9上一元二次方程达标
北师大版九年级上册达标检测卷:第二章《一元二次方程》(含答案)
达标检测卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±22.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.有5人患了流感,经过两轮传染后共有605人患流感,则第一轮后患流感的人数为()A.10 B.50 C.55 D.454.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.x1=﹣5,x2=3 D.x1=5,x2=35.方程4x2=81﹣9x化成一般形式后,二次项的系数为4,它的一次项是()A.9 B.﹣9x C.9x D.﹣96.关于x的一元二次方程x2+bx﹣6=0的一个根为2,则b的值为()A.﹣2 B.2 C.﹣1 D.17.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm (纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3cm B.4cm C.4.8cm D.5cm8.一元二次方程x2﹣ax+2=0的一根是1,则a的值是()A.3 B.﹣3 C.2 D.﹣29.天猫某店铺第2季度的总销售额为662万元,其中4月份的销售额是200万元,设5、6月份的平均增长率为x ,求此平均增长率可列方程为( )A .200(1+x )2=662B .200+200(1+x )2=662C .200+200(1+x )+200(1+x )2=662D .200+200x +200(1+x )2=66210.已知a ,b 是方程x 2+3x ﹣1=0的两根,则a 2b +ab 2+2的值是( )A .5B .6C .7D .8二.填空题(每题4分,共20分)11.已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .12.若关于x 的方程(a ﹣2)x 2+(2a ﹣3)x +a +1=0有两个不相等的实数根,则a 的取值范围是 .13.设a 2﹣3a +1=0,b 2﹣3b +1=0,且a ≠b ,则代数式+的值为 .14.已知m 是方程x 2﹣2018x +1=0的一个根,则代数式m 2﹣2017m ++3的值等于 .15.2018年我国新能源汽车保有量居世界前列,2016年和2018年我国新能源汽车保有量分别为51.7万辆和261万辆.设我国2016至2018年新能源汽车保有量年平均增长率为x ,根据题意,可列方程为 .三.解答题(每题10分,共50分)16.基本事实:“若ab =0,则a =0或b =0”.方程x 2﹣x ﹣6=0可通过因式分解化为(x ﹣3)(x +2)=0,由基本事实得x ﹣3=0或x +2=0,即方程的解为x =3或x =﹣2.(1)试利用上述基本事实,解方程:3x 2﹣x =0;(2)若实数m 、n 满足(m 2+n 2)(m 2+n 2﹣1)﹣6=0,求m 2+n 2的值.17.关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.18.方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.19.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.20.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.参考答案一.选择题1.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.2.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.3.解:设每轮传染中每人传染x人,依题意,得:5+5x+x(5+5x)=605,整理,得:x2+2x﹣120=0,解得:x1=10,x2=﹣12(不合题意,舍去),∴5+5x=55.故选:C.4.解:∵2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.5.解:方程整理得:4x2+9x﹣81=0,则一次项是9x,故选:C.6.解:把x=2代入方程x2+bx﹣6=0得4+2b﹣6=0,解得b=1.故选:D.7.解:依题意,得:40×30﹣2x2﹣2x•(x+)=950,整理,得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去).故选:D.8.解:把x=1代入方程x2﹣ax+2=0得1﹣a+2=0,解得a=3.故选:A.9.解:设利润平均每月的增长率为x,又知:第2季度的总销售额为662万元,其中4月份的销售额是200万元,所以,可列方程为:200+200(1+x)+200(1+x)2=662;故选:C.10.解:∵a,b是方程x2+3x﹣1=0的两根,∴a+b=﹣3,ab=﹣1,则原式=ab(a+b)+2=﹣1×(﹣3)+2=3+2=5,故选:A.二.填空题(共5小题)11.解:根据题意得x1+x2=4,x1x2=﹣7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2故答案为2.12.