B --的值. (2)若2A B +的值与a 的取值无关,求b 的值.23.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是x 米的小路,余下部分设计成花圃进行美化,并用篱笆把不靠墙的三边围起来.(1)用代数式表示所用篱笆的总长度;(2)6,3a x ==米,若篱笆的造价为60元/米,请计算全部篱笆的造价.24.如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.x 时,试计算该住宅的面积.(2)当6参考答案: 1.A2.A3.D4.C5.B6.B7.C8.D9.35π-10.1-11.10n m +/10m n + 12.3/三13.23x - -114.202315.()21826m y x ++ 16.1017.(1)3a --(2)231x +(3)2882m m --18.218ab -,2 19.2a -20.421.(1)3m =(2)022.(1)2-(2)25b =23.(1)()662a x --米;(2)篱全部篱笆的造价是960元24.(1)()22218m x x ++(2)266m。

人教版数学七年级上册第二章整式的加减《单元测试卷》含答案

人教版数学七年级上册第二章整式的加减《单元测试卷》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题(每小题4分,共20分)1.列式表示“比m 的平方的3倍大1的数”是( )A. (3m)2+1B. 3m 2+1 C 3(m +1)2D. (3m +1)22.多项式3x k y – x 是三次二项式,那么k 的值是( )A. 3B. 2C. 1D. 0 3.下列各项中,去括号正确的是( )A. x 2-2(2x -y +2)=x 2-4x -2y +4B. -3(m +n)-mn =-3m +3n -mnC. -(5x -3y)+4(2xy -y 2)=-5x +3y +8xy -4y 2D. ab -5(-a +3)=ab +5a -34.下列说法正确的是:( ).A. 单项式m 的次数是0B. 单项式5×105t 的系数是5C. 单项式223x π-系数是23- D. -2 010是单项式 5.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A ()x 15x - B. ()x 30x - C. ()x 302x - D. ()x 15x +二.填空题(每小题4分,共20分)6.单项式-4xy 的系数为____________ .7.写出6xy 的一个同类项_____________.8.已知15mn 和-29mn 是同类项,则∣2-4x ∣+∣4x -1∣的值为_______ . 9.我校有三个年级,其中初三年级有(2x+3y )名学生,初二年级有(4x+2y )名学生,初一年级有(x+4y )名学生, 请你算一算,我校共有_______________名学生.10.观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2010个单项式是______.第n 个单项式怎样表示________.三.解答题(共60分)11计算:(1) 32a b -3(2a b -a 2b )-3a 2b ; (2) -xy -(4z -2xy )-(3xy -4z ).12.计算:已知222232,23m x xy y n x xy y =-+=+-,求:(1) m+n; (2) m-3n.13.(1)给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.(2)先化简,再求值:()22532234x x x x ⎡⎤----⎣⎦,其中12x =- 14.把3个长为a ,宽为b(a>b )的长方形如图放置,恰好拼成一个大长方形,(1)大长方形的面积S=____________(用含字母a 、b 的代数式表示);(2)a 、b 之间的等量关系是:__________________;(3)当b=2时,面积S=?b=3时,周长C=?15已知|a -2|+|b+1|+|2c+3|=0.(1)求代数式2a +2 b +2 c +2ab +2ac +2bc 的值;(2)求代数式()2a b c ++的值;(3)从中你发现上述两式的什么关系?由此你得出了什么结论?答案与解析一.选择题(每小题4分,共20分)1.列式表示“比m 的平方的3倍大1的数”是( )A. (3m)2+1B. 3m 2+1C. 3(m +1)2D. (3m +1)2 【答案】B【解析】试题解析:比的平方的倍大的数为:23 1.m +故选B.2.多项式3x k y – x 是三次二项式,那么k 的值是( )A. 3B. 2C. 1D. 0【答案】B【解析】由多项式3x k y – x 三次二项式,可得k+1=3,解得k=2,故选B.3.下列各项中,去括号正确的是( )A. x 2-2(2x -y +2)=x 2-4x -2y +4B. -3(m +n)-mn =-3m +3n -mnC. -(5x -3y)+4(2xy -y 2)=-5x +3y +8xy -4y 2D. ab -5(-a +3)=ab +5a -3【答案】C【解析】试题解析:A. 222(22)42 4.x x y x x y --+=-+-故错误. B 3()33.m n mn m n mn -+-=---故错误.C. 22(53)4(2)5384.x y xy y x y xy y --+-=-++-故正确.D.5(3)515.ab a ab a --+=+-故错误. 故选C.4.下列说法正确的是:( ).A. 单项式m 的次数是0B. 单项式5×105t 的系数是5C. 单项式223x π-的系数是23- D. -2 010是单项式【答案】D【解析】 A. 单项式m 的次数是1,故A 选项错误;B. 单项式5×105t 的系数是5×105,故B 选项错误;C. 单项式223x π-的系数是23-π,故C 选项错误;D. -2 010是单项式,正确, 故选D. 5.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A. ()x 15x -B. ()x 30x -C. ()x 302x -D. ()x 15x +【答案】A【解析】∵长方形的周长是30,∴相邻两边和是15,∵一边是x,∴另一边是15-x,∴面积是:x(15-x),故选A.【点睛】本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长. 二.填空题(每小题4分,共20分)6.单项式-4xy 的系数为____________ .【答案】-4【解析】根据单项式系数的定义,单项式-4πxy 3 的系数是-4π,故答案为-4π.7.写出6xy 的一个同类项_____________.【答案】5xy 等【解析】根据同类项的定义,同类项是指所含字母相同,相同字母的指数也相同的项,因此与6x 3y 2是同类项的项可以是5x3y2(答案不唯一).8.已知15mn和-29mn是同类项,则∣2-4x∣+∣4x-1∣的值为_______ .【答案】13【解析】由题意可得:x=2,所以∣2-4x∣+∣4x-1∣=∣2-4×2∣+∣4×2-1∣=6+7=13,故答案为13.9.我校有三个年级,其中初三年级有(2x+3y)名学生,初二年级有(4x+2y)名学生,初一年级有(x+4y)名学生, 请你算一算,我校共有_______________名学生.【答案】7x+9y【解析】(2x+3y)+(4x+2y)+(x+4y)=2x+3y+4x+2y+x+4y=7x+9y(名),即我校共有(7x+9y)名学生,故答案为7x+9y.10.观察下列单项式:x,-3x2,5x3,-7x4,9x5,…按此规律,可以得到第2010个单项式是______.第n个单项式怎样表示________.【答案】(1). -4019 x2010(2). (-1)(n+1)(2n-1)n【解析】观察下列单项式:x,-3x2,5x3,-7x4,9x5,…得出第n项的系数可以表示为(-1)n-1(2n-1),指数表示为n,即第n项表示为(-1)n-1(2n-1)x n,第2008个单项式是-4015x2008,故答案为-4015x2008;(-1)n-1(2n-1)x n.【点睛】本题考查根据规律写单项式,通过仔细观察写出第n个单项式是解此题关键.三.解答题(共60分)11.计算:(1) 32a b-3(2a b-a2b)-3a2b; (2) -xy-(4z-2xy)-(3xy-4z).【答案】(1)0; (2)-2xy【解析】试题分析:(1)先去括号,然后再合并同类项即可;(2)先去括号,然后再合并同类项即可试题解析:(1)原式=3a2b-3a2b+3ab2-3ab2= 0;(2)原式=-xy -4z+2xy -3xy+4z =-2xy12.计算:已知222232,23m x xy y n x xy y =-+=+-,求:(1) m+n; (2) m-3n.【答案】(1) 2252x xy y --; (2) 223510x xy y --+【解析】【分析】把22223223m x xy y n x xy y =-+=+-,,分别代入所求的式子中,然后去括号,合并同类项即可得.【详解】解:(1)m+n=()22223223x xy y x xy y-+++- =22223223x xy y x xy y -+++-=2252x xy y --;(2)m-3n=()222232323x xy y x xy y-+-+- =222232639x xy y x xy y -+--+=223510x xy y --+.13.(1)给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.(2)先化简,再求值:()22532234x x x x ⎡⎤----⎣⎦,其中12x =- 【答案】(1)6(答案不唯一);(2)174-【解析】 试题分析:(1)答案不唯一,任意选取两个多项式进行加法或减法运算,通过去括号,合并同类项进行化简后再代入数值进行求值即可;(2)先去小括号,再去中括号,然后合并同类项,最后代入数值进行求值即可.试题解析:(1)(212x x +)+(2132x y +)=23x x y ++ 当12x y =-=,,原式=()()211326-+-+⨯= 或者(212x x +)-(2132x y +)=3x y - 当12x y =-=,,原式=()1327--⨯=- (212x x +)+(2113x +)=255166x x ++=(212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-= (2)()225x 3x 22x 34x ⎡⎤----⎣⎦=225x 3x 4x 64x --+-=225x x 64x +-+=29x x 6+-当1x 2=- 时,原式=174-. 14.把3个长为a ,宽为b(a>b )的长方形如图放置,恰好拼成一个大长方形,(1)大长方形的面积S=____________(用含字母a 、b 的代数式表示);(2)a 、b 之间的等量关系是:__________________;(3)当b=2时,面积S=?b=3时,周长C=?【答案】(1)3ab ;(2)a=2b ;(3)S=24; C=30;【解析】试题分析:(1)根据大长方形的面积等于3个小长方形的面积之和即可得;(2)根据图示即可得;(3)由(2)中a 与b 的关系,根据b 的值可得到a 的值,根据长方形的面积公式以及周长即可得. 试题解析:(1)大长方形的面积=3ab,故答案为3ab ;(2)根据图示可知小长方形的长等于小长方形的宽的2倍,故a=2b ;(3)由a=2b,b=2可得a=4,所以大长方形的面积S=3×4×2=24;由b=3,a=2b 可得a=6,所以大长方形的周长C=2×(6+6+3)=30. 15.已知|a -2|+|b+1|+|2c+3|=0.(1)求代数式2a +2 b +2 c +2ab +2ac +2bc 的值;(2)求代数式()2a b c ++的值;(3)从中你发现上述两式的什么关系?由此你得出了什么结论?【答案】(1)14;(2)14;(3)两式相等,结论是(a+b+c)=a+b+c+2ab+2ac+2bc【解析】试题分析:先根据绝对值的非负性,根据已知所给的等式,分别求出a、b、c的值,然后再分别代入(1)、(2)中进行求值即可;(3)根据(1)、(2)中的结果进行观察即可得.试题解析:(1)由题意得,a=2,b=-1, c=-32,所以,原式=22+(-1)2+32⎛⎫-⎪⎝⎭2+2×2×(-1)+2×2×32⎛⎫-⎪⎝⎭+2×(-1)×32⎛⎫-⎪⎝⎭=4+1+94-4-6+3 =14;(2)(a+b+c)2=(2-1-32)2 =14;(3)两式相等,结论是(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.【点睛】本题考查了绝对值非负性,代数式求值等知识,解题的关键是先根据绝对值的非负性求出a、b、c 的值.。

