光纤通信第三章 课件.ppt

合集下载

第三章光纤通信器件

第三章光纤通信器件

输出 调制光 信息电信号 激光器
信息 电信号
连续
激光器 光信号
外调 制器
输出 调制光
信息电信号 0 1 0 1 0 输出调制光波
(a)直接调制
L D 输出连续光 信息电信号 0 1 0 1 0
输出调制光波 (b)外调制
直接调制是用电信号直接调制激光器的驱动电流,使输出 光随电信号变化而实现的。
光调制器是通过电压或电场的变化最终调控输 出光的折射率、吸收率、振幅或相位的器件。
F-P滤波器的传输特性
(a) 传输函数
(b) N 个信道 经波分复用后 加到滤波器 输入端的频谱图
(c) 滤波器输出频谱图
T(f )
传 1.0 输 函 0.5 数
P
in
f



f ch

f f
i1
f2
Pout f
输 出 功 率
P1 P2
FSR= f L
f
3
fs
P3
f1
f
2
f
3
f F-P
光频
输出 光纤1
出射光
光纤
微反射镜
镜面 旋转轴
输出 光纤2
控制 信号
硅衬底PLC
MEMS光开关优缺点
具有机械光开关和波导光开关的优点,却克服了 它们所固有的缺点;
采用了机械光开关的原理,但又能象波导开关那 样,集成在单片硅基上;
基于围绕微机械中枢转动的自由移动镜面。 主要开发商有美国Lucent、德克萨斯仪表公司和
光栅型解复用器
(a)普通透镜反射光栅
(b)渐变折射率透镜反射光栅
AWG型
星形耦合器
1

光纤通信(第二版)课件PPT(刘增基著)

光纤通信(第二版)课件PPT(刘增基著)

第1章 概 论
为了克服气候对激光通信的影响,人们自然想到把激光束 限制在特定的空间内传输, 因而提出了透镜波导和反射镜波导的 光波传输系统。透镜波导是在金属管内每隔一定距离安装一个 透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。 反射镜波导和透镜波导相似,是用与光束传输方向成45°角的 两个平行反射镜代替透镜而构成的。这两种波导,从理论上讲 是可行的,但在实际应用中遇到了不可克服的困难。首先,现 场施工中校准和安装十分复杂;其次,为了防止地面活动对波
由于没有找到稳定可靠和低损耗的传输介质,对光通信的 研究曾一度走入了低谷。
第1章 概 论
1.1.2 现代光纤通信 1966 年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆
(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用 光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了 现代光通信——光纤通信的基础。当时石英纤维的损耗高达 1000 dB/km以上,高锟等人指出:这样大的损耗不是石英纤维 本身固有的特性,而是由于材料中的杂质,例如过渡金属(Fe、 Cu等)离子的吸收产生的。材料本身固有的损耗基本上由瑞利 (Rayleigh)散射决定,它随波长的四次方而下降,其损耗很小。 因此有可能通过原材料的提纯制造出适合于长距离通信使用的 低损耗光纤。如果把材料中金属离子含量的比重降低到10-6以 下,就可以使光纤损耗减小到10 dB/km。再通过改进制造工艺 的热处理提高材料的均匀性,可以进一步把损耗减小到几 dB/km。这个思想和预测受到世界各国极大的重视。
十一五 普通高等教育“十一五”国家级规划教材
光 纤 通 信(第二版)
刘增基 周洋溢 胡辽林 编著
任光亮 周绮丽
西 安 电 子西科 技 大 学 出 版 社

