2018高考文科数学一轮复习 两角和差的正弦、余弦和正切.ppt
2018年高考数学总复习配套课件:两角和与差的正弦、余弦与正切公式
3 2
C.-
1 2
D.
1 2
关闭
sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 1 10°=sin(20°+10°)=sin 30°=2, 故选 D.
D
解析
.(2017 山东高考)已知 cos x=4,则 cos 2x=( A.-4
4+3 3 10
π π 2 2
3 5
4 5
π 3
=cos αcos -sin αsin = × − -
π 3
π 3
4 5
1 2
3 5
×
3 2
=
4+3 3 . 10
关闭
解析
答案
-9知识梳理 双击自测
4.已知 sin α-3cos α=0,则co s 2 ������ -si n 2 ������ =
两角和与差的正弦、余弦与正 切公式
-2-
年份
2017
2016 16(1),7 分 (理)
三角恒 18(2),8 等变换 分 11,6 分(文) 16(1),7 分 18(1),4 分 6,5 分 16(2),7 分 (文) (文) (文) (文) 1.掌握两角和与两角差的正弦、余弦、正切公式,掌握 考查要 正弦、余弦、正切二倍角的公式. 求 2.掌握简单的三角函数式的化简、求值及恒等式证明. 以两角和与差的三角函数公式以及二倍角公式为基础, 求三角函数的周期、最值、单调性等是考查的重点,选 考向分 择题、填空题、解答题均有可能,难度不大,目前新高考 析 背景下以三角函数和三角恒等变换综合以解答题形式 考查是热点之一.
π
【例 1】 (1)(2017 浙江镇海测试卷)已知 tan ������ + 4 = 2,且=
2018高三数学(理)高考总复习课件:第三章 第五节 两角和与差的正弦、余弦和正切公式
2cos2θ-1 cos 2θ π = π = cos4 +θ sin4-θ
π 3 2cos4 -θ= . 2
π sin2 -2θ π sin4 -θ
=
π sin 24-θ π sin4 -θ
2
(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α± cos α=
π . 2sinα± 4
[题体验]
1. 已知
π 1 π + α sin 2 = , - <α<0, 则 2 2 π cosα-3的值是(
考点二
三角函数公式的逆用与变形应用
[典例引领]
1.(2017· 河北名师俱乐部模拟)已知 2cos2θ-1 14 =- ,则 = 4 π cos4+θ 2 A. 3 4 B. 3
π θ∈0,4 ,且
sin θ-cos θ ( )
3 C. 4
3 D. 2
π 14 7 解析: 由 sin θ - cos θ =- 得 sin 4 -θ = ,∵ θ ∈ 4 4 π 3 π π π 0, ,∴0< -θ< ,∴cos -θ= . 4 4 4 4 4
=
答案:D
sin 110° sin 20° 2.计算 2 的值为 2 cos 155° -sin 155° 1 A.- 2
解析:
( 3 D.- 2
)
1 B. 2
3 C. 2
π α∈2 ,π, sin
2 5 所以 cos α=- 1-sin α=- . 5
2
5 4 2 5 sin 2α=2sin αcos α=2× ×- =- , 5 5 5
高三数学一轮复习 第3章第5课时 两角和与差的正弦、余弦和正切公式精品课件
已知 α∈0,π2,tan α=12,求 tan 2α 和 sin2α+π3的值.
解析:
tan 2α=1-2tatnanα2α=12-×21122=43.
∵α∈0,π2,2α∈(0,π),tan 2α=43>0,
∴2α∈0,2π,
∴sin 2α=45,cos 2α=35,
∴sin2α+π3=sin 2α·cos
=2csoisn
1100°°-sin
cos 10°·1
10°
2sin 10°
=2csoisn
1100°°-2cos
10°=cos
10°-2sin 2si0° 2sin 10°
cos =
10°-212cos 10°- 2sin 10°
3 2 sin
10°=
解析: (1)方法一:∵cosβ-π4=cosπ4cos β+sinπ4sin β
=
2 2 cos
β+
2 2 sin
β=13,
∴cos β+sin β= 32,∴1+sin 2β=29,
∴sin 2β=-79.
方法二:sin 2β=cosπ2-2β =2cos2β-π4-1=-79. (2)∵0<α<2π<β<π, ∴π4<β-4π<34π,2π<α+β<32π, ∴sinβ-π4>0,cos(α+β)<0.