人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

人教版数学七年级上册:第2章 整式的加减  单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。

人教版数学七年级上册第二章整式的加减《单元测试卷》附答案

人教版数学七年级上册第二章整式的加减《单元测试卷》附答案

人教版数学七年级上学期第二章整式的加减测试一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.整式23x x -的值是,则2398x x -+的值是( )A. 20B. 4C. 16D. -4 2.下列说法正确的是( )A. 3 2x π的系数是B. 2 x y 的系数是C. 2 2x y -的系数是D. 2 4y 的系数是 3.观察下列各式:,3ab , ,a b ,a b b a +=+,21x -,213x +=,2x y -+,2S r π=,其中整式的个数是( ) A. 4 B. 5 C. 6 D. 74.已知3a b -=,2c d -=,则()()b c a d +-+的值是( )A -1 B. 1 C. -5 D. 155.计算2232a b a b --的正确结果是( )A. -1B. 2 a b -C. 2 5a b -D. 5- 6.若代数式()22342x ax bx x ++-+的值与字母无关,则21123a b -的值为( ) A. 1- B. 1 C. 23 6- D. 23 67.下列每组中的两个代数式,属于同类项的是( ) A 212x y 与223xy B. 20.5a b 与20.5a cC. 3abc 与3abD. 312m n 与38nm - 8.下列说法中正确的是( )A. 多项式2ax bx c ++是二次多项式B. 2335a b c -是次单项式,它的系数是35 C. 235ab -,x -都单项式,也都是整式 D. 24a b -,3ab ,是多项式2435a b ab -+-中的项9.一列单项式按以下规律排列:,23a ,35a ,7a ,29a ,311a ,13a ,…,则第2016个单项式应是( )A. 3 4031aB. 4031aC. 2 4031aD. 3 4032a10.下列结论中,正确是( ) A. 单项式237xy 的系数是,次数是2? B. 2xy z -的系数是,次数是 C. 单项式的次数是,没有系数单项式 D. 多项式223x xy ++是三次三项式二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.化简:()()323a b a b --+-=________.12.已知两个单项式5234m a b 与623n a b -和是一个单项式,则m n =________. 13.把多项式添括号得:a b c d a -+-=- _____ .14.若单项式212a x y 与32b x y -的和仍为单项式,则a b +=________. 15.若22238xy axy axy -+=,那么a =________.16.若一个多项式加上2532x x +-的倍得231x x --,则这个多项式是________.17.()u v u v --=-+________18.单项式232x y -的系数是________,次数是________.19.数, ,在数轴上的位置如图所示且a c =;化简:2a c b b a c b a b ++----++=________.20.在计算多项式M 加上229x x -+时,因误认为加上229x x ++,得到答案222x x +,则正确的答案应是________.三、解答题(共 9 小题 ,每小题 7 分 ,共 63 分 )21.合并同类项(1)23a 222422b ab a ab b -+-+-(2)()()222232232x y y x --- (3)()22294326x x x x x ⎡⎤+---⎣⎦(4)()()22323b a a b -+- 22.先化简再求值:﹣(x 2﹣y 2)﹣[3xy ﹣(x 2﹣y 2)],其中x =﹣1,y =2.23.已知22m x y 与3n xy -是同类项,计算()()223423m m n m n nm n -+-+-的值.24.求多项式22113333a abc c a c +--+的值,其中2a =-,34b =-, 1.5c =. 25.已知有理数,在数轴上的位置如图所示,化简:232a b a b b a +----.26.先化简后求值(1)2222332232x y xy xy x y +-+-,其中2x =,14y =-; (2)()()()323111323233326x y x y x x y -+--++,其中2x =-,3y =. 27.在计算代数式()()()52252552523223x x y xy xxy y x x y y ----++-+-的值,其中0.5,1x y ==-时,甲同学把0.5x =错抄成0.5x =-,但他计算的结果是正确的.试说明理由,并求出这个结果. 28.小明和小丽一起做同样一道题:计算()2221222232a a b b a b a ⎛⎫+-++-+- ⎪⎝⎭的值,其中23a =-,1b =.粗心的小明把23a =-错抄成23a =,所得结果却与小丽的正确结果相同,聪明的你知道这是为什么吗?29.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--()1当2x =,15y =-时,求2B A -的值. ()2若22(3)0x a y -+-=,且2B A a -=,求的值.答案与解析一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.整式23x x -值是,则2398x x -+的值是( )A. 20B. 4C. 16D. -4 【答案】A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x 2-3x =4,所以3x 2-9x =12,所以3x 2-9x +8=12+8=20.故选A .【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键. 2.下列说法正确的是( )A. 3 2x π的系数是B. 2 x y 的系数是C. 2 2x y -的系数是D. 2 4y 的系数是 【答案】D【解析】【分析】根据单项式系数的定义:单项式中,与字母相乘的数叫做单项式的系数,即可选出正确答案.【详解】解:选项A :23x π的系数是2π;选项B :2x y 的系数是1;选项C :22x y -的系数是2-;选项D :24y 的系数是.故选D.【点睛】此题主要考查了单项式的系数,关键是熟练掌握定义,注意π是一个常数,不是字母. 3.观察下列各式:,3ab , ,a b ,a b b a +=+,21x -,213x +=,2x y -+,2S r π=,其中整式的个数是( ) A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据整式的定义来进行判断.【详解】解:整式有:,3ab , ,21x -,2x y -+共5个;a b分母中含有字母是分式;a b b a +=+,213x +=,2S r π=是等式.故选B.【点睛】分母中含有字母的式子不是整式;单项式和多项式都是整式.4.已知3a b -=,2c d -=,则()()b c a d +-+的值是( )A. -1B. 1C. -5D. 15 【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a−b=3,c−d=2,∴原式=b+c−a−d ,=−(a−b)+(c−d),=−3+2,=−1,故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减法则.5.计算2232a b a b --的正确结果是( )A. -1B. 2 a b -C. 2 5a b -D. 5-【答案】C【解析】【分析】根据乘法分配律合并同类项.【详解】解:原式=(-3-2)a 2b,=-5a 2b,故选C.【点睛】合并同类项时,只要把它们的系数相加,字母和字母的指数不变.6.若代数式()22342x ax bx x ++-+的值与字母无关,则21123a b -的值为( ) A. 1-B. 1C. 23 6-D. 23 6 【答案】B【解析】【分析】代数式的值与x 无关,说明合并同类项之后,含有x 项的系数等于0,从而求出a 、b 的值.【详解】解:原式=3x 2+ax+4-bx 2-2x,=(3-b)x 2+(a-2)x+4,∵代数式()22342x ax bx x ++-+的值与字母无关,∴3-b=0,a-2=0,∴b=3,a=2, ∴21123a b -, =2122⨯-133⨯, =2-1,=1.故选B.【点睛】此题主要考查了多项式的化简,正确得出a,b 的值是解题关键.7.下列每组中的两个代数式,属于同类项的是( ) A. 212x y 与223xy B. 20.5a b 与20.5a cC. 3abc 与3abD. 312m n 与38nm - 【答案】D【解析】【分析】 根据同类项:所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【详解】解:A 、212x y 与223xy ,相同字母的指数不同,不是同类项;B 、20.5a b 与20.5a c ,所含字母不同,不是同类项;C 、3abc 与3ab ,所含字母不同,不是同类项;D 、312m n 与38nm -,是同类项; 故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.8.下列说法中正确的是( )A. 多项式2ax bx c ++是二次多项式B. 2335a b c -是次单项式,它的系数是35 C. 235ab -,x -都是单项式,也都是整式 D. 24a b -,3ab ,是多项式2435a b ab -+-中的项【答案】C【解析】【分析】根据单项式系数和次数、多项式项数和次数的定义,即可判断,注意多项式的每一项要带有符号.【详解】解:A :当a=0时,2ax bx c ++不是二次多项式,故A 错误;B :2335a b c -是次单项式,它的系数-35,故B 错误; C :235ab -,x -既单项式,也是整式,故C 正确; D :2435a b ab -+-的项有:24a b -,3ab ,5-,故D 错误.故选C.【点睛】本题考查了多项式的项和次数,单项式的系数和次数.9.一列单项式按以下规律排列:,23a ,35a ,7a ,29a ,311a ,13a ,…,则第2016个单项式应是( )A. 3 4031aB. 4031aC. 2 4031aD. 3 4032a【答案】A【解析】观察已知式子可知,第n 个式子的系数是2n-1,所以第2016个式子系数是4031;每个单项式的指数是个数除以3的余数,当被3除尽时指数是3,所以第2016个单项式的指数是2016÷3=672,所以指数是3.【详解】解:34031a .故选A.【点睛】在寻找规律时,可分为两部分,首先看系数的规律,其次看次数的规律.10.下列结论中,正确的是( )A. 单项式237xy 的系数是,次数是2? B. 2xy z -的系数是,次数是 C. 单项式的次数是,没有系数单项式D. 多项式223x xy ++是三次三项式【答案】B【解析】【分析】 由单项式的系数和次数的意义以及多项式的定义即可解答.【详解】解:A :237xy 的系数是,次数是的系数是37,次数是,故A 错误; B :2xy z -的系数是,次数是,故B 正确;C :的次数是1,系数是1,故C 错误;D :223x xy ++是二次三项式,故D 错误.故选B.【点睛】判断单项式的系数和次数、多项式的项数和次数问题,一定要认真仔细,关键是熟知概念.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.化简:()()323a b a b --+-=________.【答案】a -【解析】【分析】先去括号,然后合并同类项.【详解】解:原式=-3a+3b+2a-3b,=(-3+2)a+(3-3)b,故答案为-a.【点睛】解决此类题目的关键是去括号法则,注意运用乘法分配律,不要漏乘括号里的项.12.已知两个单项式5234m a b 与623n a b -的和是一个单项式,则m n =________. 【答案】125【解析】【分析】两个单项式的和是一个单项式,说明这两个单项式是同类项,根据同类项的概念可得m=3,n=5,从而m n =125. 【详解】解:∵两个单项式5234m a b 与623n a b -的和是一个单项式, ∴5234m a b 与623n a b -是同类项, ∴2m=6,n=5,∴m=3,n=5,∴m n =35=125,故答案为125.【点睛】本题是对同类项定义的考查.两个单项式是同类项的条件有两条:一是含有相同的字母,二是相同字母的指数也相同,两者缺一不可.13.把多项式添括号得:a b c d a -+-=- _____ .【答案】b c d -+【解析】分析】添括号的法则:添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都改变符号.【详解】解:a b c d -+-=a-(b-c+d),故答案为b-c+d.【点睛】本题考查了添括号的法则.14.若单项式212a x y 与32b x y -的和仍为单项式,则a b +=________. 【答案】5【解析】 试题解析:单项式212a x y -与32b x y -的和为单项式, ∴212a x y -,32b x y -为同类项, ∴2b =,3a =, ∴23232315222x y x y x y --=-. 故答案为2352x y -. 15.若22238xy axy axy -+=,那么a =________. 【答案】37-【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,即可求出a 的值.【详解】解:22238xy axy axy -+=, 228axy axy -=23xy ,27axy -=23xy , =37-, 故答案为37-. 【点睛】本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则.16.若一个多项式加上2532x x +-的倍得231x x --,则这个多项式是________.【答案】2773x x --+【解析】【分析】根据一个加数等于和减去另一个加数列出算式,然后去括号、合并同类项即可.【详解】解:231x x ---2(2532x x +-)=231x x ---10264x x -+=7273x x -+故答案为7273x x -+.【点睛】本题考查了整式的加减,去括号、合并同类项是解题的关键.17.()u v u v --=-+________【答案】√【解析】【分析】直接根据去括号法则判断即可.【详解】解:()u v u v --=-+故答案为√.【点睛】本题考查了去括号的法则.18.单项式232x y -的系数是________,次数是________.【答案】 (1). -2 (2). 5【解析】【详解】解:单项式232x y -的系数是-2,次数是3.故答案为:-2;5【点睛】本题考查单项式的系数和次数,掌握概念是本题的解题关键.19.数, ,在数轴上的位置如图所示且a c =;化简:2a c b b a c b a b ++----++=________.【答案】c b -【解析】【分析】根据数轴可知,a>0>b>c 且a c =,从而判断出a+c,2b,b-a,c-b,a+b 的值的正负,去掉绝对值符号,再化简即可.【详解】解:由图可知a>0>b>c 且a c =∴a+c=0,2b<0,b -a<0,c-b<0,a+b>0,∴原式=0-2b-(a-b)-(b-c)+(a+b),=-2b-a+b-b+c+a+b,=c-b,故答案为c-b.【点睛】本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.20.在计算多项式M 加上229x x -+时,因误认为加上229x x ++,得到答案222x x +,则正确答案应是________.【答案】222x x -【解析】【分析】根据多项式的加法的运算法则,用和减去这个多项式,即可求出多项式M ,再将多项式M 加上229x x -+化简即可.【详解】解:M=222x x +-(229x x ++),=222229x x x x +---,=29x -,∴29x -+(229x x -+),=22929x x x -+-+,=222x x -,故答案为222x x -.【点睛】本题主要考查了整式的加减法.整式的加减实质就是合并同类项,若有括号,就要用去括号的法则去掉括号,然后再合并同类项.三、解答题(共 9 小题 ,每小题 7 分 ,共 63 分 )21.合并同类项(1)23a 222422b ab a ab b -+-+-(2)()()222232232x y y x --- (3)()22294326x x x x x ⎡⎤+---⎣⎦(4)()()22323b a a b -+- 【答案】(1)22 53a ab b +-;(2)22109x y -,(3)2113x x +,(4)4a b -+.【解析】【分析】有括号的首先去括号,注意去括号后符号的变化,然后找出同类项,根据合并同类项的法则进行计算.【详解】解:(1) 22222242253a b ab a ab b a ab b -+-+-=+-,(2),()()22222232232109x y y x x y ---=-,(3)()222294326113x x x x x x x ⎡⎤+---=+⎣⎦,(4),()()223234b a a b a b -+-=-+. 故答案为(1)2253a ab b +-;(2)22109x y -,(3)2113x x +,(4)4a b -+.【点睛】解决本题要注意去括号时符号的变化,并且不要漏乘,有多个括号时要注意去各个括号时的顺序. 22.先化简再求值:﹣(x 2﹣y 2)﹣[3xy ﹣(x 2﹣y 2)],其中x =﹣1,y =2.【答案】6.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式22223x y xy x y =-+-+-, 3xy =-;当1x =-,2y =时,原式()312=-⨯-⨯,6=.故答案为6.【点睛】解决本题要注意去括号,去括号要注意顺序,先去小括号,再去中括号.负数代入求值时,要加上括号. 23.已知22m x y 与3n xy -是同类项,计算()()223423m m n m n nm n -+-+-的值.【答案】2【解析】【分析】由22m x y 与3n xy -是同类项得到m=1,n=2,将原式去括号合并得到最简结果,把m 与n 的值代入计算即可求出值.【详解】解:∵22m x y 与3n xy -是同类项,∴1m =,2n =,∴()()223423m m n m n nm n -+-+- 223423m m n m n nm n =--++-22nm m n =-+,当1m =,2n =时,原式2222=-+=.故答案为2.【点睛】本题考查了同类顶的定义和整式的加减.24.求多项式22113333a abc c a c +--+的值,其中2a =-,34b =-, 1.5c =. 【答案】94. 【解析】【分析】将原式合并同类项得到最简结果,把a 、b 、c 的值代入计算即可求出值.【详解】原式abc =,当2a =-,34b =-, 1.5c =时,原式392 1.544⎛⎫=-⨯-⨯= ⎪⎝⎭. 故答案为94. 【点睛】求代数式的值时,在运算过程中,若字母的取值是负数或分数时,运算时应添上括号,不然运算符号很容易出错,要特别注意.25.已知有理数,在数轴上的位置如图所示,化简:232a b a b b a +----.【答案】73a b -+【解析】【分析】根据数轴可知,a>0>b 且|a|<|b|,从而判断出a+b,a-b,b-a 的值的正负,去掉绝对值符号,再化简即可.【详解】解:由数轴可知:0b a <<,∴0a b +<,0a b ->,0b a -<,∴原式()()()232a b a b b a =-+--+-,223322a b a b b a =---++-,73a b =-+.故答案为73a b -+.【点睛】本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.26.先化简后求值 (1)2222332232x y xy xy x y +-+-,其中2x =,14y =-; (2)()()()323111323233326x y x y x x y -+--++,其中2x =-,3y =. 【答案】(1)74;(2)4-. 【解析】【分析】此类题目有括号的要先去括号,再合并同类项,然后代入数值进行计算.【详解】解:()1原式()22333222x y xy ⎛⎫=-+-+ ⎪⎝⎭, 122xy =+, 当2x =,14y =-时,原式11172222444⎛⎫=⨯⨯-+=-+= ⎪⎝⎭; ()2原式3231311132322x y x y x x y =-+----, 3211131133222x x x y ⎛⎫⎛⎫=-+-+--- ⎪ ⎪⎝⎭⎝⎭, 2132x x y =--. 当2x =-,3y =时,原式()142941942=-⨯--=+-=-. 故答案 (1)74;(2)4-. 【点睛】求代数式的值时,一定要先化简再求值,该题中代数式的化简工作有两个,一是去括号,二是合并同类项.27.在计算代数式()()()52252552523223x x y xy x xy y x x y y ----++-+-的值,其中0.5,1x y ==-时,甲同学把0.5x =错抄成0.5x =-,但他计算的结果是正确的.试说明理由,并求出这个结果.【答案】解:原式=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=(2x 3-x 3-x 3)+(-3x 2y +3x 2y)+(-2xy 2+2xy 2)+(-y 3-y 3)=-2y 3∵化简后的结果中不含x,∴甲同学把x=0.5错抄成x=-0.5,计算结果仍是正确的.当y=-1时,原式=-2×(-1)3=-2×(-1)="2," 即计算的结果为2. 【解析】【分析】把整式进行合并同类项得出结果不含x,所以整式的值与x 无关.【详解】原式3223233232x 3x y 2xy x 2xy y x 3x y y =---+--+-32y =-,∵整式的值与无关, ∴甲同学把1x 2=错看成1x 2=-,但计算结果仍然正确, 当1x 2=-,y 1=-时,原式32(1)2=-⨯-=. 【点睛】本题考查整式的加减混合运算,熟练掌握合并同类项法则是解题关键.28.小明和小丽一起做同样一道题:计算()2221222232a a b b a b a ⎛⎫+-++-+- ⎪⎝⎭的值,其中23a =-,1b =.粗心的小明把23a =-错抄成23a =,所得结果却与小丽的正确结果相同,聪明的你知道这是为什么吗?【答案】见解析【解析】【分析】先通过去括号、合并同类项对多项式进行化简,然后代入a 、b 的值进行计算.【详解】解:原式2222222226242a a b b a b a b b =+-++-+-=++,∵化简的结果没有含字母的项,∴整式的值与的取值无关,虽然小明把“23a =-”错抄成“23a =”,但结果仍是正确的. 【点睛】解答此类题的思路就是把原式化简,得到一个不含看错值的字母的结果,便可说明该式与看错值的字母的取值无关.29.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--()1当2x =,15y =-时,求2B A -的值. ()2若22(3)0x a y -+-=,且2B A a -=,求的值.【答案】(1)-13;(2)-1.【解析】【分析】(1)把A 和B 所表示的多项式整体代入B-2A 中即可;(2)根据已知条件可知x=2a,y=3,代入(1)题中B-2A 化简后的式子中,即可求出a.【详解】解:()1∵222322A x xy y x y =-+++,224623B x xy y x y =-+--, ∴2B A -,()2222462322322x xy y x y x xy y x y =-+----+++,2222462346244x xy y x y x xy y x y =-+---+---,75x y =--,当2x =,15y =-时, 2B A -,17255⎛⎫=-⨯-⨯- ⎪⎝⎭, 141=-+,13=-,()2∵22(3)0x a y -+-=,∴20x a -=,30y -=,∴2x a =,3y =,∵2B A a -=,∴7572531415x y a a --=-⨯-⨯=--,∴1415a a --=,解得1a =-.故答案为(1)-13;(2)-1.【点睛】本题考查了整式的加减运算.。

