电路定理的验证

合集下载

电路实验戴维南定理实验报告

电路实验戴维南定理实验报告

电路实验戴维南定理实验报告一、实验目的本次电路实验的主要目的是掌握戴维南定理的基本原理和应用方法,并通过实验验证戴维南定理的正确性。

二、实验原理戴维南定理是电路分析中常用的一种方法,它可以将复杂的电路简化为一个等效电路,从而方便我们进行计算和分析。

其基本原理可以概括为:在任意一个电路中,任意两个节点之间可以看作是一个内阻为Ri,电压为Vi的电源与一个等效电阻为Re的负载相连。

其中,Ri称为内部电阻,Vi称为内部电压,Re称为等效电阻。

根据戴维南定理,我们可以将一个复杂的电路简化成一个等效电路,在计算和分析时更加方便。

具体来说,在使用戴维南定理求解某个节点处的电流或者电压时,我们可以先将该节点与其他节点分离开来,并将其看作是一个独立的子回路。

然后,在该子回路中找到两个节点,并计算它们之间的等效内部阻抗和等效内部电压。

最后,在整个原始回路中用等效内部阻抗和等效内部电压代替该子回路。

三、实验器材1.数字万用表2.直流稳压电源3.电阻箱4.导线等。

四、实验步骤1.搭建电路:按照实验要求,搭建好所需的电路。

2.测试内部电阻:将数字万用表设置为电阻档位,分别测量各个元件的内部电阻,并记录下来。

3.测量内部电压:将数字万用表设置为电压档位,分别测量各个元件的内部电压,并记录下来。

4.计算等效内部阻抗和等效内部电压:根据测量结果,计算出该子回路中的等效内部阻抗和等效内部电压。

5.应用戴维南定理:在整个原始回路中用等效内部阻抗和等效内部电压代替该子回路,并应用戴维南定理进行计算和分析。

6.验证戴维南定理:通过比较实验结果和计算结果,验证戴维南定理的正确性。

五、实验结果与分析在本次实验中,我们搭建了一个简单的电路,并使用戴维南定理进行了计算和分析。

通过测量各个元件的内部电阻和内部电压,并根据戴维南定理计算出等效内部阻抗和等效内部电压,我们成功地将该电路简化为一个等效电路。

最终,通过比较实验结果和计算结果,我们验证了戴维南定理的正确性。

电路与电子学实验报告(电路定理的验证)

电路与电子学实验报告(电路定理的验证)

深圳大学实验报告课程名称:电路与电子学实验项目名称:电路定理的验证学院:计算机与软件学院专业:指导教师:报告人:学号:班级:实验时间:2012-04-13实验报告提交时间:2012-04-21教务处制一、实验目的1.掌握含源二端网络戴维南等效电路参数的测定方法2.验证戴维南定理、诺顿定理、叠加定理二、实验环境1.直流数字电压表、直流数字电流表2.恒压源(双路0-30V可调)3.恒流源(0-200mA可调)4.元件箱(一)EEL-51、元件箱(二)EEL-52、电工原理(一)EEL-53组件三、实验内容与步骤:任务1.测有源二端网络.图3步1-1.按图3线路,从电工原理(二)EEL-53中选用,接入恒压源Us1=12V 和恒流源Is=20mA(注意Is的接入方向)及可变电阻RL。

步1-2.S1往上拨,S2往右拨(注意保持断开此试验箱上固定的负载R L,选择专用原件挂箱EEL-51的可变电阻R接入),用电压表测量开路电压U oc(U AB),将数据记入表1中。

步1-3.S1往下拔(将负载RL短路),S2往右拨(注意保持断开此试验箱上固定的负载R L),用电流表测量短路电流I sc,将数据记入表1中。

表1任务2.测量有源二端网络的外特性步2-1.在图3电路中,R L用元件箱(一)EEL-51的R接入,并注意S2往右拨;步2-2.改变负载电阻R L的阻值,逐点测量对应电压、电流,将数据记入表2中。

计算有源二端网络的等效参数U s和R s表2任务3.验证戴维南定理(a)(b)图43-1.测量有源二端网络等效电压源的外特性:步3-1-a 图4(a)电路是图3的等效电压源电路,图中,电压源U s用表1中的U oc数值,内阻R s按表1中计算出来的R s(取整)选取固定电阻(从元件箱EEL-51中选510Ω/8W的电阻接入)。

并改变负载电阻R L(从元件箱EEL-51中选可变电阻)的阻值,逐点测量对应的电压、电流,将数据记入表3中。

电路实验 验证基尔霍夫定律

电路实验 验证基尔霍夫定律

实验一 基尔霍夫定律一、实验目的1.用实验数据验证基尔霍夫定律的正确性; 2.加深对基尔霍夫定律的理解; 3.熟练掌握仪器仪表的使用方法。

二、实验原理基尔霍夫定律是电路的基本定律之一,它规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,即应能分别满足基尔霍夫电流定律和电压定律。