• tan(α±β)= • 其变形为: • tan α+tan β=
tan α±tan β 1∓tan αtan β.
.
tan(α+β)(1-tan_αtan_β)
;
• tan α-tan β= tan(α-β)(1+tan_αtan_β)
;
• tan αtan β=
1-tatnanα+α+taβnβ
2018版高考一轮数学文科:第19讲-两角和与差的正弦、余弦和正切ppt课件
课前双基巩固
常用结论 (1)两角和与差的正切公式的变形: tan α ±tan β =tan(α± β)(1∓tan α tan β ). (2)二倍角余弦公式的变形: 1-cos 2α 1+cos 2α 2 2 sin α = ,cos α = . 2 2 (3)一般地,函数 f(α)=asin α +bcos α (a,b 为常数),可以化为 f(α)= a2+b2sin(α+
[ 解 析 ]
A
cos
2
π α+ 4
=
π 1+cos2α+ 2
2 选 A.
1-sin 2α 1 = =6,故 2
真题在线
3.[2013· 新课标全国卷Ⅰ] 设当 x=θ 时, 函数 f(x)=sin x-2cos x 取得最大值,则 cos θ =________.
1∓tan α tan β
2.二倍角的正弦、余弦、正切公式 2sin α cos α . (1)公式 S2α :sin 2α =____________ cos2α -sin2α = (2) 公 式 C2 α : cos 2 α = ____________ 1-2sin2α 2cos2α -1 =____________. ____________ 2tan α (3)公式 T2α :tan 2α =____________ .
真题在线
2.[2015· 广东卷] 已知 tan α=2. π (1)求 tanα + 的值; 4 (2) 求 的值. sin 2α sin2α +sin α cos α -cos 2α -1
π tan α+tan 4 tan α+1 2+1 π 解:(1)tanα+ = = = =-3. 4 π 1-tan α 1-2 1-tan αtan 4 sin 2α (2) 2 sin α+sin αcos α-cos 2α-1 2sin αcos α = 2 sin α+sin αcos α-(2cos2α-1)-1 2sin αcos α 2tan α = 2 = = sin α+sin αcos α-2cos2α tan2α+tan α-2 2³2 =1. 22+2-2
一轮复习课件 第3章 第5节 两角和与差的正弦、余弦和正切公式
考情分析
1.会用向量的数量积推导出 两角差的余弦公式.
1.从考查内容看,利用两角和 与差的正弦、余弦、正切公式
2.能利用两角差的余弦公式 进行三角函数式的化简、求值
导出两角差的正弦、正切公 式.
是高考的重点,公式的逆用、
3.能利用两角差的余弦公式 导出两角和的正弦、余弦、
变形应用是高考的热点. 2.从考查题型看,三种题型都 可能出现,常将公式变形与三
辅助角公式中,当 φ 为特殊角,即|ab|的值为 1 或
3或
3 3
时要熟练掌握,对 φ 是非特殊角的情况,只要求会求最值即
可.
【活学活用】 2.已知函数 f(x)= 3sin 2x-2sin2x. (1)求函数 f(x)的最大值; (2)求函数 f(x)的零点的集合. 解:(1)f(x)= 3sin 2x-(1-cos 2x)=2sin2x+π6-1, 所以,当 2x+π6=2kπ+π2,k∈Z,
三角函数式化简要遵循的“三看”原则 (1) 一 看 “ 角 ” . 这 是 最 重 要 的 一 点 , 通 过 角 之 间 的 关 系,把角进行合理拆分与拼凑,从而正确使用公式. (2)二看“函数名称”.看函数名称之间的差异,从而确 定使用的公式. (3)三看“结构特征”.分析结构特征,可以帮助我们找 到变形的方向,常见的有“遇到分式要通分”等.
答案:7102
5.已知tan(α+β)=3,tan(α-β)=5,则tan 2α=______.
解析:∵2α=(α+β)+(α-β), ∴tan 2α=tan[(α+β)+(α-β)] =1t-antaαn+αβ++βttaannαα--ββ=1-3+3×5 5=-814=-47. 答案:-47
【考向探寻】 利用公式化简三角函数式.
高中数学两角和与差的正弦、余弦、正切公式课件
Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五
( − ) = ,
( − ) = .
公式六
( + ) = ,
2
( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.