解:∵关于x的一元二次方程(a﹣2)x2+2ax+a+1=0有两个不相等的实数根,∴,解得a<且a≠2.故a的取值范围是a<且a≠2.故答案为:a<且a≠2.13.解:∵a2﹣3a+1=0,b2﹣3b+1=0,且a≠b,∴a、b为一元二次方程x2﹣3x+1=0的两个不等实根,∴a+b=3,ab=1,∴+==3.故答案为:3.14.解:∵m是方程x2﹣2018x+1=0的一个根,∴m2﹣2018m+1=0,∴m2=2018m﹣1,m2+1=2018m,∴m2﹣2017m++3=2018m﹣1﹣2017m++3=m++2=+2=+2=2018+2=2020.故答案为2020.15.解:设我国2016至2018年新能源汽车保有量年平均增长率为x,根据题意,可列方程为:51.7(1+x)2=261,故答案为:51.7(1+x)2=261.三.解答题(共5小题)16.解:(1)由原方程,得x(3x﹣1)=0∴x=0或3x﹣1=0解得:x1=0,x2=;(2)t=m2+n2(t≥0),则由原方程,得t(t﹣1)﹣6=0.整理,得(t﹣3)(t+2)=0.所以t=3或t=﹣2(舍去).即m2+n2的值是3.17.解:(1)∵关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实数根, ∴△=(﹣2)2﹣4(m ﹣2)=4﹣4m +8=12﹣4m .∵12﹣4m ≥0,∴m ≤3,m ≠2.(2)∵m ≤3且m ≠2,∴m =1或3,∴当m =1时,原方程为﹣x 2﹣2x +1=0.x 1=﹣1﹣,x 2=﹣1+. 当m =3时,原方程为x 2﹣2x +1=0.x 1=x 2=1.18.解:(1)设该厂第一季度加工量的月平均增长率为x ,由题意得: a (1+x )2=(1+44%)a∴(1+x )2=1.44∴x 1=0.2=20%,x 2=﹣2.2(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:a +a (1+x )+a (1+x )2=182将x =20%代入得:a +a (1+20%)+a (1+20%)2=182解得a =50答:该厂一月份的加工量a 的值为50.(3)由题意可知,三月份加工量为:50(1+20%)2=72六月份加工量为:50×2.1=105(吨)五月份加工量为:105﹣46.68=58.32(吨)设四、五两个月的加工量下降的百分率为y ,由题意得:72(1﹣y )2=58.32解得:y 1=0.1=10%,y 2=1.9(舍)∴四、五两个月的加工量下降的百分率为10%∴72×(1﹣10%)+58.32+105=228.12(吨)答:该厂第二季度的总加工量为228.12吨.19.解:(1)设该商品平均每月的价格增长率为m ,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.20.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.。
华师大版九年级数学上册第22章 一元二次方程达标测试卷 含答案
第22章达标测试卷一、选择题(每题3分,共30分)1.下列各方程中,是一元二次方程的是()A.3x+2=3 B.x3+2x+1=0C.x2=1 D.x2+2y=02.关于x的方程x2+3x+a=0有一个根为-1,则a的值为() A.1 B.-1 C.2 D.-23.将一元二次方程-3x2-2=-4x化成一般形式,下列正确的为() A.3x2-4x+2=0 B.3x2-4x-2=0C.3x2+4x+2=0 D.3x2+4x-2=04.[2018·宜宾]一元二次方程x2-2x=0的两根分别为x1和x2,则x1x2为() A.-2 B.1 C.2 D.05.方程x2+6x-5=0的左边配成完全平方式后所得方程为() A.(x+3)2=14 B.(x-3)2=14C.(x+3)2=4 D.(x-3)2=46.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为()A.1 B.3 C.0 D.1或37.已知a、b、c为实数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个相等的实数根B.无实数根C.有两个不相等的实数根D.有一根为08.[2018·舟山]欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=a2,AC=b,再在斜边AB上截取BD=a2,如图,则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长9.已知关于x的一元二次方程kx2-2x+1=0有实数根,若k为非负整数,则k 等于()A.0 B.1 C.0,1 D.210.如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6 cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15 cm2的是()A.2秒B.3秒C.4秒D.5秒二、填空题(每题3分,共18分)11.[2018·淮安]一元二次方程x2-x=0的根是__________.12.