光纤通信原理第三章3 光接收机灵敏度

光纤通信原理第三章3 光接收机灵敏度

v0 :"0" 码时输出电压的均值; v1 :"1" 码时输出电压的均值; D : 判决电平; f 0 ( x) :"0" 码时输出电压的概率密度 f1 ( x) :"1" 码时输出电压的概率密度
“0”码误判为“1”码的概率:
E01 =
“1”码误判为“0”码的概率:
E10 =
总误码率 BER
BER = P(0)E01 + P(1)E10
BER = P(0)E01 + P(1)E10
一般线路编码:P(0)=P(1) 则:
1 BER = ( E01 + E10 )
2
3.判决电平与灵敏度的计算
为使误码率最小
E01 = E10
D - V0 = V1 - D = Q
0
1
BER =
误码率和Q的对应关系
灵敏度的计算:
1. 从要求达到的误码率→Q值;
2. 计算出 0 和 1 → V0和V1;
3. 由光电检测器的响应度和放大器的传递 函数求出输入端“1”和“0”码时接收光功 率;
4. 求出平均光功率。
P(0)和P(1)分别表示码流中“0”码和“1”码出现的概
放大器的噪声是高斯分布的白噪声; 光电变换是泊松分布的随机过程; 雪崩倍增过程则是一个非常复杂的 随机过程。
1.高斯近似假设
放大器的噪声是概率密度函数为高斯函 数的白噪声
f ( x) =
v : 均值;
2: 放大器输出端的总噪声功率
2 =
2
Vna
简化计算: PIN 和APD近似为高斯分布
的随机过程
放大器噪声与检测器噪声之和的概率 密度函数仍为高斯函数

光纤通信系统

光纤通信系统
本章对光的性质、光在光纤中的传输 和光纤通信的特点等加以介绍.
第一节 光纤通信的发展概况
光波的波长在微米级,频率为10^14 HZ数量 级.由电磁波谱中可以看出,紫外线、可见光、红 外线均属于光波的范畴.
目前光纤通信使用的波长范围是在近红外区 内,即波长为0.8~1.8um.可分为短波长和长波 长波段,短波段是指波长为0.85um,长波长段是指 1.31um和1.55um,这是目前所采用的三个通信窗 口.
一.对光源的要求是:寿命长;有足够的
输出光功率;电光转换效率应不低于当前
半导体电子器件的转换率约10﹪;发射波长
必须在低损耗传输窗口附近;发光面积和
光束的发散角要小,谱线宽度要狭窄.
二、目前广泛使用的光源有半导体发光二极管和半 导体激光器,半导体光源有如下特点:
1、体积小,发光面积可以与光纤相比较,从而有较 高的耦合效率;
分路耦合不方便
第三节 光纤通信的基本组成
光纤通信是以光波做载波,以光缆作为
传输的通信系统.目前实用的光纤通信系
统,普遍采用的是数字编码、强度调制—直
接检波通信系统.它由常规的电端机、光
端机、光中继器及光缆传输线路组成,如图
2—2所示.该系统分为三大部分:光发送、
光传输和光接收,光发送完成电光转换任务,
2、光纤数字系统,它是用PCM数字电信号直接对光源进行强度调
制的系统.其通信距离长,传输质量高,是被广为采用的系统.
四、按传输的速率分类 1、低速光纤通信系统,一般传输信号为2Mbit/s或
8MBit/s. 2、高速光纤通信系统,它的传输信号速率为
34Mbit/s,140Mbit/s,以上的系统,有时把速率等于和高于 140Mbit/s的系统才称为高速光纤通信系统. 五、按应用范围分类 1、公用光纤通信系统,邮电部门应用的光纤系统称为公用 光纤通信系统.它包括光纤市话中继通信系统,光纤长途 通信系统,光纤用户环路系统. 2、专用光纤通信系统,指邮电部门以外的各部门应用的光 纤通信系统,例如电力、铁路、石油、广播电视,交通,军事 等的应用都称为专用光纤通信系统.

光纤通信第三章3-接收机灵敏度

光纤通信第三章3-接收机灵敏度
境因素,并采取适当的措施来确保系统的可靠性和稳定性。
系统升级与维护
兼容性
当考虑升级光纤通信系统时,必须确保新接 收机与现有系统的其他部分兼容。这包括与 发送器、中继器和网络的兼容性。不兼容的 设备可能导致信号质量下降、通信中断或其 他不可预测的行为。
维护和修理
在光纤通信系统的运营期间,接收机可能需 要定期维护和修理。这可能涉及清洁光学元 件、检查连接器和电缆、以及更换损坏的组 件等任务。为了确保系统的可靠性和稳定性 ,必须采取适当的维护措施并快速修理任何
光纤通信第三章接收机灵敏度