基尔霍夫电流定律(KCL ):在集总参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零。

即∑I=0通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。

基尔霍夫电压定律(KVL ):在集中参数电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零。

即∑U=0通常约定:凡支路电压或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。

三、实验内容实验线路如图1.1所示。

1. 实验前先任意设定三条支路的电 流参考方向,如图中的I 1、I 2、I 3所示。

2. 分别将两路直流稳压电源接入电 路,令u 1=6V ,u 2 =12V ,实验中调好后保 持不变。

3.用数字万用表测量R 1 ~R 5 电阻元 图 1.1基尔霍夫定律线路图注意图中E 和F 互换一下 件的参数取50~300Ω之间。

4.将直流毫安表分别串入三条支路中,记录电流值填入表中,注意方向。

5.用直流电压表分别测量两路电源及电阻元件上的电压值,记录电压值填入表中。

四、实验注意事项1.防止在实验过程中,电源两端碰线造成短路。

2.用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。

倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,R 4R 5u 1u 2此时指针正偏,但读得的电流值必须冠以负号。

五、实验报告内容1、根据实验数据,选定实验电路中的任一个节点,验证KCL 的正确性。

选定A 点,列式计算利用三个电流值验证KCL 正确性。

实验数据!2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL 的正确性。

电路基本定理研究实验报告

电路基本定理研究实验报告

电路基本定理研究实验报告电路基本定理研究实验报告一、实验目的本实验旨在通过实际操作,深入理解和掌握电路基本定理,包括基尔霍夫定律、欧姆定律、戴维南定理和诺顿定理。

通过实验,期望学生能将理论知识应用于实际电路中,提高实践能力和理论水平。

二、实验原理1.基尔霍夫定律:基尔霍夫定律是电路理论中最基本的定律之一,它包括两个部分,即节点电流定律和回路电压定律。

节点电流定律指出,在任意一个节点上,流入的电流总和等于流出的电流总和;回路电压定律指出,在任意一个闭合回路中,电势升高的总和等于电势降低的总和。

2.欧姆定律:欧姆定律是电路中有关电阻、电流和电压的基本定律。

它指出,在一个线性电阻器件中,电压与电流成正比,电阻保持恒定。

3.戴维南定理:戴维南定理又称为等效电源定理,它可以将一个含源电路等效为一个电压源和一个电阻串联的形式。

该定理实质上是将有源二端网络等效为一个实际电源。

4.诺顿定理:诺顿定理是戴维南定理的反定理,它可以将一个含源电路等效为一个电流源和电阻并联的形式。

该定理也是将有源二端网络等效为一个实际电源。

三、实验步骤1.准备实验器材:电源、电阻器、电感器、电容器、开关、导线等。

2.搭建实验电路:根据实验要求,设计并搭建实际电路。

3.测量数据:使用万用表等测量仪器,测量电路中的电流、电压、电阻等参数。

4.分析数据:根据测量数据,分析电路的性能和特点,验证电路基本定理的正确性。

5.整理实验结果:整理实验数据,撰写实验报告。

四、实验结果及分析实验一:基尔霍夫定律验证在实验中,我们搭建了一个简单的电路,包含一个电源、一个电阻和一个电流表。

通过测量流入和流出的电流,验证了节点电流定律。

同时,我们还搭建了一个闭合回路,包含一个电源、一个电阻和一个电压表,验证了回路电压定律。

结果表明,实验数据与理论预测相符,证明基尔霍夫定律的正确性。

实验二:欧姆定律验证在实验中,我们选取了三个不同阻值的电阻器,分别测量了它们两端的电压和流过的电流。

电分实验报告-电路定理的验证

电分实验报告-电路定理的验证

深圳大学实验报告课程名称:电路分析实验报告
实验项目名称:电路定理的验证
学院:信息工程学院
专业:
指导教师:吴迪
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务部制
任务二:测量有源二端网络的外特性
(1):在上图电路中,S2仍往右拨(仍保持断开此实验箱上原有的可调负载R L)。

将S1往上拨,在A、B端外接可调负载R L。

R L选用元件箱(一)EEL-51中的x100Ω的可调
任务四:验证叠加原理
(1):按下图连线,图中的电源U s1用恒压源I路可调电压输出端,选择20V档,并将输出电压先调到+12V;U s2用恒压源II路可调电压输出端,选择10V档,并将输出电压先调到+6V(以直流数字电压表读数为准);开关S3往上拨(投向R3侧)。

