2018届二轮复习解析几何 椭圆、双曲线、抛物线(理)专题卷(全国卷1)

合集下载

2018届高考数学二轮复习 椭圆、双曲线、抛物线 ppt课件(全国通用)

2018届高考数学二轮复习 椭圆、双曲线、抛物线 ppt课件(全国通用)
解析:(1)由抛物线方程 y2=4x,可得抛物线的焦点 F(1,0),又 N(1,0),所以 N 与 F 重合. 过圆(x-3)2+(y-1)2=1 的圆心 M 作抛物线准线的 垂线 MH,交圆于 Q,交抛物线于 P,则|PQ|+|PN|的最 小值等于|MH|-1=3.
(2)由 e= 2知 a=b,且 c= 2a, 所以双曲线渐近线方程为 y=±x. 4-0 4 又 kPF= =c=1, 0+c
x2 y2 [ 变式训练 ] (1)(2016· 天津卷 ) 已知双曲线 2 - 2 = a b 1(a>0,b>0)的焦距为 2 5,且双曲线的一条渐近线与 直线 2x+y=0 垂直,则双曲线的方程为( x2 2 A. -y =1 4
2 y B.x2- =1 4
2 c 所以 c=4,则 a2=b2= =8. 2
x2 y2 故双曲线方程为 - =1. 8 8 答案:(1)A (2)B
[规律方法] 1.凡涉及抛物线上的点到焦点距离,一般运用定义 转化到准线的距离处理. 如ቤተ መጻሕፍቲ ባይዱ例充分运用抛物线定义实施 转化,使解答简捷、明快. 2.求解圆锥曲线的标准方程的方法是“先定型,后 计算” .所谓“定型”,就是指确定类型,所谓“计算”, 就是指利用待定系数法求出方程中的 a2,b2,p 的值,最 后代入写出椭圆、双曲线、抛物线的标准方程.
解析:以线段 A1A2 为直径的圆是 x2+y2=a2,直线 bx-ay+2ab=0 与圆相切,所以圆心(0,0)到直线的距离 d= 2ab a +b
2 2
=a,
2 c 整理为 a2=3b2.所以 a2=3(a2-c2)⇒2a2=3c2,即 2= a
2 c 6 ,e= = . a 3 3 答案:A
2 y 将 x=2 代入 x2- =1,得 y=±3, 3

2018届高考数学二轮复习椭圆、双曲线、抛物线文专题卷(全国通用)

2018届高考数学二轮复习椭圆、双曲线、抛物线文专题卷(全国通用)

专题14 椭圆、双曲线、抛物线1.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1,F 2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A.x 216-y 29=1B.x 23-y 24=1C.x 29-y 216=1 D.x 24-y 23=1 【答案】C2.椭圆x212+y23=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍 【答案】A【解析】由题设知F 1(-3,0),F 2(3,0),如图,∵线段PF 1的中点M 在y 轴上, ∴可设P (3,b ),把P (3,b )代入椭圆x 212+y 23=1,得b 2=34.∴|PF 1|=36+34=732,|PF 2|=0+34=32.∴|PF 1||PF 2|=73232=7.故选A. 3.已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=() A .2 B .4 C .6 D .8 【答案】B4.设F 1,F 2分别是双曲线C :x2a2-y 2b2=1的左、右焦点,点P ⎝ ⎛⎭⎪⎫62,22在此双曲线上,且PF 1⊥PF 2,则双曲线C 的离心率等于( )A.22 B. 2 C. 3 D.62【答案】B【解析】根据已知条件得:⎩⎪⎨⎪⎧32a 2-12b2=1,⎝ ⎛⎭⎪⎫62+c 2+12+⎝ ⎛⎭⎪⎫62-c 2+12=4c 2, 即⎩⎪⎨⎪⎧3a 2-1c 2-a 2=2,c 2=2,∴解得a =1,c = 2.∴双曲线C 的离心率e =ca= 2.故选B.5.已知抛物线C 的顶点是椭圆x 24+y 23=1的中心,焦点与该椭圆的右焦点F 2重合,若抛物线C 与该椭圆在第一象限的交点为P ,椭圆的左焦点为F 1,则|PF 1|=( )A.23B.73C.53 D .2 【答案】B【解析】由椭圆的方程可得a 2=4,b 2=3,∴c =a 2-b 2=1,故椭圆的右焦点F 2为(1,0),即抛物线C的焦点为(1,0),∴p 2=1,∴p =2,∴2p =4,∴抛物线C 的方程为y 2=4x ,联立⎩⎪⎨⎪⎧x 24+y 23=1,y 2=4x .解得⎩⎪⎨⎪⎧x =23,y =263或⎩⎪⎨⎪⎧x =23,y =-263,∵P 为第一象限的点,∴P ⎝ ⎛⎭⎪⎫23,263,∴|PF 2|=1+23=53,∴|PF 1|=2a -|PF 2|=4-53=73,故选B.6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .2 3B .2 5 C.4 3 D .4 5 【答案】B7.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8 【答案】C【解析】∵y 2=4x ,∴F (1,0),l :x =-1,过焦点F 且斜率为3的直线l 1:y =3(x -1),与y 2=4x 联立,解得x =3或x =13(舍),故A (3,23),∴AK =4,∴S △AKF =12×4×23=4 3.故选C.8.已知直线y =k (x +1)(k >0)与抛物线C :y 2=4x 相交于A ,B 两点,F 为抛物线C 的焦点,若||FA =2||FB ,则k =( )A.13B.223C.23D.23 【答案】B【解析】设A ,B 的纵坐标分别为y 1,y 2, 由||FA =2||FB 得y 1=2y 2(如图).9.设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (c ,0)(c >0),方程ax 2+bx -c =0的两实根分别为x 1,x 2,则P (x 1,x 2)( )A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2外 C .必在圆x 2+y 2=1外D .必在圆x 2+y 2=1与圆x 2+y 2=2形成的圆环之间 【答案】D【解析】椭圆的方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F (c ,0)(c >0),方程ax 2+bx -c =0的两实根分别为x 1和x 2,则x 1+x 2=-b a ,x 1·x 2=-c a,x 21+x 22=(x 1+x 2)2-2x 1·x 2=b 2a +2ac a >a 2+c 2a=1+e 2,因为0<e <1, 即0<e 2<1. 所以1<e 2+1<2, 所以x 21+x 22>1,又b 2a 2+2ac a 2<b 2+a 2+c 2a 2=2, 所以1<x 21+x 22<2,即点P 在圆x 2+y 2=1与x 2+y 2=2形成的圆环之间.故选D.10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,抛物线y 2=158(a +c )x 与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率等于 ( )A.158B.415C.23D.12 【答案】D11.过曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1作曲线C 2:x 2+y 2=a 2的切线,设切点为M ,直线F 1M交曲线C 3:y 2=2px (p >0)于点N ,其中曲线C 1与C 3有一个共同的焦点,若|MF 1|=|MN |,则曲线C 1的离心率为( )A. 5B.5-1C.5+1D.5+12【答案】D12.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆外,则双曲线离心率的取值范围是( )A .(1,2)B .(2,3)C .(3,2)D .(2,+∞) 【答案】D 【解析】如图所示,过点F 2(c ,0)且与渐近线y =b a x 平行的直线为y =b a (x -c ),与另一条渐近线y =-b ax 联立得⎩⎪⎨⎪⎧y =ba(x -c ),y =-ba x ,解得⎩⎪⎨⎪⎧x =c 2,y =-bc 2a,即点M ⎝ ⎛⎭⎪⎫c 2,-bc2a .∴|OM |=⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫-bc 2a 2=c21+⎝ ⎛⎭⎪⎫b a 2. ∵点M 在以线段F 1F 2为直径的圆外, ∴|OM |>c ,即c21+⎝ ⎛⎭⎪⎫b a 2>c , 得1+⎝ ⎛⎭⎪⎫b a 2>2. ∴双曲线离心率e =ca=1+⎝ ⎛⎭⎪⎫b a 2>2.故双曲线离心率的取值范围是(2,+∞).故选D.13.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,由F 向其渐近线引垂线,垂足为P ,若线段PF的中点在此双曲线上,则此双曲线的离心率为________.【解析】方法一:由题意设F (c ,0),相应的渐近线方程为y =ba x ,根据题意得k PF =-a b,设P ⎝⎛⎭⎪⎫x ,b a x ,【答案】 214.已知F 1,F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为________.【答案】x =-2【解析】将双曲线方程化为标准方程得x 2a 2-y23a2=1,抛物线的准线为x =-2a ,联立⎩⎪⎨⎪⎧x 2a 2-y 23a 2=1,y 2=8ax ,解得x =3a ,即点P 的横坐标为3a .而由⎩⎪⎨⎪⎧|PF 1|+|PF 2|=12,|PF 1|-|PF 2|=2a解得|PF 2|=6-a ,∴|PF 2|=3a +2a =6-a ,解得a =1, ∴抛物线的准线方程为x =-2.15.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与线段AB 相交于点D ,与椭圆相交于E ,F 两点.若ED →=6DF →,则k 的值为________.【答案】23或3816.在平面直角坐标系xOy 中,已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)OA →(λ∈R ),且OA →·OP→=72,则线段OP 在x 轴上的投影长度的最大值为________.【答案】1517.已知抛物线C :y 2=2px (p >0)的焦点为F (1,0),抛物线E :x 2=2py 的焦点为M . (1)若过点M 的直线l 与抛物线C 有且只有一个交点,求直线l 的方程; (2)若直线MF 与抛物线C 交于A ,B 两点,求△OAB 的面积.解:(1)由题意得抛物线C :y 2=2px (p >0)的焦点为F (1,0),抛物线E :x 2=2py 的焦点为M ,所以p =2,M (0,1),①当直线l 的斜率不存在时,x =0,满足题意;②当直线l 的斜率存在时,设方程为y =kx +1,代入y 2=4x ,得k 2x 2+(2k -4)x +1=0,当k =0时,x =14,满足题意,直线l 的方程为y =1;当k ≠0时,Δ=(2k -4)2-4k 2=0,所以k =1,方程为y =x +1,综上可得,直线l 的方程为x =0或y =1或y =x +1.(2)结合(1)知抛物线C 的方程为y 2=4x ,直线MF 的方程为y =-x +1,联立⎩⎪⎨⎪⎧y 2=4x ,y =-x +1,得y 2+4y -4=0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=-4,y 1y 2=-4, 所以|y 1-y 2|=42,所以S △OAB =12|OF ||y 1-y 2|=2 2.18.如图,已知椭圆C 的中心在原点,其一个焦点与抛物线y 2=46x 的焦点相同,又椭圆C 上有一点M (2,1),直线l 平行于OM 且与椭圆C 交于A ,B 两点,连接MA ,MB .(1)求椭圆C 的方程;(2)当MA ,MB 与x 轴所构成的三角形是以x 轴上所在线段为底边的等腰三角形时,求直线l 在y 轴上截距的取值范围.联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1消去y 得 x 2+2mx +2m 2-4=0,∴Δ=(2m )2-4(2m 2-4)=4(4-m 2)>0,∴m 的取值范围是{m |-2<m <2,且m ≠0},设MA ,MB 的斜率分别为k 1,k 2,∴k 1+k 2=0,则A (x 1,y 1),B (x 2,y 2),则k 1=y 1-1x 1-2,k 2=y 2-1x 2-2,x 1x 2=2m 2-4,x 1+x 2=-2m , ∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=(y 1-1)(x 2-2)+(y 2-1)(x 1-2)(x 1-2)(x 2-2)=⎝ ⎛⎭⎪⎫12x 1+m -1(x 2-2)+⎝ ⎛⎭⎪⎫12x 2+m -1(x 1-2)(x 1-2)(x 2-2) =x 1x 2+(m -2)(x 1+x 2)-4(m -1)(x 1-2)(x 2-2)=2m 2-4-2m 2+4m -4m +4(x 1-2)(x 2-2)=0, 故MA ,MB 与x 轴始终围成等腰三角形时,∴直线l 在y 轴上的截距m 的取值范围是{m |-2<m <2,且m ≠0}.19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P ⎝ ⎛⎭⎪⎫43,13. (1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且2|AQ |=1|AM |+1|AN |,求点Q 的轨迹方程.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 21,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2= (1+k 2)x 2.由2|AQ |2=1|AM |2+1|AN |2,得 2(1+k 2)x 2=1(1+k 2)x 21+1(1+k 2)x 22, 即2x 2=1x 21+1x 22=(x 1+x 2)2-2x 1x 2x 21x 22.① 将y =kx +2代入x 22+y 2=1中,得 (2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32.20.如图,已知M (x 0,y 0)是椭圆C :x 26+y 23=1上的任一点,从原点O 向圆M :(x -x 0)2+(y -y 0)2=2作两条切线,分别交椭圆于点P ,Q .(1)若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(2)试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,说明理由.联立⎩⎪⎨⎪⎧y =k 1x ,x 26+y 23=1,解得⎩⎪⎨⎪⎧x 21=61+2k 21,y 21=6k 211+2k 21,所以x 21+y 21=6(1+k 21)1+2k 21,同理得x 22+y 22=6(1+k 22)1+2k 22,又因为k 1k 2=-12,所以|OP |2+|OQ |2=x 21+y 21+x 22+y 22=6(1+k 21)1+2k 21+6(1+k 22)1+2k 22=6(1+k21)1+2k21+6⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎪⎫-12k121+2⎝⎛⎭⎪⎫-12k12。

2018届二轮复习 有机化学基础 专题卷(全国通用) (1)

2018届二轮复习 有机化学基础 专题卷(全国通用) (1)

有机化学基础1.某饱和一元酯C5H10O2,在酸性条件下水解生成甲和乙两种有机物,乙在铜的催化作用下能被氧化为醛,满足以上条件的酯有()A.10种B.6种C.9种D.7种答案 B2.下列有关同分异构体数目的叙述中正确的是()A.C5H12有2种同分异构体B.分子式为C4H10O且能与金属钠反应的有机物有4种C.甲苯的一氯取代物只有3种D.C8H10中属于芳香烃的同分异构体只有三种答案 B3.分子式为C6H12O2的有机物,该物质能发生银镜反应,且在酸性条件下水解为A和B。

不考虑立体异构,满足条件的有机物的同分异构体共有()A.8种B.12种C.15种D.20种答案 A4.化合物A(C8H8O3)是由冬青树的叶经蒸汽蒸馏而得,因此又名冬青油。

它常用作饮料、牙膏、化妆品的香料,也用于制取止痛药、杀虫剂等。

化合物A有如下图所示转化关系(部分反应产物已略去):已知以下信息:①A的核磁共振氢谱表明其有六种不同化学环境的氢,且1 mol A与溴水反应最多消耗2 mol Br2;②羧酸盐与碱石灰共热可发生反应,如实验室制甲烷:CH3COONa+NaOH CH4↑+Na2CO3。

回答下列问题:(1)K的结构简式为。

(2)B→D的反应方程式为。

(3)F→H的反应类型为;按系统命名法命名,H的名称为。

(4)A的结构简式为。

(5)A的同分异构体中苯环上只有两个取代基且能发生银镜反应和显色反应的共有种,其中核磁共振氢谱有八种不同化学环境的氢原子的是和(写结构简式)。

答案(1)HCOOCH3(2)+NaOH+Na2CO3(3)取代反应2,4,6-三溴苯酚(4)(5)95.已知:①CH3CH CHCH2CH3 CH3COOH+CH3CH2COOH②R—CH CH2R—CH2—CH2—Br香豆素的核心结构是芳香内酯A,A经下列步骤可转变为水杨酸。

请回答下列问题:(1)下列有关A、B、C的叙述中不正确的是。

a.C中核磁共振氢谱共有8种峰b.A、B、C均可发生加聚反应c.1 mol A最多能和5 mol氢气发生加成反应d.B能与浓溴水发生取代反应(2)B分子中有2种含氧官能团,分别为和(填官能团名称),B→C的反应类型为。

2018届高考数学二轮温习专题六解析几何课时作业十五椭圆双曲线抛物线理

2018届高考数学二轮温习专题六解析几何课时作业十五椭圆双曲线抛物线理
答案:C
4.以抛物线y2=4x的核心为圆心,且与抛物线的准线相切的圆的方程是( )
A.(x-2)2+y2=4 B.(x-1)2+y2=4
C.(x-2)2+y2=2 D.(x-1)2+y2=2
解析:抛物线y2=4x的核心(1,0),准线方程为:x=-1,
∴以抛物线y2=4x的核心为圆心,而且与此抛物线的准线相切的圆的半径是2,
解析:(1)设双曲线C2的方程为 - =1(a>0,b>0),
则a2=4-1=3,c2=4,再由a2+b2=c2,得b2=1,
故双曲线C2的方程为 -y2=1.
(2)将y=kx+ 代入 -y2=1,
得(1-3k2)x2-6 kx-9=0.
由直线l与双曲线C2交于不同的两点,

∴k2<1且k2≠ .①
A. B.
C. D.
解析:如下图,
∵线段PF1的中垂线通过F2,
∴PF2=F1F2=2c,即椭圆上存在一点P,使得PF2=2c.
∴a-c≤2c≤a+c.∴e= ∈ .
答案:C
11.(2017·北京卷)假设双曲线x2- =1的离心率为 ,那么实数m=________.
解析:由双曲线的标准方程知a=1,b2=m,c= ,
②当m=-6时,圆锥曲线为x2- =1表示双曲线,其中a2=1,b2=6,∴离心率e= = = = .
答案:C
9.(2017·石家庄市教学质量检测二)已知直线l与双曲线C:x2-y2=2的两条渐近线别离交于A,B两点,假设AB的中点在该双曲线上,O为坐标原点,那么△AOB的面积为( )
A. B.1
C.2 D.4
∴以抛物线y2=4x的核心为圆心,而且与此抛物线的准线相切的圆的方程为:(x-1)2+y2=4.