写出一个二次项系数为1,且一个根是3的一元二次方程__________.13.[2018·黔西南州]三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的解,则此三角形的周长是__________.14.[2018·南通]若关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,则(m-2)2-2m(m-1)的值为__________.15.有三个连续偶数,第三个数的平方等于前两个数的平方和,则这三个数分别为__________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=-1(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是__________.三、解答题(17~20题每题8分,21~22题每题10分,共52分)17.用适当的方法解下列方程:(1)2x2-4x=1;(2)(2x+3)2-2(2x+3)=0.18.已知关于x的方程2x2-kx+1=0的一个解与方程2x+11-x=4的解相同.求:(1)k的值;(2)方程2x2-kx+1=0的另一个解.19.已知关于x的一元二次方程x2-3x+m-1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.20.“低碳环保,绿色出行”,自行车逐渐成为人们喜爱的交通工具.某品牌共享自行车在某区域的投放量自2018年逐月增加,据统计,该品牌共享自行车1月份投放了1 600辆,3月份投放了2 500辆.若该品牌共享自行车前4个月的投放量的月平均增长率相同,求4月份投放了多少辆?21.[2018·德州]为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10 000万元的年利润,则该设备的销售单价应是多少万元?22.[2018·常州]阅读材料:各类方程的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 C.求AP的长.答案一、1.C 2.C 3.A 4.D 5.A6.B 点拨:把x =1代入(m -1)x 2+x +m 2-5m +3=0,得m 2-4m +3=0,解得m 1=3,m 2=1,而m -1≠0,所以m =3.故选B .7.C 点拨:∵(a -c )2=a 2+c 2-2ac >a 2+c 2,∴ac <0.在方程ax 2+bx +c =0中,Δ=b 2-4ac ,∵b 2≥0,ac <0,∴Δ=b 2-4ac >0,∴方程ax 2+bx +c =0有两个不相等的实数根.故选:C.8.B 点拨:x 2+ax =b 2可化为⎝ ⎛⎭⎪⎫x +a 22=b 2+⎝ ⎛⎭⎪⎫a 22,结合勾股定理可得该方程的一个正根是AD 的长,故选:B.9.B 点拨:由题意可知:⎩⎨⎧4-4k ≥0,k ≠0,k ≥0,∴0<k ≤1,由于k 是整数,∴k =1.10.B 点拨:设动点P ,Q 运动t 秒后,能使△PBQ 的面积为15 cm 2,则BP为(8-t )cm ,BQ 为2t cm ,由三角形的面积计算公式得,12×(8-t )×2t =15,解得t 1=3,t 2=5(不合题意,舍去).故动点P ,Q 运动3秒时,能使△PBQ 的面积为15 cm 2.二、11.x 1=0,x 2=112.x 2-3x =0(答案不唯一)13.1314.72 点拨:由题意可知:4m 2-4×12×(1-4m )=4m 2+8m -2=0,∴m 2+2m =12,∴(m -2)2-2m (m -1)=-m 2-2m +4=-12+4=72.15.6,8,10或-2,0,2 点拨:设最小的偶数为x ,根据题意得(x +4)2=x 2+(x +2)2,解得x =6或-2.当x =6时,x +2=8,x +4=10;当x =-2时,x +2=0,x +4=2,因此这三个数分别为6,8,10或-2,0,2.16.x =0或x =-3 点拨:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=-1(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=-1,解得x =0或x =-3.三、17. 解:(1)二次项系数化为1,得x 2-2x =12.配方,得x 2-2x +1=12+1,即(x -1)2=32. 直接开平方,得x -1=±62.故x 1=2+62,x 2=2-62.(2)原方程可化为(2x +3)(2x +3-2)=0,即(2x +3)(2x +1)=0.可得2x +3=0或2x +1=0.解得x 1=-32,x 2=-12.18.解:(1)解方程2x +11-x =4得x =12.经检验,x =12是分式方程的解,且符合题意. 将x =12代入方程2x 2-kx +1=0,有2×⎝ ⎛⎭⎪⎫122-12k +1=0,解得k =3. (2)当k =3时,一元二次方程即为2x 2-3x +1=0,解得x 1=12,x 2=1,故另一个解为x =1.19.解:(1)∵方程有两个不相等的实数根,∴Δ=(-3)2-4(m -1)>0. 解得m <134.