2
;
1
④ cos
高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理
(2)将三角变换与代数变换密切结合:三角变换主要是 灵活应用相应的三角公式,对于代数变换主要有因式分解、 通分、提取公因式、利用相应的代数公式等,例如,sin4x +cos4x=(sin2x+cos2x)2-2sin2xcos2x=1-12sin22x.
第八页,共45页。
[诊断自测] 1.概念思辨 (1)两角和与差的正弦、余弦公式中的角 α,β 是任意 的.( √ ) (2)存在实数 α,β,使等式 sin(α+β)=sinα+sinβ 成 立.( √ ) (3)在锐角△ABC 中,sinAsinB 和 cosAcosB 大小关系不 确定.( × ) (4)公式 tan(α+β)=1t-anαta+nαttaannββ可以变形为 tanα+tanβ =tan(α+β)(1-tanαtanβ),且对任意角 α,β 都成立.( × )
第二十页,共45页。
冲关针对训练
已知锐角 α,β 满足 sinα= 55,cosβ=31010,则 α+β
等于( )
3π A. 4
B.π4或34π
π C.4
D.2kπ+π4(k∈Z)
第二十一页,共45页。
解析 由 sinα= 55,cosβ=31010,且 α,β 为锐角,可
知 cosα=255,sinβ= 1100,
(1)求函数 f(x)的最小正周期和单调递增区间;
(2)若函数 g(x)=f(x)-m 在0,π2上有两个不同的零点 x1,x2,求实数 m 的取值范围,并计算 tan(x1+x2)的值.
本题采用转化法、数形结合思想.
第二十三页,cosx+ 3, 化简可得 f(x)=2sinxcosx-2 3cos2x+ 3 =sin2x-2 312+21cos2x+ 3 =sin2x- 3cos2x =2sin2x-π3.
高考数学一轮两角和与差的正弦、余弦和正切公式
第23课两角和与差的正弦、余弦和正切公式[最新考纲]1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β; (2)cos(α±β)=cos_αcos_β∓sin_αsin_β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.有关公式的变形和逆用 (1)公式T (α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β); ②tan α-tan β=tan(α-β)(1+tan_αtan_β). 3.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=________.12 [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12.]3.(2017·苏州模拟)若α∈(0,π),cos α=-45,则tan ⎝ ⎛⎭⎪⎫α+π4=________.17[∵α∈(0,π),cos α=-45,∴sin α=1-cos 2α=35,∴tan α=-34.∴tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=-34+11+34=17.] 4.若sin α+3cos α=1,且α∈⎝ ⎛⎭⎪⎫0,π2,则α=________.π2 [∵sin α+3cos α=2sin ⎝ ⎛⎭⎪⎫α+π3=1,∴sin ⎝ ⎛⎭⎪⎫α+π3=12,又α∈⎝ ⎛⎭⎪⎫0,π2, ∴α+π3=5π6,∴α=π2.]5.若tan α=13,tan(α+β )=12,则tan β=________.17 [tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.](2014·江苏高考)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值.[解] (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310. [规律方法] 1.使用两角和与差的三角函数公式,首先要记住公式的结构特征.2.使用公式求值,应先求出相关角的函数值,再代入公式求值. [变式训练1] (1)若α∈⎝ ⎛⎭⎪⎫π2,π,tan ⎝ ⎛⎭⎪⎫α+π4=17,则sin α=________.(2)已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是________. (1)35 (2)-1 [(1)∵tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=17, ∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=35.(2)cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x=3cos ⎝ ⎛⎭⎪⎫x -π6=-1.]β=________.【导学号:62172128】(2)sin 50°(1+3tan 10°)=________.(1)π3 (2)1 [(1)∵tan(α+β)=tan α+tan β1-tan αtan β=3-3tan αtan β1-tan αtan β= 3.又α,β∈⎝ ⎛⎭⎪⎫0,π2,∴α+β∈(0,π),∴α+β=π3.(2)sin 50°(1+3tan 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10° =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.][规律方法] 1.逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.2.tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.