2018年各地高考数学文科分类汇编——解析几何完整

2018年各地高考数学文科分类汇编——解析几何完整

3k 2
x2 y2 94 y kx
1 消去 y ,可得 x1
6 9k2
, 由 x2 4
5x1 可得
9k 2 当k
4 5(3k 2) ,两边平方,整理得 18k 2 25k 8
8 时, x2 9
9< 0 ,不合题意,舍去;当 k
0 ,解得 k 1 时, x2 2
8 ,或 k
1 .
9
2
12, x1 12 ,符合 5
A.1 3 2
答案: D
B. 2 3
C. 3 1 2
D. 3 1
(全国 2 卷 20)设抛物线 C:y 2 4 x 的焦点为 F ,过 F 且斜率为 k( k 0) 的直线 l 与 C 交于 A, B 两点, | AB | 8 .
( 1)求 l 的方程; ( 2)求过点 A , B 且与 C 的准线相切的圆的方程.
答案:
2
x
-
2x+
2
y=
0
解析:因为圆过( 0,0)(2,0) 所以圆心在 x=1 上,设其坐标为( 1,b) 又因为( 1,1)在圆上
所以 r = 1- b = 1+ b2 ? b 0, r = 1
( x - 1)2 + y2 = 1, 即 x2 - 2x + y 2 = 0
(天津卷 19)
(19) (本小题满分 14 分)
据医学文献记载 ,一个健康的青少年学生 30 分钟用脑 ,血糖浓度在 120 毫克 /100 毫升 ,大脑反应快 ,记忆力强; 90 分钟用脑, 血糖浓度降至 80 毫克 /100 毫升, 大脑功能尚正常; 连续 120 分钟用脑, 血糖浓度降至 60 毫克 /100 毫升,大脑反应迟钝,思维能力较 4

2018届高考数学二轮椭圆、双曲线、抛物线专题卷文(全国通用)

2018届高考数学二轮椭圆、双曲线、抛物线专题卷文(全国通用)

专题能力训练16 椭圆、双曲线、抛物线一、能力突破训练1.已知双曲线-=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.-y2=1B.x2-=1C.-=1D.-=1双曲线-=1(a>0,b>0)的焦距为2,∴c=.又∵该双曲线的渐近线与直线2x+y=0垂直,∴渐近线方程为y=x.∴=,即a=2b.∴a2=4b2.∴c2-b2=4b2.∴c2=5b2.∴5=5b2.∴b2=1.∴a2=c2-b2=5-1=4.故所求双曲线的方程为-y2=1.2.(2017全国Ⅰ,文5)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A. B. C. D.c2=a2+b2=4,得c=2,所以点F的坐标为(2,0).将x=2代入x2-=1,得y=±3,所以PF=3.又点A的坐标是(1,3),故△APF的面积为×3×(2-1)=,故选D.3.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B. C. D.,A(-a,0),B(a,0),根据对称性,不妨令P,设l:x=my-a,∴M,E.∴直线BM:y=-(x-a).又直线BM经过OE的中点,∴=,解得a=3c.∴e==,故选A.4.(2017天津,文5)已知双曲线-=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.-=1B.-=1C.-y2=1D.x2-=1双曲线-=1(a>0,b>0)的右焦点为F(c,0),点A在双曲线的渐近线上,且△OAF是边长为2的等边三角形,不妨设点A在渐近线y=x上,∴解得所以双曲线的方程为x2-=1.故选D.5.已知点P为双曲线-=1右支上一点,点F1,F2分别为双曲线的左、右焦点,M为△PF1F2的内心.若=+8,则△MF1F2的面积为()A.2B.10C.8D.6R,a=4,b=3,c=5.∵=+8,∴(|PF1|-|PF2|)R=8,即aR=8,∴R=2.故=·2c·R=10.6.设双曲线-=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若=m+n(m,n∈R),且mn=,则该双曲线的离心率为()A. B. C. D.y=±x中令x=c,得A,B,在双曲线-=1中令x=c得P.当点P的坐标为时,由=m+n,得则由得或(舍去),∴=,∴=,∴e=.同理,当点P的坐标为时,e=.故该双曲线的离心率为.7.已知双曲线E:-=1(a>0,b>0).矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.AB=3,则BC=2.设AB,CD的中点分别为M,N,如图,则在Rt△BMN中,MN=2,故BN===.由双曲线的定义可得2a=BN-BM=-=1,而2c=MN=2,所以双曲线的离心率e==2.8.已知直线l1:x-y+5=0和l2:x+4=0,抛物线C:y2=16x,P是C上一动点,则点P到l1与l2距离之和的最小值为.l1,l2和曲线C如图.P是C上任意一点,由抛物线的定义知,|PF|=d2,∴d1+d2=d1+|PF|,显然当PF⊥l1,即d1+d2=|FM|时,距离之和取到最小值.∵|FM|=,∴所求最小值为.9.如图,已知抛物线C1:y=x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由消去y,整理得:x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称, 故解得因此,点B的坐标为.(2)由(1)知|AP|=t·和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=.设△PAB的面积为S(t),所以S(t)=|AP|·d=.10.如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA,MB的斜率之积为4,设动点M 的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m>0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|<|PR|,求的取值范围.设M的坐标为(x,y),当x=-1时,直线MA的斜率不存在;当x=1时,直线MB的斜率不存在.于是x≠1,且x≠-1.此时,MA的斜率为,MB的斜率为.由题意,有·=4.整理,得4x2-y2-4=0.故动点M的轨迹C的方程为4x2-y2-4=0(x≠±1).(2)由消去y,可得3x2-2mx-m2-4=0.①对于方程①,其判别式Δ=(-2m)2-4×3(-m2-4)=16m2+48>0,而当1或-1为方程①的根时,m的值为-1或1.结合题设(m>0)可知,m>0,且m≠1.设Q,R的坐标分别为(x Q,y Q),(x R,y R),则x Q,x R为方程①的两根,因为|PQ|<|PR|,所以|x Q|<|x R|.因为x Q=,x R=,且Q,R在同一条直线上,所以===1+.此时>1,且≠2,所以1<1+<3,且1+≠,所以1<=<3,且=≠.综上所述,的取值范围是∪.11.设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.设F(c,0).由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=,由题意得x B=,从而y B=.由(1)知,F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA=∠MAO⇔|MA|=|MO|,即(x M-2)2+=+,化简得x M=1,即=1,解得k=-,或k=.所以,直线l的斜率为-或.二、思维提升训练12.已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A. B. C. D.,取椭圆的左焦点F1,连接AF1,BF1.由椭圆的对称性知四边形AF1BF是平行四边形,∴|AF|+|BF|=|AF1|+|AF|=2a=4.∴a=2.不妨设M(0,b),则≥,∴b≥1.∴e==≤=.又0<e<1,∴0<e≤.故选A.13.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16xM的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+=5,则x0=5-.因为点F的坐标为,所以以MF为直径的圆的方程为(x-x0)·+(y-y0)y=0.将x=0,y=2代入得px0+8-4y0=0,即-4y0+8=0,解得y0=4.由=2px0,得16=2p,解得p=2或p=8.所以C的方程为y2=4x或y2=16x.故选C.14.(2017江苏,8)在平面直角坐标系xOy中,双曲线-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.双曲线的右准线方程为x==,两条渐近线方程为y=±x,得P,Q,又c=,所以F1(-,0),F2(,0),四边形F1PF2Q的面积S=2×=2.15.(2017山东,文15)在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.xx2=2py的焦点F,准线方程为y=-.设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1++y2+=y1+y2+p=4|OF|=4·=2p.所以y1+y2=p.联立双曲线与抛物线方程得消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2==p,所以=.所以该双曲线的渐近线方程为y=±x.16.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC 交于点P.(1)求动点P的轨迹C1的方程;(2)设M,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q两点,求△MPQ面积的最大值.由已知可得,点P满足|PB|+|PC|=|AC|=2>2=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=2,2c=2.动点P的轨迹C1的方程为+=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)⇒y=2tx-t2.联立方程组消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有而|PQ|=×|x1-x2|=×,点M到PQ的高为h=,由S△MPQ=|PQ|h代入化简,得S△MPQ=≤×=,当且仅当t2=10时,S△MPQ可取最大值.17.已知动点C是椭圆Ω:+y2=1(a>1)上的任意一点,AB是圆G:x2+(y-2)2=的一条直径(A,B是端点),·的最大值是.(1)求椭圆Ω的方程.(2)已知椭圆Ω的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆Ω于P,Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.设点C的坐标为(x,y),则+y2=1.连接CG,由=+,=+=-,又G(0,2),=(-x,2-y),可得·=-=x2+(y-2)2-=a(1-y2)+(y-2)2-=-(a-1)y2-4y+a+,其中y∈[-1,1].因为a>1,所以当y=≤-1,即1<a≤3时,取y=-1,得·有最大值-(a-1)+4+a+=,与条件矛盾;当y=>-1,即a>3时,·的最大值是,由条件得=,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆Ω的方程是+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足+=1,+=1,两式相减,整理,得=-=-,从而直线PQ的方程为y-y0=-(x-x0).又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-(2-x0),因为直线l与x轴不垂直,所以2x0-=5>0,从而0<x0<2.假设在线段OF2上存在点M(m,0)(0<m<2),使得以MP,MQ为邻边的平行四边形是菱形,则线段PQ的垂直平分线必过点M,而线段PQ的垂直平分线方程是y-y0=(x-x0),将点M(m,0)代入得-y0=(m-x0),得m=x0,从而m∈.。

【新课标】高三数学二轮精品专题卷解析几何(直线与圆、椭圆、双曲线和抛物线)

【新课标】高三数学二轮精品专题卷解析几何(直线与圆、椭圆、双曲线和抛物线)

