最新中考数学专题复习全等三角形
中考数学复习《全等三角形》专题(卷1)
《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。
2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
(中考考点梳理)三角形及其全等-中考数学一遍过
考点14 三角形及其全等一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;学科-网(3)全等三角形对应的中线、高线、角平分线、中位线都相等.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.A.2cm B.3cmC.12cm D.15cm【答案】C【解析】设木条的长度为x cm,则9–6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选C.1.以下列各组线段为边,能组成三角形的是A.2cm,5cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.1cm,2cm,3cm考向二三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 如图,下列有四个说法,正确的个数是①∠B >∠ACD ;②∠B +∠ACB =180°–∠A ;③∠A +∠B =∠ACD ;④∠HEC >∠ B .A .1个B .2个C .3个D .4个【解答】解:①∠B <∠ACD ,故①错误; ②∠B +∠ACB =180°–∠A ,故②正确; ③∠A +∠B =∠ACD ,故③正确;④∠HEC =∠AED >∠ACD >∠B ,则∠HEC >∠B ,故④正确. 故选C .2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三 三角形中的重要线段三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.典例3 在△ABC 中,AB =3,BC =4,AC =2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是A .5B .7C .9D .11【答案】B典例4 如图,点G 为△ABC 的重心,则S △ABG ∶S △ACG ∶S △BCG 的值是A .1∶2∶3B .2∶1∶2C .1∶1∶1D .无法确定【答案】C【解析】如图,分别延长AG 、CG 、BG ,交BC 、AB 、AC 于点D 、F 、E ,根据三角形重心的定理得到AD 、BE 、CF 是△ABC 的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,ABD ACD BDG CDG S S S S ∆∆∆==,即可得ABG ACG S S ∆∆=,同理可得ABG BCG S S ∆∆=,所以=ABG BCG ACG S S S ∆∆∆=,即S △ABG ∶S △ACG ∶S △BCG =1∶1∶1,故选C .4.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考向四 全等三角形1.从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路:(1)已知两边SAS HLSSS ⎧⎪⎨⎪⎩找夹角→找直角→找第三边→ (2)已知一边、一角AAS SAS ASA AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩一边为角的对边→找另一角→找夹角的另一边→一边为角的邻边找夹角的另一角→找边的对角→ (3)已知两角ASAAAS ⎧⎨⎩找夹边→找其中一角的对边→ 2.若题中没有全等的三角形,则可根据题中条件合理地添加辅助线,如运用作高法、倍长中线法、截长补短法、分解图形法等来解决运动、拼接、旋转等探究性题目.典例5 如图,已知∠ADB =∠CBD ,下列所给条件不能证明△ABD ≌△CDB 的是A .∠A =∠CB .AD =BC C .∠ABD =∠CDB D .AB =CD【答案】D【解析】A .∵∠A =∠C ,∠ADB =∠CBD ,BD =BD ,∴△ABD ≌△CDB (AAS ),故正确;B .∵AD =BC ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (SAS ),故正确;C .∵∠ABD =∠CDB ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (ASA ),故正确;D .∵AB =CD ,BD =DB ,∠ADB =∠CBD,不符合全等三角形的判定方法,故不正确,故选D.【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论个数是A.0 B.1C.2 D.36.如图,在△BCE中,AC⊥BE,AB=AC,点A、点F分别在BE、CE上,BF、AC相交于点D,BD=CE.求证:AD=AE.1.如图所示,其中三角形的个数是A.2个B.3个C.4个D.5个2.下列图形不具有稳定性的是A.正方形B.等腰三角形C.直角三角形D.钝角三角形3.直角三角形中两锐角之差为20°,则较大锐角为A.45° B.55°C.65° D.50°4.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC__________的交点.A.角平分线B.高线C.中线D.边的中垂线5.如图所示,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠1=∠26.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是A .∠DAE =∠CBEB .△DEA 不全等于△CEBC .CE =DED .△EAB 是等腰三角形7.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________度.8.如图所示,AB ⊥BE 于点B ,DE ⊥BE 于点E .(1)若∠A =∠D ,AB =DE ,则△ABC 与△DEF 全等的理由是__________; (2)若∠A =∠D ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (3)若AB =DE ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (4)若AB =DE ,AC =DF ,则△ABC 与△DEF 全等的理由是__________.学-科网9.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是中线,AF ⊥BD ,F 为垂足,过点C 作AB 的平行线交AF 的延长线于点E .求证:(1)∠ABD =∠FAD ;(2)AB =2CE .10.如图,,,于D ,于E ,且.求证:.AB AC =90BAC ∠= BD AE ⊥CE AE ⊥BD CE >BD EC ED =+11.如图,操场上有两根旗杆CA与BD之间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M 点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?1.(2018•柳州)如图,图中直角三角形共有A.1个B.2个C.3个D.4个2.(2018•河北)下列图形具有稳定性的是A.B.C.D.3.(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是A.中线B.角平分线C.高D.中位线4.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的A.重心B.外心C.内心D.中心5.(2018•毕节市)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是A.4 B.6C.8 D.106.(2018•贵阳市)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是A.线段DE B.线段BEC.线段EF D.线段FG7.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为A.90°B.95°C.100°D.120°8.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于A.150°B.180°C.210°D.270°9.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于A.40°B.45°C.50°D.55°10.(2018•聊城市)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°–α–β11.(2018•黔西南州市)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙12.(2018•安顺市)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AEC.BD=CE D.BE=CD13.(2018•南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥A D.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+cC.a–b+c D.a+b–c14.(2018•辽阳市)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为A.5 B.24 5C.4 D.12 515.(2018•绵阳市)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=__________.16.(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.17.(2018•陇南市)已知a,b,c是△ABC的三边长,a,b满足|a–7|+(b–1)2=0,c为奇数,则c=__________.18.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△ED C.19.(2018•云南)如图,已知AC平分∠BAD,AB=A D.求证:△ABC≌△ADC.4.【答案】3【解析】由勾股定理知AD3=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,故答案为:3.5.【答案】D【解析】∵OA=OB,∠A=∠B,∠O=∠O,∴△AOD≌△BOC(ASA),故①正确;∴OD=CO,∴BD=AC,∴△ACE≌△BDE(AAS),故②正确;∴AE=BE,连接OE,∴△AOE≌△BOE(SSS),∴∠AOE =∠BOE ,∴点E 在∠O 的平分线上,故③正确, 故选D .6.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CEAB AC =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .1.【答案】D【解析】图中的三角形有:△ABC ,△BCD ,△BCE ,△ABE ,△CDE 共5个.故选D . 2.【答案】A【解析】根据三角形具有稳定性可知,只有选项A 不具有稳定性,故选A . 3.【答案】B【解析】设两个锐角分别为x 、y ,由题意得,,解得,所以最大锐角为55°.故选B . 4.【答案】A【解析】∵到角的两边的距离相等的点在角的平分线上, ∴这个点是三角形三条角平分线的交点.故选A . 5.【答案】D【解析】根据全等“SAS”判定可知,要证△ABE ≌△DBC 还需补充条件AB ,BE 与BC ,BD 的夹角相等,即∠ABE =∠CBD 或者∠1=∠2,故选D . 6.【答案】B【解析】∵∠1+∠C +∠ABC =∠2+∠D +∠DAB =180°,且∠1=∠2,∠C =∠D , ∴∠ABC =∠DAB ,∴∠ABC –∠2=∠DAB –∠1,∴∠DAE =∠CBE .故A 正确;∵∠1=∠2,∴AE =BE .在△DEA 和△CEB 中DAE CBE C D AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEA ≌△CEB (AAS ),故B 错误;由△DEA ≌△CEB 可得CE =DE .故C 正确.∵∠1=∠2,∴BE =AE ,∴△EAB 是等腰三角形故D 正确;故选B .=90=20x y x y +︒-︒⎧⎨⎩=55=35x y ︒︒⎧⎨⎩7.【答案】135 【解析】如图所示:由题意可知△ABC ≌△EDC ,∴∠3=∠BAC , 又∵∠1+∠BAC =90°,∴∠1+∠3=90°,∵DF =DC ,∴∠2=45°,∴∠1+∠2+∠3=135度, 故答案是:135.8.【答案】ASA ,AAS ,SAS ,HL【解析】(1)在△ABC 和△DEF 中,因为∠B =∠E =90°, AB =DE ,∠A =∠D ,所以△ABC ≌△DEF (ASA); (2)在△ABC 和△DEF 中,因为∠B =∠E =90°, ∠A =∠D ,BC =EF ,所以△ABC ≌△DEF (AAS); (3)在△ABC 和△DEF 中,因为AB =DE ,∠B =∠E =90°, BC =EF ,所以△ABC ≌△DEF (SAS);(4)在Rt △ABC 和Rt △DEF 中,因为AC =DF ,AB =DE , 所以Rt △ABC ≌Rt △DEF (HL). 故答案为:ASA ;AAS ;SAS ;HL.10.【解析】,,,,,, ,90BAC ∠= CE AE ⊥BD AE ⊥90ABD BAD ∠∠∴+= 90BAD DAC ∠∠+= 90ADB AEC ∠∠== ABD DAC ∠∠∴=在和中,,∴≌(AAS ),,, ,∴BD =EC +ED .11.【解析】(1)如图,∵CM 和DM 的夹角为90°,∴∠1+∠2=90°,∵∠DBA =90°,∴∠2+∠D =90°,∴∠1=∠D ,在△CAM 和△MBD 中,,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB , ∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ; (2)9÷0.5=18(s ).学_科网答:小强从M 点到达A 点还需要18秒.1.【答案】CABD CAE ABD EAC BDA E AB AC ∠=∠∠=∠=⎧⎪⎨⎪⎩ABD CAE BD AE ∴=EC AD =AE AD DE =+ 1A B D CM MD ∠=∠∠=∠=⎧⎪⎨⎪⎩【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选C.2.【答案】A【解析】三角形具有稳定性.故选A.3.【答案】A【解析】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.4.【答案】A【解析】三角形三条中线的交点是三角形的重心,故选A.5.【答案】C【解析】设第三边长为x,则8–2<x<2+8,6<x<10,故选C.6.【答案】B【解析】根据三角形中线的定义知线段BE是△ABC的中线,故选B.7.【答案】B【解析】∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B.8.【答案】C【解析】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°–∠C=30°+90°+180°–90°=210°,故选C . 9.【答案】C【解析】∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°, ∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°,故选C . 10.【答案】A【解析】由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ', ∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选.11.【答案】B【解析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等; 在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等; 不能判定甲与△ABC 全等;故选B .13.【答案】D【解析】∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠AFB =∠CED =90°,∠A +∠D =90°,∠C +∠D =90°,∴∠A =∠C ,∵AB =CD ,∴△ABF ≌△CDE ,∴AF =CE =a ,BF =DE =b , ∵EF =c ,∴AD =AF +DF =a +(b –c )=a +b –c ,故选D . 14.【答案】B【解析】由题意可得,OC 为∠MON 的平分线, ∵OA =OB ,OC 平分∠AOB ,∴OC ⊥AB , 设OC 与AB 交于点D ,作BE ⊥AC 于点E ,∵AB =6,OA =5,AC =OA ,OC ⊥AB ,∴AC =5,∠ADC =90°,AD =3, ∴CD =4,∵2AB CD ⋅=2AC BE ⋅,∴642⨯=52BE ⨯,解得,BE =245,故选B . 15【解析】∵AD 、BE 为BC ,AC 边上的中线,∴BD =12BC =2,AE =12AC =32,点O 为△ABC 的重心,∴AO =2OD ,OB =2OE , ∵BE ⊥AD ,∴BO 2+OD 2=BD 2=4,OE 2+AO 2=AE 2=94,∴BO 2+14AO 2=4,14BO 2+AO 2=94,∴54BO 2+54AO 2=254,∴BO 2+AO 2=5,∴AB. 16.【答案】5【解析】根据三角形的三边关系,得4<第三边<6. 又第三条边长为整数,则第三边是5.故答案为:5. 17.【答案】7【解析】∵a ,b 满足|a –7|+(b –1)2=0,∴a –7=0,b –1=0,解得a =7,b =1, ∵7–1=6,7+1=8,∴6<c <8,又∵c 为奇数,∴c =7,故答案是:7.18.【解析】∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ).19.【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC .A EAC EC ACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩AB AD BAC DAC AC AC =∠=∠=⎧⎪⎨⎪⎩。
专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮
专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。
考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。
中考数学考点专题复习 三角形与全等三角形
剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5
.