[变式训练2](1)sin(65°-x)cos(x-20°)+cos(65°-x)·cos(110°-x)的值为________.(2)在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C=1-2,则角A的值为________.(1)22(2)π4[(1)原式=sin(65°-x)·cos(x-20°)+cos(65°-x)cos[90°-(x-20°)]=sin(65°-x)cos(x-20°)+cos(65°-x)·sin(x-20°)=sin[(65°-x)+(x-20°)]=sin 45°=2 2.(2)由题意知:sin A=-2cos B·cos C=sin(B+C)=sin B·cos C+cos B·sin C,在等式两边同除以cos B·cos C得tan B+tan C=-2,又tan(B+C)=tan B+tan C1-tan B tan C=-1=-tan A,所以A=π4.](1)设αcos β=________.【导学号:62172129】(2)若0<α<π2,-π2<β<0,cos⎝⎛⎭⎪⎫π4+α=13,cos⎝⎛⎭⎪⎫π4-β2=33,则cos⎝⎛⎭⎪⎫α+β2等于________.(1)2525 (2)539 [(1)依题意得 sin α=1-cos 2 α=255,cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π, cos α>cos(α+β). 因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [](α+β)-α =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525. (2)∵0<α<π2,∴π4<π4+α<34π, 所以由cos ⎝ ⎛⎭⎪⎫π4+α=13,得sin ⎝ ⎛⎭⎪⎫π4+α=223,又-π2<β<0,∴π4<π4-β2<π2,且cos ⎝ ⎛⎭⎪⎫π4-β2=33,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63,故cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=539.][规律方法] 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎪⎫α+β2-⎝⎛⎭⎪⎫α2+β等.[变式训练3]定义运算⎪⎪⎪⎪⎪⎪a bc d=ad-bc.若cos α=17,⎪⎪⎪⎪⎪⎪sin αsin βcos αcos β=3314,0<β<α<π2,则β等于________.π3[依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin2(α-β)=13 14,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32.故β=π3.][思想与方法]1.三角恒等变换的变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.2.三角恒等变换的变“形”问题的求解思路根据三角恒等式子的“结构特征”进行变“形”,使得变换后的式子更接近已知的三角函数式,常用技巧有:(1)常值代换:1=sin2α+cos2α=cos 2α+2sin2α=tan π4,32=sin π3=cosπ6,12=sinπ6=cosπ3等.(2)逆用、变用公式:sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,tan α+tan β=tan(α+β)(1-tan αtan β)等.(3)通分、约分:如:1+3tan α=2cos⎝⎛⎭⎪⎫α-π3cos α.(4)分解、组合:如:(sin α+cos α)2+(sin α-cos α)2=2.(5)平方、开方:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,1+cos 2α=2cos2α,1-cos 2α=2sin2α等.[易错与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.课时分层训练(二十三)A组基础达标(建议用时:30分钟)一、填空题1.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为________. -3 [由题意可知⎩⎪⎨⎪⎧tan α+tan β=3,tan αtan β=2,∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.]2.(2017·盐城模拟)tan 70°+tan 50°-3tan 70°tan 50°的值等于________. -3 [∵tan 120°=tan(50°+70°)=tan 50°+tan 70°1-tan 50°tan 70°=-3,∴tan 50°+tan70°=-3+3tan 50°tan 70°,即tan 70°+tan 50°-3tan 70°tan 50°=- 3.]3.在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,若角α终边经过点P (2,4),则tan ⎝ ⎛⎭⎪⎫π4+α=________. 【导学号:62172130】-3 [由题意可知tan α=42=2. ∴tan ⎝ ⎛⎭⎪⎫π4+α=1+tan α1-tan α=1+21-2=-3.] 4.