高三数学二轮精品专题卷:解析几何(直线与圆、椭圆、双曲线和抛物线)考试范围:解析几何(直线与圆、椭圆、双曲线和抛物线)一、选择题(本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.直线07ta n=+y x π的倾斜角是( )A .7π-B .7π C .75π D .76π2.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为( ) A .012=--y xB .072=-+y xC .042=--y xD .05=-+y x3.“2-=a ”是直线()021:1=-++y x a l 与直线()0122:2=+++y a ax l 互相垂直的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.直线=+++b a by ax 与圆222=+y x 的位置关系为( ) A .相交B .相切C .相离D .相交或相切5.已知点P 在圆074422=+--+y x y x 上,点Q 在直线上kx y =上,若PQ 的最小值为122-,则k = ( ) A .1B .1-C .0D .26.若椭圆122=+my x 的离心率⎪⎪⎭⎫⎝⎛∈22,33e ,则m 的取值范围是 ( ) A .⎪⎭⎫⎝⎛32,21B .()2,1C .()2,132,21 ⎪⎭⎫⎝⎛ D .⎪⎭⎫⎝⎛2,21 7.已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,则该双曲线的离心率为( ) A .332 B .3 C .2或332 D .332或3 8.M 是抛物线x y 42=上一点,且在x 轴上方,F 是抛物线的焦点,以x 轴的正半轴为始边,FM 为终边构成的最小的角为60°,则=FM( ) A .2B .3C .4D .69.设抛物线x y 82=的准线经过中心在原点,焦点在坐标轴上且离心率为21的椭圆的一个顶点,则此椭圆的方程为( )A .1161222=+y x 或1121622=+y xB .1644822=+y x 或1486422=+y xC .1121622=+y x 或1431622=+x y D .13422=+y x 或1431622=+x y10.已知定点()0,21-F 、()0,22F ,动点N 1(O 为坐标原点),F 21=,()R MF ∈=λλ2,1=⋅PN M F ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆二、填空题(本大题共5小题;每小题5分,共25分.将答案填在题中的横线上) 11.以点()2,1-为圆心且与直线1-=x y 相切的圆的标准方程是 . 12.圆064422=++-+y x y x 上到直线05=--y x 的距离等于22的点有 个. 13.若点P 在直线03:1=++my x l 上,过点P 的直线2l 与曲线()165:22=+-y x C 只有一个公共点M ,且PM 的最小值为4,则=m . 14.在平面直角坐标系xOy 中,椭圆12222=+b y a x (a >b >0)的离心率为22,以O 为圆心,a 为半径作圆M ,再过⎪⎪⎭⎫⎝⎛0,2c a P 作圆M 的两条切线P A 、PB ,则APB ∠= . 15.已知以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角的范围是⎪⎭⎫⎝⎛2,3ππ则双曲线的离心率的范围是 .三、解答题(本大题共6小题;共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分12分)已知圆O 的方程为1622=+y x . (1)求过点()8,4-M 的圆O 的切线方程;(2)过点()0,3N 作直线与圆O 交于A 、B 两点,求OAB △的最大面积以及此时直线AB 的斜率.17.(本题满分12分)将抛物线y x 222-=向上平移2个单位长度后,抛物线过椭圆12222=+by ax (a>b >0)的上顶点和左右焦点.(1)求椭圆方程;[来源:金太阳新课标资源网 ](2)若点()0,m P 满足如下条件:过点P 且倾斜角为π65的直线l 与椭圆相交于C 、D 两点,使右焦点F 在以CD 线段为直径的圆外,试求m 的取值范围.18.(本题满分12分)已知双曲线,12222=-b y a x (a >0,b >0)左右两焦点为1F 、2F ,P 是右支上一点,212F F PF ⊥,1PF OH ⊥于H ,1OF OH λ=,⎥⎦⎤⎢⎣⎡∈21,91λ.(1)当31=λ时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过1F ,2F ,P 的y 轴的线段长为8,求该圆的方程.[来源: ]19.(本题满分13分)在平面直角坐标系xOy 中,过定点()0,p C 作直线m 与抛物线px y 22=(p >0)相交于A 、B 两点.(1)设()0,p N -,求⋅的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.20.(本题满分13分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于21,它的一个顶点恰好是抛物线y x 382=的焦点. (1)求椭圆C 的方程;(2)()3,2P 、()3,2-Q 是椭圆上两点,A 、B 是椭圆位于直线PQ 两侧的两动点,①若直线AB 的斜率为21,求四边形APBQ 面积的最大值;②当A 、B 运动时,满足BPQ APQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.21.(本题满分13分)在平面直角坐标系中,已知向量()2,-=y x a ,()()R k y kx b ∈+=2,,若=.(1)求动点()y x M ,的轨迹T 的方程,并说明该方程表示的曲线的形状;(2)当34=k 时,已知()1,01-F 、()1,02F ,点P 是轨迹T 在第一象限的一点,1=,若点Q 是轨迹T 上不同于点P 的另一点,问是否存在以PQ 为直径的圆G 过点2F ,若存在,求出圆G的方程,若不存在,请说明理由.[来源:金太阳新课标资源网]2012届专题卷数学专题十答案与解析1.【命题立意】本题考查直线的一般方程形式、斜率和倾斜角的关系以及正切函数的诱导公式.[来源: ] 【思路点拨】抓住直线方程y=kx+b 中斜率为k ,α为倾斜角,其中[)πα,0∈,当2πα≠时αtan =k .【答案】D 【解析】7tanπx y -=,斜率76tan7tan 7tanππππ=⎪⎭⎫ ⎝⎛-=-=k . 2.【命题立意】本题考查直线的对称和直线方程的求解以及直线上点的确定.【思路点拨】求出直线1l 与x 轴、与l 的交点坐标,再确定对称点的坐标,最后由两点式得到2l 的直线方程.【答案】D 【解析】画出图形,容易求得直线1l 与x 轴的交点()0,1-A ,它关于直线l 的对称点为()0,5B ,又1l 与l 的交点()3,2P ,从而对称直线2l 经过B 、P 两点,于是由两点式求得2l 的方程为05=-+y x . 3.【命题立意】本题考查两条直线的位置关系和充要条件:0212121=+⇔⊥B B A A l l .【思路点拨】判断直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的位置关系时,抓住两点,一是1l ∥2l 时,212121C C B B A A ≠=,为了避免讨论系数为零的情况,转化为积式1221B A B A =且1221C A C A ≠;二是21l l ⊥,即斜率的乘积为1-,如果一条直线的斜率为零,则另一条直线的斜率不存在,也就是02121=+B B A A .充分必要条件的判定,关键是看哪个推出哪个.【答案】A 【解析】1023221-=⇔=++⇔⊥a a a l l 或2-=a ,故选答案A . 4.【命题立意】本题考查直线与圆的位置关系和点到直线的距离公式以及基本不等式.【思路点拨】直线与圆的位置关系有三种,由圆心到直线的距离d 与半径r 的大小关系决定,当d >r 时,相离;当d =r 时相切;当d <r 时相交. 【答案】D 【解析】圆心()0,0到直线0=+++b a by ax 的距离22b a b a d ++=,半径2=r .由于()221222222≤++=++=b a ab ba b a d ,所以r d ≤,从而直线与圆相交或相切. 5.【命题立意】本题考查直线与圆的位置关系和点到直线的距离.【思路点拨】圆上的点到直线上的点,这两个动点之间的距离的最小值,可以转化为直线上的点到圆心的距离的最小值来解决,圆上的点到直线的距离的最大值等于圆心到直线的距离加上半径,最小值等于圆心到直线的距离减去半径;当直线与圆相交时,圆上的点到直线的距离的最大值等于圆心到直线的距离加上半径,最小值等于0.【答案】B 【解析】由题意可知,直线与圆相离,074422=+--+y x y x 即()()12222=-+-y x ,圆心()2,2到直线kx y =的距离1222+-=k k d ,∴12211222-=-+-=-k k r d ,解得1-=k .6.【命题立意】考查椭圆的标准方程和椭圆中的基本量及其关系以及分类讨论的思想. 【思路点拨】可建立m 关于e 的函数,从而可根据e 的范围求得m 的范围. 【答案】C 【解析】化椭圆的方程为标准方程1122=+my x ,当m 1<1,即m >1时,椭圆焦点在x 轴上,此时12=a ,m b 12=,m c 112-=,m e 112-=∴,211em -=∴,又⎪⎪⎭⎫ ⎝⎛∈22,33e ,∴23<m <2,又m >1,∴1<m <2.当m 1>1,即m <1时,椭圆焦点在y 轴上,此时m a 12=,12=b ,112-=m c ,∴m ac e -==1222,即21e m -=,又⎪⎪⎭⎫⎝⎛∈22,33e ,∴21<m <32.综上,m 的范围范围是()2,132,21 ⎪⎭⎫⎝⎛.选择C . 7.【命题立意】考查双曲线的标准方程,离心率的概念.【思路点拨】根据渐近线方程可以得到双曲线系方程,再分两种情况讨论焦点位置,从而求得离心率.【答案】C 【解析】由于一条渐近线方程为03=-y x ,所以可设双曲线方程为λ=-223y x .当焦点在x 轴上时,方程为1322=-λλy x (λ>0),此时32λ=a ,λ=2b ,于是34222λ=+=b a c ,所以离心率2==a c e ;当焦点在y 轴上时,方程为1322=---λx y (λ<0),此时λ-=2a ,32λ-=b ,于是34222λ-=+=b a c ,所以离心率332==a c e .故选择C . 8.【命题立意】考查抛物线的定义和标准方程以及直角三角形的性质.【思路点拨】画出图形,利用抛物线的定义找出点M 的横坐标与|FM |的关系即可求得.【答案】C 【解析】画出图形,知()0,1F ,设FM =a 2,由点M 向x 轴作垂线,垂足为N ,则FN =a ,于是点M 的横坐标a x +=10.利用抛物线的定义,则M 向准线作垂线,有FM =10+x ,即112++=a a ,所以2=a ,从而FM =4. 9.【命题立意】考查椭圆与抛物线的标准方程,基本量的关系以及分类讨论问题.【思路点拨】由抛物线的标准方程求得准线方程,从而求得椭圆一个顶点的坐标,这个值是a 还是b ,就必须分两种情况讨论. 【答案】D 【解析】由抛物线x y 82=,得到准线方程为2-=x ,又21=a c,即c a 2=.当椭圆的焦点在x 轴上时,2=a ,1=c ,3222=-=c a b ,此时椭圆的标准方程为13422=+y x ;当椭圆的焦点在y 轴上时,2=b ,332=c ,334=a ,此时椭圆的标准方程为1431622=+x y .故选择D . 10.【命题立意】考查对向量含义的理解,线段垂直平分线的性质、三角形中位线性质和双曲线定义. 【思路点拨】画出图形,将向量问题转化为实数中线段关系问题,利用线段垂直平分线的性质和三角形中位线的性质,得到线段的差是常数,符合双曲线的定义.【答案】B1=说明点N 在圆122=+y x 上,NM M F 21=说明N 是线段M F 1的中点,2MF MP λ=(x ∈R )说明P 在2MF 上,01=⋅PN M F 说明PN 是线段M F 1的垂直平分线,于是有PM PF =1,221MF ON =,从而有ON MF PF PM PF PF 22221==-=-=2<21F F =4,所以点P 的轨迹是以1F 、2F 为焦点的双曲线的右支.从而选择B . 11.【命题立意】考查圆的方程,直线与圆相切问题.【思路点拨】圆心已知,故只需求得其半径即可,而半径为圆心(-1,2)到直线的距离,根据点到直线的距离可求其半径,从而可求得圆的标准方程. 【答案】()()82122=-++y x 【解析】圆的半径()221112122=-+---=r ,所以圆的方程为()()()2222221=-++y x ,即()()82122=-++y x .12.【命题立意】考查圆的标准方程,点到直线的距离.【思路点拨】先化圆的方程为标准方程,求出圆心到直线的距离,再来与半径比较. 【答案】3【解析】圆的方程为()()22222=++-y x ,圆心()2,2-到直线05=--y x 的距离222522=-+=d ,圆的半径2=r ,所以圆上到直线的距离等于22的点有3个. 13.【命题立意】考查圆心到直线的距离、圆的切线长定理和直线与圆相切问题.【思路点拨】画出图形,PM 是切线,切线长最小,即|PC |最小,也就是C 到1l 的距离. 【答案】1±【解析】画出图形,由题意l 2与圆C 只一个交点,说明l 2是圆C 的切线,由于162222-=-=PC CM PC PM ,所以要|PM|最小,只需|PC |最小,即点C 到l 1的距离22181305mm+=+++,所以|PM|的最小值为4161822=-⎪⎪⎭⎫⎝⎛+m ,解得1±=m .14.【命题立意】考查椭圆的标准方程,椭圆离心率的概念和圆的切线问题. 【思路点拨】画出图形,由椭圆的离心率为22得到a c =22,再利用圆的切线的性质得到直角三角形,在直角三角形中求解角度.【答案】2π【解析】如图,连结OA ,则OA ⊥P A ,22sin 2===∠a cca a APO ,所以4π=∠APO ,从而2π=∠APB . 15.【命题立意】考查双曲线中由a 、b 、c 构成的直角三角形的几何意义及离心率与a 、b 、c 的关系.[来源: ]【思路点拨】可根据四边形的特征,以“有一个内角小于60°”为桥梁确定离心率的范围. 【答案】⎪⎪⎭⎫⎝⎛2,26【解析】设双曲线的方程为12222=-b y a x =1(a >0,b >0),如图所示,由于在双曲线c >b ,所以只能是211B F B ∠<90°,故由题意可知60°<211B F B ∠<90°, ∴在11B OF Rt ∆中,30°<11B OF ∠<45°,∴33<c b <22,∴31<22c a c -<21, 即31<1-21e<21,∴23<e 2<2,∴26<e <2. 16.【命题立意】考查圆的标准方程,直线与圆的位置关系,以及弦长问题. 【思路点拨】(1)过圆外一点的圆的切线方程,一般设斜率,利用圆心到直线的距离等于半径来求出斜率,但一定要注意斜率存在与否;(2)将弦长AB 看成底边,则三角形的高就是圆心到直线的距离. 【解析】(1)圆心为()0,0O ,半径4=r ,当切线的斜率存在时,设过点()8,4-M 的切线方程为()48+=-x k y ,即084=++-k y kx (1分).则41|84|2=++k k ,解得43-=k ,(3分),于是切线方程为02043=-+y x (5分).当斜率不存在时,4-=x 也符合题意.故过点()11,5-M 的圆O 的切线方程为02043=-+y x 或4-=x .(6分) (2)当直线AB 的斜率不存在时,73=∆ABC S ,(7分),当直线AB 的斜率存在时,设直线AB 的方程为()3-=x k y ,即03=--k y kx ,圆心()0,0O 到直线AB 的距离132+=k k d ,(9分)线段AB 的长度2162d AB -=,所以()()821616162122222=-+≤-=-==∆d d d d d d d AB S ABC ,(11分)当且仅当82=d 时取等号,此时81922=+k k ,解得22±=k ,所以OAB △的最大面积为8,此时直线AB 的斜率为22±.(12分)17.【命题立意】本题考查椭圆方程的求法,直线和圆锥曲线的位置关系以及存在性问题. 【思路点拨】(1)可根据抛物线平移后与坐标轴的交点求得b 、c 的值,从而可得a 的值,故可求椭圆方程;(2)可利用向量法解决.【解析】(1)抛物线y x 222-=的图象向上平移2个单位长度后其解析式为()2222--=y x ,其与x 、y 轴的交点坐标分别为()0,2±、()2,0,∴2=b ,2=c ,(2分)∴62=a ,故椭圆的方程为12622=+y x .(4分)(2)由题意可得直线l 的方程为()m x y --=33,代入椭圆方程消去y 得,062222=-+-m mx x ,(6分)又()68422--=m m △>0,∴32-<m <32.(7分)设C 、D 分别为()11,y x ,()22,y x ,则m x x =+21,26221-=m x x ,∴()()()33313333221212121m x x m x x m x m x y y ++-=⎥⎥⎦⎤⎢⎢⎣⎡--⋅⎥⎥⎦⎤⎢⎢⎣⎡--=,∵()11,2y x FC -=,()22,2y x FD -=,∴()()()()33243363422221212121-=++++-=+--=⋅m m m x x m x x y y x x FD FC ,(10分)∵点F 在圆的外部,∴FD FC ⋅>0,即()332-m m >0,解得m <0或m >3,又∵32-<m <32,∴32-<m <0或3<m<32.(12分)18.【命题立意】考查双曲线的定义和标准方程,渐近线和离心率计算公式.【思路点拨】(1)求渐近线方程的目标就是求ab ,可根据条件建立a 、b 的数量关系来求得;(2)可建立e关于λ的函数,从而可根据λ的范围求得e 的范围;(3)可根据离心率确定a 、b 的数量关系,再结合图形确定圆的圆心与半径.【解析】由于()0,2c F ,所以⎪⎪⎭⎫ ⎝⎛±a b c P 2,,于是a b PF 22=,a ab a PF PF 22221+=+=,(1分)由相似三角形知,112PF OF PF OH =,即121PF PF OF OH =,即ab a a b 222+=λ,(2分)∴2222b b a =+λλ,()λλ-=1222b a ,λλ-=1222a b . (1)当31=λ时,122=ab ,∴b a =.(3分)所以双曲线的渐近线方程为x y ±=.(4分)(2)()[]121112111211211222---=--=---+=-+=+==λλλλλλab ac e ,在⎥⎦⎤⎢⎣⎡21,91上为单调递增函数.(5分) ∴当21=λ时,2e 取得最大值3(6分);当91=λ时,2e 取得最小值45.(7分)∴3452≤≤e ,∴325≤≤e .(8分)(3)当3=e 时,3=ac,∴a c 3=,∴222a b =.(9分)∵212F F PF ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴81=PF .(10分)又a aa a ab a PF 4222221=+=+=,∴84=a ,2=a ,32=c ,22=b .(11分)∴4222===a ab PF ,圆心()2,0C ,半径为4,故圆的方程为()16222=-+y x .(12分)19.【命题立意】考查抛物线的标准方程,直线与抛物线的位置关系.【思路点拨】设直线方程,与抛物线方程联立,利用韦达定理来解决;存在性问题一般是假设存在,利用垂径定理推导求解来解决.【解析】(1)依题意,可设()11,y x A 、()22,y x B ,直线AB 的方程为p my x +=, 由0222222=--⇒⎪⎩⎪⎨⎧=+=p pmy y px y pmy x ,(2分)得⎪⎩⎪⎨⎧-=⋅=+2212122p y y pm y y ,(3分)∴NB NA ⋅=()()2211,,y p x y p x ++()()2121y y p x p x +++=()()212122y y p my p my +++=()()221212421p y y pm y y m ++++=22222p m p +=(6分)当0=m 时,NB NA ⋅取得最小值22p .(7分)(2)假设满足条件的直线l 存在,其方程为a x =,AC 的中点为O ',l 与以AC 为直径的圆相交于P 、Q ,PQ 的中点为H ,则PQ H O ⊥',O '的坐标为⎪⎭⎫⎝⎛+2,211y p x .()2212121212121p x y p x AC P O +=+-==' (9分),()()()a p a x p a p x a p x H O P O PH-+⎪⎭⎫ ⎝⎛-=---+='-'=∴1212212222124141,2PQ =()22PH =()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛-a p a x p a 1214(11分),令021=-p a 得p a 21=.此时p PQ =为定值.故满足条件的直线l 存在,其方程为p x 21=.(13分)20.【命题立意】考查椭圆与抛物线的标准方程,直线与椭圆的位置关系.【思路点拨】(1)利用抛物线的标准方程,求出焦点坐标,从而得到椭圆中的b ,再由离心率建立方程,可求得椭圆的标准方程;(2)抓住直线PQ ⊥x 轴,BPQ APQ ∠=∠即直线P A 、PB 的斜率互为相反数,联系方程利用韦达定理来解决. 【解析】(1)设C 方程为12222=+by ax (a >b >0),则32=b .由21=a c ,222b c a +=,得a =4∴椭圆C 的方程为1121622=+y x .(4分)(2)①设()11,y x A ,()22,y x B ,直线AB 的方程为t x y +=21,代入1121622=+y x ,得01222=-++t tx x ,由∆>0,解得4-<t <4.(6分)由韦达定理得t x x -=+21,12221-=t x x . 四边形APBQ 的面积2213483621t x x S -=-⨯⨯=,∴当0=t 时312max=S .(8分)②当BP Q AP Q ∠=∠,则P A 、PB 的斜率之和为0,设直线P A 的斜率为k ,则PB 的斜率为k -,P A 的直线方程为()23-=-x k y ,由()⎪⎩⎪⎨⎧=+-=-)2(11216)1(2322y x x k y .将(1)代入(2)整理得()()()04823423843222=--+-++k kx k x k ,有()21433282kk k x +-=+.(10分)同理PB 的直线方程为)2(3--=-x k y ,可得()()22243328433282k k k kk k x ++=+---=+,∴2221431216kk x x +-=+,2214348kk x x +-=-.(12分)从而AB k =2121x x y y --=()()21213232x x x k x k ---++-=()21214x x k x x k --+=21,所以AB 的斜率为定值21.(13分) 21.【命题立意】考查圆锥曲线的标准方程,椭圆与双曲线的定义,向量垂直问题. 【思路点拨】(1)利用向量的数量积的坐标运算来求出轨迹方程,但一定要注意对参数的讨论;(2)利用椭圆或双曲线的定义确定点P 的位置,以PQ 为直径的圆G 过点2F ,即022=⋅QF PF ,利用向量垂直的坐标运算来解决.【解析】(1)∵b a ⊥,∴()()02,2,=+⋅-=⋅y kx y x b a ,得0422=-+y kx ,即422=+y kx .(1分) 当0=k 时,方程表示两条与x 轴平行的直线;(2分)当1=k 时,方程表示以原点为圆心,以2为半径的圆;(3分)当0<k <1时,方程表示焦点在x 轴上的椭圆;(4分)当k >1时,方程表示焦点在y 轴上的椭圆;(5分)当k <0时,方程表示焦点在y 轴上的双曲线.(6分)(2)由(1)知,轨迹T 是椭圆13422=+x y ,则1F 、2F 为椭圆的两焦点.解法一:由椭圆定义得421=+PF PF ,联立121=-PF PF 解得251=PF ,232=PF ,又221=F F ,有2212221F F PF PF +=,∴212F F PF ⊥,∴P 的纵坐标为1,把1=y 代入13422=+x y 得23=x 或23-=x (舍去),∴⎪⎭⎫ ⎝⎛1,23P .(9分)设存在满足条件的圆,则22QF PF ⊥,设()t s Q ,,则⎪⎭⎫⎝⎛-=0,232PF ,()t s QF --=1,2,∴022=⋅QF PF ,即()01023=-⨯+t s ,∴0=s .又13422=+s t ,∴2±=t ,∴()2,0Q 或()2,0-Q .(12分)所以圆G 的方程:1613234322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 或1645214322=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x .(13分)。