人教版数学七年级上册第二章整式的加减《单元综合检测卷》附答案

人教版数学七年级上册第二章整式的加减《单元综合检测卷》附答案

人教版数学七年级上学期第二章整式的加减测试一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是64.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz5.如果A是3m2﹣m+1,B是2m2﹣m﹣7,且A﹣B+C=0,那么C是( )A. ﹣m2﹣8B. ﹣m2﹣2m﹣6C. m2+8D. 5m2﹣2m﹣66.下列说法中正确的是( )A. a和0都是单项式B. 单项式﹣23a b的系数是﹣13次数是4C. 式子x2+1x是整式D. 多项式﹣3a 2b+7a 2b 2+1的次数是77.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 18.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9 9.若多项式5x 2y |m|14-(m+1)y 2﹣3是三次三项式,则m 等于( ) A. ﹣1 B. 0 C. 1 D. 210.使(ax 2﹣3xy+4y 2)﹣(﹣x 2+bxy+5y 2)=6x 2﹣7xy+cy 2成立的a,b,c 的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值; (2)小红想为难一下小明,她给小明出题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值22.A 、B 、C 、D 四个车站的位置如图所示,求:(1)A 、D 两站的距离;(2)A 、C 两站的距离.23.如果单项式2ax m y 与单项式5bx 2m ﹣3y 都是关于x 、y 单项式,并且它们是同类项.(1)求m 的值;(2)若2ax m y+5bx 2m ﹣3y=0,且xy≠0,求(2a+5b)2017+m 值.答案与解析一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b【答案】C【解析】【分析】合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】A、4a﹣2a=2a,此选项错误;B、2x2+2x2=4x2,此选项错误;C、﹣2x2y﹣3yx2=﹣5x2y,此选项正确;D、2a2b﹣3a2b=﹣a2b,此选项错误;故选C.【点睛】本题考查了合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项.2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义逐个说法分析,利用排除法即可得出答案. 【详解】①有理数包括整数和分数,正确;②一个代数式不是单项式就是多项式,单项式和多项式属于整式,分式也属于代数式,故此说法错误;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误,因数中不能有零;④倒数等于本身的数有﹣1,还有1,故此选项错误.故选A.【点睛】本题考查了有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义,熟练掌握各知识点是解答本题的关键.3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是6【答案】D【解析】分析:根据单项式的系数和次数的定义即可得出答案.单项式前面的常数叫做单项式的系数,各个字母的指数之和叫做单项式的次数.详解:单项式的系数为:13;次数为:3+1+2=6.故选D.点睛:本题主要考查的是单项式的系数和次数,属于基础题型.在解答这种问题时需要注意的是π是系数,次数是指所有字母的指数之和.4.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz 【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、25x y与-x2y,是同类项,符合题意;B 、2a 2b 与2ab 2,不是同类项,不合题意;C 、a 与1,不是同类项,不合题意;D 、2xy 与2xyz ,不是同类项,不合题意;故选A .【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.5.如果A3m 2﹣m+1,B 是2m 2﹣m ﹣7,且A ﹣B+C=0,那么C 是( )A. ﹣m 2﹣8B. ﹣m 2﹣2m ﹣6C. m 2+8D. 5m 2﹣2m ﹣6 【答案】A【解析】【分析】根据题意得出等式,化简即可得出答案.【详解】解:A-B+C=3m 2﹣m +1-(2m 2﹣m ﹣7)+C =0,解得C=﹣m 2﹣8,故选:A.【点睛】本题考查了根据题意列等式,仔细审题是解答本题的关键.6.下列说法中正确的是( )A. a 和0都是单项式B. 单项式﹣23a b π的系数是﹣13次数是4 C. 式子x 2+1x是整式 D. 多项式﹣3a 2b+7a 2b 2+1的次数是7【答案】A【解析】试题解析:A. 单独的一个数或字母也是单项式.故本选项正确;B. 单项式23a b π-系数是3π-,次数是3, 故本选项错误;C. 式子21x x+不是整式, 故本选项错误;D. 多项式222371a b a b -++的次数是4, 故本选项错误.故选A.7.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 1【答案】C【解析】【分析】依据同类项的定义可得到关于m 、n 的方程组,然后可求得m 、n 的值,最后再求得m n 的值即可.【详解】∵﹣2a m b 4与5a 2b 2+n 是同类项,∴m =2, 2+n=4,解得: m =2, n =2,∴22 4.n m ==故选C.【点睛】考查同类项的概念以及有理数的乘方,根据同类项的概念求出m 、n 的值是解题的关键. 8.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9【答案】C【解析】【分析】 设重叠部分面积为c ,-a b 可理解为:()()a c b c +-+即两个长方形面积的差.【详解】解:设重叠部分面积为c ,∴()()352312a b a c b c -=+-+=-=;故选择:C【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.9.若多项式5x2y|m|14-(m+1)y2﹣3是三次三项式,则m等于( )A. ﹣1B. 0C. 1D. 2 【答案】C【解析】试题解析:根据三次三项式的定义,可得2+|m|=3,-14(m+1)≠0,联立方程组,得2310mm⎧+⎨+≠⎩=解得m=1.故选C.10.使(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=6x2﹣7xy+cy2成立的a,b,c的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1【答案】B【解析】【分析】先把左边去括号合并同类项,然后和右边比较,即可列出关于a,b,c的方程,从而求出a,b,c的值.【详解】(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=a x2﹣3xy+4y2+x2﹣bxy﹣5y2=(a+1)x2+(﹣3﹣b)xy﹣y2=6x2﹣7xy+cy2,可得a+1=6,﹣3﹣b=﹣7,c=﹣1,解得:a=5,b=4,c=﹣1,故选B.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.整式加减的结果要最简:①不能有同类项;②含字母项的系数不能出现带分数,带分数要化成假分数.二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x 2y 2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x 2y 2,故答案为x 2y 2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型. 12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________【答案】4,3.【解析】【分析】根据相同字母的指数相等列式求解即可.【详解】∵单项式﹣3x a+2y 3与2y b x 6是同类项,∴a +2=6,b =3,则a =4,故答案为4,3.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.【答案】211411x x ++【解析】【分析】根据题意得:22292732A x x x x =-++++()(),求出2A 的值,代入后求出即可. 【详解】解:∵22292732A x x x x =-++++()()22222222927321092109321093211411x x x x x x A B x x x x x x x x x x =-++++=++∴+=+++++=+++++=++,().故答案为211411x x ++.【点睛】本题考查了整式的加减的应用,关键是求出2A 的值. 14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 【答案】5【解析】【分析】根据多项式是关于x 的四次三项式可得m-1=4,即可得出结论. 【详解】多项式12x m-1-3x+7是关于x 的四次三项式, 则m-1=4,m=5.故答案为5.【点睛】本题考查了多项式,解题的关键是熟练的掌握多项式的定义. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.【答案】2a ﹣3b 或3b ﹣a【解析】【分析】先根据ab <0,且|a |<|b |,判断出a ,b 的取值范围,然后分两种情况根据绝对值的意义化简即可.【详解】∵ab <0,且|a |<|b |,∴a >0,b <0或a <0,b >0,当a >0,b <0时,a +b <0,a ﹣b >0,b ﹣a <0,原式=﹣a ﹣b +a ﹣b +a ﹣b =2a ﹣3b ;当a <0,b >0时, a +b >0,a ﹣b <0,b ﹣a >0,原式=a +b +b ﹣a +b ﹣a =3b ﹣a ,则原式=2a ﹣3b 或3b ﹣a .故答案为2a ﹣3b 或3b ﹣a【点睛】本题考查了绝对值的化简及分类讨论的数学思想,根据ab <0,且|a |<|b |,判断出a ,b 的取值范围是解答本题的关键.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).【答案】2232x y xy ++【解析】试题分析:先去掉括号,再合并同类项即可.试题解析: 原式=222233x y xy x xy +--+ =2232x y xy ++18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值;(2)小红想为难一下小明,她给小明出的题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.【答案】(1)-15;(2)详见解析.【解析】【分析】(1)先根据代数式34a +与237a -的值多1,列方程求出a 的值,再把3a 2﹣2(2a 2+a)+2(a 2﹣3a )化简,然后把求得的a 的值代入计算即可;(2)用作差法比较大小即可.【详解】解:(1)由题意可知:323147a a +-=+, 解得:a=5,原式=3a 2﹣4a 2﹣2a+2a 2﹣6a=a 2﹣8a=25﹣40=﹣15; (2)32347a a +-- =3328a -+ ∵a 0< ∴3328a -+>0 ∴a 32a 347+-> 【点睛】本题考查了一元一次方程的解法,整式的加减及分类讨论的数学思想,熟练掌握整式的加减法法则是解答本题的关键.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 【答案】(1)94b =-; (2) 9(2,)2-(答案不唯一);(3)-2. 【解析】试题分析: (1)把(1,b )代入2323a b a b ++=+中,可解出b ; (2)在2323a b a b ++=+中,把看作常数,可解得94b a =-,给取定一个值,就可得到对应的的值; (3)把(m,n )代入2323a b a b ++=+中,化简可得:940m n +=,把式子 ()2242313m n m n ⎡⎤----⎣⎦ 化成用“94m n +”表达的形式就可求出其值了. 试题解析:(1)∵(1,b )是“相伴数对”, ∴11+2323b b +=+,即151066b b +=+,解得94b =-; (2)∵2323a b a b ++=+, ∴151066a b a b +=+, ∴94b a =-, ∴给任取一个值,可得对应的的值,从而得到一对“相伴数对”,如当2a =时,92b ,这样可得“相伴数对”:(922-,). (3)∵(m,n )是“相伴数对”, ∴2323m n m n ++=+,化简可得:940m n +=, 又∵22[42(31)]3m n m n ---- =224623m n m n --+-=94233m n --- =(94)23m n -+-. ∴原式=0-2=-2.20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].【答案】(1)a=﹣4,b=1,c=12;(2)-10. 【解析】【分析】(1)根据a 是绝对值等于4的负数可知a =-4,根据b 是最小的正整数可知b =1,根据c 的倒数的相反数是﹣2可知c =12; (2)先把所给代数式去括号合并同类项,然后把(1)中求得的a ,b ,c 的值代入计算即可.【详解】解:(1)由题意可知:a=﹣4,b=1,c=12(2)当a=﹣4,b=1,c=12时, 原式=4a 2b 3﹣(2abc+5a 2b 3﹣7abc ﹣a 2b 3)=4a 2b 3﹣(4a 2b 3﹣5abc)=4a 2b 3﹣4a 2b 3+5abc=5abc,=5×(﹣4)×1×12=﹣10.【点睛】本题考查了绝对值、相反数、倒数的意义、整式的化简求值,熟练掌握整式的加减法法则是解答本题的关键.21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值【答案】1.【解析】【分析】先把A=2x2+3ax﹣2x﹣1,B=﹣x2+ax﹣1代入3A+6B,化简后根据3A+6B的值与x的取值无关,求出a的值,然后把求得的a的值代入5a﹣1计算即可.【详解】解:3A+6B=3(2x2+3ax﹣2x﹣1)+6(﹣x2+ax﹣1)=6x2+9ax﹣6x﹣3﹣6x2+6ax﹣6=(15a﹣6)x﹣9,∵3A+6B的值与x的取值无关,∴15a﹣6=0,解得a=,则5a﹣1=5×﹣1=1.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.22.A、B、C、D四个车站的位置如图所示,求:(1)A、D两站的距离;(2)A、C两站的距离.【答案】(1)AD= 4a+3b;(2)AC=3a.【解析】【分析】(1)由图可知A、D两站的距离=AB+BD,把AB=a+b,BD=3a+2b代入计算即可;(2)由图可知A、C两站的距离=AB+BC=AB+BD-CD,把AB=a+b,BD=3a+2b,CD=a+3b代入计算即可.【详解】解:(1)根据题意得:AD=AB+BD=a+b+3a+2b=4a+3b;(2)根据题意得:AC=AB+BC=a+b+(3a+2b)﹣(a+3b)=a+b+3a+2b﹣a﹣3b=3a.【点睛】本题考查了整式加减运算的应用,根据图示正确列出算式是解答本题的关键.23.如果单项式2ax m y与单项式5bx2m﹣3y都是关于x、y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求(2a+5b)2017+m的值.【答案】(1)m=3;(2)0.【解析】【分析】(1)利用同类项的概念得出m=2m-3,进而求出即可;(2)利用单项式的和为0,得出其系数是互为相反数,进而得出答案.【详解】(1)∵单项式2ax m y与单项式5bx2m﹣3y是关于x,y的单项式,并且它们是同类项,∴m=2m﹣3,解得:m=3;(2)∵单项式2ax m y+5bx2m﹣3y=0,且xy≠0,∴2a+5b=0,m=3∴(2a+5b)2017+2m=02023=0.【点睛】本题考查了同类项与单项式,解题的关键是熟练的掌握同类项的概念与单项式的性质.。