【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )
中考数学复习《全等三角形》专题训练-附带参考答案
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
中考数学复习专题练4-3 全等三角形1
§4.3全等三角形一、选择题1.(原创题)下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④解析全等图形是能完全重合的图形,故①②③④都正确,选A.答案 A2.(原创题)边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则DF的取值为()A.3 B.4C.5 D.3或4或5解析∵AB=2,BC=4,∴4-2<AC<4+2,即2<AC<6.∵△ABC≌△DEF,∴DF=AC,∴2<DF<6.∴DF可取3或4或5.∵△DEF的周长为偶数,∴DF只能取4,故选B.答案 B3.(改编题)如图,已知AD∥BC,AD=BC,AC与BD交于O点,EF过点O并分别交AD,BC于E,F,则图中的全等三角形共有()A.4对B.3对C.2对D.1对解析由AD∥BC,可得∠A=∠C,∠D=∠B,又∵AD=BC,∴△AOD≌△COB(ASA);由△AOD≌△COB可得OD=OB.又∵∠DOE=∠BOF,∴△EOD≌△FOB(ASA);由△AOD≌△COB可得OA=OC.又∵∠AOE=∠COF,∴△AOE≌△COF(ASA).综上所述,选B.答案 B4.(改编题)如图,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列条件后仍不能使△ABD≌△CAE的条件是()A.AD=CE B.AB=ACC.BD=AE D.AD=AE解析∵∠BAC=90°,BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∠B+∠BAD=90°,∠BAD+∠CAE=90°,∴∠CAE=∠B.A中,添加AD=CE,可用AAS证明△ABD≌△CAE;B中,添加AB=AC,可用AAS证明△ABD≌△CAE;C中,添加BD=AE,可用ASA证明△ABD≌△CAE;D中,添加AD=AE仍不能证明△ABD≌△CAE;综上所述,选D.答案 D5.(原创题)根据下列已知条件,能画出唯一△ABC的是() A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6解析A中,∵3+4<8,∴三条线段不能画出三角形;B中,根据条件画出两个三角形,则这两个三角形具有两边及一边的对角分别相等,不能证明全等,故不能画出唯一三角形;C中,根据条件画出两个三角形,则这两个三角形具有两边及夹角分别相等,这两个三角形全等,故能画出唯一的三角形;D中,根据这两个条件画出的两个三角形不能全等,故不能画出唯一的三角形;综上所述,选C.答案 C6.(改编题)如图,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3公里B.4公里C.5公里D.6公里解析如图,连结AC,作CF⊥l1,CE⊥l2;∵AB=BC=CD=DA=5公里,∴四边形ABCD是菱形,∴∠CAE=∠CAF,∴CE=CF=4公里.答案 B二、填空题7.(原创题)如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=________.解析根据这两个三角形全等,由对应边所对的角是对应角可得∠α=67°.答案67°8.(改编题)如图所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________(添一个条件即可).解析由图形可知,在△ABD和△ACD中,AD是公共边,由∠1=∠2,可得∠ADB=∠ADC,可考虑用SAS,ASA,AAS证明△ABD≌△ACD.若用SAS证明,需添加BD=CD;若用ASA证明,需添加∠BAD=∠CAD;若用AAS证明,需添加∠B=∠C.综上所述,可添加BD=CD或∠BAD=∠CAD或∠B=∠C中的一个.答案BD=CD(或∠BAD=∠CAD或∠B=∠C)9.(原创题)如图,在等边△ABC中,D是BC边上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O,则∠E=________.解析∵BF是等边△ABC的高,∴∠ABF=12∠ABC=30°.∵AE=AC,∴AE=AB.∵AO是∠BAE的平分线,∴∠BAO=∠EAO.又∵AO是公共边,∴△BAO≌△EAO.∴∠E=∠ABF=30°.答案30°10.(原创题)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠CAP=50°,则∠BPC =________.解析如图,过点P作PE⊥BA,PF⊥AC,PH⊥CD,垂足分别为E,F,H,∵CP和BP分别是∠ACD和∠ABC的平分线,∴PE=PF=PH,∴AP是∠CAE的平分线.∵∠CAP=50°,∴∠CAE=100°,∴∠BAC=80°.∴∠BPC=180°-∠PBC-∠BCP=180°-12∠ABC-∠ACB-12(∠BAC+∠ABC)=180°-∠ABC-∠ACB-12∠BAC=∠BAC-12∠BAC=12∠BAC=40°.答案40°三、解答题11.(原创题)已知:如图,△ABC中,∠ABC=45°,CD⊥AB 于D,BE⊥AC于E,BE与CD相交于点F.求证:BF=AC.证明∵CD⊥AB,∴∠BDC=∠CDA=90°.∵∠ABC=45°,∴∠DCB=∠ABC=45°.∴DB=DC.∵BE⊥AC,∴∠AEB=90°.∴∠A +∠ABE =90°.∵∠CDA =90°,∴∠A +∠ACD =90°.∴∠ABE =∠ACD .在△BDF 和△CDA 中,⎩⎨⎧∠BDC =∠CDA ,DB =DC ,∠ABE =∠ACD ,∴△BDF ≌△CDA .∴BF =AC .12.(原创题)已知:如图,在△ABC 中,∠ACB =90°,∠CAB 的平分线交BC 于D ,DE ⊥AB ,垂足为E ,连结CE ,交AD 于点H .(1)求证:AD ⊥CE ;(2)如果过点E 作EF ∥BC 交AD 于点F ,连结CF ,猜想四边形CDEF 是什么图形?并证明你的猜想.(1)证明 如图,∵∠ACB =90°,∠CAB 的平分线交BC 于D ,DE ⊥AB ,∴在△ACD 与△AED 中,⎩⎨⎧∠CAD =∠EAD ,∠ACD =∠AED ,AD =AD ,∴△ACD ≌△AED (AAS),∴AC =AE ,∴AH ⊥CE ,即AD ⊥CE .(2)解 四边形CDEF 是菱形.理由如下:∵由(1)知,AC =AE ,AD ⊥CE ,∴CH =EH ,∵EF ∥BC , ∴EH CH =FH HD ,∴FH =HD ,∴四边形CDEF 是菱形.。
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
最新九年级中考数学专题复习:全等三角形
在△EDM和△FDN中,源自∠EDM ∠FDNDM
DN
,
∠DME ∠DNF
∴△EDM≌△FDN(ASA),
∴DE=DF.
两边及其夹角对 三边对应相等的两
应相等的两个三 个三角形全等.
角形全等.
两角及其夹边对应 相等的两个三角形 全等.
两角及其中一个角 的对边对应相等的 两个三角形全等.
斜边和一条直角边对应相 等的两个直角三角形全等.
模型一、平移模型
知识点3:全等模型
模型展 示
模型特 沿同一直线(BC)平移可得两三角形重合(BE=CF)
证明:∵AD∥BC,∠A=90°,∠1=∠2, ∴∠A=∠B=90°,DE=CE. 在Rt△ADE和Rt△BEC中,
AD DE
BE EC
,
∴Rt△ADE≌Rt△BEC(HL);
模型四、一线三等角模型
知识点3:全等模型
一般通过一线三等角找等角或进行角度转换,证三角形全等时必须还有一组边相等这个条件. 常见基本图形如 下: 1.两个三角形在直线同侧,点P在线段AB上,已知:∠1=∠2=∠3,AP=BD.
模型应用
2. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折 叠,使点B落在点E处,AE交CD于点F,连接DE.若矩形ABCD的周 长为18,则△EFC的周长为___9_____.
模型三、一线三垂直模型
知识点3:全等模型
常用三个垂直作条件进行角度等量代换,即同(等)角的余角相等,相等的角就是 对应角,证三角形全等时必须还有一组边相等. 基本图形1 如图①,已知:AB⊥BC,DE⊥CE,AC⊥CD,AB=CE.