2018高考数学二轮复习专题五解析几何第2讲椭圆双曲线抛物线

2018高考数学二轮复习专题五解析几何第2讲椭圆双曲线抛物线

第2讲 椭圆、双曲线、抛物线一、选择题1.(2016·全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2解析:因为抛物线方程是y 2=4x ,所以F (1,0).又因为PF ⊥x 轴,所以P (1,2),把P 点坐标代入曲线方程y =k x (k >0),即k1=2,所以k =2.答案:D2.(2017·全国卷Ⅱ)若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )(导学号55410127)A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:由题意e 2=c 2a 2=a 2+1a 2=1+1a 2,因为a >1,所以1<1+1a2<2,因此离心率e ∈(1,2). 答案:C3.(2017·长沙一模)椭圆的焦点在x 轴上,中心在原点,其上、下两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )A.x 22+y 22=1B.x 22+y 2=1 C.x 24+y 22=1 D.y 24+x 22=1 解析:由题设知b =c =2,a =2, 所以椭圆的标准方程为x 24+y 22=1.答案:C4.(2017·全国卷Ⅱ)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )(导学号 55410128)A. 5 B .2 2 C .2 3D .3 3解析:由题知MF :y =3(x -1),与抛物线y 2=4x 联立得3x 2-10x +3=0,解得x 1=13,x 2=3,所以M (3,23).因为MN ⊥l ,所以N (-1,23). 又F (1,0),所以直线NF 的方程为y =-3(x -1).故点M 到直线NF 的距离是|3(3-1)+23|(-3)2+12=2 3. 答案:C5.(2017·新乡模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点B 是虚轴上的一个顶点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A.x 26-y 25=1B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1 解析:设A (x ,y ),因为右焦点为F (c ,0),点B (0,b ),线段BF 与双曲线C 的右支交于点A ,且BA →=2AF →,所以x =2c 3,y =b3,代入双曲线方程,得4c 29a 2-19=1,所以b =6a 2. 因为|BF →|=4,所以c 2+b 2=16,所以a =2,b =6, 所以双曲线C 的方程为x 24-y 26=1.答案:D 二、填空题6.(2017·北京卷)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.(导学号55410129)解析:由题意知1+m 1=e 2=3,则m =2.答案:27.(2017·邯郸质检)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于________.解析:过点Q 作QQ ′⊥l 交l 于点Q ′,因为FP →=4FQ →,所以|PQ |∶|PF |=3∶4. 又焦点F 到准线l 的距离为4,所以|QF |=|QQ |′=3. 答案:38.(2017·潍坊三模)已知抛物线y 2=2px (p >0)上的一点M (1,t )(t >0)到焦点的距离为5,双曲线x 2a 2-y 29=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为________.解析:由题设1+p2=5,所以p =8.不妨设点M 在x 轴上方,则M (1,4),由于双曲线的左顶点A (-a ,0),且AM 平行一条渐近线,所以41+a =3a ,则a =3.答案:3 三、解答题9.(2017·佛山一中调研)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(导学号 55410130)(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解:(1) 依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得a =2,b =1.所以椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意;②当MN 不垂直于x 轴时, 设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 整理得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 所以x 1+x 2=4k 21+2k 2,x 1·x 2=2(k 2-1)1+2k 2. 所以y 1·y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k21+2k2.因为OM ⊥ON ,所以OM →·ON →=0.所以x 1·x 2+y 1·y 2=k 2-21+2k2=0,所以k =± 2.故直线l 的方程为y =±2(x -1).10.(2017·北京卷)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.(1)解:设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)设M (m ,n ),则D (m ,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n,所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.11.(2017·全国卷Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(导学号 55410131)(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解:(1)设A (x 1,y 1),B (x 2,y 2)且x 1≠x 2,x 1+x 2=4, 则y 1=x 214,y 2=x 224,所以y 2-y 1=(x 2-x 1)(x 1+x 2)4=x 2-x 1.于是直线AB 的斜率k =y 2-y 1x 2-x 1=1. (2)由y =x 24,得y ′=x2,设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m , 故线段AB 的中点为N (2,2+m ), |MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x1,2=2±2m+1.从而|AB|=2|x1-x2|=42(m+1). 由题设知|AB|=2|MN|,即42(m+1)=2|m+1|,解得m=7. 所以直线AB的方程为x-y+7=0.。

高考数学二轮复习 第二部分 专题五 解析几何 专题强化练十三 椭圆、双曲线、抛物线 文

高考数学二轮复习 第二部分 专题五 解析几何 专题强化练十三 椭圆、双曲线、抛物线 文

专题强化练十三 椭圆、双曲线、抛物线一、选择题1.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.223 解析:不妨设a >0,由焦点F (2,0),知c =2. 所以a 2=4+c 2=8,a =2 2.故离心率e =c a =222=22.答案:C2.(2018·济南质检)已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点,O 为坐标原点,若PA →·PB →=0,则直线OA 与OB 的斜率之积为( )A .-14B .-3C .-18 D .-4解析:由x 2=4y ,得y ′=x2.设A ⎝⎛⎭⎪⎫x A ,x 2A 4,B ⎝ ⎛⎭⎪⎫x B ,x 2B 4. 由PA →·PB →=0,得PA ⊥PB .所以x A 2·x B2=-1,则x A ·x B =-4,又k OA ·k OB =x 2A 4x A ·x 2B4x B =x A x B 16=-14.答案:A3.(2018·河南郑州二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为23,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为12,则C 的方程为( )A.x 23+y 2=1 B.x 23+y 22=1 C.x 29+y 24=1 D.x 29+y 25=1 解析:由题意可得c a =23,4a =12,解得a =3,c =2,则b =32-22=5,所以所求椭圆C 的方程为x 29+y 25=1.答案:D4.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32解析:由c 2=a 2+b 2=4,得c =2,所以F (2,0). 将x =2代入x 2-y 23=1,得y =±3,则|PF |=3.又A 的坐标是(1,3),故△APF 的面积为12×3×(2-1)=32.答案:D5.设抛物线y 2=2px (p >0)的焦点为F ,过F 点且倾斜角为π4的直线l 与抛物线相交于A ,B 两点,若以AB 为直径的圆过点⎝ ⎛⎭⎪⎫-p 2,2,则该抛物线的方程为( )A .y 2=2x B .y 2=4x C .y 2=8xD .y 2=16x解析:易求直线l 的方程y =x -p2,① 又y 2=2px ,②联立①②,得x 2-3px +p 24=0不妨设A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=3p ,x 1x 2=p 24,又点M ⎝ ⎛⎭⎪⎫-p2,2在以AB 为直径的圆上.所以⎝ ⎛⎭⎪⎫x 1+p2,y 1-2·(x 2+p2,y 2-2)=0.则2x 1x 2-2(x 1+x 2)+4+2p +p 22=0,从而p 2-4p +4=0,p =2, 故所求抛物线方程为y 2=4x . 答案:B 二、填空题6.(2018·北京卷)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为________.解析:对于y 2=4ax ,令x =1,得y =±2a , 由于l 被抛物线y 2=4ax 截得的线段长为4, 所以4a =4,则a =1. 故抛物线的焦点F (1,0). 答案:(1,0)7.(2018·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0)到一条渐近线的距离为32c ,则其离心率的值是________. 解析:不妨设双曲线的一条渐近线方程为y =bax , 所以|bc |a 2+b2=b =32c ,所以b 2=c 2-a 2=34c 2,得c =2a , 所以双曲线的离心率e =c a=2. 答案:28.抛物线C :y 2=4x 的焦点为F ,P (x 1,y 1)(x 1>1)、Q (x 2,y 2)是C 上不同的两点,若△PFQ 是以F 为顶点的等腰直角三角形,则|PF |=________.解析:Rt △PFQ 是以F 为顶点的等腰直角三角形,由抛物线的定义及对称性,|FH |=|PH |,又x 1=y 214>1,知,y 1>2.所以y 214-1=y 1,解得y 1=2+22,故|PF |=2·|PH |=4+2 2. 答案:4+2 2 三、解答题9.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧x 0=3,y 0=2,或⎩⎪⎨⎪⎧x 0=11,y 0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.10.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解:(1) 依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得⎩⎨⎧a =2,b =1.所以椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意; ②当MN 不垂直于x 轴时,设直线l 的方程为y =k (x -1).联立方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 所以x 1+x 2=4k 21+2k 2,x 1·x 2=2(k 2-1)1+2k 2. 所以y 1·y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k21+2k2.因为OM ⊥ON ,所以OM →·ON →=0.所以x 1·x 2+y 1·y 2=k 2-21+2k2=0,所以k =±2. 故直线l 的方程为y =±2(x -1).11.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是椭圆C 上一点,且MF 2与x 轴垂直,直线MF 1在y 轴上的截距为34,且|MF 2|=35|MF 1|.(1)求椭圆C 的方程;(2)已知直线l :y =kx +t 与椭圆C 交于E 、F 两点,且直线l 与圆7x 2+7y 2=12相切,求OE →·OF →的值(O 为坐标原点).解:(1)设直线MF 1与y 轴的交点为N ,则|ON |=34.因为MF 2⊥x 轴,所以在△F 1F 2M 中,ON 綊12MF 2,则|MF 2|=32.又|MF 2|+|MF 1|=2a ,|MF 2|=35|MF 1|,所以|MF 2|=34a =32,所以a =2.又|MF 2|=b 2a,所以b 2=3.所以椭圆C 的标准方程为x 24+y 23=1.(2)设E (x 1,y 1),F (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +t ,x 24+y 23=1,消y 得(3+4k 2)x 2+8ktx +4t 2-12=0.所以x 1+x 2=-8kt 3+4k 2,x 1x 2=4t 2-123+4k2,Δ=(8kt )2-4(3+4k 2)(4t 2-12)>0,得t 2<3+4k 2,(*) 则OE →·OF →=x 1x 2+y 1y 2=x 1x 2+(kx 1+t )(kx 2+t )=(1+k 2)x 1x 2+kt (x 1+x 2)+t 2=(1+k 2)(4t 2-12)3+4k 2-8k 2t 23+4k 2+t 2(3+4k 2)3+4k 2=7t 2-12(1+k 2)3+4k2. 又直线l 与圆7x 2+7y 2=12相切, 所以|t |1+k2=127,则1+k 2=712t 2满足(*)式, 故OE →·OF →=7t 2-12×712t23+4k2=0.。

数学高考二轮专题15 椭圆、双曲线和抛物线(解析版)

数学高考二轮专题15 椭圆、双曲线和抛物线(解析版)

专题15 椭圆、双曲线和抛物线【考向解读】1.以选择题、填空题形式考查圆锥曲线的方程、几何性质特别是离心率.2.以解答题形式考查直线与圆锥曲线的位置关系弦长、中点等.【命题热点突破一】 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|); (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|);(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M . 2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A 【变式探究】(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 (2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( )A.x 221-y 228=1B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 【答案】 (1)A (2)D【命题热点突破二】 圆锥曲线的几何性质 1.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca =1-b a2;(2)在双曲线中:c 2=a 2+b 2,离心率为e =ca =1+b a2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.例2、已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【变式探究】 (1)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.(2)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x 【答案】 (1)3-1 (2)C【解析】(1)直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2c c +3c=3-1.(2)由题意作出示意图,易得直线BC 的斜率为ab ,cos ∠CF 1F 2=bc,又由双曲线的定义及|BC |=|CF 2|可得|CF 1|-|CF 2|=|BF 1|=2a , |BF 2|-|BF 1|=2a ⇒|BF 2|=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a 22×2a ×2c ⇒b 2-2ab -2a 2=0⇒(b a )2-2(b a )-2=0⇒ba =1+3,故双曲线的渐近线方程为y =±(3+1)x .【变式探究】(1)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1(2)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞) 【答案】 (1)D (2)A【命题热点突破三】 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 例3(1)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( )A.433B .2 3C .6D .4 3(2)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 【答案】 (1)D (2)D 【高考题型解读】1. 已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) (A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A2.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A(B )23(C(D )1 【答案】C【解析】设()()22,2,,P pt pt M x y (不妨设0t >),则212,2.,23p FP pt pt FM FP ⎛⎫=-= ⎪⎝⎭u u u r u u u u r u u u r Q()222max 22,,21123633,,122212,,233OM OM p p p p p x t x t t k t k pt pt t t t y y t ⎧⎧-=-=+⎪⎪⎪⎪∴∴∴====∴⎨⎨+⎪⎪+==⎪⎪⎩⎩当且仅当时取等号,,故选C.3.已知12,F F 是双曲线2222:1x y E a b -=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A(B )32(C(D )2【答案】A4.已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211m n -=+,即222m n =+,由于m >1,n >0,可得m >n ,又22212222222111111()(1)(1)(1)(1)2m n e e m n m n n n -+=⋅=-+=-++=42422112n n n n++>+ ,故121e e >.故选A .5.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=6.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB|=,|DE|=则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8 【答案】B7.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||()FM k a c =-,||OE k a =.设OE 的中点为N ,则OBN FBM △∽△,则1||||2||||OE OB FM BF =,即2(c)k a a k a a c=-+,整理,得13c a =,所以椭圆C 的离心率13e =,故选A .8.已知双曲线2224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y -【答案】D9.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0 的右焦点,直线2by = 与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是 ▲ .【答案】63【解析】由题意得33(,),C(,),22b b B ,因此2222236()()0322b c c a e -+=⇒=⇒ 10.设抛物线222x pt y pt⎧=⎨=⎩,(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32则p 的值为_________. 6【解析】抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=, 又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则||2A y ,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==,所以262CEF CEA S S ==V V 92ACF AEC CFE S S S =+=V V V 所以132922p ⨯=6p =11.已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.【答案】2【解析】假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a -,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 12.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________.【答案】2【解析】∵OABC 是正方形,∴45AOB ∠=︒,即直线OA 方程为y x =,此为双曲线的渐近线,因此a b =,又由题意OB =,∴222a a +=,2a =.故填:2.13.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.【答案】14.平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;【解析】(Ⅱ)(Ⅰ)设)0)(2,(2>m m m P ,由y x 22=可得y'x =, 所以直线l 的斜率为m ,因此直线l 的方程为)(22m x m m y -=-,即22m mx y -=. 设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0∆>,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y ,因为m x y 4100-=,所以直线OD 方程为x my 41-=. 联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. 15.已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449; 【解析】(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN △的面积AMN S △11212144227749=⨯⨯⨯=.16.双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点。

2018届高考数学(理)热点题型:解析几何(含答案解析)

2018届高考数学(理)热点题型:解析几何(含答案解析)