若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于________.17[∵sin(α-β)sin β-cos(α-β)cos β=45, ∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34. ∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17.]5.已知sin α+sin β=3(cos β-cos α),α,β∈⎝ ⎛⎭⎪⎫0,π2,则sin 3α+sin 3β=________.0 [由已知得:sin α+3cos α=3cos β-sin β, 即cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫β+π6,又α-π6∈⎝ ⎛⎭⎪⎫-π6,π3,β+π6∈⎝ ⎛⎭⎪⎫π6,2π3. 故α-π6=β+π6,即α=β+π3.∴sin 3α+sin 3β=sin(3β+π)+sin 3β=0.]6.若cos ⎝ ⎛⎭⎪⎫α+π6-sin α=335,则cos ⎝ ⎛⎭⎪⎫α+π3=________.35 [cos ⎝ ⎛⎭⎪⎫α+π6-sin α=335,32cos α-32sin α=335,12cos α-32sin α=cos ⎝ ⎛⎭⎪⎫α+π3=35.] 7.若sin ()α+β=12,sin(α-β)=13,则tan αtan β的值为________.【导学号:62172131】5 [由sin(α+β)=12,sin(α-β)=13得 ⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12, ①sin αcos β-cos αsin β=13, ②∴⎩⎪⎨⎪⎧sin αcos β=512,cos αsin β=112.∴tan αtan β=sin αcos βcos αsin β=5.]8.(2017·苏锡常镇调研二)若tan α=12,tan(α-β)=-13,则tan(β-2α)=________.-17[∵tan α=12,tan(α-β)=-13, ∴tan(β-2α)=-tan(2α-β)=-tan [α+(α-β)]=-tan α+tan (α-β)1-tan αtan (α-β)=-12-131+16=-17.] 9.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π2,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是________. 【导学号:62172132】7π4 [∵sin 2α=55,α∈⎣⎢⎡⎦⎥⎤π4,π2, ∴cos 2α=-255且α∈⎣⎢⎡⎦⎥⎤π4,π2,又∵sin(β-α)=1010,β∈⎣⎢⎡⎦⎥⎤π,3π2. ∴cos(β-α)=-31010.因此sin(α+β)=sin [(β-α)+2α]=sin(β-α)cos 2α+cos(β-α)sin 2α=1010×⎝⎛⎭⎪⎫-255+⎝ ⎛⎭⎪⎫-31010×55=-22,cos(α+β)=cos [(β-α)+2α]=cos(β-α)·cos2α-sin(β-α)sin 2α=⎝ ⎛⎭⎪⎫-31010×⎝ ⎛⎭⎪⎫-255-1010×55=22,又α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,所以α+β=7π4.]10.(2017·如皋市高三调研一)若sin β=3sin(2α-β),则tan(α-β)+12tan α=________.0 [由sin β=3sin(2α-β)得-sin [(α-β)-α]=3sin [α+(α-β)],∴cos(α-β)sin α-sin(α-β)cos α=3[sin αcos(α-β)+cos αsin(α-β)], ∴-4cos αsin(α-β)=2sin αcos(α-β), ∴tan(α-β)=-12tan α.∴tan(α-β)+12tan α=-12tan α+12tan α=0.] 二、解答题11.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32.(2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.12.(2017·启东中学高三第一次月考)在△ABC 中,三个内角分别为A ,B ,C ,已知sin ⎝ ⎛⎭⎪⎫A +π6=2cos A .(1)求角A 的值;(2)若B ∈⎝ ⎛⎭⎪⎫0,π3,且cos(A -B )=45,求sin B .[解] 由sin ⎝ ⎛⎭⎪⎫A +π6=2cos A ,得32sin A +12cos A =2cos A ,即sin A =3cosA .因为A ∈(0,π),且cos A ≠0,所以tan A =3,所以A =π3.(2)因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以A -B =π3-B ∈⎝ ⎛⎭⎪⎫0,π3.因为sin 2(A -B )+cos 2(A -B )=1,所以sin(A -B )=35,所以sin B =sin(A -(A-B ))=sin A cos(A -B )-cos A sin(A -B )=43-310.B 组 能力提升 (建议用时:15分钟)1.已知0<θ<π,tan ⎝ ⎛⎭⎪⎫θ+π4=17,那么sin θ+cos θ=________.-15 [由tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ,∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1.∵0<θ<π,∴sin θ=35,∴cos θ=-45,∴sin θ+cos θ=-15.] 2.若tan α=2tan π5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=________. 