人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.单项式的系数和次数分别为()A.3,2 B.-3,2 C.,3 D.,32.代数式:0,3a,π与,1,﹣,+y,其中单项式的个数是()A.5 B.1 C.2 D.33.下列计算正确的是()A.B.C.D.4.化简的结果是()A.B.C.D.5.将多项式合并同类项后所得的结果是()A.二次二项式B.二次三项式C.一次二项式D.单项式6.已知A=a3﹣2ab2+1,B=a3+ab2﹣3a2b,则A+B的值()A.2a3﹣3ab2﹣3a2b+1 B.2a3+ab2﹣3a2b+1C.2a3+ab2+3a2b+1 D.2a3﹣ab2﹣3a2b+17.若单项式与是同类项,则的值为()A.9 B.8 C.6 D.58.多项式与多项式相加后,不含二次项,则常数m的值是()A.2 B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.化简:2(a+1)﹣a= .10.把多项式按x的升幂排列为.11.长方形的长是,宽是,则长方形的周长是.12.若多项式不含项,则 =13.某天数学课上,学习了整式的除法运算,放学后,小明回到家拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道三项式除法运算题:被除式的第二项中被钢笔水弄污了(还能看到前面的运算符号),你能算出被污染的内容是.三、解答题:(本题共5题,共45分)14.化简:15.先去括号,再合并同类项.(1)(2)16.先化简,再求值:,其中.17.已知和.(1)求;(2)若,求的值.18.小马虎做一道数学题,“已知两个多项式____,试求.”其中多项式的二次项系数印刷不清楚(1)小马虎看答案以后知道,请你替小马虎求出系数“”;(2)在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.参考答案:1.D 2.A 3.D 4.D 5.D 6.D 7.A 8.B 9.a+210.11.12.213.14.解:原式;15.(1)解:原式=3a-4b+2a-1=5a-4b-1;(2)解:原式=10a-6b- +6b=10a-3a2.16.解:.当时,原式.17.(1)解:;(2)解:,解得,b=2由(1)知18.(1)-5(2)解:因为A+C=,A=-5x2-4x 所以C=+5x2+4x=6x2-3x-3所以A-C=(-5x2-4x)-(6x2-3x-3)=-5x2-4x-6x2+3x+3=-11x2-x+3.答:A-C的结果为-11x2-x+3。

人教版数学七年级上册第二章整式的加减《单元测试》含答案

人教版数学七年级上册第二章整式的加减《单元测试》含答案

人教版数学七年级上学期第二章整式的加减测试一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

1.在0, , -1, -x, ,, 3-x, 中是单项式的有()A. 1个B. 2个C. 3个D. 4个2.下列运算中,正确的是( )A. B.C. D.3.若为一位数,为两位数,把置于的左边,则所得的三位数可表示为()A. B. C. D.4.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是()A. 十四次多项式B. 七次多项式C. 不高于七次多项式或单项式D. 六次多项式5.(2009秋•泰安校级期末)多项式A与多项式B的和是3x+x2,多项式B与多项式C的和是﹣x+3x2,那么多项式A减去多项式C的差是()A. 4x﹣2x2B. 4x+2x2C. ﹣4x+2x2D. 4x2﹣2x6.已知:a2+a-1=0,则a4-2a2+a-1的值为()A. 1B. -1C. 2D. -27.张大伯从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入()元A. 0.7b-0.6aB. 0.5b-0.2aC. 0.7b-0.6aD. 0.3b-0.2a8.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2=();a2-b2=()A. 22、-6B. -22、6C. 6、-22D. -6、229.已知轮船在逆水中前进的速度是千米/时,水流的速度是2千米/时,则轮船在静水中航行的速度是()千米/时.A. 2mB. 2-mC. m+2D. m-210.一个多项式加上-2+x-x2得到x2-1,则这个多项式是()A. 2x2-x+1B. 2x2-x-3C. -x+1D. -2x2-x+111.若单项式的系数是,次数是,则的值为()A. -3B. -3πC. -D. -π12.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为()A. 盈利16元B. 亏损24元C. 亏损8元D. 不盈不亏二、填空题(本大题共4个小题,每小题3分,共12分。

人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πr2ℎ的次数是()A.1 B.2 C.3 D.42.在代数式x2+5,﹣1,x2﹣3x+4,π,5m 和x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列说法正确的是()A.1x +1是多项式B.3x+y3是单项式C.−mn5是五次单项式D.−x2y−2x3y是四次多项式4.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2 B.-8 C.-2 D.-35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.请写出一个只含有a,b两个字母的单项式,要求系数为−4,次数3,这个单项式可以是.10.多项式3x2﹣2xy2+xyz3的次数是.11.如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=,n=12.多项式(m﹣2)x|m|+mx﹣3是关于x的二次三项式,则m= .13.已知x2+2y-3=0,则3(x2+2xy)-(x2+6xy)+4y的值为14.化简:(1)3xy2−4x2y−2xy2+5x2y;(2)(mn+3m2)−(m2−2mn)15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.a2−3ab−2且a、b互为倒数,求3A−2B的值.17.若A=a2−4ab−5,B=3218.今年十月份,为方便民众出行,连江县成立了出租车公司,收费标准是:起步价5元,可乘坐3千米;3千米之后每千米加收1.8元.若某人乘坐了x千米(1)用代数式表示他应支付的费用;(2)若他乘坐了13千米,应支付多少元?1.C2.B3.D4.D5.B6.B7.D8.A9.−4ab 2或−4a 2b10.511.0;212.-213.614.(1)xy 2+x 2y(2)3mn +2m 215.﹣7.16.−2x +2y ,10.17.−6ab −11,−17. 18.(1)①当0x <≤3时,支付的费用为5;②当3x >时,支付的费用为()1.80.4x -元(2)23元。

人教版七年级上册数学第二章整式的加减单元检测带答案

人教版七年级上册数学第二章整式的加减单元检测带答案

第二章整式的加减综合测试第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是52.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 76.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+67.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 128.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+79.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+410.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.12.单项式﹣π2x2y的系数是_____,次数是_____.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.16.若,,则的值为______________.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?答案与解析第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是5【答案】C【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】A、单项式3πx2y3的系数是3π,故此选项错误;B、单项式-6x2y的系数是-6,故此选项错误;C、单项式-xy2的次数是3,正确;D、单项式x3y2z的次数是6,故此选项错误;故选C.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.2.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、与-x2y,是同类项,符合题意;B、2a2b与2ab2,不是同类项,不合题意;C、a与1,不是同类项,不合题意;D、2xy与2xyz,不是同类项,不合题意;故选A.【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用多项式的定义分析得出答案.【详解】ab,,ab2+b+1,-9,x3+x2-3中,多项式有:,ab2+b+1,x3+x2-3共3个.故选B.【点睛】此题主要考查了多项式,正确把握多项式定义是解题关键.4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c【答案】A【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】a-(b-c)=a-b+c.故选A.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 7【答案】A【解析】【分析】直接利用多项式的次数确定方法是解题关键.【详解】多项式4xy2-3xy+12的次数为,最高此项4xy2的次数为:3.故选A.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.6.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+6【答案】C【解析】【分析】先根据题意列出算式,再去掉括号合并同类项即可.【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6,故选C.【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 12【答案】D【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差.【详解】设重叠部分的面积为c,则a-b=(a+c)-(b+c)=35-23=12,故选D.【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+7【答案】C【解析】【分析】由日历中数字可得答案.【详解】由于在日历中一行为七天,所以m正下面一个数为m+7,所以?为m+7-1m+6,所以答案选择C项.【点睛】本题考查了用已知数表示未知数,了解一行为七天是解决本题的关键.9.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【解析】【分析】根据去括号法则逐个判断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.10.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.【答案】四【解析】【分析】直接利用多项式的次数确定方法分析得出答案.【详解】-3xy-x3+xy3是四次多项式.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.12.单项式﹣π2x2y的系数是_____,次数是_____.【答案】(1). ﹣π2(2). 3【解析】【分析】由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【详解】由单项式的系数及其次数的定义可知,单项式﹣π2x2y的系数是﹣π2,次数是3.故答案为:﹣π2,3.【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x2y2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x2y2,故答案为:x2y2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.【答案】3【解析】【分析】根据同类项的定义直接可得到m、n的值.【详解】因为两个单项式-3x m y2与-xy n的和仍然是单项式,所以m=1,n=2,所以这个和的次数是1+2=3,【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.【答案】1【解析】【分析】不含三次项,则三次项的系数为0,从而可得出m和n的值,代入即可得出答案.【详解】∵代数式mx3-3nxy2+2x3-xy2+y中不含三次项,∴m=-2,-3n=1,解得:m=-2,n=-,∴(m-3n)2018=1.故答案为:1.【点睛】此题考查了多项式的知识,要求我们掌握多项式的次数、系数指的是哪一部分,难度一般.16.若,,则的值为______________.【答案】【解析】试题解析:m2+mn=-5①,n2-3mn=10②,①-②得:m2+mn-n2+3mn=m2+4mn-n2=-5-10=-15.故答案为:-15.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)【答案】(1)﹣a+2b;(2)﹣11x+5y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)原式=﹣a+2b;(2)原式=7y﹣5x﹣2y﹣6x=﹣11x+5y.【点睛】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.【答案】(1)>;=;<;(2)A<B.【解析】【分析】(1)根据题意,利用整式的加减法法则判断即可;(2)利用做差法判断即可.【详解】(1)如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)∵A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=﹣2m2﹣1<0,∴A<B.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?【答案】结果是定值,与x、y取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】(x2y+5xy2+5)-[(3x2y2+x2y)-(3x2y2-5xy2-2)]=x2y+5xy2+5-(3x2y2+x2y-3x2y2+5xy2+2)=x2y+5xy2+5-3x2y2-x2y+3x2y2-5xy2-2=(x2y-x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.【答案】6a2﹣6b2,.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=8a2﹣10ab+2b2﹣2a2+10ab﹣8b2=6a2﹣6b2,当a=,b=﹣时,原式=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.【答案】(1)﹣2a2b+ab2+2abc; (2)8a2b﹣5ab2;(3)0.【解析】【分析】(1)由2A+B=C得B=C-2A,将C、A代入后,再去括号后合并同类项化为最简即可;(2)将A、B代入2A-B,,再去括号后合并同类项化为最简即可;(3)由化简后的代数式中无字母c可知其值与c无关,将a、b的值代入计算即可.【详解】(1)∵2A+B=C,∴B=C-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2.(3)对,与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式加减的应用,整式的加减实质上是去括号后合并同类项.熟知去括号法则和合并同类项法则是解题的关键.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?【答案】(1)(4x+2y)人;(2)(5x+6y)人【解析】【分析】(1)将途中两次上车人数相加,计算即可求解;(2)将(1)中所求结果加上车上原有人数、减去下去的人数即可.【详解】(1)根据题意知,途中两次共上车2x﹣y+2x+3y=4x+2y(人);(2)6x+2y+4x+2y﹣(5x﹣2y)=10x+4y﹣5x+2y=5x+6y,故到终点站E地时,车上共有(5x+6y)人.【点睛】本题考查了整式的加减、去括号法则两个考点.能够根据题意正确列式是解题的关键.。