解析几何热点一 圆锥曲线的标准方程与几何性质圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型.【例1】(1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1D.x 2-y 23=1(2)若点M(2,1),点C 是椭圆x 216+y 27=1的右焦点,点A 是椭圆的动点,则|AM|+|AC|的最小值为________.(3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px(p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为________.答案 (1)D (2)8-26 (3)2-1解析 (1)双曲线x 2a 2-y 2b 2=1的一个焦点为F(2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2ba 2+b2=3,② 联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y23=1,选D.(2)设点B 为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以|AM|+|AC|≥2a-|BM|,而a =4,|BM|=(2+3)2+1=26,所以(|AM|+|AC|)最小=8-26.(3)因为抛物线y 2=2px(p >0)的焦点F 为⎝ ⎛⎭⎪⎫p 2,0,设椭圆另一焦点为E.如图所示,将x =p 2代入抛物线方程得y =±p,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p 2,p 且PF⊥OF.所以|PE|=⎝ ⎛⎭⎪⎫p 2+p 22+p 2=2p , |PF|=p ,|EF|=p. 故2a =2p +p ,2c =p ,e =2c2a=2-1.【类题通法】(1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点的距离,也可以结合三角形的知识,求出曲线上的点到两个焦点的距离.在抛物线中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题. (2)求解与圆锥曲线的几何性质有关的问题关键是建立圆锥曲线方程中各个系数之间的关系,或者求出圆锥曲线方程中的各个系数,再根据圆锥曲线的几何性质通过代数方法进行计算得出结果.【对点训练】已知椭圆x 24+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B 两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1;③|AB|=83.其中正确结论的个数为( ) A.3 B.2C.1D.0答案 A解析 ①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB|,所以△ABF 2的周长为|AB|+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0),因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y =x +2,则原点到l 的距离d =|2|2=1,故②正确;③设A(x 1,y 1),B(x 2,y 2),由⎩⎨⎧y =x +2,x 24+y 22=1,得3x 2+42x =0,解得x 1=0,x 2=-423,所以|AB|=1+1·|x 1-x 2|=83,故③正确.故选A. 热点二 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例2】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值. (1)解 由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明 设直线l :y =kx +b(k≠0,b ≠0), A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.【类题通法】解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.【对点训练】已知抛物线C :y 2=2px(p>0)的焦点F(1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.(1)解 因为抛物线y 2=2px(p>0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x.(2)证明 ①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t .因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A(8,t),B(8,-t),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A(x A ,y A ),B(x B ,y B ),联立得⎩⎨⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y B x B =-12,即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk=-32,即b =-8k ,所以y =kx -8k , 即y =k(x -8).综上所述,直线AB 过定点(8,0). 热点三 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例3】平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D.直线OD 与过P 且垂直于x 轴的直线交于点M. ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.(1)解 由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点F ⎝ ⎛⎭⎪⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝ ⎛⎭⎪⎫m ,m 22(m>0),由x 2=2y ,可得y′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m(x -m).即y =mx -m 22.设A(x 1,y 1),B(x 2,y 2),D(x 0,y 0).联立方程⎩⎨⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m<2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m. 所以直线OD 方程为y =-14mx ,联立方程⎩⎨⎧y =-14m x ,x =m ,得点M 的纵坐标y M=-14,所以点M 在定直线y =-14上.②由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎝⎛⎭⎪⎫0,-m 22,又P ⎝ ⎛⎭⎪⎫m ,m 22,F ⎝ ⎛⎭⎪⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1), 所以S 1=12·|GF|·m =(m 2+1)m4,S 2=12·|PM|·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12, 即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式,所以P 点坐标为⎝ ⎛⎭⎪⎫22,14.因此S 1S 2的最大值为94,此时点P 的坐标为⎝ ⎛⎭⎪⎫22,14.【类题通法】圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法、或利用判别式构造不等关系、利用隐含或已知的不等关系建立不等式等方法求最值、范围;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值. 【对点训练】如图,设抛物线y 2=2px(p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF|-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F(1,0), 可设A(t 2,2t),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s≠0),由⎩⎨⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2tt 2-1, 故直线FN 的斜率为-t 2-12t,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M(m ,0),由A ,M ,N 三点共线得2tt 2-m =2t +2t t 2-t 2+3t 2-1, 于是m =2t 2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 热点四 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例4】已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. (1)证明 设直线l :y =kx +b(k≠0,b ≠0), A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m 3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x.设点P 的横坐标为x P ,由⎩⎨⎧y =-9k x ,9x 2+y 2=m2得x 2P=k 2m 29k 2+81,即x P=±km 3k 2+9.将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9).四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.【类题通法】(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法. 【对点训练】在平面直角坐标系xOy 中,过点C(2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A(x 1,y 1),B(x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由. (1)证明 法一 当直线AB 垂直于x 轴时, y 1=22,y 2=-2 2. 因此y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k(x -2), 由⎩⎨⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2, 由⎩⎨⎧my =x -2,y 2=4x ,得y 2-4my -8=0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值. (2)解 设存在直线l :x =a 满足条件, 则AC 的中点E ⎝⎛⎭⎪⎫x 1+22,y 12,|AC|=(x 1-2)2+y 21. 因此以AC 为直径的圆的半径r =12|AC|=12(x 1-2)2+y 21=12x 21+4, 又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a 故所截弦长为 2r 2-d 2=214(x 21+4)-⎝⎛⎭⎪⎫x 1+22-a 2 =x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.。

2018年全国2卷省份高考模拟理科数学分类汇编--解析几何

2018年全国2卷省份高考模拟理科数学分类汇编--解析几何

2018年全国2卷省份高考模拟理科数学分类汇编——解析几何1.(海南省模拟)已知抛物线的焦点为,过点作互相垂直的两直线,与抛物线分别相交于,以及,,若,则四边形的面积的最小值为()CA. B. C. D.【解析】由抛物线性质可知:,又,∴,即设直线AB的斜率为k(k≠0),则直线CD的斜率为.直线AB的方程为y=k(x﹣1),联立,消去y得k2x2﹣(2k2+4)x+k2=0,从而,=1,由弦长公式得|AB|=,以换k得|CD|=4+4k2,故所求面积为≥32(当k2=1时取等号),即面积的最小值为32.故选:C2. (海南模拟)已知双曲线的左、右焦点分别为,,过且垂直于轴的直线与该双曲线的左支交于,两点,,分别交轴于,两点,若的周长为,则的最大值为__________.【解析】由题意,△ABF2的周长为32,∵|AF2|+|BF2|+|AB|=32,∵|AF2|+|BF2|﹣|AB|=4a,|AB|=,∴=32﹣4a,∴,∴,令,则,令m=,则当m=时,的最大值为,故答案为:3.(海南省模拟)在平面直角坐标系中,已知椭圆的离心率为,,分别为椭圆的上顶点和右焦点,的面积为,直线与椭圆交于另一个点,线段的中点为.(1)求直线的斜率;(2)设平行于的直线与椭圆交于不同的两点,,且与直线交于点,求证:存在常数,使得.【解析】试题分析:(1)由题意得到椭圆的方程为. 直线的方程为,联立消去得,从而得线段的中点,进而得到直线的斜率;(2) 设直线的方程为. 联立方程得到同理得到,∴存在常数,使得.试题解析:(1)因为椭圆的离心率为,所以,即,,所以,,所以,所以,所以椭圆的方程为.直线的方程为,联立消去得,所以或,所以,从而得线段的中点.所以直线的斜率为.(2)由(1)知,直线的方程为,直线的斜率为,设直线的方程为.联立得所以点的坐标为.所以,.所以.联立消去得,由已知得,又,得. 设,,则,,,.所以,,故.所以.所以存在常数,使得.4.(大庆市模拟)已知命题直线与平行;命题直线与圆相交所得的弦长为,则命题是()AA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既充分也不必要条件【解析】命题两条直线与互相平行,∴,解得或,当时,两直线重合,故舍去,故;命题由于直线被圆截得的弦长为可得:圆心到直线的距离,即,解得,综上可得命题是充分不必要条件,故选A.5.(大庆市模拟)已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线的准线上,则双曲线的方程为()AA. B. C. D.【解析】由题意,∵抛物线的准线方程为,双曲线的一个焦点在抛物线的准线上,∴,∴,∴,,∴双曲线的方程为,故选A.6.(大庆市模拟)已知抛物线,过其焦点作一条斜率大于0的直线,与抛物线交于两点,且,则直线的斜率为________.【解析】如图所示:分别过点向准线作垂线,垂足为,过点向作垂线,垂足为,设,则,又抛物线的定义可得,,故可得,,,即,故直线的倾斜角为,直线的斜率为,故答案为.7.(大庆市模拟)已知椭圆,其焦距为2,离心率为(1)求椭圆的方程;(2)设椭圆的右焦点为,为轴上一点,满足,过点作斜率不为0的直线交椭圆于两点,求面积的最大值.【答案】(1);(2).【解析】试题分析:(1)由焦距为2得,由离心率得,结合可得椭圆方程;(2)由题意可得,直线的方程为,,将直线方程与椭圆方程联立由韦达定理可得,,结合得的范围,利用点到直线的距离为,,令,,结合二次函数的性质可得最大值.试题解析:(1)因为椭圆焦距为2,即,所以,,所以,从而,所以椭圆的方程为.(2)椭圆右焦点,由可知,直线过点,设直线的方程为,,将直线方程与椭圆方程联立得,设,则,,由判别式解得,点到直线的距离为,则,,令,,则,当时,取得最大值,此时,,取得最大值.点睛:本题主要考查的椭圆方程的求法,以及焦点三角形的最值问题,计算量较大,属于难题;设出直线方程的点斜式,联立直线与椭圆的方程,运用韦达定理,结合弦长公式,运用点到直线的距离公式求出三角形的高,将三角形的面积表示为关于的函数,利用换元法及二次函数的性质求出函数的最值.8.(辽宁省实验中学模拟)已知椭圆的左右焦点分别为,过的直线与过的直线交于点,设点的坐标,若,则下列结论中不正确的是()AA. B. C. D.【解析】在以为直径的圆上,圆心坐标为,半径为,在椭圆内,一定有,故不正确,故选A.9.(辽宁省实验中学模拟)已知双曲线的两个焦点为,渐近线为,则双曲线的标准方程为__________.【答案】【解析】双曲线的两个焦点为,,又渐近线为,,双曲线方程为,故答案为.10.(辽宁省实验中学模拟)已知直线与抛物线交于两点,(1)若,求的值;(2)以为边作矩形,若矩形的外接圆圆心为,求矩形的面积.【答案】(1)(2)【解析】试题分析:(1)与联立得,设,根据韦达定理可得,结合可列出关于的方程,从而可得结果;(2)设弦的中点为, 设圆心,则,由得,可得,根据点到直线距离公式可得,根据弦长公式可得,从而可得矩形的面积.试题解析:(1)与联立得由得,设,则∵,∴∴,∴ ∴,满足题意.(2)设弦的中点为,则,,设圆心∵ ∴ ∴,则,∴,∴∴ ∴ ∴面积为11. (哈师大附中模拟)已知点分别是双曲线,的左、右焦点,为坐标原点,点在双曲线的右支上,的面积为4,且该双曲线的两条渐近线互相垂直,则双曲线的方程为( )BA .B . C. D . 12.(哈师大附中模拟)过抛物线的焦点的直线与抛物线交于两点,若弦中点到轴的距离为5,则= .1213.(哈师大附中模拟)已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为. (I)求椭圆的方程(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值解:(I )由已知得:椭圆方程为(II )设(易知存在斜率,且),设12F F 2222:1(0x y C a a b-=>,b>0)O P C 122F F OP =12PF F ∆C 22122x y -=22144x y -=2284x y -22124x y -=2:4C x y =F C .A B .A B x AB ()222:102x y C a b a b+=>>(),0F c P C PF 2+2C l C ,P Q ,,OP PQ OQ OPQ ∆由条件知:联立(1)(2)得:点到直线的距离且所以当时:.14.(西北师大附中模拟)若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为 ( )BA. 5 B .5 C .2 5 D .1015.(西北师大附中模拟) 过双曲线()222210x y b a a b-=>>的左焦点作圆的切线,切点为,延长交双曲线右支于点P ,若()12OE OF OP =+(是坐标原点),则双曲线的离心率为 ( )C16. (西北师大附中模拟)已知椭圆C :12222=+b y a x )0(>>b a 的离心率为,过右焦点F 且斜率为1的直线交椭圆C 于B A ,两点,N 为弦AB 的中点,O 为坐标原点. (1)求直线ON 的斜率ON k ;(2)求证:对于椭圆C 上的任意一点M ,都存在)2,0[πθ∈,使得OB OA OM θθsin cos +=成立.解:(1)设椭圆的焦距为c 2,因为,所以有,故有. 从而椭圆C 的方程可化为: 知右焦点F 的坐标为(),据题意有AB 所在的直线方程为:. ②由①,②有:.③设,弦AB 的中点,由③及韦达定理有:所以3100-==x y k ON ,即为所求. (2)显然与可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量,有且只有一对实数,使得等式成立.设,由(1)中各点的坐标有:(,0)(0)F c c ->222x y a +=E FE O 3636=a c 32222=-a b a 223b a =22233b y x =+0,2b b x y 2-=0326422=+-b bx x ),(),,(2211y x B y x A ),(00y x N .422,423200210b b x y b x x x -=-==+=OA OB OM μλ,μλ+=),(y x M,故.又因为点在椭圆C 上,所以有整理可得:. ④由③有:.所以 ⑤又点B A ,在椭圆C 上,故有 .⑥将⑤,⑥代入④可得:.所以,对于椭圆上的每一个点,总存在一对实数,使等式成立,且. 所以存在)2,0[πθ∈,使得.也就是:对于椭圆C 上任意一点 ,总存在)2,0[πθ∈,使得等式OB OA OM θθsin cos +=成立.17. (黑龙江模拟)设抛物线22(0)y px p =>的焦点为F ,过FA ,B 两点.若线段AB 的垂直平分线与x 轴交于点(11,0)M ,则p =( )CA .2B .3C .6D .1218.(黑龙江模拟)已知动圆E 经过定点(1,0)D ,且与直线1x =-相切,设动圆圆心E 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点(1,2)P 的直线1l ,2l 分别与曲线C 交于A ,B 两点,直线1l ,2l 的斜率存在,且倾斜角互补,证明:直线AB 的斜率为定值.解析:(1)由已知,动点E 到定点(1,0)D 的距离等于E 到直线1x =-的距离,由抛物线的定义知E 点的轨迹是以(1,0)D 为焦点,以1x =-为准线的抛物线,故曲线C 的方程为24y x =. (2)由题意可知直线1l ,2l 的斜率存在,倾斜角互补,则斜率互为相反数,且不等于零.设11(,)A x y ,22(,)B x y ,直线1l 的方程为(1)2y k x =-+,0k ≠.直线2l 的方程为(1)2y k x =--+,),(),(),(2211y x y x y x μλ+=2121,y y y x x x μλμλ+=+=M 22212213)(3)(b y y x x =+++μλμλ2212122222212123)3(2)3()3(b y y x x y x y x =+++++λμμλ43,22322121b x x b x x =⋅=+06936)(234)2)(2(332222212121212121=+-=++-=--+=+b b b b x x b x x b x b x x x y y x x 22222221213)3(,3)3(b y x b y x =+=+122=+μλM OB OA OM μλ+=122=+μλθμθλsin ,cos ==M由2(1)24y k x y x=-+⎧⎨=⎩得2222(244)(2)0k x k k x k --++-=,已知此方程一个根为1,∴22122(2)441k k k x k k--+⨯==, 即21244k k x k -+=,同理22222()4()444()k k k k x k k ---+++==-,∴212228k x x k ++=,12288k x x k k ---==, ∴1212[(1)2][(1)2]y y k x k x -=-+---+2122288()22k k x x k k k k k+=+-=⋅-=, ∴1212818ABy yk k x x k-===---,所以,直线AB 的斜率为定值1-. 19.(吉林省实验中学模拟) 设某曲线上一动点到点的距离与到直线的距离相等,经过点的直线与该曲线相交于, 两点,且点恰为等线段的中点,则B(A) 6 (B ) 10 (C )12 (D )1420.(吉林省实验中学模拟)已知抛物线C 1:x 2=4y 在点A ,B 处的切线垂直相交于点P ,直线AB 与椭圆C 2:相交于C ,D 两点.(Ⅰ)求抛物线C 1的焦点F 与椭圆C 2的左焦点F 1的距离;(Ⅱ)设点P 到直线AB 的距离为d ,是否存在直线AB ,使得|AB |,d ,|CD |成等比数列?若存在,求出直线AB(Ⅰ)抛物线C 1的焦点F (0,1),椭圆C 2的左焦点F 1(-,0),则|FF 1|=.(Ⅱ)设直线AB :y =kx +m ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),由得x 2-4kx -4m =0,故x 1+x 2=4k ,x 1x 2=-4m .由x 2=4y ,得y ′=,故切线P A ,PB 的斜率分别为k P A =,k PB =, 再由P A ⊥PB ,得k P A k PB =-1,即·===-m =-1,故m =1,这说明直线AB 过抛物线C 1的焦点F .由2得x ==2k , y =·2k -1=kx 1-1=·x 1-1==-1,即P (2k ,-1).于是点P (2k ,-1)到直线AB :kx -y +1=0的距离d ==2. 由得(1+2k 2)x 2+4kx -2=0,M ()3,0F 3x =-()2,1P l A B P AB AF BF +=22142x y +=从而|CD |= = ,同理,|AB |=4(1+k 2) . 若|AB |,d ,|CD |成等比数列,则d 2=|AB |·|CD |,即(2)2=4(1+k 2)· ,化简整理,得28k 4+36k 2+7=0,此方程无实根,21.(沈阳模拟) 已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与圆22(4)4x y -+=相切,则该双曲线的离心率为( )B A .2 B.3222. (沈阳模拟)已知正三角形AOB ∆(O 为坐标原点)的顶点A B 、在抛物线23y x =上,则AOB ∆的边长是..23.(沈阳模拟)设O 为坐标原点,动点M 在椭圆22194x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(Ⅰ)求点P 的轨迹方程E ;(Ⅱ)过(1,0)F 的直线1l 与点P 的轨迹交于A B 、两点,过(1,0)F 作与1l 垂直的直线2l 与点P 的轨迹交于C D 、两点,求证:11||||AB CD +为定值.解:(Ⅰ)设(,)P x y ,易知(,0)N x ,(0,)NP y =,又因为NM ==,所以()M x y , 又因为M在椭圆上,所以2219x +=,即22198x y +=. (Ⅱ)当1l 与x 轴重合时,||6AB =,16||3CD =,∴1117||||48AB CD +=.当1l 与x 轴垂直时,16||3AB =,||6CD =, ∴1117||||48AB CD +=. 当1l 与x 轴不垂直也不重合时,可设1l 的方程为(1)(0)y k x k =-≠此时设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 把直线1l 与曲线E 联立22(1)198y k x x y =-⎧⎪⎨+=⎪⎩,得2222(89)189720k x k x k +-+-=,可得1212221220188997289k x x k k x x k ⎧⎪∆>⎪⎪+=⎨+⎪⎪-=⎪+⎩∴2248(1)||89k AB k +==+, 把直线2l 与曲线E 联立221(1)198y x k x y ⎧=--⎪⎪⎨⎪+=⎪⎩,同理可得2248(1)||98k CD k +==+. ∴222211899817||||48(1)48(1)48k k AB CD k k +++=+=++. 24. (呼和浩特模拟)设抛物线24y x =的焦点为F ,过点)M的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,3BF =,则BCF ∆与ACF ∆的面积之比BCFACFS S ∆∆( )D A .34 B .45 C. 56 D .6725. (呼和浩特模拟)已知点P 为圆2218x y +=上一动点,PQ ⊥x 轴于点Q ,若动点M 满足1233OM OP OQ =+.(Ⅰ)求动点M 的轨迹C 的方程;(Ⅱ)过点()4,0E -的直线()40x my m =-≠与曲线C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点D ,求DE AB的值.解:(1)设(),M x y ,()00,P x y ,则()0,0Q x ,所以(),OM x y =,()00,OP x y =,()0,0OQ x .由1233OM OP OQ =+化简得0x x =,03y y =,因为220018x y +=,代入得221182x y +=,即为M 的轨迹为椭圆方程.由(1)知,点()4,0E -为椭圆C 的左偏点,将直线()40x my m =-≠被代入椭圆方程消去x 得()229820my my +--=,()2264890m m ∆=++>,设()11,A x y ,()22,B x y ,则有12289my y m +=+,12229y y m -⋅=+.则()121227289x x m y y m -+=+-=+,所以线段AB 的中点坐标为22364,99m m m -⎛⎫ ⎪++⎝⎭所以线段AB 的垂直平分线所在直线方程为2243699m y m x m m ⎛⎫-=-+ ⎪++⎝⎭令0y =得2329x m -=+,即232,09D m -⎛⎫⎪+⎝⎭所以()2224132499m DE m m +-=+=++)212219m AB y m +==-=+,所以DE AB ==26.(银川一中模拟) 设圆心在x 轴上的圆C 与直线1:10l x +=相切,且与直线2:0l x =相交于两点,M N ,若||MN 则圆C 的半径为 CA .12BC .1D 27. (银川一中模拟)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为点12(,0),(,0)(0)F c F c c ->,抛物线24y cx =与双曲线在第一象限内相交于点P ,若212||||PF F F =,则双曲线的离心率为 . 1+28.(银川一中模拟)设F 1,F 2分别是椭圆C :2212x y +=的左、右焦点,过F 1且斜率不为零的动直线l 与椭圆C 交于A 、B 两点。