(2)当方程有两个相等的实数根时,Δ=0,即(-3)2-4(m -1)=0,解得m =134.当m =134时,方程为x 2-3x +134-1=0,即⎝ ⎛⎭⎪⎫x -322=0, 故x 1=x 2=32.20.解:设月平均增长率为x ,根据题意,得1 600(1+x )2=2 500, 解得:x 1=0.25=25%,x 2=-2.25(不合题意,舍去),∴月平均增长率为25%,∴4月份投放了2 500(1+x )=2 500×(1+25%)=3 125(辆).21.解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b (k ≠0),将(40,600)、(45,550)代入得:⎩⎨⎧40k +b =600,45k +b =550,解得:⎩⎨⎧k =-10,b =1000,∴年销售量y 与销售单价x 的函数关系式为y =-10x +1 000.(2)每台设备的利润为(x -30)万元,销售量为(-10x +1 000)台,根据题意得: (x -30)(-10x +1 000)=10 000,整理,得:x 2-130x +4 000=0,解得:x 1=50,x 2=80.∵此设备的销售单价不得高于70万元.∴该设备的销售单价应是50万元.22.解:(1)-2;1(2)方程的两边平方,得2x +3=x 2,即x 2-2x -3=0,(x -3)(x +1)=0,∴x 1=3,x 2=-1,当x =-1时,2x +3=1=1≠-1,当x =3时,2x +3=3=x , 所以方程2x +3=x 的解是x =3.(3)因为四边形ABCD 是矩形,所以∠A =∠D =90°,AB =CD =3 m. 设AP =x m ,则PD =(8-x )m ,因为BP +CP =10,BP =AP 2+AB 2,CP =CD 2+PD 2, ∴9+x 2+(8-x )2+9=10, ∴(8-x )2+9=10-9+x 2,两边平方,得(8-x )2+9=100-209+x 2+9+x 2, 整理,得5x 2+9=4x +9,两边平方并整理,得x 2-8x +16=0,即(x -4)2=0,∴x 1=x 2=4.经检验,x =4是方程的解.答:AP 的长为4 m.。
2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)
2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列方程是一元二次方程的是()A.x(x+3)=0B.x2﹣4y=0C.x2﹣=5D.ax2+bx+c=0(a、b、c为常数)2.若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b的值是()A.2016B.2020C.2025D.20263.若关于x的一元二次方程(m+1)x2+3x+m2﹣1=0的一个实数根为0,则m等于()A.1B.±1C.﹣1D.04.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a﹣2b+c =0,则()A.b=a B.c=2a C.a(x+2)2=0D.﹣a(x﹣2)2=0 5.用配方法解方程x2+8x+9=0,配方后可得()A.(x+8)2=73B.(x+4)2=25C.(x+8)2=55D.(x+4)2=7 6.如图,某学校计划在一块长12米,宽9米的矩形空地修建两块形状大小相同的矩形种植园,它们的面积之和为60平方米,两块种植园之间及周边留有宽度相等的人行通道,若设人行通道的宽度为x米,则可以列出关于x的方程()A.x2﹣17x﹣16=0B.2x2+17x﹣16=0C.2x2﹣17x﹣16=0D.2x2﹣17x+16=07.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,58.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题(共8小题,满分40分)9.如果关于x的方程(m﹣3)﹣x+3=0是一元二次方程,那么m的值为.10.一元二次方程x2﹣x=0的解是.11.若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k的取值范围是.12.若a是方程x2+x﹣1=0的根,则代数式2022﹣3a2﹣3a的值是.13.某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.14.已知等腰三角形三边分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两个根,则m的值是.15.2021年端午节期间,合肥某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x元,可列方程.16.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过秒钟△PQB的面积等于△ABC面积的.三.解答题(共5小题,满分40分)17.解方程:(1)3x2﹣1=4x;(2)(x+4)2=5(x+4).18.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.19.