锐角一线三等角
钝角一线三等角
结论:△CAP≌△PBD.
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
中考数学专题复习全等三角形
∴△ADE≌△ADC。DE=CD,∠AED=∠C
∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE
∠B=∠EDB
∠C=∠B+∠EDB=2∠B
12证明:
∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM
∵BE=CF
∴△BEM≌△CFM
∴BM=CM
∴AM是△ABC的中线。
9作AG∥BD交DE延长线于G
AGE全等BDE
AG=BD=5
AGF∽CDF
AF=AG=5
所以DC=CF=2
10证明:
做BE的延长线,与AP相交于F点,
∵PA//BC
∴∠PAB+∠CBA=180°,
又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
13证明:因为AB=AC,
所以∠EBC=∠DCB
因为BD⊥AC,CE⊥AB
所以∠BEC=∠CDB
BC=CB (公共边)
则有三角形EBC全等于三角形DCB
所以BE=CD
14
11.证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG≌△BDE
中考数学复习《全等三角形》专项提升训练题-附带答案
中考数学复习《全等三角形》专项提升训练题-附带答案学校:班级:姓名:考号:一、单选题1.已知在和中,则判断的根据是()A.SAS B.SSS C.ASA D.AAS2.如图,AC,BD相交于点O.添加一个条件,不一定能使≌的是()A.B.C.D.3.如图,AB=AC,AD=AE,∠BAC=∠DAE,点B,D,E在同一直线上,若∠1=25°,∠2=35°,则∠3的度数是()A.50°B.55°C.60°D.70°4.小李用7块长为8cm,宽为3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AB=BC,∠ABC=90°),点B在DE上,点A和C分别与木墙的顶端重合,则两堵木墙之间的距离为()A.36 B.32 C.28 D.215.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC的长是()A.2 B.3 C.4 D.56.如图,中,平分,过点作于,测得BC=18,BE=6,则的周长是()A.30 B.24 C.18 D.127.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3 B.5 C.7 D.3或78.如图,中、的角平分线、交于点,延长BA、BC,PM⊥BE,PN⊥BF则下列结论中正确的个数()平分.A.个B.个C.个D.个二、填空题9.如图,要测量水池宽AB,可从点A出发在地面上画一条线段AC,使AC⊥AB,再从点C观测,在BA的延长线上测得一点D,使∠ACD=∠ACB,这时量得AD=110m,则水池宽AB的长度是m.10.如图,在,∠C=90°,E是AB上一点,且,于点E,若,则的值为.11.如图,在中于于E,BD和CE交于点O,AO的延长线交BC于点,则图中全等的直角三角形有对.12.如图,在和△OCD中,OC=OD,连接,交于点,连接.则的度数为°.13.如图,在中,点是的中点,点是外一点,,且平分,连接,则的长为.三、解答题14.如图,相交于点O,和.(1)求证:;(2)若,求的度数.15.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.16.如图,已知中是的角平分线,于E点.(1)求的度数;(2)若,求.17.如图所示,在四边形中,为的中点,连接AE、BE,BE⊥AE,延长交的延长线于点.求证:(1);(2)平分.18.如图,在中,点,分别是,的中点,连接,AE.(1)求证:;(2)过点作于点,求证:.参考答案:1.D2.C3.C4.A5.C6.B7.D8.D9.11010.811.612.14013.2cm14.(1)证明:∵∴和都是直角三角形在和中∴;(2)解:∵∴∵∴.15.(1)解:证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)解:∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m,BF=3m∴FC=10﹣3﹣3=4m.16.(1)解:∵∴∵是的角平分线∴∵∴∴;(2)解:如图,过D作于F.∵是的角平分线,∴又∵,且∴.17.(1)证明:∵∴∵是的中点∴.∵在与中∴≌(ASA)∴又∵∴是线段的垂直平分线∴∴AB-BC=AD;(2)证明:由(1)可知:∴∵∴∴∴平分.18.(1)解:证明:∵在中∴;又∵点D,E分别是,的中点∴∴.(2)证明:∵在中∴又∵∵∴∴.又∴∵是的中位线,∴∴在和中,有∴即。
中考数学高频考点 因动点产生的全等三角形
因动点产生的全等三角形概述:全等三角形是学习相似三角形的基础,这一部分题目正、反比例函数,一次函数见多,也有动点移动时形成全等形。
全等三角形基础性很强,由于是动态题,往往答案很多,旨在锻炼学生综合分析问题的能力和发散性思维。
一、点在图形上运动1.如图,已知ΔABC中,,,点为的中点。
如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动。
(1)若点的运动速度与点的运动速度相等,经过后,ΔBPD与ΔCQP是否全等,请说明理由;(2)若点的运动速度与点的运动速度不相等,当点的运动速度为多少时,能够使ΔBPD与ΔCQP全等?2.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE=cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.3.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD﹣DC﹣CB方向顺时针作折线运动,当点P与点Q 相遇时停止运动,设点P的运动时间为t.(1)当运动时间为秒时,点P与点Q相遇;(2)当AP∥CQ时,求线段DQ的长度;(3)连接PA,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等时,求t的值.4.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.5.在平面直角坐标系中,点A的坐标(0,4),点C的坐标(6,0),点P是x轴上的一个动点,从点C出发,沿x轴的负半轴方向运动,速度为2个单位/秒,运动时间为t秒,点B在x轴的负半轴上,且S△AOC =3S△AOB.(1)求点B的坐标;(2)若点D在y轴上,是否存在点P,使以P、D、O为顶点的三角形与△AOB 全等?若存在,直接写出点D坐标;若不存在,请说明理由(3)点Q是y轴上的一个动点,从点A出发,向y轴的负半轴运动,速度为2个单位/秒.若P、Q分别从C、A两点同时出发,求:t为何值时,以P、Q、O 三点构成的三角形与△AOB全等.二、点在函数图像上运动1.直线与x轴的交点A的坐标为,与y轴的交点B的坐标为(1)求这条直线的表达式.(2)直线经过第二、三、四象限,且与x轴、y轴分别交于点C,点D,如果和全等,求直线的表达式.2.如图,在平面直角坐标系xoy内,点P在直线上(点P在第一象限),过点P作轴,垂足为点A,且.(1)求点P的坐标;(2)如果点M和点P都在反比例函数图象上,过点M作轴,垂足为点N,如果和全等(点M、N、A分别和点O、A、P对应),求点M的坐标.3.已知点和点,点R在反比例函数上,作轴于T,在x轴上是否存在点P,使R、T、P构成的三角形与全等?若存在,请求出点P的坐标,若不存在说明理由.4.如图:直线与x轴、y轴分别交于A、B两点,点是直线与A、B不重合的动点.(1)当点C运动到什么位置时的面积是6;(2)过点C的另一直线CD与y轴相交于D点,是否存在点C使与全等?若存在,请求出点C的坐标;若不存在,请说明理由.28.(10分)(2011•常州)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF 全等?若存在,求E点坐标;若不存在,请说明理由.。
中考数学专题复习题:全等三角形判定方法的选择
中考数学专题复习题:全等三角形判定方法的选择1.已知:如图,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB AC =,B C ∠=∠,求证:BD CE =.第1题图 第2题图 第3题图2.如图所示,已知AB DC =,AE DF =,CE BF =,求证:AF DE =.3.如图所示,AD 是ABC ∆的中线,在AD 及其延长线上截取DE DF =,连接CE 、BF ,试判断BDF ∆与CDE ∆全等吗?BF 与CE 有何位置关系?并说明原因.4.已知:如图,AB AE =,12∠=∠,B E ∠=∠.求证:BC ED =.第4题图 第5题图 第6题图5.如图,AC 与BD 相交于点O ,AC BD =,AB CD =,求证:A D ∠=∠.6.如图,AD DB ⊥,BC CA ⊥,AC 、BD 相交于O ,且AC BD =.求证:OD OC =.7.如图,在ABC ∆中,AD BC ⊥,BE AC ⊥,AD BD =,求证:BF AC =.第7题图 第8题图 第9题图 8.已知:如图,A 、D 、B 三点在同一条直线上,ADC ∆、BDO ∆为等腰直角三角形,AO 、BC 的大小关系和位置关系分别如何?证明你的结论.9.如图,已知在ABC ∆中,BD AC ⊥于D ,CE AB ⊥于E ,F 是BD 上一点,BF AC =,G是CE 延长线上一点,CG AB =,连接AG ,AF .(1)试说明ABD ACE ∠=∠.(2)探求线段AF ,AG 有什么关系?并请说明理由.10.如图所示,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,点E 在AC 上,CE BC =,过点E 作AC 的垂线,交CD 的延长线于点F .求证:AB FC =.第10题图 第11题图 第12题图11.已知:如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 的中点,CE AD ⊥,垂足为点E ,//BF AC 交CE 的延长线于点F .求证:2AC BF =.12.如图,在Rt ABC ∆中,90BAC ∠=︒,2AC AB =,点D 是AC 的中点.将一块锐角为45︒的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.13.如图,在ABC ∆中,A ECB DBC ∠=∠=∠21,求证:CD BE =.第13题图 第14题图14.如图所示,BAC ∠是钝角,AB AC =,D ,E 分别在AB ,AC 上,且CD BE =. 