3 [∵cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2=sin ⎝ ⎛⎭⎪⎫α+π5, ∴原式=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tan π52tan π5-tan π5=3.] 3.已知函数f (x )=A cos ⎝ ⎛⎭⎪⎫x 4+π6,x ∈R ,且f ⎝ ⎛⎭⎪⎫π3= 2.(1)求A 的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫4α+4π3=-3017,f ⎝ ⎛⎭⎪⎫4β-2π3=85,求cos(α+β)的值.[解] (1)因为f ⎝ ⎛⎭⎪⎫π3=A cos ⎝ ⎛⎭⎪⎫π12+π6=A cos π4=22A =2,所以A =2.(2)由f ⎝ ⎛⎭⎪⎫4α+4π3=2cos ⎝ ⎛⎭⎪⎫α+π3+π6=2cos ⎝ ⎛⎭⎪⎫α+π2=-2sin α=-3017,得sin α=1517,又α∈⎣⎢⎡⎦⎥⎤0,π2,所以cos α=817.由f ⎝ ⎛⎭⎪⎫4β-2π3=2cos ⎝ ⎛⎭⎪⎫β-π6+π6=2cos β=85,得cos β=45, 又β∈⎣⎢⎡⎦⎥⎤0,π2,所以sin β=35,所以cos(α+β)=cos αcos β-sin αsin β=817×45-1517×35=-1385.4.(2017·泰州中学高三摸底考试)已知0<α<π2<β<π,且sin(α+β)=513,tan α2=12.(1)求cos α的值; (2)证明:sin β>513.[解] (1)将tan α2=12代入tan α=2tan α21-tan 2α2,得tan α=43,∴⎩⎨⎧sinαcos α=43,sin 2α+cos 2α=1,又α∈⎝ ⎛⎭⎪⎫0,π2,解得cos α=35.(2)证明:由题意易得π2<α+β<3π2,又sin(α+β)=513, ∴cos(α+β)=-1213, 由(1)可得sin α=45,∴sin β=sin [(α+β)-α]=513×35-⎝ ⎛⎭⎪⎫-1213×45=6365>513.。
高三数学复习课件【两角和与差的正弦、余弦和正切公式】
练透基点,研通难点,备考不留死角
返回
考点一 三角函数公式的直接应用 [考什么·怎么考]
三角函数公式的直接应用是基础,直接命题较 少,主要考查三角函数公式的识记,多体现在简单三 角函数求值中.
返回
1.已知cos α=-35,α是第三象限角,则cosπ4+α的值为(
)
2 A. 10
B.-
Hale Waihona Puke 返回解析:∵α∈0,π2,tan α=2,
∴sin α=255,cos α= 55,
∴cosα-π4=cos
αcosπ4+sin
π αsin4
=
22×2 5 5+
55=3
10 10 .
答案:3
10 10
2.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.
(1)求sin(α-β)的值;
,tan(π-β)=
1 2
,则tan(α-β)的
值为
()
A.-121
2 B.11
11 C. 2
解析:因为sin α=35,α∈π2,π,
D.-121
所以cos α=- 1-sin2α=-45,所以tan α=csions αα=-34.
因为tan(π-β)=12=-tan β,所以tan β=-12,
=
412c2ossin101°0°-co23s s1i0n°10°=4sins3i0n°20-°10°=14.
答案:14
返回
2.在△ABC中,若tan Atan B= tan A+tan B+1, 则cos C=
________. 解析:由tan Atan B=tan A+tan B+1,可得1t-antaAn+AttaannBB
高考数学一轮复习两角和与差的正弦、余弦和正切公式
思维升华
运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟 悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从 正向思维向逆向思维转化的能力.
跟踪训练 2 (1)(2022·咸阳模拟)已知 sinx-π6= 33,则 sin x+sinx-3π等于
√A.1
B.-1
23 C. 3
A.-1
B.1
√C.0或-3
D.0或1
因为 α+β=π4, 所以 tan(α+β)=tan π4⇒1t-antαan+αttaannββ=1⇒1-1+mmm++m1=1⇒m2+3m=0,
解得m=0或m=-3.
思维升华
两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三 角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时, 特别要注意角与角之间的关系,完成统一角和角与角转换的目的.
b a2+b2
,cos
φ=
知识拓展
两角和与差的公式的常用变形: (1)sin αsin β+cos(α+β)=cos αcos β. (2)cos αsin β+sin(α-β)=sin αcos β. (3)tan α±tan β=tan(α±β)(1∓tan αtan β). tan αtan β=1-tatnanα+α+taβnβ=tatnanα-α-taβnβ-1.
D. 3
因为 sinx-π6= 33,
所以
sin
x+sinx-π3=sin
x+12sin
x-
3 2 cos
x=
3sinx-π6=1.
(2)满足等式(1+tan α)(1+tan β)=2的数组(α,β)有无穷多个,试写出一个 这样的数组__0_,__π4_(_答__案__不__唯__一__)_.
高考数学一轮复习第3章三角函数解三角形第5节两角和与差的正弦余弦和正切公式课件
sin α=-2(舍去)或 sin α=14.∵α 为锐角,∴cos α=
415,∴sinα+π3=14×12+
15 4
× 23=1+83 5,故选 A.]