(测量数据需记录正负号)、
(2)U s1电源单独作用时,将开关S1往上拨(投向U s1侧),开关S2往下拨(投向短路侧),测量各电压和电流记录于表4中。

(3)U s2电源单独作用时,将开关S1往下拨(投向短路侧),开关S2往上拨(投向U s2侧),测量各电压和电流记录于表4中。

(4)U s1和U s2共同作用时,开关S1往上拨(投向U s1侧),S2也往上拨(投向U s2侧),测量各电压和电流记录于表4中
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

戴维南和诺顿定理的验证实验报告

戴维南和诺顿定理的验证实验报告

戴维南和诺顿定理的验证实验报告实验目的:验证戴维南和诺顿定理。

实验原理:戴维南和诺顿定理是电路理论中的基本定理之一。

它表示任何包含电压源和电流源的线性电路可以用其电压源和电流源的代数和来等效为一个独立电压源和电流源的并联电路。

实验装置:- 直流电源- 滑动变阻器- 电阻器- 电压表- 电流表- 连接线实验步骤:1. 将实验装置按照电路图连接好,确保电路没有接错。

2. 设置直流电压源的电压值为一定值,例如5V。

3. 测量并记录电路中各个元件的电压和电流数值。

4. 更改电路中的滑动变阻器的阻值,测量并记录电路中各个元件的电压和电流数值。

5. 使用戴维南和诺顿定理,将实验得到的电压和电流数据进行计算,验证定理的成立。

实验结果:表格1:电路1的各个元件的电压和电流数据元件电压(V)电流(A)电压源 5.0 0.5电流源0.0 1.0电阻器R1 2.5 0.5电阻器R2 2.5 0.5总电阻(R1+R2) 5.0 1.0表格2:电路2的各个元件的电压和电流数据元件电压(V)电流(A)电压源 5.0 0.5电流源0.0 1.0电阻器R1 2.0 0.4电阻器R2 3.0 0.6总电阻(R1+R2) 5.0 1.0根据戴维南和诺顿定理,两个电路的电压源和电流源的代数和应该相等。

计算结果:对于电路1:电压源的代数和= 5.0V + 0.0V = 5.0V,电流源的代数和= 0.5A + 1.0A = 1.5A。

对于电路2:电压源的代数和= 5.0V + 0.0V = 5.0V,电流源的代数和= 0.5A + 1.0A = 1.5A。

实验结论:通过实验结果和计算可以看出,戴维南和诺顿定理在实际电路中成立,验证了定理的准确性。

电路实验报告叠加定理

电路实验报告叠加定理

电路实验报告叠加定理
实验名称:叠加定理的验证
一、实验目的:使用NIMultisium验证叠加定理。

二、实验原理:
在有多个独立源共同作用下的线性电路中,任一电压或电流都是电路中各个独立电源单独作用时,在该处产生的电压或电流的叠加。

通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

三、实验方案:
用Multisium画出如下电路图,并开始模拟运行,可以在电压表和电流表中观测到如图数值。

叠加定理的验证:图
1
叠加定理的验证:图2
叠加定理的验证:图3
四、实验结论:
通过上面3幅图我们不难观测出:
对于图1中R1上的电流,其显示值为1.5000,很明显为图2,图3中对应的电流表数值之和。

同理,可以得到图1中R3处的电流和R2上的电压也满足这种关系。

所以我们不难得出叠加定理。

实验4-3---叠加定理和齐次定理的验证

实验4-3---叠加定理和齐次定理的验证

实验4-3---叠加定理和齐次定理的验证
叠加定理和齐次定理是电路分析中的重要定理,它们理解了特定的电路运行的原理和
类型,本文旨在验证它们的正确性。

首先,让我们来证明叠加定理,它规定,两个电压源可以被放在一起以形成一个总电
压源,其值等于它们之和。

对于证明,我们将考虑一个简单的电路,由两个电池和一个放
电灯泡组成,如图1所示。

图1
我们以另一个简单电路作为对照,如图2所示。

该电路由单个电池和一个放电灯泡组成,电池电势与图1中所示的两个等电势的电池的输出之和相同。

然后,我们测量了两个
电路中的灯泡的明亮度,结果发现,两者的亮度是相同的。

由此可见,我们可以得出结论,两个电路中的灯泡得到的总电量是相同的,这也就证实了叠加定理的正确性。

图2
接下来,让我们来证明齐次定理,它规定,具有相同电势的两个电源的输出的总电量
是相同的。

为了证明这一点,我们将比较两个不同电路,分别由两个电池组成,但它们的
电势不同,情况一如图3所示,电池的电势分别为27V和13V;情况二如图4所示,电池
的电势分别为27V和27V。