试说明ADC AEB ∠=∠. 15.如图,四边形ABCD 中,90A BCD ∠=∠=︒,BC CD =,E 是AD 延长线上一点,若3DE AB cm ==,42CE cm =,则AD 的长是________cm .第15题图 第16题图 第17题图16.如图,四边形ABCD 中,AB CD =,对角线AC ,BD 相交于点O ,AE BD ⊥于点E ,CF BD ⊥于点F ,连接AF ,CE ,若DE BF =,则下列结论:①CF AE =;②OE OF =;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.这4个结论中正确的个数是( )A .4B .3C .2D .117.如图,已知ABD ∆,AEC ∆都是等边三角形,AF CD ⊥于F ,AH BE ⊥于H ,问:(1)BE 与CD 有何数量关系?请说明理由.(2)AF 与AH 有何数量关系?请说明理由.18.如图,ACD ∆和BCE ∆都是等腰直角三角形,90ACD BCE ∠=∠=︒,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.第18题图 第19题图 19.将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中90ACB DEB ∠=∠=︒,30A D ∠=∠=︒,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF EF DE +=.(2)若将图1中的DBE ∆绕点B 按顺时针方向旋转角α,且060α︒<<︒,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.20.如图,AD 是ABC ∆的高,作DCE ACD ∠=∠,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .(1)求证:CE AF =.(2)在线段AB 上取一点N ,使12ENA ACE ∠=∠,EN 交BC 于点M ,连接AM .请你判断B ∠与MAF ∠的数量关系,并说明理由.第20题图 第21题图 第22题图21.如图,在ABC ∆中AD BC ⊥,CE AB ⊥,垂足分别为D 、E ,AD 、CE 交于点H ,已知3EH EB ==,4AE =,求CH 的长.22.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,E 为AC 边的中点,过点A 作AD AB ⊥交BE 的延长线于点D ,CG 平分ACB ∠交BD 于点G ,F 为AB 边上一点,连接CF ,且ACF CBG ∠=∠.求证:(1)AF CG =. (2)2CF DE =.23.如图,ABO ∆与CDO ∆关于O 点中心对称,点E 、F 在线段AC 上,且AF CE =.求证:FD BE =.第23题图 第24题图 24.已知,如图,ABC ∆和ECD ∆都是等腰直角三角形,90ACB DCE ∠=∠=︒,D 为AB 边上一点.求证:BD AE =.25.如图,在ABC ∆中,60ACB ∠=︒,75BAC ∠=︒,AD BC ⊥于D ,BE AC ⊥于E ,AD 与BE 交于H ,则CHD ∠=________.26.如图,在ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BCA ∠的平分线交AD 于F ,交AB 于E ,//FG BC 交AB 于G .4AE =,14AB =,则BG =________.。
数学中考总复习(一轮复习)第17讲全等三角形
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
中考数学专题复习全等三角形(角平分线型)
中考数学专题复习全等三角形(角平分线型)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF△AB,F为垂足.下列结论:△△ABD△△EBC;△△BCE+△BCD=180°;△AD=AE;△BA+BC=2BF.其中正确的是()A.△△△B.△△△C.△△△D.△△△△评卷人得分二、填空题2.已知,△ABC中,∠BAC=120°,AD平分∠BAC,∠BDC=60°,AB=2,AC=3,则AD的长是________.3.如图所示,ABC的外角ACD∠的平分线CP与ABC∠的平分线相交于点P,若36BPC∠=︒,则CAP∠=_______.4.如图,△ABC 的外角△ACD 的平分线CP 与内角△ABC 的平分线BP 交于点P ,若△BPC =50︒,△CAP =______.5.如图,四边形ABCD中2120D B ∠=∠=︒,AB AD =,E 为BC 上一点,连接AE ,2BE =,7CD =,若4120BAE BCD ∠+∠=︒,则线段CE 的长为_______.评卷人 得分三、解答题 6.已知:如图,在四边形ABCD 中,BD 平分△ABC ,△A +△C =180°,BC >BA .求证:点D 在线段AC 的垂直平分线上.7.如图,ABC 中,AC =BC ,△ACB =90°,AD 平分△BAC 交BC 于点D ,过点B 作BE △AD ,交AD 延长线于点E ,F 为AB 的中点,连接CF ,交AD 于点G ,连接BG . (1)线段BE 与线段AD 有何数量关系?并说明理由; (2)判断BEG 的形状,并说明理由.8.在ABC 中,BE ,CD 为ABC 的角平分线,BE ,CD 交于点F .(1)求证:1902BFC A∠=︒+∠;(2)已知60A∠=︒.△如图1,若4BD=, 6.5BC=,求CE的长;△如图2,若BF AC=,求AEB∠的大小.9.四边形ABCD中,DA DC=,连接BD.(1)如图1,若BD平分ABC∠,求证:180A C∠+∠=︒.(2)如图2,若BD BC=,150=︒∠BAD,求证:2DBC ABD∠=∠.(3)如图3,在(2)的条件下,作AE BC⊥于点E,连接DE,若DA DC⊥,2BC=,求DE的长度.10.如图,△ABC中,AB=AC,△BAC=90°,CD平分△ACB,BE△CD,垂足E在CD的延长线上.求证:BE=12CD.11.在△ABC中,AD为△ABC的角平分线,点E是直线BC上的动点.(1)如图1,当点E在CB的延长线上时,连接AE,若△E=48°,AE=AD=DC,则△ABC的度数为.(2)如图2,AC>AB,点P在线段AD延长线上,比较AC+BP与AB+CP之间的大小关系,并证明.(3)连接AE,若△DAE=90°,△BAC=24°,且满足AB+AC=EC,请求出△ACB的度数(要求:画图,写思路,求出度数).12.如图,在△ABC中,△C=90°,AD是△BAC的角平分线,交BC于点D,过D作DE△BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)若AB=7.4,AF=1.4,求线段BE的长.13.如图1,在ABC中,CM是AB边的中线,BCN BCM∠=∠交AB延长线于点N,2CM CN=.(1)求证AC BN=;(2)如图2,NP平分ANC∠交CM于点P,交BC于点O,若120AMC∠=︒,CP kAC=,求CPCM的值.14.如图,已知在四边形ABCD中,BD是ABC∠的平分线,AD CD=.2 求证:180A C∠+∠=︒.15.(1)如图1,射线OP平分△MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,△ACB=90°,△A=60°,CD平分△ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC 平分△BAE,EC平分△AED,△ACE=120°,求AE的值.16.已知:AD是ABC的角平分线,且AD BC⊥.(1)如图1,求证:AB AC=;(2)如图2,30ABC∠=︒,点E在AD上,连接CE并延长交AB于点F,BG交CA 的延长线于点G,且ABG ACF∠=∠,连接FG.△求证:AFG AFC∠=∠;△若:2:3ABG ACFS S=△△,且2AG=,求AC的长.17.在平面直角坐标系中,点A的坐标是(0,)a,点B的坐标(,0)b且a,b满足212360a a a b-++-=.(1)求A、B两点的坐标;(2)如图(1),点C为x轴负半轴一动点,OC OB<,BD AC⊥于D,交y轴于点E,求证:OD平分CDB∠.(3)如图(2),点F为AB的中点,点G为x正半轴点B右侧的一动点,过点F作FG的垂线FH,交y轴的负半轴于点H,那么当点G的位置不断变化时,AFH FBGS S-△△的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.18.如图1,在ABC中,AF,BE分别是BAC∠和ABC∠的角平分线,AF和BE相交于D点.(1)求证:CD平分ACB∠;(2)如图2,过F作FP AC⊥于点P,连接PD,若45ACB∠=︒,67.5PDF∠=︒,求证:PD CP=;(3)如图3,若23180BAF ABE∠+∠=︒,求证:BE BF AB AE-=-.19.已知:如图,//AC BD,AE,BE分别平分CAB∠和ABD∠,点E在CD上.用等式表示线段AB、AC、BD三者之间的数量关系,并证明.20.如图,已知B(-1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且△BDC=△BAC.(1)求证:△ABD=△ACD;(2)求证:AD平分△CDE;(3)若在点D运动的过程中,始终有DC=DA+DB,在此过程中,△BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出△BAC的度数.21.已知点C是△MAN平分线上一点,△BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且△ABC+△ADC=180°.过点C作CE△AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若△MAN=60°,连接BD,作△ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.22.如图,ABC 的外角△DAC 的平分线交BC 边的垂直平分线于P 点,PD△AB 于D ,PE△AC 于E . (1)求证:BD =CE ;(2)若AB =6cm ,AC =10cm ,求AD 的长.23.【特例感知】(1)如图(1),ABC ∠是O 的圆周角,BC 为直径,BD 平分ABC ∠交O 于点D ,3CD =,4BD =,求点D 到直线AB 的距离.【类比迁移】(2)如图(2),ABC ∠是O 的圆周角,BC 为O 的弦,BD 平分ABC ∠交O 于点D ,过点D 作DE BC ⊥,垂足为点E ,探索线段AB ,BE ,BC 之间的数量关系,并说明理由.