人教版数学七年级上册第二章整式的加减《单元综合检测》附答案

人教版数学七年级上册第二章整式的加减《单元综合检测》附答案

人教版数学七年级上学期第二章整式的加减测试一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下列说法正确的是( )A. 字母相同的项是同类项B. 整式是多项式C. 单独一个数或一个字母也是单项式D. 多项式22x x 2-+的系数是2 2.已知2223,21A a a B a a =-=--当4a =-时,A B -等于( )A 8 B. 9 C. -9 D. -73.化简()()a b 3a b ----的正确结果是( )A. 4a 4b -+B. 4a 2b --C. 4a 4b --D. 2a 2b - 4.21x xy x --,1a ,2x 2x 1x 1++-,1m n 3+,x 12+,7π中不是整式的有( ) A. 2个 B. 3个 C. 4个 D. 5个 5.当x 5=时,()()22x x x 2x 1---+等于( )A -14B. 4C. -4D. 1 6.下列说法正确的是( )A. 3223a bc -的系数为3-,次数为27B. 2x y z π23++不是单项式,但是整式 C. 1x 1+是多项式 D. 2mx 1+一定是关于x 的二次二项式 7.下面计算正确的是( )A. 223x x 3-=B. 2353a 2a 5a +=C. 3x 3x +=D. 2ab ab ab -= 8.按某种标准,单项式25x y 和多项式22a b 2ab 5+-属于同一类,则下列哪一个多项式也属于此类( )A. 343x 2xy +B. 2x 2-C. abc 1-D. 22m 2mn n ++ 9.下列各组中两项是同类项的是( )A. 2m n -和2mn -B. 0.5a 和0.5bC. 203和5410⨯D. 2m -和3m10.下列概念表述正确的是( )A. 单项式ab 的系数是0,次数是2B. 单项式3232a b -的系数是2-,次数是5C. 24a b -,3ab ,5是多项式24a b 3ab 5-+-的项D. xy 12-是二次二项式 二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.若单项式n 12ab -与m 1a b +的差仍是单项式,则m n +=________.12.已知单项式2m n 95x y -与53n 4x y 是同类项,则m n -的值为________.13.合并同类项:22222a ab 3b 4ab 4b a -++--=________.14.矩形的周长为4a 2b +,一边长为a 2b -,则矩形的另一边长为________.15.当m =________时,代数式2x y mx my --+中不含x 项,此时合并结果=________.16.若a b 2-=,a c 6+=,则()()2a b c 2a b c ++---=________.17.多项式28x 2x 5++与另一个多项式的差是25x x 3-+,则另一个多项式是________.18.什么是整式?________,整式中如有分母,分母________(含、不含)字母.19.若2m 6m 5+=,则代数式()2225m 5m m m 7m 5⎡⎤-----⎣⎦的值是________. 20.若多项式322x 8x 1--与多项式32x 2mx 5x 2+-+的和不含二次项,则m 的值为________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.化简:(1)225a 3ab 42ab 5a +---(2)()()x 22x 233x 5-+--+22.先化简再求值:221131x 2x y x y 2323⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭,其中x 1=-,y 2=. 23.先化简,再求值:()22222122x 3x xy 2y 2x xy 2y 33⎡⎤⎛⎫--+---+ ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 满足21x (y 1)02-++=. 24.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值. 25.按照规律填上所缺的单项式并回答问题:(1)a 、22a -、33a 、44a -,________,________;()2试写出第2007个和第2008个单项式;()3试写出第n 个单项式.26.已知多项式A 、B ,计算A B +.某同学做此题时误将A B +看成了A B -,求得其结果2A B 3m 2m 5-=--,若2B 2m 3m 2=--,请你帮助他求得正确答案答案与解析一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下列说法正确的是( )A. 字母相同的项是同类项B. 整式是多项式C. 单独一个数或一个字母也是单项式D. 多项式22x x 2-+的系数是2【答案】C【解析】【分析】根据同类项的定义,以及整式的定义逐一分析即可.【详解】A 、所含字母相同,并且相同字母的指数相同的两个项才是同类项,选项错误;B 、整式是单项式和多项式的统称,故选项错误;C 、正确;D 、多项式2x 2-x+2的次数是2.故选C .【点睛】本题考查了同类项以及整式的定义,熟练掌握定义是解题的关键.2.已知2223,21A a a B a a =-=--,当4a =-时,A B -等于( )A. 8B. 9C. -9D. -7 【答案】B【解析】【分析】先化简整式,再把a 代入求值即可.【详解】A-B=2a 2-3a-(2a 2-a-1)=2a 2-3a-2a 2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9,故选B .【点睛】本题考查了整式的化简求值,先化简再求值,注意去括号时,符号的变化.3.化简()()a b 3a b ----的正确结果是( )A. 4a 4b -+B. 4a 2b --C. 4a 4b --D. 2a 2b -【答案】A【解析】【分析】 由题意去括号时,括号前面是负号,去掉括号和前面的负号,括号里的各项都改变符号.【详解】-(a-b )-3(a-b )=-a+b-3a+3b=-4a+4b ,故选A .【点睛】本题考查了整式的加减,解题的关键是熟练掌握合并同类项的法则. 4.21x xy x --,1a ,2x 2x 1x 1++-,1m n 3+,x 12+,7π中不是整式的有( ) A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】 根据整式的概念进行判断,即可求出答案.【详解】∵21x xy x --,1a ,2x 2x 1x 1++-,1m n 3+,x 12+,7π中, 不是整式的有:21x xy x --,1a ,2x 2x 1x 1++-. 故选B .【点睛】本题考查了整式的知识点,在解题时要根据整式的概念,进行选择是本题的关键.5.当x 5=时,()()22x x x 2x 1---+等于( )A. -14B. 4C. -4D. 1 【答案】B【解析】【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】(x 2-x )-(x 2-2x+1)=x 2-x-x 2+2x-1=x-1.当x=5时,原式=5-1=4.故选B .【点睛】本题考查了整式的加减—化简求值,熟练掌握运算法则是解本题的关键.6.下列说法正确的是( )A. 3223a bc -的系数为3-,次数为27B. 2x y z π23++不是单项式,但是整式 C. 1x 1+是多项式 D. 2mx 1+一定是关于x 的二次二项式 【答案】B【解析】【分析】分别利用多项式以及单项式的定义和单项式的次数以及系数判断得出即可.【详解】A 、-33a 2bc 2的系数为-33,次数为2+1+2=5,所以此选项不正确;B 、2x y z π23++不是单项式,是多项式,是整式,所以此选项正确; C 、1x 1+不是多项式,是分式,所以此选项不正确; D 、因为m 不确定,当m=0时,mx 2+1=1,是单项式,当m≠0时,一定是关于x 的二次二项式,所以此选项不正确.故选B .【点睛】本题考查了整式、单项式和多项式的概念,熟练掌握这此概念是做好本题的关键.7.下面计算正确的是( )A. 223x x 3-=B. 2353a 2a 5a +=C. 3x 3x +=D. 2ab ab ab -=【答案】D【解析】【分析】根据合并同类项的法则进行运算,找到运算正确的选项即可.【详解】A 、原式=(3-1)x2=2x 2,故错误;B 、不是同类项,不能合并,故错误;C 、不是同类项,不能合并,故错误;D 、正确,故选D .【点睛】本题考查了合并同类项的相关知识;用到的知识点为:所含字母相同,相同字母的指数也相同的项,叫同类项;合并同类项时,字母及字母的指数不变,只把系数相加减.8.按某种标准,单项式25x y 和多项式22a b 2ab 5+-属于同一类,则下列哪一个多项式也属于此类( )A. 343x 2xy +B. 2x 2-C. abc 1-D. 22m 2mn n ++【答案】C【解析】【分析】观察单项式5x 2y 和多项式a 2b+2ab 2-5,发现它们的次数都是3次,因此可以属于同一类,然后找出四个选项中的三次多项式即可.【详解】∵单项式5x 2y 和多项式a 2b+2ab 2-5的次数都是3次,又∵多项式3x 3+2xy 4的次数为4;x 2-2的次数为2;abc-1的次数为3;m 2+2mn+n 2的次数为2; ∴多项式abc-1的次数与单项式5x 2y 和多项式a 2b+2ab 2-5的次数相同.故选C .【点睛】本题考查了单项式、多项式的次数的定义.能够通过观察发现单项式5x 2y 和多项式a 2b+2ab 2-5的次数相同是解题的关键.9.下列各组中的两项是同类项的是( )A. 2m n -和2mn -B. 0.5a 和0.5bC. 203和5410⨯D. 2m -和3m 【答案】C【解析】【分析】根据同类项的概念解答即可.【详解】A.-m 2n 和-mn 2中,相同字母的指数不相等,故A 不是同类项,B.0.5a 和0.5b 中,没有相同字母,故B 不是同类项,D.-m 2和3m 中,相同字母的指数不相等,故D 不是同类项,故选C .【点睛】本题考查了同类项的概念,解题的关键是正确理解同类项的概念.10.下列概念表述正确的是( )A. 单项式ab 的系数是0,次数是2B. 单项式3232a b -的系数是2-,次数是5C. 24a b -,3ab ,5是多项式24a b 3ab 5-+-的项D. xy 12-是二次二项式 【答案】D【解析】【分析】根据单项式的系数和次数以及多项式的项和次数的定义分别对每一项进行分析,即可得出答案.【详解】A 、单项式ab 的系数是1,次数是2,故本选项错误;B 、单项式-23a 2b 3的系数是-23,次数是5,故本选项错误;C 、-4a 2b,3ab,-5是多项式-4a 2b+3ab-5的项,故本选项错误;D 、xy 12-是二次二项式,故本选项正确; 故选D .【点睛】本题考查了多项式与单项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数和单项式的次数与系数.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.若单项式n 12ab -与m 1a b +的差仍是单项式,则m n +=________.【答案】2【解析】【分析】根据同类项的定义得到m+1=1,n-1=1,再解方程分别求出m 与n ,然后计算它们的和.【详解】根据题意得m+1=1,n-1=1,解得m=0,n=2,所以m+n=0+2=2.故答案为2.【点睛】本题考查了同类项:把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.12.已知单项式2m n 95x y -与53n 4x y 是同类项,则m n -的值为________.【答案】1【解析】【分析】根据同类项:所含字母相同且相同字母的指数也相同可得出关于m 和n 的方程,解出即可得出答案.【详解】:∵单项式5x 2m-n y 9与4x 5y 3n 是同类项,∴25{39m n n -== , 解得:43m n ==⎧⎨⎩, 则m-n=4-3=1.故答案为1.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项中的两个相同,(1)同类项所含字母相同,(2)相同字母的指数相同.13.合并同类项:22222a ab 3b 4ab 4b a -++--=________.【答案】22a 3ab b +-【解析】【分析】把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】原式=(2-1)a 2+(4-1)ab+(3-4)b 2=a 2+3ab-b 2. 故答案为a 2+3ab-b 2.【点睛】本题考查了合并同类项的知识,熟练掌握同类项的定义是解题的关键. 14.矩形的周长为4a 2b +,一边长为a 2b -,则矩形的另一边长为________.【答案】a+3b【解析】【分析】 由矩形的性质列出边长的表达式,再去括号,合并同类项即可.【详解】∵矩形的周长为4a+2b ,一边长为a-2b,∴矩形的另一边长=12(4a+2b )-(a-2b )=2a+b-a+2b=a+3b . 故答案为a+3b . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.15.当m =________时,代数式2x y mx my --+中不含x 项,此时合并结果=________.【答案】 (1). 2 (2). y【解析】【分析】根据题意知,x 项的系数是0,据此可以求得m 的值.然后再合并同类项.【详解】因为2x-y-mx+my=(2-m )x+(m-1)y ,且该多项式中不含x 项,所以,2-m=0,即m=2,则2x-y-mx+my=(2-2)x+(2-1)y=y .故答案是:2;y .【点睛】本题考查了多项式、合并同类项.在多项式中不含哪项,即哪项的系数为0,两项的系数互为相反数,合并同类项时为0.16.若a b 2-=,a c 6+=,则()()2a b c 2a b c ++---=________.【答案】12【解析】【分析】用a+c=6减去a-b=2,可得b+c 的值,再将(2a+b+c )-2(a-b-c )去括号,合并同类项得3b+3c ,把b+c 整体代入求原式的值.【详解】a+c=6减去a-b=2,得b+c=4∴(2a+b+c )-2(a-b-c )=2a+b+c-2a+2b+2c=3b+3c=3(b+c )=3×4=12.【点睛】本题考查了整式的加减—化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,是一个常考的题材.17.多项式28x 2x 5++与另一个多项式的差是25x x 3-+,则另一个多项式是________.【答案】23x 3x 2++【解析】【分析】根据题意利用整式的加减运算法则计算得出答案.【详解】∵多项式8x 2+2x+5与另一个多项式的差是5x 2-x+3,∴另一个多项式是:8x 2+2x+5-(5x 2-x+3)=3x 2+3x-8.故答案为3x 2+3x+2.【点睛】本题考查了整式的加减运算,正确掌握运算法则是解题关键.18.什么是整式?________,整式中如有分母,分母________(含、不含)字母.【答案】 (1). 单项式和多项式统称整式 (2). 不含【解析】【分析】根据整式的概念即可解答.【详解】单项式和多项式统称整式.整式中如有分母,分母不含(含、不含)字母.故答案是:单项式和多项式统称整式;不含.【点睛】本题考查了整式的定义,熟练掌握整式的概念是解题的关键.19.若2m 6m 5+=,则代数式()2225m 5m m m 7m 5⎡⎤-----⎣⎦的值是________. 【答案】10【解析】【分析】由题意原式去括号合并得到最简结果,将已知等式代入计算即可求出值.【详解】∵m 2+6m=5,∴原式=5m 2-5m 2+m 2-m+7m+5=m 2+6m+5=5+5=10.故答案10【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.20.若多项式322x 8x 1--与多项式32x 2mx 5x 2+-+的和不含二次项,则m 的值为________.【答案】4【解析】【分析】根据题意直接合并同类项,进而利用多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x+2的和不含二次项,得出m 的值.【详解】∵2x 3-8x 2-1+x 3+2mx 2-5x+2=3x 3+(2m-8)x 2-5x+1,多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x+2的和不含二次项,∴2m-8=0,解得:m=4.故答案为4.【点睛】本题考查了整式的加减,正确合并同类项是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.化简:(1)225a 3ab 42ab 5a +---(2)()()x 22x 233x 5-+--+【答案】()()1ab 426x 19---【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【详解】()1原式225a 5a 3ab 2ab 40ab 4ab 4=-+--=+-=-()2原式x 4x 49x 156x 19=-+---=--【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.22.先化简再求值:221131x 2x y x y 2323⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭,其中x 1=-,y 2=. 【答案】4【解析】【分析】 根据整式的运算法则即可求出答案. 【详解】原式2221231x 2x y x y y 2323=-+++=, 当x 1=-,y 2=时,原式4=.【点睛】本题考查了整式的运算,解题的关键是熟练运用整式的运算法则.23.先化简,再求值:()22222122x 3x xy 2y 2x xy 2y 33⎡⎤⎛⎫--+---+ ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 满足21x (y 1)02-++=. 【答案】314-【解析】【分析】由题意原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】原式22222222x x 2xy 2y 2x 2xy 4y x 2y =+-+-+-=-, ∵21x (y 1)02-++=, ∴1x 2=,y 1=-, 则原式132144=-=-. 【点睛】本题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键. 24.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值. 【答案】(1)225x 9xy 9y +-(2)63或-13【解析】【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项,∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.25.按照规律填上所缺的单项式并回答问题:(1)a 、22a -、33a 、44a -,________,________;()2试写出第2007个和第2008个单项式;()3试写出第n 个单项式.【答案】(1)()5620075a 6a22007a -,20082008a -;(3) ()1n 1na n +- 【解析】【分析】 通过观察题意可得:每一项都是单项式,其中系数为n×(-1)n+1,字母是a,x 的指数为n 的值.由此可解出本题.【详解】(1)()565a 6a 2-第2007个单项式为:20072007a ,第2008个单项式为:20082008a -;(3)第n 个单项式的系数为:()1n 1n +⨯-,次数为n , 故第n 个单项式为:()1n 1na n +-.【点睛】本考查了数字的变换类,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.26.已知多项式A 、B ,计算A B +.某同学做此题时误将A B +看成了A B -,求得其结果为2A B 3m 2m 5-=--,若2B 2m 3m 2=--,请你帮助他求得正确答案.【答案】27m 8m 9--【解析】分析】根据A+B=2m 2-3m-2,B=3m 2-2m-5,先求出A ,然后再求出A-B 的值.【详解】∵222A B B 3m 2m 52m 3m 25m 5m 7-+=--+--=--,∴222A B 5m 5m 72m 3m 27m 8m 9+=--+--=--,或直接计算A B 2B -+得A B +也可.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则。