图3
图4
以上证明叠加定理和齐次定理的正确性。

叠加定理规定,两个电压源可以被放在一起
以形成一个总电压源,其值等于它们之和;而根据齐次定理,具有相同电势的两个电源的
输出的总电量是相同的。

因此,叠加定理和齐次定理是正确的,为电路分析提供了有力支持。

试验一基尔霍夫定律的验证

试验一基尔霍夫定律的验证
2. 各电阻器所消耗的功率能否用叠加原 理计算得出? 试用上述实验数据,进行计算 并作结论。
3. 通过实验步骤6及分析表格7-2的数据, 你能得出什么样的结论?
4. 心得体会及其他。
实验三 戴维南定理和诺顿定理的验 证
──有源二端网络等效参数的测定
一、实验目的
1. 验证戴维南定理和诺顿定理的正确性, 加深对该定理的理解。
“基尔霍夫定律/叠加原理”线路。 1. 实验前先任意设定三条支路和三个闭合回路
的电流正方向。图5-1中的I1、I2、I3的方向已设定。 三个闭合回路的电流正方向可设为ADEFA、 BADCB和FBCEF。 2. 分别将两路直流稳压源接入电路,令U1=6V, U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至 数字毫安表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座 中,读出并记录电流值。 5. 用直流数字电压表分别测量两路电源及电阻元 件上的电压值,记录之。
运用上述定律时必须注意各支路或闭合回路中 电流的正方向,此方向可预先任意设定。
三、实验设备
直流稳压电源0~30V可调二路(DG04 ), 万用表,直流数字电压表0~200V(D31), 直流数字毫安表0~200mV(D31),迭加原 理实验电路板(DG05)
四、实验内容 实验线路与实验五图5-1相同,用DG05挂箱的
6.K3投向二极管IN4007侧),重复1~5的测量过程, 数据记入表7-2。
7. 任意按下某个故障设置按键,重复实验内容4的 测量和记录,再根据测量结果判断出故障的性质。 表 7-2
五、实验注意事项
1. 用电流插头测量各支路电流时,或者 用电压表测量电压降时,应注意仪表的极性, 正确判断测得值的+、-号后,记入数据表 格。

电路实验与实践复

电路实验与实践复
八个操作实验的实验内容 各电子仪器设备的使用方法
RC

谐空三电戴叠
分 和 微 分 电 路
网 络 的 相 频 和 幅 频
振 电 路
心 变 压 器 的 研 究
表 法 测 量 阻 抗
压 控 制 电 压 源 电 路
维 南 定 理
加 定 理
Z=R+jX


围操 作 实 验 考 试 范
• 只有暗淡的直竖线:该通道的垂直灵敏度选择过小,而信号 的电压幅值又很大,才导致屏幕中无法观察到完整的波形。 因此应当调节该通道电压灵敏度旋钮,让波形峰-峰值间距离 在4~8格之间。
1. 图形不稳定:一种可能是同步电平旋钮LEVEL没有锁定;另 一种可能是垂直工作方式所选择的通道与触发源SOURCE选 择不一致。
U 以 例理 ,论 实v 值 际 U测oR 量cU = v4R o.5ic 7VR,v Ri4 =.5 926.6V 8 0Ω9为
电压值为RV两端的电压值
从结果中可以知道误差基本上可以忽 略不计。
实验二、运 算放大器和 受控电源
受控源与独立源的区别是什么?
答:独立电源的电动势或电流是某一固 定数值或某一时间函数,不随电路其余 部分的状态而改变。
受控电源的电动势或电流则随网络中另 一支路的电流或电压(称为控制量)而变化。
详细解答见课本141面
实验三、交流电路参数.的测定
IC
.
I
.
. 用电三容表量法还测要电满路足参不数等时式,B’为<什2么|B|要,在方被能测判元别件元α两件端的并性接质电?容用,相U而量且图
.
. I 加以说明。
I 答:因为在被测元件I两C端并2接I电Z容s,in观察电流表的读数变Z 化情况即

电路基本定理及定律的验证实验报告

电路基本定理及定律的验证实验报告

一、实验名称:电路基本定律及定理的验证 二、实验目的:1、 通过实验验证并加深对基尔霍夫定律、叠加原理及其适用范围的理解;2、 用实验验证并加深对戴维南定理与诺顿定理的理解;3、 掌握电压源与电流源相互转换的条件和方法;4、 灵活运用等效电源定理来简化复杂线性电路的分析。

三、实验原理基尔霍夫定律:(1)基尔霍夫电流定律: 在任一时刻,流入到电路任一节点的电流的代数和为零。

5个电流的参考方向如图中所示,根据基尔霍夫定律就可写出I 1+I 2+I 3+I 4+I 5=0(2)基尔霍夫电压定律: 在任一时刻,沿闭合回路电压降的代数和总等于零。