【问题解决】(3)如图(3),四边形ABCD 为O 的内接四边形,90ABC ∠=︒,BD 平分ABC ∠,72BD =,6AB =,求ABC 的内心与外心之间的距离.24.如图,在ABC 中,AB AC =,100A ∠=︒,BD 是ABC ∠的平分线,延长BD 至点E ,DE AD =,试求ECA ∠的度数.25.在平面直角坐标系中,点() 5,0A-,()0,5B,点C为x轴正半轴上一动点,过点A作AD BC⊥交y轴于点E.(1)如图①,若点C的坐标为(3,0),试求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且5OC<,其它条件不变,连接DO,求证:OD平分ADC∠(3)若点C在x轴正半轴上运动,当2OCB DAO∠=∠时,试探索线段AD、OC、DC 的数量关系,并证明.26.如图,△D=△C=90°,点E是DC的中点,AE平分△DAB,△DEA=28°,求△ABE的大小.27.如图,在梯形ABCD中,AD△BC,AE平分△BAD,BE平分△ABC,且AE、BE交CD于点E.试说明AD=AB﹣BC的理由.28.如图,在△ABC中,AB=AC,△ABC=40°,BD是△ABC的平分线,延长BD至E,使DE=AD,求证:△ECA=40°.29.已知△ABC中,AB=AC,△A=108°,BD平分△ABC,求证:BC=AC+CD.30.如图,已知等腰直角三角形ABC中,AB=AC,△BAC=90°,BF平分△ABC,CD△BD交BF的延长线于点D,试说明:BF=2CD.参考答案:1.D【解析】【分析】根据SAS证△ABD△△EBC,可得△BCE=△BDA,结合△BCD=△BDC可得△△正确;根据角的和差以及三角形外角的性质可得△DCE=△DAE,即AE=EC,由AD=EC,即可得△正确;过E作EG△BC于G点,证明Rt△BEG△Rt△BEF和Rt△CEG△Rt△AEF,得到BG =BF和AF=CG,利用线段和差即可得到△正确.【详解】解:△△BD为△ABC的角平分线,△△ABD=△CBD,△在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,△△ABD△△EBC(SAS),△正确;△△BD为△ABC的角平分线,BD=BC,BE=BA,△△BCD=△BDC=△BAE=△BEA,△△ABD△△EBC,△△BCE=△BDA,△△BCE+△BCD=△BDA+△BDC=180°,△正确;△△△BCE=△BDA,△BCE=△BCD+△DCE,△BDA=△DAE+△BEA,△BCD=△BEA,△△DCE=△DAE,△△ACE为等腰三角形,△AE=EC,△△ABD△△EBC,△AD=EC,△AD=AE.△正确;△过E作EG△BC于G点,△E 是△ABC 的角平分线BD 上的点,且EF△AB ,△EF =EG (角平分线上的点到角的两边的距离相等),△在Rt △BEG 和Rt △BEF 中,BE BE EF EG =⎧⎨=⎩, △Rt △BEG△Rt △BEF (HL ),△BG =BF ,△在Rt △CEG 和Rt △AFE 中,AE CE EF EG =⎧⎨=⎩, △Rt △CEG△Rt △AEF (HL ),△AF =CG ,△BA +BC =BF +FA +BG−CG =BF +BG =2BF,△正确. 故选D .【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,等腰三角形的判定与性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.2.5【解析】【分析】过D 作,DE AC ⊥,DF AB ⊥交AB 延长线于F ,然后根据全等三角形的性质和30角直角三角形的性质即可求解.【详解】过D 作,DE AC ⊥,DF AB ⊥交AB 延长线于F ,△AD 平分BAC ∠,DE AC ⊥,DF AB ⊥,△DE DF =,90DEC DFB DEA ==︒=∠∠∠,△360BAC BDC DCE DBA +++=︒∠∠∠∠,12060BAC BDC =︒=︒∠,∠,△180DCE DBA +=︒∠∠,△180DBF DBA +=︒∠∠,△DCE DBF ∠=∠,在DEC 和DFB △中,DCE DBF DEC DFB DE DB ∠=∠⎧⎪∠=∠⎨⎪=⎩ △()DEC DFB AAS △≌△,△CE BF =,在Rt DEA 和Rt DFA 中,DE DF DA DA=⎧⎨=⎩, △()Rt DEA DFA HL △≌△,△AE AF =,△,AE AC CE AF AB BF =-=+,△AC CE AB BF -=+,△1CE BF AC AB +=-=,△12CE BF ==, △52AF AB BF =+=, △AD 平分BAC ∠,△1602DAB BAC ==︒∠∠, △18030ADF DAB DFB =︒--=︒∠∠∠,△25AD AF ==.【点睛】此题考查了全等三角形和角平分线的性质,解题的关键是作出辅助线构造全等三角形. 3.54︒【解析】【分析】如图(见解析),设CBP x ∠=,从而可得2ABC x ∠=,先根据三角形的外角性质可求出72BAC =︒∠,再根据角平分线的性质可得,PM PN PM PE ==,从而可得PN PE =,然后根据直角三角形全等的判定定理与性质可得PAN PAE ∠=∠,最后根据平角的定义即可得. 【详解】如图,过点P 分别作PM BD ⊥于点M ,PN BA ⊥于点N ,PE AC ⊥于点E ,设CBP x ∠=,则2ABC x ∠=, 36BPC ∠=︒,36DCP BP CBP C x ∠+∴∠=∠=+︒, CP 是ACD ∠的平分线,2272ACD DCP x ∴∠=∠=+︒,272272BAC ACD ABC x x ∴∠=∠-∠=+︒-=︒,BP 是ABC ∠的平分线,PM BD ⊥,PN BA ⊥,PM PN ∴=,同理可得:PM PE =,PN PE ∴=,在Rt ANP 和Rt AEP △中,PN PE PA PA =⎧⎨=⎩,()Rt ANP Rt AEP HL ∴≅,PAN PAE ∴∠=∠,即PAN CAP ∠=∠, 又180PAN CAP BAC ∠+∠+∠=︒,272180CAP ∴∠+︒=︒,解得54CAP ∠=︒,故答案为:54︒.【点睛】本题考查了角平分线的定义与性质、三角形的外角性质、直角三角形全等的判定定理与性质等知识点,通过作辅助线,利用角平分线的性质是解题关键.4.40°【解析】【分析】过点P 作PF△AB 于F ,PM△AC 于M ,PN△CD 于N ,根据三角形的外角性质和内角和定理,得到△BAC 度数,再利用角平分线的性质以及直角三角形全等的判定,得出△CAP=△FAP ,即可得到答案.【详解】解:过点P 作PF△AB 于F ,PM△AC 于M ,PN△CD 于N ,如图:设△PCD=x ,△CP 平分△ACD ,△△ACP=△PCD=x ,PM=PN ,△△ACD=2x ,△BP 平分△ABC ,△△ABP=△PBC ,PF=PM=PN ,△△BPC =50°,△△ABP=△PBC=50PCD BPC x ∠-∠=-︒,△2(50)ABC x ∠=-︒,△22(50)100BAC ACD ABC x x ∠=∠-∠=--︒=︒,△18010080FAC ∠=︒-︒=︒,在Rt△APF 和Rt△APM 中,△PF=PM ,AP 为公共边,△Rt△APF△Rt△APM (HL ),△△FAP=△CAP ,△180402CAP ∠=⨯︒=︒; 故答案为:40°;【点睛】 本题考查了三角形的内角和定理,三角形的外角性质,角平分线的性质,以及全等三角形的判定和性质,解题的关键是熟练掌握所学的知识进行解题,正确求出80FAC ∠=︒是关键.5.13【解析】【分析】如下图,先构造并证明AMB AND ∆≅∆,从而得出ACM ACN ∆≅∆,再根据4120BAE BCD ∠+∠=︒可推导出AC CE =,最后在Rt△ACM 中求解.【详解】解析:连接AC ,过点A 作AM BC ⊥于点M ,AN CD ⊥于点N ,2120ADC B ∠=∠=︒,60ADN B ∴∠=∠=︒,AB AD =,90AMB AND ∠=∠=︒,AMB AND ∆≅∆,AM AN ∴=,BM DN =,Rt ACM Rt ACN ∴∆≅∆ACB ACD ∠=∠∴,CM CN =.设BAE α∠=,则60AEC α∠=︒+,4120BAE BCD ∠+∠=︒602ACE α∴∠=︒-.60CAE α∴∠=︒+ AC CE ∴=.设EM a =,则2BM DN a ==+,9CM CN a ==+92AC CE a ∴==+,3(2)AM a =+,在Rt ACM ∆中,由勾股定理得AM CM AC 222+=解得2a =.13CE ∴=.【点睛】本题考查了构造并证明全等三角形、勾股定理的运用,解题关键是利用4120BAE BCD ∠+∠=︒进行角度转化,得到边AC CE =.6.见解析【解析】【分析】在BC上截取BE=BA,连接DE,证明△ABD△△BED,可得出△C=△DEC,则DE=DC,从而得出AD=CD即可证明.【详解】证:如图,在BC上截取BE=BA,连接DE,△BD=BD,△ABD=△CBD,△△BAD△△BED,△△A=△DEB,AD=DE,△△A+△C=180°,△BED+△DEC=180°,△△C=△DEC,△DE=DC,△AD=CD,△点D在线段AC的垂直平分线上.【点睛】本题考查全等三角形的判定与性质,以及垂直平分线的判定等,学会做辅助线找出全等三角形是解题的关键.7.(1)BE=12AD,见解析;(2)BEG是等腰直角三角形,见解析【解析】【分析】(1)延长BE、AC交于点H,先证明△BAE△△HAE,得BE=HE=12BH,再证明△BCH△△ACD,得BH=AD,则BE=12AD;(2)先证明CF垂直平分AB,则AG=BG,再证明△CAB=△CBA=45°,则△GAB=△GBA=22.5°,于是△EGB=△GAB+△GBA=45°,可证明△BEG是等腰直角三角形.【详解】证:(1)BE =12AD ,理由如下:如图,延长BE 、AC 交于点H ,△BE △AD ,△△AEB =△AEH =90°,△AD 平分△BAC ,△△BAE =△HAE ,在△BAE 和△HAE 中,AEB AEH AE AEBAE HAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△BAE △△HAE (ASA ),△BE =HE =12BH ,△△ACB =90°,△△BCH =180°﹣△ACB =90°=△ACD ,△△CBH =90°﹣△H =△CAD ,在△BCH 和△ACD 中,BCH ACD BC ACCBH CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△BCH △△ACD (ASA ),△BH =AD ,△BE =12AD .