2018年高考数学(理)二轮复习 讲学案:考前专题六 解析几何 第2讲 椭圆、双曲线、抛物线(含答案解析)

2018年高考数学(理)二轮复习 讲学案:考前专题六 解析几何 第2讲 椭圆、双曲线、抛物线(含答案解析)

第2讲 椭圆、双曲线、抛物线1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率). 2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M . 2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)(2016·天津)已知双曲线x 24-y 2b2=1 (b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1 D.x 24-y 212=1 答案 D解析 由题意知双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b2x ,解得⎩⎪⎨⎪⎧ x =44+b 2,y =2b 4+b 2或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b 4+b2,即第一象限的交点为⎝ ⎛⎭⎪⎫44+b2,2b 4+b 2.由双曲线和圆的对称性,得四边形ABCD 为矩形,其相邻两边长为84+b2,4b4+b 2,故8×4b 4+b 2=2b ,得b 2=12. 故双曲线的方程为x 24-y 212=1.故选D.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x 答案 C解析 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°,在Rt△ACE 中, ∵||AE =|AF |=3,||AC =3+3a ,∴2||AE =||AC ,即3+3a =6,从而得a =1,||FC =3a =3.∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C.思维升华 (1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练1 (1)已知双曲线过点()2,3,其中一条渐近线方程为y =3x ,则双曲线的标准方程是( ) A.7x 216-y212=1 B.y 23-x 22=1 C .x 2-y 23=1D.3y 223-x223=1 答案 C解析 根据题意,双曲线的渐近线方程为y =±3x ,则可设其方程为y 23-x 2=λ()λ≠0.又由其过点()2,3,则有323-22=λ,解得λ=-1,则双曲线的标准方程为x 2-y 23=1,故选C. (2)△ABC 的两个顶点为A (-4,0),B (4,0),△ABC 的周长为18,则C 点轨迹方程为( ) A.x 216+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0) C.y 216+x 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 答案 D解析 ∵△ABC 的两顶点A (-4,0),B (4,0),周长为18,∴|AB |=8,|BC |+|AC |=10.∵10>8,∴点C 到两个定点的距离之和等于定值,满足椭圆的定义,∴点C 的轨迹是以A ,B 为焦点的椭圆.∴2a =10,2c =8,即a =5,c =4,∴b =3.∴C 点的轨迹方程为x 225+y 29=1(y ≠0).故选D.热点二 圆锥曲线的几何性质1.椭圆、双曲线中a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =c a= 1-⎝ ⎛⎭⎪⎫b a 2. (2)在双曲线中:c 2=a 2+b 2,离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.例2 (1)(2017届河北省衡水中学押题卷)已知双曲线C 1: x 22-y 2=1与双曲线C 2: x 22-y 2=-1,给出下列说法,其中错误的是( ) A .它们的焦距相等 B .它们的焦点在同一个圆上 C .它们的渐近线方程相同 D .它们的离心率相等 答案 D解析 由题意知C 2:y 2-x 22=1,则两双曲线的焦距相等且2c =23,焦点都在圆x 2+y 2=3上,其实为圆与坐标轴的交点.渐近线方程都为y =±22x .由于实轴长度不同,故离心率e =ca不同.故选D.(2)已知双曲线M :x 2a2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,||F 1F 2=2c .若双曲线M 的右支上存在点P ,使asin∠PF 1F 2=3csin∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A.⎝⎛⎭⎪⎫1,2+73B.⎝⎛⎦⎥⎤1,2+73C.()1,2D.(]1,2答案 A解析 根据正弦定理可知,sin∠PF 1F 2sin∠PF 2F 1=|PF 2||PF 1|,所以|PF 2||PF 1|=a 3c ,即|PF 2|=a 3c|PF 1|,||PF 1||-PF 2=2a ,所以⎝ ⎛⎭⎪⎫1-a 3c ||PF 1=2a ,解得||PF 1=6ac 3c -a ,而||PF 1>a +c ,即6ac3c -a>a +c ,整理得3e 2-4e -1<0 ,解得2-73<e <2+73 .又因为离心率e >1,所以1<e <2+73,故选A.思维升华 (1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.跟踪演练2 (1)(2017届株洲一模)已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1为左焦点,A 为右顶点, B 1,B 2分别为上、下顶点,若F 1,A ,B 1,B 2四点在同一个圆上,则此椭圆的离心率为( ) A.3-12 B.5-12 C.22D.32答案 B解析 由题设圆的半径r =a +c2,则b 2+⎝⎛⎭⎪⎫a -a +c 22=⎝ ⎛⎭⎪⎫a +c 22,即a 2-c 2=ac ⇒e 2+e -1=0,解得e =-1+52,故选B.(2)已知双曲线C: x 2a 2-y 2b 2=1(a >0, b >0)的焦距为2c ,直线l 过点⎝ ⎛⎭⎪⎫23a ,0且与双曲线C 的一条渐近线垂直,以双曲线C 的右焦点为圆心,半焦距为半径的圆与直线l 交于M, N 两点,若||MN =423c ,则双曲线C 的渐近线方程为( )A .y =±2xB .y =±3xC .y =±2xD .y =±4x答案 B解析 由题意可设渐近线方程为y =b ax ,则直线l 的斜率k l =-a b,直线方程为y =-a b ⎝⎛⎭⎪⎫x -23a ,整理可得ax +by -23a 2=0.焦点()c ,0到直线的距离d =⎪⎪⎪⎪⎪⎪ac -23a 2a 2+b 2=⎪⎪⎪⎪⎪⎪ac -23a 2c,则弦长为2c 2-d 2=2c 2-⎝⎛⎭⎪⎫ac -23a 22c 2=423c ,整理可得c 4-9a 2c 2+12a 3c -4a 4=0, 即e 4-9e 2+12e -4=0,分解因式得()e -1()e -2()e 2+3e -2=0.又双曲线的离心率e >1,则e =c a=2,所以b a =c 2-a 2a 2= ⎝ ⎛⎭⎪⎫c a 2-1=3, 所以双曲线C 的渐近线方程为y =±3x . 故选B.热点三 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数.例3 如图,已知P ⎝ ⎛⎭⎪⎫62,1为椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的点,且a 2+b 2=5.过点P 的动直线与圆F :x 2+y 2=a 2+1相交于A ,B 两点,过点P 作直线AB 的垂线与椭圆E 相交于点Q . (1)求椭圆E 的离心率; (2)若|AB |=23,求|PQ |.解 (1)由题意知,64a 2+1b 2=1,a 2+b 2=5,a >b >0,解得a 2=3,b 2=2, 所以椭圆E 的离心率e =a 2-b 2a 2= 3-23=33. (2)依题知圆F 的圆心为原点,半径r =2,||AB =23, 所以原点到直线AB 的距离为d =r 2-⎝⎛⎭⎪⎫|AB |22=22-⎝⎛⎭⎪⎫2322=1, 因为点P 的坐标为⎝⎛⎭⎪⎫62,1,所以直线AB 的斜率存在,设为k . 所以直线AB 的方程为y -1=k ⎝⎛⎭⎪⎫x -62, 即kx -y -62k +1=0, 所以d =⎪⎪⎪⎪⎪⎪1-62k 1+k2=1,解得k =0或k =2 6.①当k =0时,此时直线PQ 的方程为x =62, 所以||PQ 的值为点P 的纵坐标的两倍, 即||PQ =2×1=2;②当k =26时,直线PQ 的方程为y -1=-126⎝⎛⎭⎪⎫x -62,将它代入椭圆E 的方程x 23+y 22=1,消去y 并整理,得34x 2-106x -21=0, 设Q 点坐标为()x 1,y 1,所以62+x 1=10634, 解得x 1=-7634,所以||PQ =1+⎝ ⎛⎭⎪⎫-1262⎪⎪⎪⎪⎪⎪x 1-62=3017.思维升华 解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.跟踪演练3 (2017届百校大联考全国名校联盟联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P ⎝ ⎛⎭⎪⎫-1,233在椭圆C 上, ||PF 2=433,过点F 1的直线l 与椭圆C 分别交于M ,N 两点. (1)求椭圆C 的方程及离心率;(2)若△OMN 的面积为1211,O 为坐标原点,求直线l 的方程.解 (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,1a 2+43b 2=1,()-1-c 2+43=4 33,解得a =3,b =2,c =1,故所求椭圆的方程为x 23+y 22=1,离心率为e =c a =33.(2)当直线MN 与x 轴垂直时, ||MN =433,此时S △MON =233不符合题意,舍去;当直线MN 与x 轴不垂直时,设直线MN 的方程为y =k ()x +1,由⎩⎪⎨⎪⎧x 23+y 22=1,y =k ()x +1,消去y 得()2+3k 2x 2+6k 2x +3k 2-6=0.设M ()x 1,y 1,N ()x 2,y 2, 则x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2,所以||MN =()1+k 2[]()x 1+x 22-4x 1x 2=()1+k 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-6k 22+3k 22-4×3k 2-62+3k 2 =48()k 2+12()2+3k 22=43()k 2+12+3k 2, 原点O 到直线MN 的距离为d =||k 1+k2,所以三角形的面积S △OMN =12||MN d=12×||k 1+k2×43()k 2+12+3k 2,由S △OMN =1211,得k 2=3,故k =±3,所以直线l 的方程为y =3()x +1或y =-3()x +1.真题体验1.(2017·全国Ⅱ改编)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则双曲线C 的离心率为________. 答案 2解析 设双曲线的一条渐近线方程为y =b ax , 圆的圆心为(2,0),半径为2,由弦长为2,得圆心到渐近线的距离为22-12= 3.由点到直线的距离公式,得|2b |a 2+b2=3,解得b 2=3a 2.所以双曲线C 的离心率e =ca =c 2a 2=1+b 2a2=2. 2.(2017·全国Ⅱ改编)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________. 答案 2 3解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF 的方程为y =3(x -1). 联立方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23). ∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4. ∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3.3.(2017·北京)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.答案 2解析 由双曲线的标准方程知,a =1,b 2=m ,c =1+m ,故双曲线的离心率e =c a=1+m =3, ∴1+m =3,解得m =2.4.(2017·山东)在平面直角坐标系xOy 中,双曲线x 2a -y 2b=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p>0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 答案 y =±22x 解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,得a 2y 2-2pb 2y +a 2b 2=0,∴y 1+y 2=2pb 2a2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb 2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x . 押题预测1.(2017届江西师范大学附属中学模拟)已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B →,则该双曲线的离心率为( )A.62B.52C. 3 D .2押题依据 圆锥曲线的几何性质是圆锥曲线的灵魂,其中离心率、渐近线是高考命题的热点. 答案 A解析 由F 2()c ,0到渐近线y =b ax 的距离为d =bc a 2+b2=b ,即||AF 2→=b ,则||BF 2→=3b . 在△AF 2O 中, ||OA →||=a ,OF 2→=c ,tan∠F 2OA =b a , tan∠AOB =4b a =2×ba 1-⎝ ⎛⎭⎪⎫b a 2,化简可得a 2=2b 2,即c 2=a 2+b 2=32a 2,即e =c a =62,故选A.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点⎝ ⎛⎭⎪⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l相切的圆的方程.押题依据 椭圆及其性质是历年高考的重点,直线与椭圆的位置关系中的弦长、中点等知识应给予充分关注.解 (1)由题意可得e =c a =12,又a 2=b 2+c 2, 所以b 2=34a 2.因为椭圆C 经过点⎝ ⎛⎭⎪⎫1,32, 所以1a 2+9434a 2=1,解得a =2,所以b 2=3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,x 24+y23=1消去x ,得(4+3t 2)y 2-6ty -9=0,显然Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =36t 2(4+3t 2)2+364+3t 2=12t 2+14+3t2, 所以S △AOB =12·|F 1O |·|y 1-y 2|=6t 2+14+3t 2=627, 化简得18t 4-t 2-17=0, 即(18t 2+17)(t 2-1)=0, 解得t 21=1,t 22=-1718(舍去).又圆O 的半径r =|0-t ×0+1|1+t 2=11+t 2, 所以r =22,故圆O 的方程为x 2+y 2=12.A 组 专题通关1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.2.(2017届汕头模拟)若椭圆x 236+y 216=1上一点P 与椭圆的两个焦点F 1,F 2的连线互相垂直,则△PF 1F 2的面积为( )A .36B .16C .20D .24答案 B解析 设||PF 1||=m ,PF 2=n ,则m 2+n 2=4()36-16=80,即()m +n 2-2mn =80.又m +n =2×6=12,∴mn =32,S △PF 1F 2=12mn =16,故选B.3. (2017届常德一模)已知抛物线C: y 2=4x 的焦点为F ,过F 的直线l 交抛物线C 于A ,B 两点,弦AB 的中点M 到抛物线C 的准线的距离为5,则直线l 的斜率为( ) A .±22 B .±1 C .±63D .±62答案 C解析 由题意知直线l 的斜率存在且不为零,设直线l 的方程为y =k ()x -1,点A ()x 1,y 1,B ()x 2,y 2, 线段AB 的中点为M ()x 0,y 0. 