CONTENCT

• 接收机灵敏度的定义 • 接收机灵敏度与系统性能的关系 • 提高接收机灵敏度的方法 • 接收机灵敏度与其他参数的关系 • 实际应用中的考虑因素
01
接收机灵敏度的定义
定义
接收机灵敏度是指接收机在特定噪声背景下,能够检测到的最小 信号功率。它反映了接收机对微弱信号的检测能力。
影响因素
01
02
03
04
噪声水平
接收机的内部噪声和外部噪声 都会影响其灵敏度。内部噪声 主要由电子器件的热噪声和散 粒噪声引起,外部噪声则包括 环境噪声和邻近信道的干扰噪 声。
动态范围
动态范围是指接收机在保证一 定性能指标下,能够接收的最 大信号功率与最小信号功率之 比。动态范围越大,表示接收 机能够在较大的信号变化范围 内保持稳定的性能。
100%
噪声来源
主要包括散弹噪声、热噪声和激 光器自发辐射噪声等。
80%
信噪比改善
通过降低噪声、提高信号功率或 降低系统带宽等方法可以提高信 噪比,从而提高接收机灵敏度。
动态范围
动态范围
系统正常工作所需的输入信号功率范围,即最大可承受的信号功率与 阈值信号之间的差值。

光纤通信原理-(全套)PPT课件

光纤通信原理-(全套)PPT课件

为了描述光纤中传输的模式数目,在
此引入一个非常重要的结构参数,即光纤
的归一化频率,一般用V表示,其表达式 如下:
V k 0 n m a2 2 0n m a2 C n m a2
1. 多模光纤
顾明思义,多模光纤就是允许多个模 式在其中传输的光纤,或者说在多模光纤 中允许存在多个分离的传导模。
光纤的作用是为光信号的传送提供传 送媒介(信道),将光信号由一处送到另一 处。
中继器分为电中继器和光中继器(光放 大器)两种,其主要作用就是延长光信号的 传输距离。
1.3.2 光纤通信系统的分类
根据调制信号的类型,光纤通信系统 可以分为模拟光纤通信系统和数字光纤通 信系统。
根据光源的调制方式,光纤通信系统 可以分为直接调制光纤通信系统和间接调 制光纤通信系统。
1.2 光纤通信的主要特性
1.2.1 光纤通信的优点
1. 光纤的容量大
光纤通信是以光纤为传输媒介,光波为载 波的通信系统,其载波—光波具有很高的 频率(约1014Hz)损耗低、中继距离长
目前,实用的光纤通信系统使用的光 纤多为石英光纤,此类光纤在1.55μm波长 区 的 损 耗 可 低 到 0 . 1 8 dB/km, 比 已 知 的 其 他通信线路的损耗都低得多,因此,由其 组成的光纤通信系统的中继距离也较其它 介质构成的系统长得多。
图2.2 光纤的折射率分布
光纤的折射率变化可以用折射率 沿半径的分布函数n(r)来表示。
n r n n 1 2
r a r a
2. 按传输模式的数量分类
按光纤中传输的模式数量,可以将光 纤分为多模光纤(Multi-Mode Fiber,MMF) 和单模光纤(Single Mode Fiber,SMF)。

第三章 单模光纤传输特性及光纤中非线性效应

第三章  单模光纤传输特性及光纤中非线性效应

第三章单模光纤的传输特性及光纤中的非线性效应3.1.2 单模工作模特性及光功率分布 (3)3.1.3单模光纤中LP01模的高斯近似 (4)3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (6)3.2.1双折射概念 (6)3.2.2 偏振模色散概念 (8)3.2.3 单模光纤中偏振状态的演化 (9)3.2.4 单模单偏振光纤 (10)3.3单模光纤色散 (11)3.3.1 色散概述 (11)3.3.2 单模光纤的色散系数 (13)3.4 单模光纤中的非线性效应 (15)3.4.1 受激拉曼散射(SRS) (16)3.4.2 受激布里渊散射(SBS) (19)3.5 非线性折射率及相关非线性现象 (21)3.5.1 光纤的非线性折射率 (21)3.5.2 与非线性折射率有关的非线性现象 (22)3.5.3 自相位调制 (23)第三章单模光纤的传输特性及光纤中的非线性效应3.1 单模光纤的传输特性单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。