(2)△BEG 是等腰直角三角形,理由如下:△AC =BC ,AF =BF ,△CF △AB ,△AG =BG ,△△GAB =△GBA ,△AC =BC ,△ACB =90°,△△CAB =△CBA =45°,△△GAB =12△CAB =22.5°,△△GAB =△GBA =22.5°,△△EGB =△GAB +△GBA =45°,△△BEG =90°,△△EBG =△EGB =45°,△EG =EB ,△△BEG 是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.8.(1)证明见解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形内角和定理和角平分线得出1902FBC FCB A ∠+∠=︒-∠的度数,再由三角形内角和定理可求出BFC ∠的度数,(2)在BC 上取一点G 使BG=BD ,构造BFG BFD ≅△(SAS ),再证明()FEC FGC ASA ≅,即可得BC BD CE =+,由此求出答案; (3)延长BA 到P ,使AP=FC ,构造BFC CAP ≅△(SAS ),得PC=BC ,12P BCF ACB ∠=∠=∠,再由三角形内角和可求40ABC ∠=︒,80ACB ∠=︒,进而可得180()100AEB ABE A ∠=︒-∠+∠=︒.【详解】解:(1)BE 、CD 分别是ABC ∠与ACB ∠的角平分线,11(180)9022FBC FCB A A ∴∠+∠=︒-∠=︒-∠,1180()180(90)2BFC FBC FCB A ∴∠=︒-∠+∠=︒-︒-∠, 1902BFC A ∴∠=︒+∠, (2)如解(2)图,在BC 上取一点G 使BG=BD ,由(1)得1902BFC A ∠=︒+∠, 60BAC ∠=︒,120BFC ∴∠=︒,△18060BFD EFC BFC ∠=∠=︒-∠=︒,在BFG 与BFD △中, BF BF FBG FBD BD BG =⎧⎪∠=∠⎨⎪=⎩, △BFG BFD ≅△(SAS )△BFD BFG ∠=∠,△60BFD BFG ∠=∠=︒,△12060CFG BFG ∠=︒-∠=︒,△60CFG CFE ∠=∠=︒在FEC 与FGC △中,CFE CFG CF CFECF GCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FEC FGC ASA ∴≅,CE CG ∴=,BC BG CG =+,BC BD CE ∴=+;△4BD =, 6.5BC =,△ 2.5CE=(3)如解(3)图,延长BA 到P ,使AP=FC ,60BAC ∠=︒,△180120PAC BAC ∠=︒-∠=︒,在BFC △与CAP 中,120BF AC BFC CAP CF PA =⎧⎪∠=∠=︒⎨⎪=⎩, △BFC CAP ≅△(SAS )△P BCF ∠=∠,BC PC =,△P ABC ∠=∠, 又△12P BCF ACB ∠=∠=∠, △2ACB ABC ∠=∠,又△180ACB ABC A ∠+∠+∠=︒,△360180ABC ∠+︒=︒,△40ABC ∠=︒,80ACB ∠=︒,△1202ABE ABC ∠=∠=︒,180()180(2060)100AEB ABE A ∠=︒-∠+∠=︒-︒+︒=︒ 【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.9.(1)见解析;(2)见解析;(3)2【解析】【分析】(1)过点D 分别作DF BC ⊥于点F ,DE BA ⊥交BA 的延长线于点E ,根据角平分线的性质可得ED FD =,结合已知条件HL 证明Rt DAE ≌Rt DCF △,继而可得C EAD ∠=∠,根据平角的定义以及等量代换即可证明180BAD BCD ∠+∠=︒; (2)过点D 分别作DF BC ⊥于点F ,DE BA⊥交BA 的延长线于点E ,过点B 作BG DC ⊥,根据含30度角的直角三角形的性质可得12ED AD =,根据三线合一,可得12DG DC =,进而可得DE DG =,根据角平分线的判定定理可推出12ABD DBG DBC ∠=∠=∠,进而即可证明2DBC ABD ∠=∠; (3)先证明四边形DMEF 是矩形,证明△MAD ≌FCD ,进而证明四边形DMEF 是正方形,设ABD α∠=,根据(2)的结论以及三角形内角和定理,求得15α=︒,进而求得30DBC ∠=︒,根据含30度角的直角三角形的性质,即可求得EF ,进而在Rt DEF △中,勾股定理即可求得DE 的长.【详解】(1)如图,过点D 分别作DF BC ⊥于点F ,DE BA ⊥交BA 的延长线于点E ,BD 平分ABC ∠,ED FD ∴=DA DC=,在Rt DAE与Rt DCF△中AD DCED FD=⎧⎨=⎩∴Rt DAE≌Rt DCF△(HL)C EAD∴∠=∠180DAB EAD DAB C∴∠+∠=∠+∠=︒即180BAD BCD∠+∠=︒(2)如图,过点D作DE BA⊥交BA的延长线于点E,过点B作BG DC⊥,BD BC=11,22DG GC DC DBG CBG DBC∴==∠=∠=∠150=︒∠BAD,18015030EAD∴∠=︒-︒=︒12ED AD∴=DA DC=ED DG∴=,ED BE DG BG⊥⊥EBD GBD∴∠=∠12ABD DBC∴∠=∠即2DBC ABD∠=∠(3)如图,过点D分别作DF BC⊥于点F,DM EA⊥交EA的延长线于点M,AE BC ⊥,,DM ME DF FE ⊥⊥∴四边形DMEF 是矩形90MDF ∴∠=︒90MDA ADF ∴∠+∠=︒DA DC ⊥90ADC ∴∠=︒90ADF FDC ∴∠+∠=︒FDC MDA ∴∠=∠在△MAD 与FCD 中MDA FDC DMA DFC DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△MAD ≌FCDDM DF ∴=,MDA FDC ∠=∠∴四边形DMEF 是正方形DF EF ∴=设ABD α∠=∴22DBC ABD α∠=∠=BD BC =()11802902BDC BCD αα∴∠=∠=︒-=- 90MDA FDC BCD α∴∠=∠=︒-∠=90DAE M MDA α∴∠=∠+∠=︒+150BAD ∠=︒60BAE α∴∠=-在BAE 中9030ABE BAE α∠=︒-∠=︒+23ABE ABD DBC ααα∠=∠+∠=+=15α∴=︒230DBC α∴∠==︒2BD =112122DF BD ∴==⨯= 在Rt DEF △中,1EF DF ==222DE EF DF ∴=+=【点睛】本题考查了三角形全等的性质与判定,角平分线的性质与判定,三角形内角和定理,三角形的外角性质,勾股定理,正方形的性质与判定,正确的添加辅助线是解题的关键. 10.见解析【解析】【分析】 分别延长BE 、CA 交于点F ,首先结合题意推出△CFE △△CBE ,从而得到BE =EF =12BF ,然后证明△BF A △△CDA ,得到BF =CD ,即可得出结论.【详解】证明:分别延长BE 、CA 交于点F ,△BE △CD ,△△BEC =△FEC =90°.△CD 平分△ACB ,△△FCE =△BCE .在△CFE 与△CBE 中,△△BEC =△FEC ,△FCE =△BCE ,CE =CE ,△△CFE △△CBE ,△BE =EF =12BF .在△CFE与△CAD中,△△F+△FCE=△ADC+△ACD=90°,△△F=△ADC.在△BF A与△CDA中,△△F=△ADC,△BAC=△F AB,AB=AC,△△BF A△△CDA,△BF=CD.△BE=12CD.【点睛】本题考查全等三角形的判定与性质,理解角平分线的基本定义,熟练运用角平分线的性质构造辅助线,并且准确判定全等三角形是解题关键.11.(1)108︒;(2)AC BP AB PC+>+,见解析;(3)44°或104°;详见解析.【解析】【分析】(1)根据等边对等角,可得E ADE∠=∠,DAC C∠=∠,再根据三角形外角的性质求出=2=48ADE DAC∠∠︒,由此即可解题;(2)在AC边上取一点M使AM=AB,构造ABP AMP≅,根据MP MC PC+>即可得出答案;(3)画出图形,根据点E的位置分四种情况,当点E在射线CB延长线上,延长CA到G,使AG=AB,可得GC EC=,可得G GEC∠=∠,设=2ACB x∠,则=90G GEC x∠=∠︒-;根据△BAC=24°,AD为△ABC的角平分线,可得=12BAD DAC∠∠=︒,可证AGE ABE≅(SAS),得出=90ABE G x∠=∠︒-,利用还有242ABE x∠=︒+,列方程90242x x︒-=︒+;当点E在BD上时,△EAD<90°,不成立;当点E在CD上时,△EAD<90°,不成立;当点E在BC延长线上,延长CA到G,使AG=AB,可得GC EC=,得出G GEC∠=∠,设=2ACB x∠,则G GEC x∠=∠=;△BAC =24°,根据AD为△ABC的角平分线,得出=12BAD DAC∠∠=︒,证明AGE ABE≅(SAS),得出=ABE G x∠=∠,利用三角形内角和列方程242180x x+︒+=︒,解方程即可.【详解】解:(1)△AE=AD=DC,△E ADE∠=∠,DAC C∠=∠,△48E∠=︒,=ADE DAC C∠∠+∠,△=2=48ADE DAC∠∠︒,△AD为△ABC的角平分线,即=2BAC DAC∠∠,△48BAC∠=︒;△1804824108ABC∠=︒-︒-︒=︒(2)如图2,在AC边上取一点M使AM=AB,连接MP,在ABP△和AMP中,AB AMBAP MAPAP AP=⎧⎪∠=∠⎨⎪=⎩,△ABP AMP≅(SAS),△BP M P=,△MP MC PC+>,MC AC AM=-,△AC AB BP PC-+>,△AC BP AB PC+>+;(3)如图,点E 在射线CB 延长线上,延长CA 到G ,使AG =AB , △AB +AC =EC ,△AG +AC =EC ,即GC EC =,△G GEC ∠=∠,设=2ACB x ∠,则=90G GEC x ∠=∠︒-;又△BAC =24°,AD 为△ABC 的角平分线,△=12BAD DAC ∠∠=︒,又△90DAE ∠︒=,△9078BAE BAD ∠︒-∠=︒=,9078GAE DAC ∠=︒-∠=︒, △BAE GAE ∠∠=,在AGE 和ABE △中,AE AE GAE BAE AG AB =⎧⎪∠=∠⎨⎪=⎩, △AGE ABE ≅(SAS ),△=90ABE G x ∠=∠︒-,又△242ABE BAC ACB x ∠=∠+∠=︒+,△90242x x ︒-=︒+,解得:22x =︒,△=2=44ACB x ∠︒;当点E 在BD 上时,△EAD <90°,不成立;当点E在CD上时,△EAD <90°,不成立;如图,点E 在BC 延长线上,延长CA 到G ,使AG =AB , △AB +AC =EC ,△AG +AC =EC ,即GC EC =,△G GEC ∠=∠,设=2ACB x ∠,则G GEC x ∠=∠=;又△△BAC =24°,AD 为△ABC 的角平分线,△=12BAD DAC ∠∠=︒,又△90DAE ∠︒=,△90102BAE BAD ∠︒+∠=︒=,90102GAE DAC ∠=︒+∠=︒,△BAE GAE∠∠=,在AGE和ABE△中,AE AEGAE BAEAG AB=⎧⎪∠=∠⎨⎪=⎩,△AGE ABE≅(SAS),△=ABE G x∠=∠,△242180x x+︒+=︒,解得:52x=︒,△=2=104ACB x∠︒.