人教版数学七年级上册第二章整式的加减《单元测试》(含答案)

人教版数学七年级上册第二章整式的加减《单元测试》(含答案)

人教版七年级上册整式的加减测试卷第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是( )A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是52.下列各组单项式中,是同类项的是( )A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A. 2个B. 3个C. 4个D. 5个4.化简a﹣(b﹣c)正确的是( )A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c5.多项式4xy2﹣3xy+12的次数为( )A. 3B. 4C. 6D. 76.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是( )A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+67.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为( )A. 6B. 8C. 9D. 128.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为( )A. m+1B. m+5C. m+6D. m+79.下列各项去括号正确的是( )A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+410.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是( )A. 2B. 3C. 4D. 5二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.12.单项式﹣π2x2y的系数是_____,次数是_____.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.16.若,,则的值为______________.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y任意取值代入时,结果总是同一个定值,为什么?20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?答案与解析第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是( )A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是5【答案】C【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】A、单项式3πx2y3的系数是3π,故此选项错误;B、单项式-6x2y的系数是-6,故此选项错误;C、单项式-xy2的次数是3,正确;D、单项式x3y2z的次数是6,故此选项错误;故选C.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.2.下列各组单项式中,是同类项的是( )A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、与-x2y,是同类项,符合题意;B、2a2b与2ab2,不是同类项,不合题意;C、a与1,不是同类项,不合题意;D、2xy与2xyz,不是同类项,不合题意;故选A.【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用多项式的定义分析得出答案.【详解】ab,,ab2+b+1,-9,x3+x2-3中,多项式有:,ab2+b+1,x3+x2-3共3个.故选B.【点睛】此题主要考查了多项式,正确把握多项式定义是解题关键.4.化简a﹣(b﹣c)正确的是( )A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c【答案】A【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】a-(b-c)=a-b+c.故选A.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.5.多项式4xy2﹣3xy+12的次数为( )A. 3B. 4C. 6D. 7【答案】A【解析】【分析】直接利用多项式的次数确定方法是解题关键.【详解】多项式4xy2-3xy+12的次数为,最高此项4xy2的次数为:3.故选A.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.6.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是( )A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+6【答案】C【解析】【分析】先根据题意列出算式,再去掉括号合并同类项即可.【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6,故选C.【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为( )A. 6B. 8C. 9D. 12【答案】D【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差.【详解】设重叠部分的面积为c,则a-b=(a+c)-(b+c)=35-23=12,故选D.【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为( )A. m+1B. m+5C. m+6D. m+7【答案】C【解析】【分析】由日历中数字可得答案.【详解】由于在日历中一行为七天,所以m正下面一个数为m+7,所以?为m+7-1m+6,所以答案选择C项.【点睛】本题考查了用已知数表示未知数,了解一行为七天是解决本题的关键.9.下列各项去括号正确的是( )A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【解析】【分析】根据去括号法则逐个判断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.10.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.【答案】四【解析】【分析】直接利用多项式的次数确定方法分析得出答案.【详解】-3xy-x3+xy3是四次多项式.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.12.单项式﹣π2x2y的系数是_____,次数是_____.【答案】(1). ﹣π2(2). 3【解析】【分析】由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【详解】由单项式的系数及其次数的定义可知,单项式﹣π2x2y的系数是﹣π2,次数是3.故答案为:﹣π2,3.【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x2y2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x2y2,故答案为:x2y2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.【答案】3【解析】【分析】根据同类项的定义直接可得到m、n的值.【详解】因为两个单项式-3x m y2与-xy n的和仍然是单项式,所以m=1,n=2,所以这个和的次数是1+2=3,【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.【答案】1【解析】【分析】不含三次项,则三次项的系数为0,从而可得出m和n的值,代入即可得出答案.【详解】∵代数式mx3-3nxy2+2x3-xy2+y中不含三次项,∴m=-2,-3n=1,解得:m=-2,n=-,∴(m-3n)2018=1.故答案为:1.【点睛】此题考查了多项式的知识,要求我们掌握多项式的次数、系数指的是哪一部分,难度一般.16.若,,则的值为______________.【答案】【解析】试题解析:m2+mn=-5①,n2-3mn=10②,①-②得:m2+mn-n2+3mn=m2+4mn-n2=-5-10=-15.故答案为:-15.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)【答案】(1)﹣a+2b;(2)﹣11x+5y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)原式=﹣a+2b;(2)原式=7y﹣5x﹣2y﹣6x=﹣11x+5y.【点睛】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.【答案】(1)>;=;<;(2)A<B.【解析】【分析】(1)根据题意,利用整式的加减法法则判断即可;(2)利用做差法判断即可.【详解】(1)如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)∵A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=﹣2m2﹣1<0,∴A<B.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y任意取值代入时,结果总是同一个定值,为什么?【答案】结果是定值,与x、y取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】(x2y+5xy2+5)-[(3x2y2+x2y)-(3x2y2-5xy2-2)]=x2y+5xy2+5-(3x2y2+x2y-3x2y2+5xy2+2)=x2y+5xy2+5-3x2y2-x2y+3x2y2-5xy2-2=(x2y-x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.【答案】6a2﹣6b2,.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=8a2﹣10ab+2b2﹣2a2+10ab﹣8b2=6a2﹣6b2,当a=,b=﹣时,原式=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.【答案】(1)﹣2a2b+ab2+2abc; (2)8a2b﹣5ab2;(3)0.【解析】【分析】(1)由2A+B=C得B=C-2A,将C、A代入后,再去括号后合并同类项化为最简即可;(2)将A、B代入2A-B,,再去括号后合并同类项化为最简即可;(3)由化简后的代数式中无字母c可知其值与c无关,将a、b的值代入计算即可.【详解】(1)∵2A+B=C,∴B=C-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2.(3)对,与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式加减的应用,整式的加减实质上是去括号后合并同类项.熟知去括号法则和合并同类项法则是解题的关键.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?【答案】(1)(4x+2y)人;(2)(5x+6y)人【解析】【分析】(1)将途中两次上车人数相加,计算即可求解;(2)将(1)中所求结果加上车上原有人数、减去下去的人数即可.【详解】(1)根据题意知,途中两次共上车2x﹣y+2x+3y=4x+2y(人);(2)6x+2y+4x+2y﹣(5x﹣2y)=10x+4y﹣5x+2y=5x+6y,故到终点站E地时,车上共有(5x+6y)人.【点睛】本题考查了整式的加减、去括号法则两个考点.能够根据题意正确列式是解题的关键.。