把这一定律写成一般形式即为∑U=0。

叠加原理: 几个电压源在某线性网络中共同作用时,也可以是几个电流源共同作用于线性网络,或电压源和电流源混合共同作用。

它们在电路中任一支路产生的电流或在任意两点间所产生的电压降,等于这些电压源或电流源分别单独作用时,在该部分所产生的电流或电压降的代数和。

戴维南定理:对外电路来说,一个线性有源二端网络可以用一个电压源和一个电阻串联的电路来等效代替。

该电压源的电压等于此有源二端网络的开路电压U oc ,串联电阻等于此有源二端网络除去独立电源后(电压源短接,电流源断开)在其端口处的等效电阻R o ,这个电压源和电阻串联的电路称为戴维南等效电路。

四、实验步骤及任务(1):KCL 及KVL 的验证 实验线路图:NI 1I 2 I 3 I 4I 5KCL 定律示意图A B CDE FI 1 I 3I 2510Ω330Ω 510Ω510Ω 1k ΩU 1=10V_+KCL 及KVL 实验数据记录项目支路电流端点电压节点电流回路电压I 1(mA)I 2(mA) I 3(mA) U AC (V) U CD (V) U DA (V) I 1+ I 2- I 3 U AC +U CD + U DA计算值 7.201 -1.996 5.205 -1.996 -0.659 2.655 0 0 测量值7.201-1.9965.205-1.996-0.65872.655-0.0003(2):叠加原理的验证根据实验预习和实验过程预先用叠加原理计算出表中电压、电流计算值,最后通过电路测量验证。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据在电子电路的世界里,有两个超级明星——戴维南定理和诺顿定理。

今天,我们就来聊聊这两个家伙是怎么在实验室里大显身手的,看看它们的魔力到底有多强。

一、理论基础1.1 戴维南定理的定义戴维南定理,简单来说,就是任何复杂的线性电路都能被一个等效的电压源和一个电阻串联起来。

这就像你用一块小小的巧克力就能代替一大盘甜品,虽然外形不一样,但味道还是很棒。

我们实验的第一步,就是搭建一个电路,试试这个定理能否成立。

1.2 诺顿定理的定义接下来,诺顿定理也是个不错的家伙。

它告诉我们,复杂电路可以被看作一个等效的电流源和一个电阻并联。

这就像你一开始看到的复杂拼图,实际上只需找到几个关键的块,就能轻松搞定。

我们将把两个定理放在一起,看看它们的不同与相似。

二、实验步骤2.1 实验准备首先,我们准备了一些基本的元件,包括电压源、电阻、导线,还有一个多用表。

听起来简单,但细节可不少。

电路图纸得画好,布局得讲究,不然可就麻烦了。

我们选用的电压源是9V,电阻值则有1kΩ、2kΩ、3kΩ等,确保能覆盖多个组合。

简直像调味品,调调就能变出不同的味道。

2.2 构建电路把这些元件一一连接起来,脑海中回想着戴维南和诺顿的理论。

小心翼翼地连接,确保没有短路,也没有虚接。

电路搭建好后,开始测量输出电压和电流。

那一瞬间,心里小鹿乱撞,兴奋之余也有点紧张。

我们把输出端的电压连接到多用表上,仔细记录下每一个读数。

2.3 数据记录与分析通过不同组合测得的数据,就像一张宝藏地图。

通过计算等效电压和等效电流,开始验证我们的理论。

数据清晰地展示出,戴维南和诺顿的确为我们打开了一扇新世界的大门。

它们不是纸上谈兵,而是真正能够在现实中应用的原理。

三、实验结果3.1 戴维南定理的验证经过一番测量,我们的实验结果显示,计算出的等效电压和实测电压几乎一模一样。

那种成功的感觉,简直不能用言语来形容。

电流的流动如同一首美妙的乐章,每一个音符都在诉说着电路的故事。

戴维南定理和诺顿定理的验证

戴维南定理和诺顿定理的验证

戴维南定理和诺顿定理的验证
戴维南定理和诺顿定理是电路理论中两个重要的定理,它们分别用于求解有源二端网络的等效电路和电流控制电路。

下面是对这两个定理的验证:
戴维南定理的验证:
1. 构建一个有源二端网络,其中包含一个电阻和一个电压源。

2. 将电压源视为短路,用短路代替它,得到一个等效电路。

3. 对等效电路进行电压测量,计算出等效电压和等效电阻,并与原始电路的电压和电阻进行比较。

4. 验证等效电压和等效电阻是否相等,以此验证戴维南定理的正确性。

诺顿定理的验证:
1. 构建一个有源二端网络,其中包含一个电阻和一个电流源。

2. 将电流源视为开路,用开路代替它,得到一个等效电路。

3. 对等效电路进行电流测量,计算出等效电流和等效电阻,并与原始电路的电流和电阻进行比较。

4. 验证等效电流和等效电阻是否相等,以此验证诺顿定理的正确性。

在上述验证过程中,需要注意正确理解戴维南定理和诺顿定理的内涵和适用条件,正确进行实验操作和数据处理,以得到准确的验证结果。

同时,也需要注意实验中的安全问题,确保实验过程的顺利进行。

电路基本定律及定理的验证

电路基本定律及定理的验证

实验二电路基本定律及定理的验证一、实验目的1、通过对KCL、KVL的验证,加深对定律的理解。

2、通过对戴维南定理、叠加定理的验证,加深对定理的理解和灵活应用。

3、明确实际测量中存在的误差,学会分析误差。

二、实验设备和器材直流可调稳压电源0~30 V万用表MF-500型实验电路板三、实验原理与说明1、基尔霍夫定律(KCL、KVL)电路中的基本定律,适用于集总参数电路。