△△ACB的度数为44°或104°.【点睛】本题主要考查了等腰三角形性质、全等三角形判定和性质,角平分线,三角形外角性质,三角形内角和,解一元一次方程,根据角平分线模型构造全等三角形转换线段和角的关系是解题关键.12.(1)见解析;(2)3【解析】【分析】(1)证明△ACD△△AED(AAS),即可得出结论;(2)在AB上截取AM=AF,连接MD,证△F AD△△MAD(SAS),得FD=MD,△ADF=△ADM,再证Rt△MDE△Rt△BDE(HL),得ME=BE,求出MB=AB-AM=6,即可求解.【详解】解:(1)证明:△AD平分△BAC,△△DAC =△DAE ,△DE △BA ,△△DEA =△DEB =90°,△△C =90°,△△C =△DEA =90°,在△ACD 和△AED 中,C DEA DAC DAE AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD △△AED (AAS ),△AC =AE ;(2)在AB 上截取AM =AF ,连接MD ,在△F AD 和△MAD 中,AF AM DAF DAM AD AD =⎧⎪∠=∠⎨⎪=⎩,△△F AD △△MAD (SAS ),△FD =MD ,△ADF =△ADM ,△BD =DF ,△BD =MD ,在Rt △MDE 和Rt △BDE 中, MD BD DE DE =⎧⎨=⎩, △Rt △MDE △Rt △BDE (HL ),△ME =BE ,△AF =AM ,且AF =1.4,△AM =1.4,△AB =7.4,△MB =AB -AM =7.4-1.4=6,△BE =12BM =3,即BE 的长为3.【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△F AD △△MAD 和Rt △MDE △Rt △BDE 是解题的关键.13.(1)见解析;(2)21k k + 【解析】【分析】(1)延长CM 至点D ,使CM DM =,可证ACM BDM ∆≅∆,由全等三角形的性质从而得出AC BD =,根据题目已知,可证DCB NCB ∆≅∆,由全等三角形的性质从而得出BN BD =,等量代换即可得出答案;(2)如图所示,作CQ CP =,可证CPO CQO ∆≅∆,由全等三角形的性质相等角从而得出123∠=∠=∠,进而得出45∠=∠,故可证NOB NOQ ∆≅∆等量转化即可求出CP CM的值. 【详解】(1)如图1所示,延长CM 至点D ,使CM DM =,在ACM △与BDM 中,CM DM AMC BMD AM BM =⎧⎪∠=∠⎨⎪=⎩,ACM BDM ∴∆≅∆,AC BD ∴=,2CM CN =,CD CN ∴=,在DCB 与NCB △中,CD CN DCB NCB CB CB =⎧⎪∠=∠⎨⎪=⎩,BN BD ∴=,AC BN ∴=;(2)如图所示,120AMC ∠=︒,60CMN ∴∠=︒,NP 平分MNC ∠,BCN BCM ∠=∠,1602PNC BCN AMC ∠+∠=∠=︒, 120CON ∴∠=︒,60COP ∠=︒,180CMN BOP ∴∠+∠=︒,作CQ CP =,在CPO △与CQO 中,CQ CP QCO PCO CO CO =⎧⎪∠=∠⎨⎪=⎩,CPO CQO ∴∆≅∆,123∴∠=∠=∠,45∴∠=∠,在NOB 与NOQ 中,45BNO QNO NO NO ∠=∠⎧⎪∠=∠⎨⎪=⎩,BN NQ∴=,CN CP NB∴=+,2CM CP AC∴=+,设AC a=,CP ka∴=,(1)2a kCM+=,21CP kCM k∴=+.【点睛】本题考查全等三角形的综合应用,掌握全等三角形的判定与性质是解题的关键.14.见解析【解析】【分析】方法一,在BC上截取BE,使BE AB=,连接DE,由角平分线的定义可得ABC DBC∠=∠,根据全等三角形的判定可证ABD△和EBD△全等,再根据全等三角形的性质可得A BED∠=∠,AD DE=,由AD=CD等量代换可得DE DC=,继而可得C DEC∠=∠,由于180BED DEC∠+∠=︒,可证180A C∠+∠=︒;方法2,延长BA到点E,使BE BC=,由角平分线的定义可得ABD DBC∠=∠,根据全等三角形的判定可证EBD△和CBD全等,继而可得E C∠=∠,DC DE=.由AD CD=,可得DE AD =,继而求得E EAD ∠=∠,由180EAD BAD ∠+∠=︒,继而可得180BAD C ∠+∠=︒;方法3, 作DE BC ⊥于点E ,DE BA ⊥交BA 的延长线于点F ,由角平分线的定义可得,由DE BC ⊥,DE BA ⊥,可得90F DEB ∠=∠=︒,根据全等三角形的判定可证FBD 和EBD △全等,继而可得DF DE =,再根据HL 定理可得可证180BAD C ∠+∠=︒.【详解】解:方法1 截长如图,在BC 上截取BE ,使BE AB =,连接DE ,因为BD 是ABC ∠的平分线,所以ABC DBC ∠=∠.在ABD △和EBD △中,因为AB EB ABD DBC BD BD =⎧⎪∠=∠⎨⎪=⎩所以ABD EBD ≅,所以A BED ∠=∠,AD DE =.因为AD CD =,所以DE DC =,所以C DEC ∠=∠.因为180BED DEC ∠+∠=︒,所以180A C ∠+∠=︒.方法2 补短如图,延长BA 到点E ,使BE BC =.因为BD 是ABC ∠的平分线,所以ABD DBC ∠=∠在EBD △和CBD 中,因为BC BE EBD DBC BD BD =⎧⎪∠=∠⎨⎪=⎩,所以EBD CBD ≅,所以E C ∠=∠,DC DE =.因为AD CD =,所以DE AD =,所以E EAD ∠=∠.因为180EAD BAD ∠+∠=︒,所以180BAD C ∠+∠=︒.方法3 构造直角三角形全等作DE BC ⊥于点E .DE BA ⊥交BA 的延长线于点F因为BD 是ABC ∠的平分线,所以ABD DBC ∠=∠.因为DE BC ⊥,DE BA ⊥,所以90F DEB ∠=∠=︒,在FBD 和EBD △中,因为F DEB ABD DBC BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以FBD EBD ≅,所以DF DE =.在Rt FAD △和Rt ECD △中,因为DF DE AD DC=⎧⎨=⎩, 所以Rt Rt FAD ECD ≅,所以FAD C ∠=∠.因为180FAD BAD ∠+∠=︒,所以180BAD C ∠+∠=︒.15.(1)见详解;(2)见详解;(3)AE =13【解析】【分析】(1)由题意易得△AOD =△BOD ,然后易证△AOD △△BOD ,进而问题可求证; (2)在BC 上截取CE =CA ,连接DE ,由题意易得△ACD =△ECD ,△B =30°,则有△ACD △△ECD ,然后可得△A =△CED =60°,则根据三角形外角的性质可得△EDB =△B =30°,然后可得DE =BE ,进而问题可求证;(3)在AE 上分别截取AF =AB ,EG =ED ,连接CF 、CG ,同理(2)可证△ABC △△AFC ,△CDE △△CGE ,则有△ACB =△ACF ,△DCE =△GCE ,然后可得△ACF +△GCE =60°,进而可得△CFG 是等边三角形,最后问题可求解.【详解】证明:(1)△射线OP 平分△MON ,△△AOD =△BOD ,△OD =OD ,OA =OB ,△△AOD △△BOD (SAS ),△AD=BD.(2)在BC上截取CE=CA,连接DE,如图所示:△△ACB=90°,△A=60°,CD平分△ACB,△△ACD=△ECD,△B=30°,△CD=CD,△△ACD△△ECD(SAS),△△A=△CED=60°,AD=DE,△△B+△EDB=△CED,△△EDB=△B=30°,△DE=BE,△AD=BE,△BC=CE+BE,△BC=AC+AD.(3)在AE上分别截取AF=AB=9,EG=ED=1,连接CF、CG,如图所示:同理(1)(2)可得:△ABC△△AFC,△CDE△△CGE,△△ACB=△ACF,△DCE=△GCE,BC=CF,CD=CG,DE=GE=1,△C为BD边中点,△BC=CD=CF=CG=3,△△ACE=120°,△△ACB +△DCE =60°,△△ACF +△GCE =60°,△△FCG =60°,△△CFG 是等边三角形,△FG =CF =CG =3,△AE =AF +FG +GE =9+3+1=13.【点睛】本题主要考查三角形全等的性质与判定、角平分线的定义、等腰三角形的性质与判定及等边三角形的性质与判定,解题的关键是构造辅助线证明三角形全等.16.(1)见解析;(2)△见解析;△6.【解析】【分析】(1)用ASA 证明ABD ACD △≌△,即得AB =AC ;(2)△证明BAG CAE ≌△△可得AG AE =,再用SAS 证明△F AG △△F AE ,即得AFG AFC ∠=∠;△过F 作FK AG ⊥于K ,由:2:3ABG ACF S S =△△,可得:2:3CAE ACF S S =△△,:1:3FAE ACF S S =△△,而FAG FAE ≌△△,故:1:3FAG ACF S S =△△,即得:1:3AG AC =,根据2AG =,可求6AC =.【详解】 解:(1)证明:AD 是ABC 的角平分线, BAD CAD ∴∠=∠,AD BC ⊥,ADB ADC ∴∠=∠,在ABD △和ACD △中,BAD CAD AD ADADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABD ACD ASA ∴≌,AB AC ∴=;(2)△AB AC=,30ABC∠=︒,AD BC⊥,60BAD CAD∴∠=∠=︒,60BAG CAD∴∠=︒=∠,在BAG和CAE中,BAG CAEAB ACABG ACE∠=∠⎧⎪=⎨⎪∠=∠⎩,()BAG CAE ASA∴≌△△,AG AE∴=,在FAG△和FAE中,AG AEGAF EAFAF AF=⎧⎪∠=∠⎨⎪=⎩,()FAG FAE SAS∴≌△△,AFG AFC∴∠=∠;△过F作FK AG⊥于K,如图:由△知:BAG CAE≌△△,:2:3ABG ACFS S=△△,:2:3CAE ACFS S∴=△△,:1:3FAE ACFS S∴=△△,由△知:FAG FAE≌△△,:1:3FAG ACFS S∴=△△,11:1:322AG FK AC FK⎛⎫⎛⎫∴⋅⋅=⎪ ⎪⎝⎭⎝⎭,:1:3AG AC ∴=,2AG ,△6AC =.【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的相关知识.17.(1)6(0)A ,,0(6)B ,;(2)证明见解析;(3)不变化,9AFH FBG S S -=.