例如在阶跃型光纤只传播HE11模(或LP01)的光纤。

由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因而单模光纤拥有巨大的传输带宽。

长途光纤通信系统都无例外的采用单模光纤作为传输介质。

由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。

单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。

3.1.1 单模条件和截止波长阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为2.405。

单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味着归一化工作频率应满足条件:0<V<2.405。

单模光纤的截止波长也就是LP 11模的截止波长,在光纤结构参数n 1、Δ及a 已知的条件下,其截止波长为: a n U a n cc 112612.222∆=∆=πλ按上式计算截止波长只有理论意义。

光纤通信原理 第三章 光纤通信技术

光纤通信原理 第三章 光纤通信技术

图 双纤单向WDM传输
(2) 单纤双向传输。 双向WDM传输是指光通路在一根光 纤上同时向两个不同的方向传输。如图7.8所示,所用波长相 互分开, 以实现双向全双工的通信。
1 光发射机 1
光接机 1


n 光发射机 n 1′ 光接收机
复用/解复用器

n′ 光接收机
1…n
光纤 放大器
n+1…2n
光接收机 n
在接收端通过光解复用器将不同波长的信号分开,完成多路光信号 传输的任务。
反方向通过另一根光纤传输的原理与此相同。
1 光发射机
1

复用器
n 光发射机 n
1′ 光接收机 n′ 光接收机

解复用器
光纤放大器 1…n
光纤放大器 1…n
解复用器
光接收机
1

光接收机 n
复用器
1 光发射机
1′

n 光发射机
n′
如果一个区域内所有的光纤传输链路都升级为WDM传输, 我们就可以在这些WDM链路的交叉(结点)处设置以波长为单位 对光信号进行交叉连接的光交叉连接设备(OXC),或进行光上下 路的光分插复用器(OADM),则在原来由光纤链路组成的物理层 上面就会形成一个新的光层。
在这个光层中,相邻光纤链路中的波长通道可以连接起来, 形成一个跨越多个OXC和OADM的光通路,完成端到端的信息 传送,并且这种光通路可以根据需要灵活、动态地建立和释放, 这就是目前引人注目的、 新一代的WDM全光网络。
复用/解复用器 n+1
光发射机
1′

2n 光发射机
n′
图 单纤双向WDM传输
双向WDM系统在设计和应用时必须要考虑几个关键的系 统因素:

第3章光无源器件

第3章光无源器件

主要性能指标
插入损耗
指光纤中的光信号通过连接器后,其输出光功率相对输入 光功率的比率的分贝数,其表达式为:
光缆跳线(Jumper Cable):将一根光纤的两头都装上插头, 称为跳线。连接器插头是其特殊情况,即只在光纤一头装有插
头。
跳线可以是
单芯的或多芯的。 光纤
套管
插针 粘结剂
转换器(Adaptor):把光纤插头连接在一起,从而使 光纤接通的器件。转换器俗称插座或法兰盘。
转换器可以连接同型号或不同型号的插头。可以连接一 对或几对或多芯插头。
Optical Fiber Communication technology
光纤通信技术 主讲人: 何兴道: Xd2@ ➢万生鹏: sp_wan@
第三章 光无源器件 (Passive Components)
内容提要 连接性器件 功能性器件
光衰减器 光隔离器与光环行器 光开关 偏振控制器 光调制器
光纤线路与光发射机输出或光接收机输入之间
光纤线路与其他光无源器件之间的连接
光纤与测试仪表之间
光纤固定接头是实现光纤与光纤之间的永久性(固定)连接 ,主要用于光纤线路的构成,通常在工程现场实施。
活动连接器的型号一般由两部分组成: 结构形式/端面形式, 如FC/APC表示连接结构是金属双重螺纹终止形式,端面采用 斜面、球形连接。
FC/SC型活动连接器(用于FC和SC型插头互连)
SC型插头
SC型插头:由日本NTT研制,插针不用螺纹连接,可 以直接插拔。
FC/ST型活动连接器 (用于FC和ST型插头互连)
ST型插头:由AT&T公司开发,采用带键的卡口式锁紧结构, 确保连接时准确对准。
光无源器件按结构形式分:

光纤光学第三章PPT课件

光纤光学第三章PPT课件

子 cos
第14页/共95页
斜光线绕光纤轴线成螺旋形传播。 斜光线是三维空间光线,而子午光线只在二维平面内传播。
第15页/共95页
3.2.4 变折射率光纤的光线理论 见光纤光学(刘德明,向清,黄德修)P9面
程函方程/光线方程:
d ds
n(r)
dr ds
n(r)
若媒介是各向同性而又均匀,有
n dr const ds
当m不等0时当m1时得到混合模eh1n和he1n模的截止条件为jua0其第一个根对应u0也就是说它所对应的模在任何条件下都不会截止这个模为最低阶模称为基模he11在单模波导中导波模只有基模其余展开分量全部转变成耦合损失所以为减小耦合损失应尽量使入射光束的形状与波导基模的形状相同
参考文献: [1] 廖延彪.光纤光学,清华大学出版社,2000,3 [2] 刘德明,向清,黄德修.光纤光学,国防工业出版社,1999 [3] 马军山.光纤通信技术,人民邮电出版社,2004
第24页/共95页
分析思路
第25页/共95页
1、光纤介质的特性
响应的局部性 各向同性 线性 均匀 无损
第26页/共95页
2、光纤中麦克斯韦方程组
玻璃光纤中传导电流J =0,电导率σ=0 ;无自由电荷ρ =0,所以光纤中麦克斯韦方程 组微分形式为:
E B t H D t •D 0 •B 0
s in 2
0
r0 r
2
1 2
自聚焦透镜的折射率服从平方率分布规律:
n2 (r) n2(0)(1 Ar2)
z
z0
n(r0 ) cosz (r0 )
n(0) A
sin1
n(0) Ar
n2 (0) n2 (r0 ) cos2 z (r0 )

《光纤通信原理》PPT课件

《光纤通信原理》PPT课件
31
3-1-2 散射损耗
光线通过均匀透明介质时,从侧面是难 以看到光线的,如果介质不均匀,如空 气中漂浮的大量灰尘,我们便可以从侧 面清晰地看到光束的轨迹。这是由于介 质中的不均匀性使光线四面八方散开的 结果,这种现象称之为散射。散射损耗 是以光能的形式把能量辐射出光纤之外 的一种损耗。散射损耗可分为线性散射 损耗和非线性散射损耗。
红外吸收损耗对于波长大于2微米的光 波表现得特别强烈,形成红外吸收带。
29
杂质吸收损耗
杂质吸收损耗可以随杂质浓度的降低 而减小,直至清除。因此得到一个很宽 的低损耗波长窗口,有利于波分复用 (WDM)。
30
原子缺陷吸收损耗
原子缺陷吸收损耗可以通过选用合适的 制造工艺,不同的掺杂材料及含量使之 减小到可以忽略不记的程度。
2
1-1 光纤通信的发展与现状
1-1-1 早期的光通信 几千年前,中国就有火光通信:烽火
台,它是世界上最早的光通信,因为它 具有光通信的基本要素:光源、接受器、 信息加在光波上和光通道。
1880年,贝尔发明了光电话,它是现 代光通信的开端,但由于找不到实用的 传输手段而夭折。
3
1-1-2 光纤通信
3、弯曲特性 弯曲特性主要取决于纤芯与包层的相对折
射率差△ 以及光缆的材料和结构。实用光纤的 最小弯曲半径一般为50~70毫米,光缆的最小 弯曲半径一般为500~700毫米,等于或大于光 纤最小弯曲半径的10倍。在以上条件下,光辐 射引起的光纤附加损耗可以忽略,若小于最小 弯曲半径,附加损耗则急剧增加。
1950年曾出现过导光用的玻璃纤维, 但损耗高达1000db/Km,这天文数字的 损耗量,使有人认为光纤传输无实际意 义。
1960年,英籍华人高锟指出:如能将 光纤中过渡金属离子减少到最低限度, 有可能使光纤的损耗减少到1 db/Km,信 息容量可能超过100MHz。