KCL:任一时刻,任一节点,所有流出该节点的电流代数和恒为零,即∑i = 0。

KVL:任一时刻,任一回路,沿某绕行方向所有元件电压的代数和恒为零,即∑u = 0。

2、叠加定理适应线性电路中的电流、电压。

线性电路中含多个独立源时,任一支路的电流或电压是每个独立源单独作用时在该支路产生的电流或电压的代数和。

电源单独作用是指:除该电源外,其他独立源取零,即电压源短路,电流源开路,受控源不变。

3、戴维南定理适应线性含源二端网络。

任一线性含源二端网络,对外电路而言,均可用一个电压源和一个电阻串联的组合来等效——戴维南等效电路。

电压源的电压为含源二端网络的开路电压U oc;等效电阻为对应无源二端网络的等效电阻R0。

4、误差分析(1)测量值与真实值间的差异称误差。

(2)误差有两类:绝对误差=︱测量值-真实值︱相对误差= (绝对误差/ 真实值)×100﹪(3)实际测量中,应利用合理测试手段使误差最小。

四、实验内容及步骤实验电路图如实验图2-1所示。

1、KCL 、KVL 的验证(1)调节两个直流电源,使一个为8V 作为U1接入AB 端,另一个为4V 作为U2接入A ’B ’两端;(2)节点O 处接通,测量I 1、I 2、I 3并填入实验表2-1中;(3)用AOO ’B ’回路,分别测电压U AO 、O O 'U 、B O 'U 、U BA 填入实验表2-1中; (4)验证∑U = U AO +O O 'U +B O 'U + U BA = 0,∑I =I 1 + I 2 + I 3 = 0。

戴维南定理和诺顿定理验证实验报告

戴维南定理和诺顿定理验证实验报告

戴维南定理和诺顿定理验证实验报告一、实验介绍戴维南定理和诺顿定理是电路基础中经常用到的定理,它们可以方便地推算出电路中的电压、电流和电阻等参数,因此在电路分析和设计中具有重要的作用。

本次实验旨在验证戴维南定理和诺顿定理的正确性,并让学生更深刻地理解它们的原理和应用。

实验器材和材料:变压器、直流电源、电阻、万用表、电路板等。

二、实验步骤1. 对所给的电路进行连线,并将其接入变压器或直流电源。

2. 记录电路中电流、电压和电阻等参数的数值。

3. 分别应用戴维南定理和诺顿定理对电路进行分析计算。

4. 比较实验结果和计算结果,检验戴维南定理和诺顿定理的正确性。

三、实验结果实验数据如下:电流:1.5A 电压:5V 电阻:3Ω应用戴维南定理计算得到电流为1.5A,电压为5V,电阻为3Ω。

应用诺顿定理计算得到电流为1.5A,电压为5V,电阻为3Ω。

通过比较实验数据和计算结果,我们可以很明显地发现,两种方法得到的数值完全一致,证明了戴维南定理和诺顿定理的正确性。

四、实验分析戴维南定理和诺顿定理的基本原理是在复杂电路中简化电路模型,从而方便计算和分析电路参数。

戴维南定理是通过等效电源的方式将多个电阻器简化为一个等效电阻器,用于正向分析电路;而诺顿定理则是通过等效电流的方式将多个电阻器简化为一个等效电流源,用于反向分析电路。

在本次实验中,我们成功地应用了戴维南定理和诺顿定理计算电路参数,并验证了定理的正确性。

实验结果表明,这两种方法可以简化计算过程,提高计算的精度和效率。

因此,掌握这两种定理对于学习和应用电路知识都有着重要的意义。

五、实验总结本次实验通过实际操作和计算得出了戴维南定理和诺顿定理的正确性,并对其应用和意义进行了更深入的理解和分析。

同时,这也是一次探究电路基础的良好机会,让学生能更好地理解电路中的各种参数,帮助学生建立起良好的电路分析的基础。

在今后的学习和应用中,我们应该进一步加深对戴维南定理和诺顿定理的理解,掌握基本的电路分析和设计方法,从而更好地应用它们进行工程实践和应用创新。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是两个非常重要的定理,它们为复杂电路的简化和分析提供了有力的工具。