☞角度 3 给值求角
已知 sin α= 55,sin(α-β)=- 1100,α,β 均为锐角,则角 β 等于( )
5π
π
A.12
1100=
2 2.
∴β=π4.]
[规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察 非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角 的三角函数求解.
2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函 数值,解题关键在于“变角”,使其角相同或具有某种关系.
=2sin c5o0s°·1c0o°s 50°=scions11000°°=ccooss 1100°°=1.]
☞角度 2 给值求值
(1)若 cosπ4-α=35,则 sin 2α=(
)
7
1
A.25
B.5
C.-15
D.-275
(2)(2017·浙江金华十校联考)已知 α 为锐角,且 7sin α=2cos 2α,则 sinα+π3
∴T=22π=π.
法二:∵f(x)=( 3sin x+cos x)( 3cos x-sin x) =3sin xcos x+ 3cos2x- 3sin2x-sin xcos x =sin 2x+ 3cos 2x =2sin2x+π3, ∴T=22π=π.故选 B. (2)f(x)=sin(x+φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x-φ). ∴f(x)max=1.]
高考数学(文)一轮课件【第20讲】两角和与差的正弦、余弦和正切公式
• 双 向 2.二倍角的正弦、余弦、正切公式 固 (1)公式S2 :sin 2α =________________ 2sin αcos α . 2 α- 1 2cos 基 (2)公式C2 :cos 2α =________________ 2 2 =____________= cos α - sin α 础 ____________ 1-2sin 2α .
• 双 向 固 基 础 • 点 面 讲 考 向 • 多 元 提 能 力 • 教 师 备 用 题
第20讲 两角和与差的正弦、 余弦和正切公式
返回目录
考试说明
1.掌握两角和与差的正弦、余弦、正切公式. 2.掌握二倍角的正弦、余弦、正切公式.
Hale Waihona Puke 返回目录第20讲两角和与差的正弦、余弦和正切公式
• 双 向 固 基 础
π 3 α=- 5 ,α∈ 2,π ,则
• 双 向 固 基 础
2.[教材改编]
已知cos
π sinα+3的值是________.
4-3 3 [答案] 10
3 π 4 π [解析] cos α=-5,α∈(2,π)∴sin α=5,sin(α+3)= π π 4 1 3 3 4-3 3 sin αcos +cos αsin = × +(- )× = . 3 3 5 2 5 2 10
)
2tan α (2)用tan α表示sin 2α,cos 2α,得sin 2α= ,cos 1-tan2α 1+tan2α 2α= .( 1-tan2α ) )
π π (3)对任意角α,有sin4-α=cos4+α.(
返回目录
第20讲
两角和与差的正弦、余弦和正切公式
[答案] (1)³ (2)³
高考数学一轮总复习第3章三角函数解三角形3.5两角和与差的正弦余弦和正切公式课件文
例 1 (1)[2017·衡水中学二调]cos130°-sin1170°=(
)
A.4
B.2
C.-2
D.-4
[解析]
3- 1 =
3- 1 =
cos10° sin170° cos10° sin10°
3ssiinn1100°°c-osc1o0s°10°=2sin110°-30°=-12sin20°=-4.
3 2
,1,f(x)∈0,1+
23.
故
f(x)的值域为0,1+
23.
核心规律 重视三角函数的“三变”:“三变”是指“变角、变名、变式”; 变角:对角的拆分要尽可能化成同名、同角、特殊角;变名: 尽可能减少函数名称;变式:对式子变形一般要尽可能有理 化、整式化、降低次数等.在解决求值、化简、证明问题时, 一般是观察角度、函数名、所求(或所证明)问题的整体形式 中的差异,再选择适当的三角公式恒等变形.
2sin20°
2sin20°
(2)4cos50°-tan40°=(
)
A. 2
B.
2+ 2
3
C. 3 [解析]
D.2 2-1
4cos50°-
tan40°=
4sin40°cos40°-sin40°= cos40°
2sin80°-sin40°
=
cos40°
2sin100°-sin40°
=
cos40°
2sin60°+ cos4400°°-sin40°=2×
23cos10°+12sin10° cos20°
考向 三角函数的条件求值
命题角度 1 给值求值问题
例 2 [2016·全国卷Ⅱ]若 cosπ4-α=35,则 sin2α=(
高考数学一轮总复习 3.3两角和与差的正弦、余弦和正切公式课件
完整版ppt
3
备考知考情 1.利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化 简、求值是高考考查的热点. 2.常与三角函数的性质、向量、解三角形的知识相结合命题. 3.题型以选择题、填空题为主,属中低档题.