由⎩⎨⎧y =k ()x -1,y 2=4x ,得k 2x 2-()2k 2+4x +k 2=0,所以x 1+x 2=2k 2+4k2.又因为弦AB 的中点M 到抛物线C 的准线的距离为5,所以x 1+x 22+p 2=x 1+x 22+1=5,所以x 1+x 2=2k 2+4k 2=8,解得k 2=23,所以k =±63,故选C.4.(2017·河南省豫北重点中学联考)如图, F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2的直线与双曲线C 交于A ,B 两点,若||AB ∶|BF 1|∶|AF 1|=3∶4∶5,则双曲线的离心率为( ) A.13 B .3 C. 5 D .2答案 A解析 设||AB =3x ,||BF 1||=4x ,AF 1=5x ,所以△ABF 1是直角三角形.因为||BF 2||-BF 1=2a ,所以||BF 2||=BF 1+2a =4x +2a, ||AF 2=x +2a .又||AF 1||-AF 2=2a ,即5x -x -2a =2a ,解得x =a ,又||BF 22+||BF 12=4c 2,即()4x +2a 2+()4x 2=4c 2,即()4a +2a 2+()4a 2=4c 2,解得c 2a2=13,即e =13,故选A.5.(2017·全国Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. 答案 6解析 如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P , ∴PM ∥OF .由题意知,F (2,0), |FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6.6.(2017·全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.答案233解析 如图,由题意知点A (a,0),双曲线的一条渐近线l 的方程为y =b ax ,即bx -ay =0, ∴点A 到直线l 的距离d =aba 2+b2. 又∠MAN =60°,|MA |=|NA |=b , ∴△MAN 为等边三角形, ∴d =32|MA |=32b ,即ab a 2+b2=32b ,∴a 2=3b 2, ∴e =c a =a 2+b 2a 2=233. 7.(2017·泉州质检)椭圆C :x 2a 2+y 2=1(a >1)的离心率为32, F 1,F 2是C 的两个焦点,过F 1的直线l 与C 交于A ,B两点,则||AF 2||+BF 2的最大值为______. 答案 7解析 因为离心率为32,所以a 2-1a =32⇒a =2,由椭圆定义得||AF 2+||BF 2+||AB =4a =8, 即||AF 2+||BF 2=8-||AB .而由焦点弦性质知,当AB ⊥x 轴时,||AB 取最小值2×b 2a=1,因此||AF 2||+BF 2的最大值为8-1=7.8.一动圆与圆O 1:(x +3)2+y 2=1外切,与圆O 2:(x -3)2+y 2=81内切,则动圆圆心的轨迹方程为________________. 答案x 225+y 216=1解析 两定圆的圆心和半径分别是O 1(-3,0),r 1=1;O 2(3,0),r 2=9.设动圆圆心为M (x ,y ),半径为R ,则由题设条件, 可得|MO 1|=R +1,|O 2M |=9-R . ∴|MO 1|+|MO 2|=10>|O 1O 2|=6.由椭圆的定义知,点M 在以O 1,O 2为焦点的椭圆上, 且2a =10,2c =6,∴b 2=16. ∴动圆圆心的轨迹方程为x 225+y 216=1.9.(2017届唐山模拟)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M ⎝ ⎛⎭⎪⎫3,12,且离心率为32. (1)求椭圆Γ的方程;(2)设点M 在x 轴上的射影为点N ,过点N 的直线l 与椭圆Γ相交于A, B 两点,且NB →+3NA →=0,求直线l 的方程. 解 (1)由已知可得3a 2+14b 2=1, a 2-b 2a =32,解得a =2, b =1,所以椭圆Γ的方程为x 24+y 2=1. (2)由已知N 的坐标为()3,0,当直线l 斜率为0时,直线l 为x 轴,易知NB →+3NA →=0不成立. 当直线l 斜率不为0时,设直线l 的方程为x =my +3, 代入x 24+y 2=1,整理得()4+m 2y 2+23my -1=0,设A ()x 1,y 1, B ()x 2,y 2,则y 1+y 2=-23m4+m2, ① y 1y 2=-14+m2, ② 由NB →+3NA →=0,得y 2=-3y 1,③由①②③解得m =±22. 所以直线l 的方程为x =±22y +3, 即y =±2()x -3.10.如图所示,抛物线y 2=4x 的焦点为F ,动点T (-1,m ),过F 作TF 的垂线交抛物线于P ,Q 两点,弦PQ 的中点为N .(1)证明:线段NT 平行于x 轴(或在x 轴上); (2)若m >0且|NF |=|TF |,求m 的值及点N 的坐标.(1)证明 易知抛物线的焦点为F (1,0),准线方程为x =-1,动点T (-1,m )在准线上,则k TF =-m 2.当m =0时,T 为抛物线准线与x 轴的交点,这时PQ 为抛物线的通径,点N 与焦点F 重合,显然线段NT 在x 轴上. 当m ≠0时,由条件知k PQ =2m,所以直线PQ 的方程为y =2m(x -1),联立⎩⎪⎨⎪⎧y 2=4x ,y =2m(x -1),得x 2-(2+m 2)x +1=0,Δ=[-(2+m 2)]2-4=m 2(4+m 2)>0,设P (x 1,y 1),Q (x 2,y 2),可知x 1+x 2=2+m 2,y 1+y 2=2m(x 1+x 2-2)=2m .所以弦PQ 的中点N ⎝ ⎛⎭⎪⎫2+m 22,m ,又T (-1,m ),所以k NT =0,则NT 平行于x 轴.综上可知,线段NT 平行于x 轴(或在x 轴上). (2)解 已知|NF |=|TF |,在△TFN 中,tan∠NTF =|NF ||TF |=1⇒∠NTF =45°,设A 是准线与x 轴的交点,则△TFA 是等腰直角三角形,所以|TA |=|AF |=2, 又动点T (-1,m ),其中m >0,则m =2. 因为∠NTF =45°,所以k PQ =tan 45°=1, 又焦点F (1,0),可得直线PQ 的方程为y =x -1. 由m =2,得T (-1,2), 由(1)知线段NT 平行于x 轴,设N (x 0,y 0),则y 0=2,代入y =x -1,得x 0=3, 所以N (3,2).B 组 能力提高11.(2017·长沙市长郡中学模拟)2000多年前,古希腊大数学家阿波罗尼奥斯(Apollonius)发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为PH, AB 为地面直径,顶角为2θ,那么不过顶点P 的平面与PH 夹角π2>a >θ时,截口曲线为椭圆;与PH 夹角a =θ时,截口曲线为抛物线;与PH 夹角θ>a >0时,截口曲线为双曲线.如图,底面内的直线AM ⊥AB ,过AM的平面截圆锥得到的曲线为椭圆,其中与PB 的交点为C ,可知AC 为长轴.那么当C 在线段PB 上运动时,截口曲线的短轴端点的轨迹为( ) A .圆的部分B .椭圆的部分C .双曲线的部分D .抛物线的部分答案 D解析 如图,因为对于给定的椭圆来说,短轴的端点Q 到焦点F 的距离等于半长轴a ,但短短轴的端点Q 到直线AM 的距离也是a ,即说明短轴的端点Q 到定点F 的距离等于到定直线AM 的距离,所以由抛物线的定义可知,短轴的端点的轨迹是抛物线的一部分,故选D. 12.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ()1,0,离心率为22,过点F 的动直线交M 于A, B 两点,若x 轴上的点P ()t ,0使得∠APO =∠BPO 总成立(O 为坐标原点),则t 等于( ) A .-2 B .2 C .- 2 D. 2答案 B解析 在椭圆中c =1, e =c a =22,得a =2,b =1,故椭圆的方程为x 22+y 2=1.设A ()x 1,y 1, B ()x 2,y 2,由题意可知,当直线斜率不存在时, t 可以为任意实数;当直线斜率存在时,可设直线方程为y =k ()x -1,联立方程组⎩⎪⎨⎪⎧y =k()x -1,x 22+y 2=1,得()1+2k 2x 2-4k 2x +2k 2-2=0,∴x 1+x 2=4k 21+2k 2, x 1x 2=2k 2-21+2k2,使得∠APO =∠BPO 总成立,即使得PF 为∠APB 的角平分线, 即直线PA 和PB 的斜率之和为0, 即y 1x 1-t +y 2x 2-t=0, ①由y 1=k (x 1-1), y 2=k ()x 2-1,代入①整理得2x 1x 2-()t +1()x 1+x 2+2t =0,由根与系数的关系,可得4k 2-41+2k 2-()t +14k21+2k 2+2t =0,化简可得t =2,故选B.13.(2017·武汉调研)已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点,直线PQ 过原点O 与MN 平行,且与椭圆交于P ,Q 两点,则|PQ |2||MN =________.答案 2 2解析 方法一 特殊化,设MN ⊥x 轴, 则||MN =2b 2a =22=2,||PQ 2=4,||PQ 2||MN =42=2 2.方法二 由题意知F (-1,0),当直线MN 的斜率不存在时,|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=22;当直线MN 的斜率存在时,设直线MN 的斜率为k ,则MN 方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,整理得(2k 2+1)x 2+4k 2x +2k 2-2=0. 由根与系数的关系,得x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1,则|MN |=1+k 2·(x 1+x 2)2-4x 1x 2 =22(k 2+1)2k 2+1. 直线PQ 的方程为y =kx ,P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧y =kx ,x 22+y 2=1,解得x 2=21+2k 2,y 2=2k 21+2k2,则|OP |2=x 2+y 2=2(1+k 2)1+2k2,又|PQ |=2|OP |,所以|PQ |2=4|OP |2=8(1+k 2)1+2k 2,∴|PQ |2|MN |=2 2. 14.(2017·天津)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ),△EFA 的面积为b 22.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=3c2,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN间的距离为c ,四边形PQNM 的面积为3c . ①求直线FP 的斜率; ②求椭圆的方程.解 (1)设椭圆的离心率为e . 由已知可得12(c +a )c =b22.又由b 2=a 2-c 2,可得2c 2+ac -a 2=0,即2e 2+e -1=0,解得e =-1或e =12.又因为0<e <1,所以e =12.所以椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m.由(1)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0,与直线FP 的方程联立, 可得x =(2m -2)c m +2,y =3cm +2,即点Q 的坐标为⎝⎛⎭⎪⎫(2m -2)c m +2,3c m +2.由已知|FQ |=3c2,有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝ ⎛⎭⎪⎫3c m +22=⎝ ⎛⎭⎪⎫3c 22,整理得3m 2-4m =0,所以m =43(m =0舍去),即直线FP 的斜率为34.②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c2=1.由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立得⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c 7(舍去)或x =c .因此可得点P ⎝ ⎛⎭⎪⎫c ,3c 2,进而可得|FP |=(c +c )2+⎝ ⎛⎭⎪⎫3c 22=5c 2,所以|PQ |=|FP |-|FQ |=5c 2-3c2=c .由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN ⊥FP ,所以|QN |=|FQ |·tan∠QFN =3c 2×34=9c8,所以△FQN 的面积为12|FQ ||QN |=27c232.同理△FPM 的面积等于75c232.由四边形PQNM 的面积为3c ,得75c 232-27c232=3c ,整理得c 2=2c .又由c >0,得c =2. 所以椭圆的方程为x 216+y 212=1.。

2018年高考数学(理)二轮复习讲练测专题2.10椭圆双曲线抛物线的几何性质的应用(讲)含解析

2018年高考数学(理)二轮复习讲练测专题2.10椭圆双曲线抛物线的几何性质的应用(讲)含解析

2018年高考数学(理)二轮复习讲练测热点10 椭圆、双曲线、抛物线的几何性质的应用圆锥曲线与方程是高考考查的核心内容之一,在高考中一般有1~2个选择或者填空题,一个解答题.选择或者填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系.要求学生有较强的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生比较头疼的题目.分析原因,主要是学生没有形成解题的模式和套路,以及运算能力不足造成,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.1.圆锥曲线的定义是圆锥曲线问题的根本,利用圆锥曲线的定义解题是高考考查圆锥曲线的一个重要命题点,在历年的高考试题中曾多次出现.需熟练掌握.例1【2018届安徽省合肥市高三第一次教学质量检测】如图,椭圆的焦点为,过的直线交椭圆于两点,交轴于点.若是线段的三等分点,则的周长为()A. 20B. 10C.D.【答案】D【解析】由通径公式可得:,且,由中点坐标公式可得:,为线段的中点,结合中点坐标公式可得:,点在椭圆上,则:,由题意可知,则:,结合椭圆的性质可得:,由椭圆的定义可知,的周长为.本题选择D选项.2圆锥曲线的简单几何性质是圆锥曲线的重点内容,主要考查椭圆与双曲线的离心率的求解、双曲线的渐近线方程的求解,难度中档.例2【2018届吉林省长春市第十一高中、东北师范大学附属中学、吉林一中,重庆一中等五校高三1月联合模拟】已知双曲线的右焦点到其一条渐近线的距离为1,抛物线的准线过双曲线的左焦点,则抛物线上的动点到点距离的最小值是()A. 5B. 4C.D.【答案】D3 轨迹问题的考查往往与函数、方程、向量、平面几何等知识相融合,着重考查分析问题、解决问题的能力,对逻辑思维能力、运算能力也有一定的要求.例3【2016高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅱ)设与轴的交点为,则.由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为. ....12分4在高考中,直线与圆锥曲线的位置关系是热点,通常围绕弦长、面积、定点(定值),范围问题来展开,其中设而不求的思想是处理相交问题的最基本方法,试题难度较大.例4【2018届安徽省马鞍山市高三上学期期末】已知椭圆经过点,离心率为,过原点作两条直线,直线交椭圆于,直线交椭圆于,且.(1)求椭圆的方程;(2)若直线的斜率分别为,求证:为定值.【答案】(1) (2)见解析试题解析:(1)由题意知,且,解得,,椭圆的方程为;(2)由对称性可知,四边形是平行四边形,设,,则,,由,得,,所以,,故为定值2.【反思提升】圆锥曲线问题,往往利用的关系或曲线的定义,确定圆锥曲线方程是基础,通过联立直线方程与圆锥曲线方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题“出奇”之处在于有较浓的“几何味”,研究几何图形的面积等.这类题目能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力、数学的应用意识等.因此,在复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧.二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想,向量与导数的方法来解决问题的能力.最后要注意运算能力的培养.。