人教版数学七年级上册第二章整式的加减《单元测试》附答案

人教版数学七年级上册第二章整式的加减《单元测试》附答案

人教版数学七年级上学期第二章整式的加减测试一、选择题(20分)1.下列说法中正确的是()A. 单项式的系数是-2,次数是2B. 单项式a的系数是0,次数也是0C. 的系数是1,次数是10D. 单项式的系数是,次数是32.若单项式与是同类项,则m的值为()A. 4B. 2或-2C. 2D. -23.计算(3a2-2a+1)-(2a2+3a-5)的结果是()A. a2-5a+6B. 7a2-5a-4C. a2+a-4D. a2+a+64.当时,代数式的值为()A. B. C. D. 135.如果长方形周长为4a,一边长为a+b,,则另一边长为()A. 3a-bB. 2a-2bC. a-bD. a-3b6.一个两位数,十位数字是a,个位数字是b,则这个两位数为()A. abB. 10a +bC. 10b +aD. a +b7.观察图中给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为( ).A. 3n-2B. 3n-1C. 4n+1D. 4n-38.长方形的一边长为2a+b,另一边比它大a-b,则周长为( )A. 10a+2bB. 5a+bC. 7a+bD. 10a-b9.两个同类项的和是()A. 单项式B. 多项式C. 可能是单项式也可能是多项式D. 以上都不对10.如果A是3次多项式,B也是3次多项式,那么A+B一定是()A. 6次多项式B. 次数不低于3次的多项式C. 3次多项式D. 次数不高于3次的整式二、填空题(32分)11.单项式的系数是___________,次数是___________.12.2a4+a3b2-5a2b3+a-1是____次____项式.它的第三项是__________.把它按a的升幂排列是____________________.13.计算的结果为______________.14.一个三角形的第一条边长为(a+b)cm,第二条边比第一条边的2倍长b cm.则第三条边x的取值范围是__________.15.如图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴____________根.(用含n 的式子表示)……16.观察下列等式9-1=8,16-4=12,25-9=16,36-16=20……这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为______________.17.如图,阴影部分的面积用整式表示为_________.18.若:与的和仍是单项式,则_______19.若与所得的差是单项式,则m= ______n= ______.20.当k=______时,多项式-7kxy++7xy+5y中不含xy项.三、解答题(48分)21.(1)(2)(3)22.先化简再求值(1)9y-{159-[4y-(11x-2y)-10x]+2y},其中x=-3,y=2.(2) ,其中,.23.一个四边形的周长是48厘米,已知第一条边长a厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.24.大客车上原有(3a-b)人,中途下去一半人,又上车若干人,使车上共有乘客(8a-5b)人,问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?25.若多项式-6xy+2x-3y与+bxy+3ax-2by的和不含二次项,求a、b的值。

人教版数学七年级上册第二章整式的加减单元综合检测题(含答案)