为了深入理解和验证这两个定理,我们进行了一系列的实验,并对实验数据进行了详细的分析。

一、实验目的本次实验的主要目的是通过实际测量和计算,验证戴维南定理和诺顿定理的正确性,并加深对这两个定理的理解和应用。

二、实验原理1、戴维南定理戴维南定理指出,任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。

其中,电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络内部所有独立电源置零(即电压源短路,电流源开路)后的等效电阻 Ro。

2、诺顿定理诺顿定理则表明,任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。

电流源的电流等于该一端口网络的短路电流 Isc,电阻仍为网络内部所有独立电源置零后的等效电阻 Ro。

三、实验器材本次实验所使用的器材包括:直流电源、电阻箱、电压表、电流表、导线若干等。

四、实验步骤1、测量含源一端口网络的开路电压 Uoc将含源一端口网络的输出端开路,用电压表测量其两端的电压,即为开路电压 Uoc。

2、测量含源一端口网络的短路电流 Isc将含源一端口网络的输出端短路,用电流表测量其短路电流,即为短路电流 Isc。

3、求含源一端口网络的等效电阻 Ro将含源一端口网络内部的所有独立电源置零(电压源短路,电流源开路),然后用电阻箱测量其等效电阻 Ro。

4、构建戴维南等效电路根据测量得到的 Uoc 和 Ro,用一个电压源和电阻串联的组合来构建戴维南等效电路。

5、构建诺顿等效电路根据测量得到的 Isc 和 Ro,用一个电流源和电阻并联的组合来构建诺顿等效电路。

输出电压和电流,并与原含源一端口网络的测量结果进行比较。

五、实验数据记录与处理1、含源一端口网络的开路电压 Uoc 和短路电流 Isc 测量数据|测量次数|Uoc(V)|Isc(A)||||||1|_____|_____||2|_____|_____||3|_____|_____|取平均值得到:Uoc =______ V,Isc =______ A2、含源一端口网络的等效电阻 Ro 测量数据|测量次数|Ro(Ω)|||||1|_____||2|_____||3|_____|取平均值得到:Ro =______ Ω和电流测量数据|负载电阻(Ω)|原含源一端口网络|戴维南等效电路|诺顿等效电路|||||||10|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||20|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||30|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____|六、实验结果分析通过对实验数据的分析,我们可以发现:1、戴维南等效电路和诺顿等效电路在不同负载电阻下的输出电压和电流与原含源一端口网络的测量结果非常接近,误差在允许范围内。

戴维南定理和诺顿定理的验证实验报告

戴维南定理和诺顿定理的验证实验报告

戴维南定理和诺顿定理的验证实验报告戴维南定理和诺顿定理是电路分析中最为重要的定理之一,可用于简化电路分析并找出电路中各元件的电流和电压。

本文将介绍验实验过程和实验结果。

实验材料和器材1.直流电源2.多用万用表3.电流表4.电压表5.R1=2ohm的电阻6.R2=3ohm的电阻7.R3=4ohm的电阻8.R4=3ohm的电阻9.R5=2ohm的电阻10.基板11.导线实验方法:1.按照电路图连接电路2.将电压表和电流表依次连接到电路中的各个位置,记录下各个元件的电流和电压大小。

3.分别用戴维南定理和诺顿定理计算电路中各电阻负载的电流和电压大小,并与实验结果进行比对,验证定理的正确性。

实验结果:1.使用万用表分别测量R1,R2,R3,R4,R5电阻每个电阻的电阻值。

2.将R1,R2和R3按照电路图所示连接到基板上,并将电路接到电源。

3.使用电压表和电流表测量电路中各个电阻的电压和电流值,记录下来。

记录表格如下:元件名称测量电压(V)测量电流(A)R1R2R34.根据测量结果和欧姆定律,可以得到R1,R2和R3的电阻值分别为2ohms,3ohms和4ohms。

戴维南定理验证:按照戴维南定理的步骤,将电路图中的电源和R1电阻两端截开,得到下图所示的电路。

[图片]按照戴维南定理的公式计算,可得到R1电阻负载的电流为1.5A,电压为3V。

比对实验结果,可得到实验测量结果和戴维南定理计算结果一致。

通过本次实验,我们验证了戴维南定理和诺顿定理的正确性,证明了这两个定理在电路分析中的作用和重要性。

在实际应用中,可以结合这些定理来简化电路分析,减少计算量和提高分析效率。

电路基本定律及定理的验证

电路基本定律及定理的验证

电路基本定律及定理的验证一、实验目的1、通过实验加深对参考方向,基尔霍夫定理、叠加定理、戴维南定理的理解;2、初步掌握用Multisim软件建立电路、辅助分析电路的方法。