光纤通信原理课件-第3章 光源与光发射机

光纤通信原理课件-第3章 光源与光发射机

光纤通信
13
第三章 光源与光发射机
受激吸收和受激辐射的速率分别比例于N1和N2,且比 例系数(吸收和辐射的概率)相等。
如果N1>N2,即受激吸收大于受激辐射。当光通过这 种物质时,光强按指数衰减, 这种物质称为吸收物质。
如果N2>N1,即受激辐射大于受激吸收,当光通过这 种物质时,会产生放大作用,这种物质称为激活物质。
电子在能级的概率
f
(E)
1
1 eE
/
kT
k 1.381023 J / K 玻尔兹曼常数
原子的能级
E3
E
E2
E f
E1
2024年5月10日8时39分
光纤通信
8
第三章 光源与光发射机
三、光与物质的作用形式
爱因斯坦指出
自发辐射
光与物质的转变存在三种不同的形式: 受激吸收
受激辐射
1、自发辐射
处于高能级的电子是不稳定的, 它将自发的向 低能级跃迁,发射出一定能量的光子。
四、 LD和LED的比较
工作波长 输出功率 入纤损耗 谱线宽度 调制带宽 寿命 用途
LD
1.31um,1.55um 5~10mw 3~5dB <2nm 1GHz 10万小时 长距离大容量
LED
0.8~1.6um <1mw 15~20dB 100nm 300MHz 100万小时 短距离
2024年5月10日8时39分
对于重掺杂P 型半导体,费米能级位于价带内——简并 型P 型半导体;
导带 E f
导带
导带
Ef
价带
价带 E f
价带
本征半导体
2024年5月10日8时40分
N型半导体

《光纤通信概论》PPT课件

《光纤通信概论》PPT课件

光源:
(1)1960年美国人梅曼(Maiman)发明了第一台红宝石激光器 (2)氦—氖(He - Ne)激光器
(3)二氧化碳(CO2)激光器
激光具有波谱宽度窄,方向性极好, 亮度极高,以及频率和 相位较一致的良好特性。是一种理想的光载波。激光器的发明 和应用, 使沉睡了80年的光通信进入一个崭新的阶段。
(1)1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个 实用光纤通信系统的现场试验,系统采用GaAlAs激光器作光源, 多模光纤作传输介质,速率为44.7 Mb/s,传输距离约10 km。
(2)1983年敷设了纵贯日本南北的光缆长途干线,全长3400 km, 初期传输速率为400 Mb/s,后来扩容到1.6 Gb/s。
光纤通信
h
1
主要内容:
第一章 概论 第二章 光纤和光缆 第三章 通信用光器件 第四章 光端机 第五章 数字光纤通信系统 第六章 光纤通信新技术
h
2
什么叫通信? 什么叫光纤通信?
利用光纤传输光波信号的通信方式。
h
3
第1章概论
1·1 光纤通信发展的历史和现状 1·2 1·3 光纤通信系统的基本组成
二、光源研制的发展
(1)1970 年,美国贝尔实验室、日本电气公司(NEC)和前 苏联先后研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质 结半导体激光器(短波长)。寿命只有几个小时。
(2)1973 年,半导体激光器寿命达到7000小时。
(3)1977 年,贝尔实验室研制的半导体激光器寿命达到10 万小时(约11.4年),外推寿命达到100万小时,完全满足实 用化的要求。
h
6
传输介质的探索:
美国麻省理工学院利用He - Ne激光器和CO2激光器进 行了大气激光通信试验。实验证明:通过大气的传播承载 信息的光波,实现点对点的通信是可行的。但是通信的距 离和稳定性都受到极大的限制,体现在以下两个方面:

光纤通信导论(英文)PPT课件

光纤通信导论(英文)PPT课件
1
3.1 Couplers
[ wavelength independent, wavelength
selective for 1.31/1.55 multiplexing]
1
α
1-α
α:coupling ratio
3dB couple α= 1/2
α = 0.95 (for monitoring)
)E
i
T
Ei Ei
This relation holds for arbitraryEi
STS I
(3.4)
I : identity matrix
Eq(3.4) can be extended to any number of ports
7
For a 2 x 2 symmetrical coupler
For a 3dB coupler
T11(
f
)
T12 (
f
)
1 2
sin2(kf ) cos2(kf ) 1 2
k (2n 1) 4 n 0
5
3.1.2 Conservation of Energy (S-parameter)
E01 E02
s11 s21
s12 s22
Ei1 Ei2
Example: A 3dB coupler may have 0.2dB excess loss
3
a1→ 3.1.1 Principle of Operation
→ b1
a2→
→ b2
E: electrical field
S-parameters
For lossless couplers
E01( E02 (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Material Dispersion
Waveguide Dispersion
CHAPTER3.2 Signal Distortion in Fibers
Intramodal Dispersion
Material Dispersion arises from the variation of the refractive index of the core material as a function of wavelength . Waveguide Dispersion occurs because a single-model fiber confines only about 80% of the optical power to the core.
These distortion effects can be explained by examing the behavior of the group velocities of the guided modes.
the group velocity is the speed at which energy in a particular mode travels along the fiber.
Core and Cladding Losses
vm
1
Pcore P
2
Pclad P
Pcore 1 Pclad
P
P
vm
1
(2
1 )
Pclad P