【解析】【分析】(1)由非负性可求a ,b 的值,即可求A 、B 两点的坐标;(2)过点O 作OM BD ⊥于M ,ON AC ⊥于N ,根据全等三角形的判定和性质解答即可; (3)由于点F 是等腰直角三角形AOB 的斜边的中点,所以连接OF ,得出OF =BF .△BFO =△GFH ,进而得出△OFH =△BFG ,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可.【详解】解:(1)△212360a a a b ++--= △2(6)0a a b -+-=,△600a ab -=⎧⎨-=⎩ ,即6a b ==. △6(0)A ,,0(6)B ,. (2)如图,过点O 作OM BD ⊥于M ,ON AC ⊥于N ,根据题意可知=90ACO CAO ∠+∠︒.△BD AC⊥,△=90BCD CBE∠+∠︒,△=CAO CBE∠∠.△6(0)A,,0(6)B,,△OA=OB=6.在AOC△和BOE△中,90CAO EBOOA OBAOC BOE∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,△AOC BOE ASA≅().△OE OC=,AC BE=,=AOC BOES S.△1122AC ON BE OM=,△=OM ON,△点O一定在△CDB的角平分线上,即OD平分△CDB.(3)如图,连接OF,△AOB是等腰直角三角形且点F为AB的中点,△OF AB⊥,OF FB=,OF平分△AOB.△90OFB OFH HFB∠∠+∠︒==.又△FG FH⊥,△90HFG BFG HFB∠=∠+∠=︒,△OFH BFG∠∠=.△1452FOB AOB∠=∠=︒,△4590135FOH FOB HOB ∠=∠+∠=︒+︒=︒.又△180********FBG ABO ∠=︒-∠=︒︒=︒﹣, △FOH FBG ∠=∠.在FOH △和FBG △中OFH BFG OF BFFOH FBG ∠=∠⎧⎪=⎨⎪∠=∠⎩, △FOH FBG ASA ≅().△FOH FBG SS =, △11116692224AFH FBG AFHFOH FOA AOB S S S S OA OB S S -====⨯=⨯⨯=﹣. 故不发生变化,且9AFH FBG SS -=.【点睛】 本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题.18.(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)过D 点分别作三边的垂线,垂足分别为G 、H 、K ,根据角平分线的定义可证得DG=DH=DK ,从而根据角平分线的判定定理可证得结论;(2)作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠,通过证明SQD TFD △≌△和QDP FDP △≌△得到22.5PDC PCD ∠=∠=︒,从而根据等角对等边判断即可; (3)延长AB 至M ,使BM BF =,连接FM ,通过证明AFC AFM △≌△得到AC AM =,再结合CE EB =即可得出结论.【详解】(1)证明:如图所示,过D 点分别作三边的垂线,垂足分别为G 、H 、K ,△AF ,BE 分别是BAC ∠和ABC ∠的角平分线,△DG DH DK ==,△CD 平分ACB ∠;(2)证明:如图,作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠. △CD 平分ACB ∠,△DS DT =,△67.5QDP FDP ∠=∠=︒,45ACB ∠=︒,△13545180QDF ACB ∠+∠=︒+︒=︒,在四边形QDFC 中,180CQD DFC ∠+∠=︒,又△180DFT DFC ∠+∠=︒,△CQD DFT ∠=∠,在SQD 和TFD △中,90CQD DFT DS DTDSQ DTF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩△SQD TFD △≌△,△QD FD =,在QDP △和FDP 中QD FD QDP FDP DP DP =⎧⎪∠=∠⎨⎪=⎩ △QDP FDP △≌△,△45QPD FPD ∠=∠=︒又△QPD PCD PDC ∠=∠+∠,22.5PCD ∠=︒,△22.5PDC PCD ∠=∠=︒,△CP PD =;(3)证明:延长AB 至M ,使BM BF =,连接FM .△AF,BE分别是BAC∠和ABC∠的角平分线,△22180BAF ABE C∠+∠+∠=︒,又△23180BAF ABE∠+∠=︒,△C ABE CBE∠=∠=∠,△CE EB=,△BM BF=,△BFM BMF ABE CBE C∠=∠=∠=∠=∠,在AFC△和AFM△中,C BMFCAF BAFAF AF∠=∠⎧⎪∠=∠⎨⎪=⎩,△AFC AFM△≌△,△AC AM=,△AE CE AB BM+=+,△AE BE AB BF+=+,△BE BF AB AE-=-.【点睛】本题考查角平分线的性质与判断,以及全等三角形的判定与性质,灵活结合角平分线的性质构造辅助线是解题关键.19.AB=AC+BD,证明见详解.【解析】【分析】延长AE,交BD的延长线于点F,先证明AB=BF,进而证明△ACE△△FDE,得到AC=DF,问题得证.【详解】解:延长AE,交BD的延长线于点F,△//AC BD,△△F=△CAF,△AE平分CAB∠,△△CAF=△BAF,△△F=△BAF,△AB=BF,△BE平分ABF∠,△AE=EF,△△F=△CAF,△AEC=△FED,△△ACE△△FDE,△AC=DF,△AB=BF=BD+DF=BD+AC.【点睛】本题考查了等腰三角形的判断与性质,全等三角形的判定与性质,根据题意添加辅助线构造等腰三角形和全等三角形是解题关键.20.(1)见解析;(2)见解析;(3)不变,60°【解析】【分析】(1)根据△BDC=△BAC,△DFB=△AFC,再结合△ABD+△BDC+△DFB=△BAC+△ACD+△AFC=180°,即可得出结论;(2)过点A作AM△CD于点M,作AN△BE于点N.运用“AAS”证明△ACM△△ABN得AM=AN.根据“到角的两边距离相等的点在角的平分线上”得证;(3)运用截长法在CD上截取CP=BD,连接AP.证明△ACP△ABD得△ADP为等边三角形,从而求△BAC的度数.【详解】(1)证明:△△BDC=△BAC,△DFB=△AFC,又△△ABD+△BDC+△DFB=△BAC+△ACD+△AFC=180°,△△ABD=△ACD;(2)过点A作AM△CD于点M,作AN△BE于点N.则△AMC=△ANB=90°,△OB=OC,OA△BC,△AB=AC,△△ABD=△ACD,△△ACM△△ABN (AAS),△AM=AN,△AD平分△CDE(到角的两边距离相等的点在角的平分线上);(3)△BAC的度数不变化.在CD上截取CP=BD,连接AP.△CD=AD+BD,△AD=PD,△AB=AC,△ABD=△ACD,BD=CP,△△ABD△△ACP,△AD=AP,△BAD=△CAP,△AD=AP=PD,即△ADP是等边三角形,△△DAP=60°,△△BAC=△BAP+△CAP=△BAP+△BAD=60°.【点睛】此题考查全等三角形的判定与性质,运用了角平分线的判定定理和“截长补短”的数学思想方法,综合性较强.21.(1)见解析;(2)AD﹣AB=2BE,理由见解析;(3)3.【解析】【分析】(1)过点C作CF△AD,根据角平分线的性质得到CE=CF,证明△BCE△△DCF,根据全等三角形的性质证明结论;(2)过点C作CF△AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE△△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH△△OBG,根据全等三角形的性质得到△OHB=△OGB,根据角平分线的判定定理得到△ODH=△ODF,证明△ODH△△ODF,得到DH=DF,计算即可.【详解】(1)证明:如图1,过点C作CF△AD,垂足为F,△AC平分△MAN,CE△AB,CF△AD,△CE=CF,△△CBE+△ADC=180°,△CDF+△ADC=180°,△△CBE=△CDF,在△BCE和△DCF中,90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,△△BCE △△DCF (AAS )△BC =DC ;(2)解:AD ﹣AB =2BE ,理由如下:如图2,过点C 作CF △AD ,垂足为F ,△AC平分△MAN ,CE △AB ,CF △AD ,△CE =CF ,AE =AF ,△△ABC +△ADC =180°,△ABC +△CBE =180°, △△CDF =△CBE ,在△BCE 和△DCF 中, 90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,△△BCE △△DCF (AAS ),△DF =BE ,△AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE , △AD ﹣AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,△BH =BG ,△OBH =△OBG ,OB =OB。
最新中考数学教材全册知识点梳理复习 18.全等三角形 课件PPT
解:(2)∵DE垂直平分AC,∴AE=EC且DE⊥AC,∴∠AED=∠CED.
又∵CD=CB且CE⊥BD,∴CE垂直平分DB,∴DE=BE,
∴∠DEC=∠BEC,∴∠AED=∠CED=∠BEC.
又∵∠AED+∠CED+∠BEC=180°,∴∠CED= ×180°=60°.
∵∠ABC=∠DBE=90°,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD.
第1题图
=,
在△ABE和△CBD中,ቐ∠=∠,
=,
∴△ABE≌△CBD(SAS).
(2)AE与CD有何特殊的位置关系,并说明理由.
解:(2)AE与CD互相垂直.
理由如下:
∵△ABE≌△CBD,
∴∠BAE=∠BCD,
∵∠NCM+∠NMC=∠BAN+∠ABN,
∴∠NMC=∠ABN=90°,
∴AE⊥CD.
第1题图
2.如图,已知△ABC和△CDE都是等边三角形,点B,C,D在同一条直线上,BE交AC
于点M,AD交CE于点N,AD交BE于点O.
(1)求证:AD=BE.
证明:(1)∵△ABC和△CDE都是等边三角形,
△BPG与△CPL均是等边三角形,
∴PG+PL=PB+PC=BC=a.
∴PM+PN=MG+NL+PG+PL=3a.
(2)如图2,点O是AD的中点,连接OM,ON.求证:OM=ON.
(2)证明:连接OF.
由(1)知,ND=CL=PC,
AM=BG=PB,
∴PB+PC=AM+DN=AM+FM=a,
∴FM=DN.
=,
证明:在△ABC和△DCB中,ቐ∠=∠,
=,