2018年高考数学(理)总复习 双基过关检测:“椭圆、双曲线、抛物线”含解析

2018年高考数学(理)总复习 双基过关检测:“椭圆、双曲线、抛物线”含解析

“椭圆、双曲线、抛物线”双基过关检测一、选择题1.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则抛物线的方程是( )A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8x解析:选D 设抛物线的方程为y 2=2px ,则由抛物线的定义知1+p 2=3,即p =4,所以抛物线方程为y 2=8x .2.(2017·济南第一中学检测)抛物线y =4x 2的焦点坐标是( )A.⎝⎛⎭⎫116,0B .(1,0) C.⎝⎛⎭⎫0,116 D .(0,1)解析:选C 抛物线的标准方程为x 2=14y ,则p =18,所以焦点坐标是⎝⎛⎭⎫0,116. 3.(2017·贵州七校联考)已知双曲线x 2+my 2=1的虚轴长是实轴长的两倍,则实数m 的值是( )A .4B .-14 C.14 D .-4解析:选B 由双曲线的方程知a =1,b = -1m , 又b =2a ,所以 -1m =2,解得m =-14,故选B. 4.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( ) A .2B .3C .4D .9解析:选B 由左焦点为F 1(-4,0)知c =4.又a =5,∴25-m 2=16,解得m =3或-3.又m >0,故m =3.5.(2016·甘肃张掖一诊)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( )A .9B .8C .7D .6解析:选B 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:选A 由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,又∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2, ∴椭圆的方程为x 23+y 22=1,故选A. 7.椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则a b =( ) A.32 B.233C.932D.2327 解析:选A 设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),结合题意,由点差法得,y 2-y 1x 2-x 1=-a b ·x 1+x 2y 1+y 2=-a b ·x 0y 0=-a b ·23=-1,∴a b =32. 8.已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B.()-3,3 C.⎣⎡⎦⎤-33,33 D.[]-3,3解析:选C 由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.二、填空题9.(2016·北京高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________.解析:因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为2x +y =0,即y =-2x , 所以b a =2.①又双曲线的一个焦点为(5,0),所以a 2+b 2=5.②由①②得a =1,b =2.答案:1 210.(2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析:如图,由题意知|AB |=2b 2a,|BC |=2c . 又2|AB |=3|BC |,∴2×2b 2a =3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). 答案:211.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152, ∴P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1. 答案:⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 12.(2017·西安中学模拟)如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y -1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.解析:不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB ―→=(1,0),DC ―→=(-1,0),所以AB ―→·DC ―→=-1.答案:-1三、解答题13.(2017·揭阳一中期末)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程. 解:(1)依题意可得⎩⎪⎨⎪⎧ 1a =22,a 2=b 2+1,解得a =2,b =1,所以椭圆E 的标准方程为x 22+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意;②当MN 不垂直于x 轴时,设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧ x 22+y 2=1,y =k (x -1),消去y ,整理得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,所以x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2. 所以y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2. 因为OM ⊥ON ,所以OM ―→·ON ―→=0,所以x 1x 2+y 1y 2=k 2-21+2k 2=0, 所以k =±2,即直线l 的方程为y =±2(x -1).14.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2. 因为|AF |=3,即2+p 2=3,解得p =2, 所以抛物线E 的方程为y 2=4x .(2)因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±2 2.由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧ y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12, 从而B ⎝⎛⎭⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223, k GB =-2-012-(-1)=-223, 所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.。

18年高考数学二轮复习专题1.6解析几何(练)理

18年高考数学二轮复习专题1.6解析几何(练)理

18年高考数学二轮复习专题1.6解析几何(练)理。

内部文件,版权追溯内部文件,版权追溯内部文件,版权追溯专题1.6 解析几何1.练高考1.【2021课标3,理5】已知双曲线C:x2y25a2?b2?1 (a>0,b>0)的一条渐近线方程为y?2x,且与椭圆x212?y23?1有公共焦点,则C的方程为() 2A.x2y28?10?1 B.x24?y25?1 C.x2y2??1 D.x544?y23?1 【答案】B故选B.12.【2021天津,文12】设抛物线y2?4x的焦点为F,准线为l.已知点C在l上,以C 为圆心的圆与y轴的正半轴相切于点A.若?FAC?120?,则圆的方程为 .22【答案】(x?1)?(y?3)?1【解析】x2y23. 【2021山东,理14】在平面直角坐标系xOy中,双曲线2?2?1?a?0,b?0?的右支与焦点为F的抛物线abx2?2px?p?0?交于A,B两点,若AF?BF?4OF,则该双曲线的渐近线方程为 .【答案】y??2x 2x2y24.【2021课标1,理】已知双曲线C:2?2?1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆abA与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【答案】23 3【解析】试题分析:2x2y215.【2021天津,理19】设椭圆2?2?1(a?b?0)的左焦点为F,右顶点为A,离心率为.已知A是抛物ab2线y?2px(p?0)的焦点,F到抛物线的准线l的距离为(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.21. 2若△APD的面积为6,求直线AP的方程. 24y2?1, y2?4x.(2)3x?6y?3?0,或3x?6y?3?0. 【答案】(1)x?32【解析】3(Ⅱ)解:设直线AP的方程为x?my?1(m?0),与直线l的方程x??1联立,可得点P(?1,?222故Q(?),1,).mm4y2?6m?1联立,消去x,整理得(3m2?4)y2?6my?0,解得y?0,或y?将x?my?1与x?.由点233m?4?3m2?4?6m2,).由Q(?1,),可得直线BQ的方程为B异于点A,可得点B(223m?43m?4m?6m2?3m2?422?3m22?3m2(2?)(x?1)?(?1)(y?)?0,令y?0,解得x?,0).所以,故D(2223m?4m3m?4m3m?23m?22?3m26m2616m226|AD|?1?2?.又因为的面积为,故,整理得???△APD23m?23m2?223m2?2|m|23m2?26|m|?2?0,解得|m|?66,所以m??. 33所以,直线AP的方程为3x?6y?3?0,或3x?6y?3?0.x2y226.【2021山东,理21】在平面直角坐标系xOy中,椭圆E:2?2?1?a?b?0?的离心率为,焦距为2.2ab(Ⅰ)求椭圆E的方程;32交椭圆E于A,B两点,直线OC的斜率为k2,且k1k2?,C是椭圆E上一点,24(Ⅱ)如图,动直线l:y?k1x?M是线段OC延长线上一点,且MC:AB?2:3,M的半径为MC,OS,OT是M的两条切线,切点分别为S,T.求?SOT的最大值,并求取得最大值时直线l的斜率.4x2【答案】(I)?y2?1.2(Ⅱ)?SOT的最大值为2?,取得最大值时直线l的斜率为k1??.23?x2?y2?1,??2(Ⅱ)设A?x1,y1?,B?x2,y2?,联立方程??y?kx?3,1??2得4k12?2x2?43k1x?1?0,由题意知??0,且x1?x2???23k11, ,xx??1222k12?12?2k1?1? 5感谢您的阅读,祝您生活愉快。

专题15 椭圆、双曲线、抛物线-2018年高考理数二轮复习精品资料(学生版)

专题15 椭圆、双曲线、抛物线-2018年高考理数二轮复习精品资料(学生版)

1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1,F 2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A.x 216-y 29=1B.x 23-y 24=1 C.x 29-y 216=1 D.x 24-y 23=1 2.椭圆x 212+y 23=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍3.已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .2B .4C .6D .84.设F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1的左、右焦点,点P ⎝ ⎛⎭⎪⎪⎫62,22在此双曲线上,且PF 1⊥PF 2,则双曲线C 的离心率等于( )A.22B. 2C.3 D.625.已知抛物线C 的顶点是椭圆x 24+y 23=1的中心,焦点与该椭圆的右焦点F 2重合,若抛物线C 与该椭圆在第一象限的交点为P ,椭圆的左焦点为F 1,则|PF 1|=( )A.23B.73C.53 D .2 6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .23 B .25 C .43 D .457.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .33 C .43 D .88.已知直线y =k (x +1)(k >0)与抛物线C :y 2=4x 相交于A ,B 两点,F 为抛物线C 的焦点,若||FA =2||FB ,则k =( )A.13B.223C.23D.23 9.设椭圆的方程为x 2a2+y 2b 2=1(a >b >0),右焦点为F (c ,0)(c >0),方程ax 2+bx -c =0的两实根分别为x 1,x 2,则P (x 1,x 2)( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=1外D .必在圆x 2+y 2=1与圆x 2+y 2=2形成的圆环之间 10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,抛物线y 2=158(a +c )x 与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率等于( )A.158B.415C.23D.1211.已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为( )A.x 212+y 211=1 B.x 236-y 235=1 C.x 23-y 22=1 D.x 23+y 22=1 12.已知双曲线C :x 2-y 23=1的右顶点为A ,过右焦点F 的直线l 与C 的一条渐近线平行,交另一条渐近线于点B ,则S △ABF =( )A. 3B.32C.334D.33813.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于________.14.已知抛物线y 2=2px (p >0)上的一点M (1,t )(t >0)到焦点的距离为5,双曲线x 2a 2-y 29=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为________.15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,由F 向其渐近线引垂线,垂足为P ,若线段PF 的中点在此双曲线上,则此双曲线的离心率为________.16.已知F 1,F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为________.17.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与线段AB 相交于点D ,与椭圆相交于E ,F 两点.若ED →=6DF →,则k 的值为________.18.在平面直角坐标系xOy 中,已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)OA →(λ∈R ),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________.19.已知抛物线C :y 2=2px (p >0)的焦点为F (1,0),抛物线E :x 2=2py 的焦点为M . (1)若过点M 的直线l 与抛物线C 有且只有一个交点,求直线l 的方程; (2)若直线MF 与抛物线C 交于A ,B 两点,求△OAB 的面积. 20.如图,已知椭圆C 的中心在原点,其一个焦点与抛物线y 2=46x 的焦点相同,又椭圆C 上有一点M (2,1),直线l 平行于OM 且与椭圆C 交于A ,B 两点,连接MA ,MB .(1)求椭圆C 的方程;(2)当MA ,MB 与x 轴所构成的三角形是以x 轴上所在线段为底边的等腰三角形时,求直线l 在y 轴上截距的取值范围.21.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P ⎝ ⎛⎭⎪⎫43,13.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且2|AQ |2=1|AM |2+1|AN |2,求点Q 的轨迹方程.22.如图,已知M (x 0,y 0)是椭圆C :x 26+y 23=1上的任一点,从原点O 向圆M :(x -x 0)2+(y -y 0)2=2作两条切线,分别交椭圆于点P ,Q .(1)若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值; (2)试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,说明理由.23.已知动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :y =mx +n 与曲线E 交于C ,D 两点,与线段AB 相交于一点(与A ,B 不重合).(1)求曲线E 的方程;(2)当直线l 与圆x 2+y 2=1相切时,四边形ABCD 的面积是否有最大值?若有,求出其最大值及对应的直线l 的方程;若没有,请说明理由.24.如图,已知抛物线C :y 2=4x ,过点A (1,2)作抛物线C 的弦AP ,AQ .(1)若AP⊥AQ,证明:直线PQ过定点,并求出定点的坐标;(2)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数,若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
x
2 5

2 5 . 5
)
1
A.(x-2) +y =4 B.(x-1) +y =4 C.(x-2) +y =2 D.(x-1) +y =2 解析:抛物线 y =4x 的焦点(1,0),准线方程为:x=-1, ∴以抛物线 y =4x 的焦点为圆心,并且与此抛物线的准线相切的圆的半径是 2, ∴以抛物线 y =4x 的焦点为圆心,并且与此抛物线的准线相切的圆的方程为:(x-1) +y =4. 答案:B 5.若双曲线 2- 2=1 的离心率为 3,则其渐近线方程为( A.y=±2x B.y=± 2x 1 2 C.y=± x D.y=± x 2 2 解析:双曲线的离心率 e= = 方程是 y=± 2x. 答案:B 6.(2017²天津卷)已知双曲线 2- 2=1(a>0,b>0)的左焦点为 F,离心率为 2.若 经过 F 和 P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( A. - =1 4 4 C. - =1 4 8 )
2 2
Байду номын сангаасc2
x2 y2 a b
2
2
解析:设双曲线的一条渐近线方程为 y= x, 圆的圆心为(2,0),半径为 2,由弦长为 2 得出圆心到渐近线的距离为 2 -1 = 3.
2 2
b a
2
根据点到直线的距离公式得 解得 b =3a . 所以 C 的离心率 e= = 答案:A
2 2
|2b|
a2+b2
= 3,
2 2
x2 y2
c a
5 . 3
x2 y2
x2
y2
)
x2 y2
x2
y2
x2
2
)
解析: 双曲线 -y =1 的渐近线方程为 y=± , 即 x±2y=0, 所以双曲线的顶点(±2,0) 4 2 到其渐近线距离为 答案:C 4.以抛物线 y =4x 的焦点为圆心,且与抛物线的准线相切的圆的方程是(
2
x2
2 2 2 2 2 2 2 2 2
2
2
2
2
x2 y 2 a b
)
c a
1+ = 3,可得 = 2,故所求的双曲线的渐近线
b2 a
b a
x2 y2 a b
x2 y2 x2 y2
B. - =1 8 8 D. - =1 8 4
x2 y2 x2 y2
解析:由 e= 2知,双曲线为等轴双曲线,则其渐近线方程为 y=±x,由 P(0,4)知左 焦点 F 的坐标为(-4,0),所以 c=4,则 a =b = =8.选项 B 符合. 2 答案:B 7.(2017²全国卷Ⅱ)若双曲线 C: 2- 2=1(a>0,b>0)的一条渐近线被圆(x-2) +y =4 所截得的弦长为 2,则 C 的离心率为( A.2 B. 3 C. 2 2 3 D. 3 )
椭圆、双曲线、抛物线专题
1.(2017²浙江卷)椭圆 + =1 的离心率是( 9 4 A. C. 2 3 13 3 B. 5 3
x2 y2
)
5 D. 9
解析:∵ 椭圆方程为 + =1, 9 4 ∴ a=3,c= a -b = 9-4= 5. ∴ e= = 故选 B. 答案:B 2.已知 k<4,则曲线 + =1 和 + =1 有( 9 4 9-k 4-k A.相同的准线 C.相同的离心率 解析:∵k<4, ∴曲线 + =1 和 + =1 都是椭圆. 9 4 9-k 4-k 又 9-4=9-k-(4-k), ∴两曲线的半焦距相等,故两个椭圆有相同的焦点. 答案:B 3.双曲线 -y =1 的顶点到其渐近线的距离等于( 4 A. C. 2 5 2 5 5 4 B. 5 4 5 D. 5 B.相同的焦点 D.相同的长轴
c a
c2 = a2
1+ 2=2.
b2 a
y2 8.已知实数 4,m,9 构成一个等比数列,则圆锥曲线 x + =1 的离心率为( m
2
)
A.
30 6
B. 7
C.
30 5 或 7 D. 或 7 6 6
2
解析:∵实数 4,m,9 构成一个等比数列,∴m =4³9,解得 m=±6. ①当 m=6 时,圆锥曲线为 x + =1 表示椭圆,其中 a =6,b =1,∴离心率 e= = 6 a 1- =
2
y2
2
2
c
b2 a
1 30 1- = , 6 6
2
②当 m=-6 时,圆锥曲线为 x - =1 表示双曲线,其中 a =1,b =6,∴离心率 e= 6 a = 1+ = 1+6= 7. 答案:C 9.(2017²石家庄市教学质量检测二)已知直线 l 与双曲线 C:x -y =2 的两条渐近线 分别交于 A,B 两点,若 AB 的中点在该双曲线上,O 为坐标原点,则△AOB 的面积为( A. 1 B.1 2 )
2 1 B. , 3 2
1 D.0, 3
解析:如图所示, ∵线段 PF1 的中垂线经过 F2, ∴PF2=F1F2=2c,即椭圆上存在一点 P,使得 PF2=2c.
c 1 ∴a-c≤2c≤a+c.∴e= ∈ ,1. a 3
答案:C 11.(2017²北京卷)若双曲线 x - =1 的离心率为 3,则实数 m=________. 解析:由双曲线的标准方程知 a=1,b =m,c= 1+m, 故双曲线的离心率 e= = 1+m= 3, ∴ 1+m=3,解得 m=2. 答案:2 12.(2017²全国卷Ⅰ)已知双曲线 C: 2- 2=1(a>0,b>0)的右顶点为 A,以 A 为圆心,
1 = | 2x1|²| 2x2|=x1x2=2,故选 C. 2 答案:C 10.已知 F1,F2 分别是椭圆 C: 2+ 2=1(a>b>0)的左、右焦点,若椭圆 C 上存在点 P, 使得线段 PF1 的中垂线恰好经过焦点 F2,则椭圆 C 离心率的取值范围是( )
x2 y2 a b
3
2 A. ,1 3 1 C. ,1 3
2 2
y2
2
2
c
b2 a
C.2 D.4 解析:由题意得,双曲线的两条渐近线方程为 y=±x,设 A(x1,x1)、B(x2,-x2),∴AB 中点坐标为
x1+x2,x1-x2,∴x1+x22-x1-x22=2,即 x x =2,∴S =1|OA|²|OB| 2 2 1 2 △AOB 2 2 2
相关文档
最新文档