(r)

1

(
2

1)
n2 n
(0) n2 2 (0) n
(r)
2 2
CHAPTER3.1 Attenuation in Fibers
CHAPTER3 Signal Degradation in Fibers
Loss The MAX distance between transmitter and receiver
Distortion
The Bandwidth
Questions? 1)What are the loss or signal attenuation in fibers? 2)Why and to what degree do optical signals get distorted?
Total delay difference:
CHAPTER3.2 Signal Distortion in Fibers
Material dispersion
•because the index of refraction varies as a function of the optical wavelength.
• Extrinsic absorption by impurity atoms in the glass material. transition metal ions, OH ions
• Intrinsic absorption by the basic constituent atoms of the fiber. electronic absorption bands on the ultraviolet region; atomic vibration bands in the near-infrared region.
CHAPTER3.2 Signal Distortion in Fibers
Intramodal Dispersion
Intramodal Dispersion is pulse spreading that occurs within a single mode. The spreading arises from the finite spectral emission width of an optical source. This phenomenon is also known as group velocity dispersion.
• Dispersive properties determine the limit of information capacity of the fiber.
•A measure of the information capacity of an optical waveguide is specified by bandwidth – distance product: MHz·km .
Scattering Losses
Rayleigh Scattering


8 3 34
(n2 )2V
Single-mode fiber attenuation
CHAPTER3.1 Attenuation in Fibers
Radiatif finite radius of curvature.
Of these three, waveguide dispersion usually can be ignored in multimode fibers. However, this effect is significant in single –mode fibers.
CHAPTER3.2 Signal Distortion in Fibers
CHAPTER3.2 Signal Distortion in Fibers
Intermodal Dispersion
The other factor giving rise to pulse spreading is intermodal delay, which is a result of each mode having a different value of the group velocity at a single frequency.
CHAPTER3.2 Signal Distortion in Fibers
Group Delay
depends on the wavelength, each spectral component of any particular mode takes a different amount of time to travel a certain distance.
CHAPTER3.1 Attenuation in Fibers
Attenuation characteristics
CHAPTER3.1 Attenuation in Fibers
Scattering losses
Since glass is made up of several oxides, refractive –index variation occurs within the glass over distances that are small compared with the wavelength. These index variations cause Rayleigh-type scattering of the light.
CHAPTER3.1 Attenuation in Fibers
Absorption
Absorption is caused by three different mechanisms:
• Atomic defects in the glass composition. imperfections in the atomic structure of the fiber material.
Fiber can be subject to two types of bends: macroscopic bends: having radii that are large compared with the fiber diameter.
random microscopic bends: can arise when the fibers are incorporated into cables.
Signal attenuation: is one of the most important properties of an optical fiber.
It largely determines the maximum unamplified or repeaterless between a transmitter and a receiver.
Pulse broadening and attenuation
CHAPTER3.2 Signal Distortion in Fibers
Information Capacity
• Signal distortion results in Pulse broadening . • Pulse broadening will eventually cause a pulse to overlap with neighboring pulse. • Adjacent pulses can no longer be individually distinguished at the receiver and errors will occur.
CHAPTER3 Signal Degradation in Fibers
3.1 ATTENUATION 3.2 SIGNAL DISTORTION IN OPTICAL WAVEGUIDES 3.5 DESIGN OPTIMIZATION OF SINGLE MODE FIBERS
CHAPTER3.1 Attenuation in Fibers
CHAPTER3.1 Attenuation in Fibers
Macrobending Losses faster
相关文档
最新文档