人教版数学七年级上册第二章整式的加减单元综合检测题(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、53.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是35.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A (1)(2) B. (1)(2)(3) C. (2)(3)(4) D. (1)(2)(3)(4)8.已知-2m6n与5x m2x n y是同类项,则( )A. x=2,y=1B. x=3,y=1C. x=32,y=1 D. x=3,y=09.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a元,则该商品的标价是( )A. 1720a元 B.2017a元 C.1825a元 D.2518a元10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-411.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 2312.大于1正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( )A 9 B. 10 C. 11 D. 12二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.18.一个三角形的第一边长2a+3b,第二边比第一边短a,第三边比第一边大2b,那么这个三角形的周长是__________.三、解答题(共66分)19.给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算.20.计算:(8a-7b)-(4a-5b)+(3a-2b).21.课堂上李老师给出了一道整式求值题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.23.已知-5x m y3+104x m-4xy2是关于x,y的六次多项式,求m的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m+3,第二项的次数为4+m,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m=6, ②所以m=2. ③于是原多项式为-5x2y3+104x2-4xy2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应等式.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:名称小麦玉米黄豆亩产量/千克400 600 220(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.答案与解析一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元【答案】C【解析】分析】用原价减去降低的价钱得出现价即可.【详解】售价为m元的商品,降价30%就是在原价的基础上减去30%m元,所以,现价是m-30%m=(1-30%)m元,故选C.【点睛】本题考查了列代数式,掌握销售问题中的基本数量关系是解决问题的关键.2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、5【答案】D【解析】【分析】先把等式左边的整式相加减,再分别令等式两边x的二次项系数、一次项系数及常数项分别相等即可.【详解】∵等式的左边=3x2-3x+2+x2-3x+3=(3+1)x2-(3+3)x+2+3=4x2-6x+5,∴A=4,B=6,C=5,故选D.【点睛】本题考查了整式的加减,熟知整式加减的实质就是合并同类项是解答此题的关键.3.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍【答案】A【解析】【分析】根据代数式来判定各选项给出的表达意义是否正确,注意“和”、“差”、“倍”、“商”的表述.【详解】A.3a2b⎛⎫⎪⎝⎭的意义应是“a除以2b的商的立方”,故A选项错误,符合题意;B. a+2b2的意义是a与b2的2倍的和,正确,不符合题意;C. (a+2b)2的意义是a与b的2倍的和的平方,正确,不符合题意;D. 2(a+b)2的意义是a与b的和的平方的2倍,正确,不符合题意, 故选A.【点睛】本题考查了代数式的意义,正确分析是解题的关键.4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是3【答案】D【解析】【分析】根据单项式系数以及次数的定义进行判断即可.【详解】单项式-23πxy5的数字因数是-3π5,所有字母指数的和为:1+2=3,所以单项式的系数是-35π,次数是3,故选D.【点睛】本题考查了单项式的系数与次数,熟记相关概念是解题的关键.5.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据题意可得m=-1,|5-n|=1或m=-2,|5-n|=4,求出m、n的值,然后求出m n的值即可.【详解】∵代数式2x4y+mx|5-n|y+xy化简之后为单项式,∴化简后的结果可能为2x4y,也可能为xy,当结果为2x4y时,m=-1,|5-n|=1,解得:m=-1,n=4或n=6,则m n=(-1)4=1或m n=(-1)6=1;当结果为xy时,m=-2,|5-n|=4,解得:m=-2,n=1或n=9,则m n=(-2)1=-2或m n=(-2)9=-29,综上,m n的值共有3个,故选C.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同【答案】D【解析】【分析】根据整式,单项式,多项式的概念分析各个式子即可得.【详解】单项式有3a,1π,xyz共3个,多项式有12x-y,a2-y+23,x y z3-+共3个,整式有12x-y,3a,a2-y+23,1π,xyz,x y z3-+共6个,故选D.【点睛】本题考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A. (1)(2)B. (1)(2)(3)C. (2)(3)(4)D. (1)(2)(3)(4)【答案】B【解析】试题分析:在去括号时,如果括号前面是负号,则去掉括号后括号里面的每一项都要变号.(1)、原式=a+b ;(2)、原式=5x -2x+1-x²;(3)、原式=3xy -12xy+12y²;(4)、正确. 考点:去括号法则.8.已知-2m 6n 与5x m 2x n y 是同类项,则( )A. x =2,y =1B. x =3,y =1C. x =32,y =1D. x =3,y =0 【答案】B【解析】【分析】根据同类项的概念可得2x=6,y=1,由此即可求得答案.【详解】∵-2m 6n 与5x m 2x n y 是同类项,∴2x=6,y=1,∴x =3,y =1,故选B.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项中的两个相同:(1)所含字母相同;(2)相同字母的指数相同.9.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a 元,则该商品的标价是( ) A. 1720a 元 B. 2017a 元 C. 1825a 元 D. 2518a 元 【答案】D【解析】【分析】根据商品打折数与商品价钱的关系进行列式即可,打折后价格=原价格×10折数. 【详解】根据题意可知商品的标价为:a÷0.9÷0.8 =a×101098= 2518a 元,故选D.【点睛】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.11.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 23【答案】B【解析】【详解】试题分析:由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.解:∵2x2+3y+7=8,∴2x2+3y=1,则原式=3(2x2+3y)+8=3+8=11,故选B考点:代数式求值.12.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( ) A. 9 B. 10 C. 11 D. 12【答案】B【解析】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(1)(2)2m m-+,∵2n+1=313,n=156,∴奇数103是从3开始的第52个奇数,∵(91)(92)442-+=,(101)(102)542-+=,∴第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.故选B.考点:规律型.二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.【答案】(1). 1 (2). 0【解析】【分析】根据同类项的定义可知m+1=3,再根据合并同类项的法则可得n-1=-1,由此即可得答案.【详解】∵a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,∴m+1=2,1+(n-1)=0,∴m=1,n=0,故答案为1,0.【点睛】本题考查了合并同类项以及同类项的定义,熟练掌握同类项的概念以及合并同类项的法则是解题的关键.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.【答案】1【解析】【分析】根据两者合并得结果是单项式可得5x2m-n y9与4x5y3n是同类项,继而根据同类项:所含字母相同且相同字母的指数也相同可得出关于m和n的方程,解出即可得出答案.【详解】∵5x2m-n y9-4x5y3n=x5y9,∴25 39m nn-=⎧⎨=⎩,∴43 mn=⎧⎨=⎩,∴m-n=4-3=1,故答案为1.【点睛】本题考查了合并同类项以及解二元一次方程组,解答本题关键是掌握同类项定义中两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.【答案】mn【解析】【分析】根据多项式次数的定义进行求解即可得.【详解】∵m,n都是正整数,且m>n,∴mnm>n,∴多项式x m+y n+z mn的次数是mn,故答案为mn.【点睛】本题考查了多项式的次数,熟知多项式的次数是指多项式中次数最高的单项式的次数是解题的关键.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.【答案】-2b2-ab-4【解析】【分析】由题意可知m=(a2-b2-4)-(a2+b2+ab),去括号后合并同类项即可得.【详解】由题意,m=(a2-b2-4)-(a2+b2+ab)=a2-b2-4-a2-b2-ab=-2b2-ab-4,故答案为-2b2-ab-4.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则以及合并同类项法则是解题的关键.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.【答案】-4x2+2xy+2【解析】【分析】根据规定的运算列式,然后去括号、合并同类项即可得.【详解】由题意:222xy 3x 2xy x 2x 35xy ------+=(xy-3x 2)-(22xy x --)+(22x 3--)-(5xy -+)=xy-3x 2+2xy+x 2-2x 2-3+5-xy=-4x 2+2xy +2,故答案为-4x 2+2xy +2.【点睛】本题考查了整式的加减,解题的关键是弄清规定运算的规则,正确列出式子.18.一个三角形的第一边长2a +3b ,第二边比第一边短a ,第三边比第一边大2b ,那么这个三角形的周长是__________.【答案】5a +11b【解析】【分析】先表示出三角形的三边长,然后根据三角形的周长公式列式进行计算即可得.【详解】三角形的第一边长是2a+3b ,则第二边长为2a+3b-a ,第三边长为2a+3b+2b,∴(2a+3b)+(2a+3b-a)+(2a+3b+2b)=2a+3b+2a+3b-a+2a+3b+2b=5a+11b,故答案为5a+11b.【点睛】本题考查了整式的加减的应用,解决本题的关键是熟记三角形的周长公式,即1=a+b+c .本题的关键是根据三角形的第一边长,求出另外两条边的边长.三、解答题(共66分)19.给出三个多项式:12x 2+x -1, 12x 2+3x +1, 12x 2-x ,请你选择其中两个进行加法运算. 【答案】详见解析.【解析】【分析】本题答案不唯一,列式后根据去括号法则以及合并同类项法则进行计算即可. 【详解】如选择12x 2+x -1, 12x 2+3x +1, 则:(12x 2+x -1)+( 12x 2+3x +1)=12x 2+x -1+ 12x 2+3x +1=x 2+4x ; 如选择12x 2+x -1,12x 2-x,则:(12x2+x-1)+(12x2-x)=12x2+x-1+12x2-x=x2-1;如选择12x2+3x+1,12x2-x,则:(12x2+3x+1)+(12x2-x)=12x2+3x+1+12x2-x=x2+2x+1;【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.20.计算:(8a-7b)-(4a-5b)+(3a-2b).【答案】7a-4b.【解析】【分析】先去括号,然后合并同类项即可.【详解】(8a-7b)-(4a-5b)+(3a-2b)=8a-7b-4a+5b+3a-2b=7a-4b.【点睛】本题考查了整式的加减,明确整式的加减就是合并同类项是解题的关键.21.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?【答案】相信,理由见解析.【解析】【分析】先化简(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3),得结果为3,由此进行解答即可.【详解】相信,理由如下:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3,则不管a,b取何值,整式的值都为3.【点睛】本题考查了整式加减——化简求值,熟练掌握去括号法则以及合并同类项法则是解答本题的关键.22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.23.已知-5x m y 3+104x m -4xy 2是关于x,y 的六次多项式,求m 的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m +3,第二项的次数为4+m ,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m =6, ②所以m =2. ③于是原多项式为-5x 2y 3+104x 2-4xy 2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.【答案】不正确,错在第①步.正确解法见解析.【解析】【分析】根据常数的次数不是单项式的次数进而得出m的值.【详解】不正确,错在第①步,正确解法:由原多项式知,第一项的次数为m+3,第二项的次数为m,第三项的次数为3,所以最高次数为m+3,又因为这个多项式是六次多项式,所以m+3=6,即m=3于是原多项式为-5x3y3+104x3-4xy2.【点睛】本题考查了多项式的次数,正确把握多项式的次数的定义是解题关键.注意常数的次数不是单项式的次数.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.【答案】(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【解析】【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?【答案】(1)详见解析;(2)春风旅行社合算,理由见解析.【解析】【分析】(1)利用旅行社的收费标准可列出代数式,(2)把a=20代入即可求解.【详解】(1)春风旅行社的总费用为3×500+500a×50%=1 500+250a(元),华北旅行社的总费用为(3+a)×500×80%=1 200+400a(元);(2)当a=20时,春风旅行社费用为1 500+250×20=6 500(元),华北旅行社费用为1 200+400×20=9 200(元),6 500元<9 200元,故春风旅行社合算.【点睛】本题考查了列代数式以及代数式求值,正确理解题意列出代数式是解题的关键.26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.【答案】(1) (4-x);(2)三种农作物的总售价为(540x+7 440)元;(3)三种农作物的总售价为9 060元.【解析】【分析】(1)减去小麦、玉米的种植面积即可得;(2)根据种植面积×亩产量×销售单价列式计算即可得;(3)把x=3代入(2)中的结果即可求得答案.【详解】(1)由题意得,黄豆的种植面积为:10×(1-60%)-x=(4-x)(亩),故答案为(4-x);(2)三种农作物总售价为:10×60%×400×2+2×600x+220×(4-x)×3=4 800+1 200x+2 640-660x=(540x+7 440)(元),答:三种农作物的总售价为(540x+7 440)元;(3)当x=3时,540x+7 440=540×3+7 440=9 060(元),答:三种农作物的总售价为9060元.【点睛】本题考查了整式加减的应用,正确理解题意,弄清各量之间的关系列出式子是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册整式的加减测试卷考试总分:120 分考试时间:120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.当,时,的值是( )A. 0B. 6C. -6D. 92.一个多项式加上得到多项式,则原来的多项式为( )A. B.C. D.3.单项式的系数和次数分别是( )A. 和B. 和C. 和D. 和4.在式子:,,,,,中,下列结论正确的是( )A. 有个单项式,个多项式B. 个单项式,个多项式C. 有个单项式,个多项式D. 有个整式5.已知a+b=4,c-d=-3,则(b-c)-(-d-a)的值为( )A. 7B. -7C. 1D. -16.在式子,,,,,,中,单项式的个数为( )A. 7B. 6C. 5D. 47.下面叙述不正确的是( )A. 整式包括单项式和多项式B. 是多项式也是整式C. 的次数为,常数项为D. 是二次三项式8.下列式子中与是同类项的是( )A. B. C. D.9.若多项式(k-2)x3+kx2-2x-6是关于x的二次多项式,则k的值是( )A. 0B. 2C. 0或2D. 不确定10.合并同类项时,依据的运算律是( )A. 加法交换律B. 乘法交换律C. 乘法分配律D. 乘法结合律二、填空题(共10 小题,每小题 3 分,共30 分)11.________,________.12.单项式与的和是一个单项式,则________、13.若与是同类项,则________14.________,________.15.若单项式与的差是单项式,则________.16.当,时,则________.17.已知,,则________,________.18.已知则的值为________.19.已知单项式与的和仍为单项式,则________.20.在下列各式中:,,,,中,单项式有________,多项式有________,整式有________.三、解答题(共7 小题,共60 分)21.化简下列各题:(1)(2)(3).22.先化简,再求值.,其中,.23.化简求值:的值,其中.24.若,,且,,,求的值.25.已知单项式与是同类项.填空________;________试求多项式的值?26.若要使合并同类项后不再出现含的项,计算的值.27.用单项式表示下列各式,并指出其系数和次数.王明同学买本练习册花元,那么买本练习册要花多少元?正方体的棱长为,那么它的表面积是多少?体积呢?答案与解析一、选择题(共10 小题,每小题 3 分,共30 分)1.当,时,的值是( )A. 0B. 6C. -6D. 9【答案】B【解析】【分析】先把去括号合并同类项,然后把代入计算即可.【详解】,当,时,原式=3×(-1)2×1-3×(-1)×12=3+3=6.故选B.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的加减法法则,整式加减的实质是去括号合并同类项.2.一个多项式加上得到多项式,则原来的多项式为( )A. B.C. D.【答案】D【解析】【分析】先用减去,即可求出原来的多项式.【详解】-=.故选D.【点睛】本题考查了整式的加减,根据加数=和-另一个加数列出算式是解答本题的关键.3.单项式的系数和次数分别是( )A. 和B. 和C. 和D. 和【答案】B【解析】【分析】根据单项式的定义求解即可,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.【详解】单项式的系数和次数分别是和.故选B.【点睛】本题考查了单项式的概念,解答本题的关键是熟练掌握单项式的概念.4.在式子:,,,,,中,下列结论正确的是( )A. 有个单项式,个多项式B. 个单项式,个多项式C. 有个单项式,个多项式D. 有个整式【答案】C【解析】【分析】根据单项式和多项式的概念无解即可.【详解】,,,是单项式;,,是多项式.故选C.【点睛】本题考查了单项式和多项式的有关概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和;多项式的次数是多项式中次数最高的项的次数.解决本题的关键是熟练掌握单项式和多项式的概念和联系.5.已知a+b=4,c-d=-3,则(b-c)-(-d-a)的值为( )A. 7B. -7C. 1D. -1【答案】A【解析】【分析】先(b-c)-(-d-a)把去括号,重新组合后把a+b=4,c-d=-3,代入计算即可.【详解】∵a+b=4,c-d=-3,∴(b-c)-(-d-a)=b-c+d+a=(a+b)-(c-d)=4-(-3)=7.故选A.【点睛】本题考查了添括号和去括号法则,当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号. 添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.6.在式子,,,,,,中,单项式的个数为( )A. 7B. 6C. 5D. 4【答案】C【解析】【分析】根据不含加减运算的整式叫做单项式求解即可.【详解】,,,,是单项式;的分母中含有字母,不是单项式;含有“-”,是多项式.故选C.【点睛】本题考查了单项式的概念,不含加减运算的整式叫做单项式,单独的一个字母或一个数也是单项式,解答本题的关键是熟练掌握单项式的概念.7.下面叙述不正确的是( )A. 整式包括单项式和多项式B. 是多项式也是整式C. 的次数为,常数项为D. 是二次三项式【答案】C【解析】【分析】根据整式的概念可解答A,根据多项式的概念可解答B、C、D.【详解】A. 整式包括单项式和多项式,正确;B. 是多项式也是整式,正确;C. 的次数为,常数项为,故不正确;D. 是二次三项式,正确;故选C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式的次数是多项式中次数最高的项的次数,组成多项式的单项式叫做多形式的项.8.下列式子中与是同类项的是( )A. B. C. D.【答案】C【解析】【分析】根据同类项的定义逐项分析即可,同类项的定义是所含字母相同,并且相同字母的指数也相同的项,叫做同类项.【详解】A. 与中的字母的指数不同,故不是同类项;B. 与所含的字母不同,故不是同类项;C. 与所含的字母相同,相同字母的的指数也相同,故是同类项;D. 与中所含的字母的指数不同,故不是同类项;故选C.【点睛】本题考查了利用同类项的定义,熟练掌握同类项的定义是解答本题的关键. 同类项定义中的两个“相同”:①所含字母相同;②相同字母的指数相同,是易混点.注意几个常数项也是同类项,同类项定义中的两个“无关”:①与字母的顺序无关,②与系数无关.9.若多项式(k-2)x3+kx2-2x-6是关于x的二次多项式,则k的值是( )A. 0B. 2C. 0或2D. 不确定【答案】B【解析】【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】∵多项式(k-2)x3+kx2-2x-6是关于x的二次多项式,∴(1)不含x3项,即k-2=0,k=2;(2)其最高次项的次数为2,即k≠0.故k的值是2.故选B.【点睛】本题考查了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.10.合并同类项时,依据的运算律是( )A. 加法交换律B. 乘法交换律C. 乘法分配律D. 乘法结合律【答案】C【解析】【分析】根据乘法的分配律即可得出答案.【详解】合并同类项时,依据的运算律是乘法的分配律.故选C.【点睛】本题考查了合并同类项的依据,熟练掌握乘法的分配律是解答本题的关键,即a(b+c)=ab+ac.二、填空题(共10 小题,每小题 3 分,共30 分)11.________,________.【答案】(1). (2).【解析】根据绝对值的意义和多重符号的化简方法解答即可.【详解】,.故答案为:;.【点睛】本题考查了绝对值的意义和多重符号的化简,熟练掌握绝对值的意义和相反数的意义是解答本题的关键.12.单项式与的和是一个单项式,则________、【答案】【解析】【分析】根据相同字母的指数相等列方程求解即可.【详解】由题意得,2m=6,∴m=3.故答案为:3.【点睛】本题考查了利用同类项的定义,熟练掌握同类项的定义是解答本题的关键.13.若与是同类项,则________【答案】【解析】【分析】根据相同字母的指数相等列方程求解即可.【详解】由题意得,3x-4=x,∴x=2.故答案为:2.【点睛】本题考查了利用同类项的定义,熟练掌握同类项的定义是解答本题的关键.14.________,________.【答案】;【分析】根据添括号法则解答即可,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【详解】________,________.故答案为:.【点睛】本题考查了添括号法则,熟练掌握添括号法则是解答本题的关键.15.若单项式与的差是单项式,则________.【答案】【解析】【分析】由单项式与的差是单项式,可知单项式与是同类项,然后根据同类项的定义解答即可.【详解】由题意得,m=2,n-1=2,∴n=3,∴.故答案为:-8.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项.16.当,时,则________.【答案】【解析】【分析】先把化简,然后把,代入计算即可.【详解】∵,,∴=====100.故答案为:100.【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.解答本题的关键是找出其中的规律,将所给多项式化简.17.已知,,则________,________.【答案】(1). (2).【解析】【分析】将所给两式相加即可求出的值,将所给两式相减即可求出的值.【详解】,,①+②得,,∴6;①-②得,,∴6;故答案为:6;-26.【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.18.已知则的值为________.【答案】【解析】【分析】先把化简,然后把代入计算即可.【详解】∵,∴=-6.故答案为:-6.【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.19.已知单项式与的和仍为单项式,则________.【答案】【解析】【分析】由单项式与的和是单项式,可知单项式与是同类项,然后根据同类项的定义解答即可.【详解】由题意得,m-1=1,n=2,∴m=2,∴.故答案为:4.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项.20.在下列各式中:,,,,中,单项式有________,多项式有________,整式有________.【答案】(1). ,(2). ,(3). ,,,【解析】【分析】单项式和多项式统称为整式.由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.多项式的定义:若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.根据定义逐项判断即可.【详解】解:单项式有:,;多项式有:,;整式有:,,,;故答案为:(1),;(2),;(3),,,.【点睛】本题考查了对多项式、单项式、整式的定义的应用.易错点,多项式和单项式都是整式.三、解答题(共7 小题,共60 分)21.化简下列各题:(1)(2)(3).【答案】(1);(2);(3)【解析】【分析】(1)先找出同类项,然后合并同类项;(2)先去括号,然后合并同类项;(3)先去小括号,再去中括号,然后合并同类项.【详解】解:(1);;(2);;.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.22.先化简,再求值.,其中,.【答案】【解析】【分析】先把化简,然后把,代入计算即可.【详解】解:原式.当,时,原式.【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.23.化简求值:的值,其中.【答案】【解析】【分析】先把化简,然后把代入计算即可.【详解】解:原式,当时,原式.【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.24.若,,且,,,求的值.【答案】216【解析】【分析】先把化简,再把,代入化简,然后根据,,,求出和的值,再把求得的和的值代入计算即可.【详解】解:,∵,,,∴,或,∴∴原式.【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.25.已知单项式与是同类项.填空________;________试求多项式的值?【答案】【解析】【分析】(1)根据相同字母的指数相同列式求解即可;(2)把(1)中求得的的值代入计算即可.【详解】(1)由题意得,m=2,n=3;(2)把m=2,n=3代入,得==11.【点睛】本题考查了同类项的定义和求代数式的值,根据同类项的定义求出的值是解答本题的关键. 26.若要使合并同类项后不再出现含的项,计算的值.【答案】【解析】【分析】合并同类项后令的系数等于零,即可求出m的值.【详解】解:,由结果中不含的项,得到,解得:.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x的取值无关的意思.27.用单项式表示下列各式,并指出其系数和次数.王明同学买本练习册花元,那么买本练习册要花多少元?正方体的棱长为,那么它的表面积是多少?体积呢?【答案】(1)买本练习册要花元,它的系数是,次数是;(2)它的表面积是,系数是,次数是;它的体积是,系数是,次数是【解析】【分析】(1)根据买2本练习册花n元,得出买1本练习册花元,再根据买了m本练习册,即可列出算式,再根据系数、次数的定义进行解答即可.(2)根据正方体的棱长为a和表面积公式、体积公式列出式子,再根据系数、次数的定义进行解答.【详解】解:∵买本练习册花元,∴买本练习册花元,∴买本练习册要花元,∴它的系数是,次数是;∵正方体的棱长为,∴它的表面积是,系数是,次数是;它的体积是,系数是,次数是.【点睛】此题考查了列代数式,用到的知识点是系数、次数、正方形的表面积公式、体积公式,根据题意列出式子是本题的关键.。

相关文档
最新文档