完整版ppt
4
J 基础回扣·自主学习
理教材 夯基础 厚积薄发
完整版ppt
5
知识梳理
完整版ppt
9
知识点三 辅助角公式 函数 f(α)=acosα+bsinα(a,b 为常数),可化为 f(α)= a2+b2 sin(α+φ),其中 φ 可由 a,b 的值唯一确定.
完整版ppt
10
对点自测
知识点一 两差+sin33°cos177°的值为( )
完整版ppt
22
问题 2 三角函数运算中的“三变”是什么? 重视三角函数的“三变”:“三变”是指“变角、变名、变 式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变 名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理 化、整式化、降低次数等.在解决求值、化简、证明问题时,一 般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异, 再选择适当的三角公式恒等变形.
完整版ppt
19
解析 根据题意,得 f(x)=2sinx-π6,f(x)≥1, 所以 2sinx-6π≥1,即 sinx-6π≥12. 由图象可知满足π6+2kπ≤x-π6≤56π+2kπ(k∈Z), 解得π3+2kπ≤x≤π+2kπ(k∈Z).
答案 B
完整版ppt
20
R 热点命题·深度剖析
研考点 知规律 通法悟道
知识点一
两角和与差的正弦、余弦、正切公式
(1)C(α-β):cos(α-β)= cosαcosβ+sinαsinβ ; (2)C(α+β):cos(α+β)= cosαcosβ-sinαsinβ ;
2018届高三数学(理)一轮复习课件:4.5两角和与差的正弦、余弦与正切公式
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”. (1)两角和与差的正弦、余弦公式中的角α,β是任意的. ( (2)两角和与差的正切公式中的角α,β是任意的. ( ) (3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos
)
60°=2. (
1-tan������
-11-
π + 6
考点1
考点2
考点3
解题心得三角函数公式对使公式有意义的任意角都成立.使用中 要注意观察角之间的和、差、倍、互补、互余等关系.
-12-
考点1
考点2
考点3
对点训练 1(1)已知 sin
5 2
3 π α=5,α∈ 2 ,π π
5
cos2������ ,则 π √2sin ������+ 4
1
)
������ 2 π + ������ 4 ������ 2
(4)cos θ=2cos2 -1=1-2sin2 . ( (5)1+tan������=tan .( )
)
关闭
(1)√ (2)× (3)× (4)√ (5)×
答案
-5知识梳理 双基自测
1
2
3
4
5
2.sin 20°sin 80°-cos 160°cos 80°=(
=cos α-sin
1 α=-2.
7 α=- . 5
(2)∵sin 2α=2sin αcos α=-sin α,∴cos 又 α∈
π √3 , π , ∴ sin α = ,∴tan α=-√3. 2 2 7 ∴tan 2α= 2tan������ = -2√3 = √3. (1)- (2)√3 1-tan2 ������ 1-(-√3)2 5
北京市2018届高三数学文一轮复习 3.5 两角和差的正弦、余弦和正切公式课件 精品
答案:6635
跟踪训练
4.若 sinA= 55,sinB= 1100,且 A,B 均为钝角,求 A+B 的值。
解析:∵A、B 均为钝角且 sinA= 55,
A.4
B.2
os 310°-sin 1170°=cos 310°-sin110°
= 3ssiinn1100°°·-cosco1s01°0°=2sin110°-30°=-12sin 20°=-4.
2sin 20°
2sin 20°
【答案】 D
考点分类突破
3.计算 sin 50°(1+ 3tan 10°)=________.
解析答案
真题再现
4.【2016高考课标3】若
,则
A . 24 B . 48 C . 1 D . 16
25
25
25
【解析】由
,得
或
()
,所以 【答案】A
真题再现
5.(2016北京)已知函数f ( x) 2sinx cosx cos 2x( 0)的最 小正周期为 . (1)求的值;(2)求f ( x)的单调递增区间.
解析答案
真题再现
2. 【2015高考四川】
.
【答案】
.
真题再现
3.(2015·重庆)若 tan α=13,tan(α+β)=12,则 tan β 等于( A )
1
1
5
5
A.7
B.6
C.7
D6
解析
tanα+β-tan α tan β=tan[(α+β)-α]=1+tanα+βtan α