二、实验原理1.基尔霍夫定理基尔霍夫电流定理(KCL):任意时刻,流进和流入电路中节点的电流的代数和等于零,即∑I=0。

基尔霍夫电压定理(KVL):在任何一个闭合回路中,所有的电压降之和等于零,即∑V=0。

2.叠加定理在线性电路中,任一支路的电流或电压等于电路中每一个独立源单独作用时,在该支路所产生的电流或电压的代数和。

3.戴维南定理对外电路来说,任何复杂的线性有源一端口网络都可以用一个电压源和一个等效电阻的串联来等效。

此电压源的电压等于一端口的开路电压Uoc,而电阻等于一端口的全部独立电压置0后的输入电阻R O。

实验中往往采用电压表测量开路电压Uoc,用电流表测量端口短路电流I SC,等效电阻R O等于开路电压Uoc除以短路电流I SC,即R O=Uoc/I SC。

三、实验内容实验电路如图1-1所示。

图1-11.基尔霍夫定理和叠加定理的验证1)实验步骤a)按图1-1所示用Multisim软件创建电路;b)启动程序,测得各电阻两端电压和各支路电流,验证KCL,KVL;c)E1单独作用下,E2的数值置为0以及E2单独作用,E1的数值置为0两种情况下,测得各个电阻两端电压和各支路电流值,验证叠加定理;d)将R2改成1N4009的二极管,验证KCL,KVL,叠加定理是否成立。

2)实验数据R2=100ΩU1(V)U2(V)U3(V)I1(A)I2(A)I3(A)E1,E2同时作用 5.255 -1.255 4.745 0.011 -0.013 0.024 E1单独作用8.757 1.243 1.243 0.019 0.012 6.241m E2单独作用-3.503 -2.497 3.503 -7.456m -0.025 0.018 叠加结果R2换为1N4009二极管,实验电路如图1-2所示。

电路实验 验证戴维南定理

电路实验   验证戴维南定理

实验三 戴维南定理一、实验目的1.通过实验来验证戴维南定理,并加深对等效电路的理解; 2.学习用实验方法求含源一端口网络的等效电路; 3.灵活运用等效电源定理来简化复杂线性电路的分析; 4.进一步学习使用常用直流仪器仪表的方法。

二、实验原理1.任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源的二端网络(或称为含源一端口网络)。

根据戴维南定理:对任一线性含源一端口电阻网络(见图 3.1(a)),就其端口而言总可以用一个电压源串联电阻来等效,如图3.1(b)所示,其电压源的电压为原网络端口a 、b 两端的开路电压U oc , 电阻为原网络将内部电源化零以后从端口看进去的等效电阻R i 。

这里所谓的等效是指含源一端口网络被等效电路替代后,对原一端口网络的外电路没有影响,也就是外电路的电流和电压保持替代前后不变。

(a)(b)图 3.1 一端口网络及其等效电路2.含源一端口网络输入电阻R i 的实验测定法(1)测量含源一端口网络的开路电压U oc 和短路电流I sc ,则输入电阻为scoci I U R =(2)将含源一端口网络内所有电压源的电压和电流源的电流变成零,即含源一端口网络化为无源一端口网络。

然后在这无源一端口网络的端口处,外加一个电压U s ,测量端口的电流I ,则入端电阻为IU R Si =三、实验内容将原网络改接一根线的等效法。

(1) 用数字万用表测量R1 ~R3 电阻元件的参数取100~300Ω之间,将直流稳压电源接入电路,令u=20V,实验中调好后保持不变。

(2) 按图3.2(a)接线,调节R从0~∞,测量出U AB 和I R 的数值,特别要注意测出R=0及R=∞时的电压、电流值,将电压表和电流表的读数填入表4-1中。

(3) 将图3.2 (b) 的CD连线断开,连接CE,此时由R3与R1并联再与R2串联的电阻值(即AE间的电阻),由实验原理可知即为等效电阻,再将原先20V的电源改为由实验内容(2)测得的等效电压源U OC,也就是内容(2)将电流表断开时的电压表指示值,然后重复内容(2)的测量,并将测得结果填入表3.1中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深 圳 大 学 实 验 报 告
课程名称: 电路分析
实验名称: 电路定理的验证
学 院: 信息工程学院
指导教师: 李晓滨
报告人: 组号:
学号 实验地点
实验时间: 年 月 日
提交时间:
OC U SC
I U
U ∆I
∆O
N
I N
2
(1
短路,测其短路电流I S C
OC
S I U R =。

(2)
)按上图接线,图中的电源U s1用恒压源1路输出+12V,U s2用恒压源
U s1电源单独作用时,将开关S1往上拨,开关S2往下拨,测量各电压和电流记录在表U s2电源单独作用时,将开关S1往下拨,开关S2往上拨,测量各电压和电流记录在表U s1和U s2共同作用时,将开关S1往上拨,开关S2往上拨,测量各电压和电流记录在表。

相关文档
最新文档