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若满足|x1﹣x2|=1,则此类方程称为“差根方程”.根据“差根方程”的定义,解决下列问题:(1)通过计算,判断下列方程是否是“差根方程”:①x2﹣4x﹣5=0;②2x2﹣2x+1=0;(2)已知关于x的方程x2+2ax=0是“差根方程”,求a的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,请探索a与b 之间的数量关系式.20.疫情肆虐,万众一心.由于医疗物资极度匮乏,许多工厂都积极宣布生产医疗物资以应对疫情.某工厂及时引进了1条口罩生产线生产口罩,开工第一天生产300万个,第三天生产432万个,若每天生产口罩的个数增长的百分率相同,请解答下列问题:(1)每天增长的百分率是多少?(2)经调查发现,一条生产线最大产能是900万个/天,如果每增加1条生产线,每条生产线的最大产能将减少30万个/天.现该厂要保证每天生产口罩3900万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?21.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到256亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均年增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出45千克.①若降价x(0≤x≤20)元,每天能售出多少千克?(用x的代数式表示)②为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为10元/千克,若要销售“阳光玫瑰”每天获利2125元,则售价应降低多少元?参考答案一.选择题(共8小题,满分40分)1.解:A、x(x+3)=0,是一元二次方程,符合题意;B、x2﹣4y=0,含有两个未知数,最高次数是2,不是一元二次方程,不符合题意;C、x2﹣=5,不是整式方程,不是一元二次方程,不符合题意;D、ax2+bx+c=0(a、b、c为常数),一次项系数可以为任意数,二次项系数一定不能为0,此方程才为一元二次方程,但题目中并没给出这个条件,故此方程不一定是一元二次方程,不符合题意;故选:A.2.解:把x=1代入方程ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2021﹣a﹣b=2021﹣(a+b)=2021+5=2026.故选:D.3.解:把x=0代入(m+1)x2+3x+m2﹣1=0,得m2﹣1=0,解得m1=﹣1,m2=1,而m+1≠0,即m≠﹣1.所以m=1.故选:A.4.解:∵一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的解,又∵有两个相等的实数根,∴a(x+2)2=0(a≠0).故选:C.5.解:x2+8x+9=0,x2+8x=﹣9,x2+8x+16=﹣9+16,(x+4)2=7,故选:D.6.解:设人行道的宽度为x米,根据题意得,(12﹣3x)(9﹣2x)=60,化简整理得,2x2﹣17x+16=0.故选:D.7.解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.8.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知Δ=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.二.填空题(共8小题,满分40分)9.解:由题意得:m2﹣7=2,且m﹣3≠0,解得:m=﹣3,故答案为:﹣3.10.解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故答案为:x1=0,x2=1.11.解:∵关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,∴△≥0且k﹣2≠0,即42﹣4(k﹣2)×2≥0且k﹣2≠0解得k≤4且k≠2.故答案为:k≤4且k≠2.12.解:把x=a代入x2+x﹣1=0,得a2+a﹣1=0,解得a2+a=1,所以2022﹣3a2﹣3a=2022﹣3(a2+a)=2022﹣3=2019.故答案是:2019.13.解:设年平均增长率为x,根据题意得:2000(1+x)2=2420,解得:x=0.1=10%,或x=﹣2.1(不合题意舍去).即:年平均增长率为10%.故答案是:10%.14.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4=8,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34,故m的值为34,故答案为34.15.解:设每盒粽子降价x元,则每盒的利润为(50﹣x)元,平均每天可卖(300+10x)盒,依题意得:(50﹣x)(300+10x)=16000,故答案为:(50﹣x)(300+10x)=16000.16.解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.∵△PQB的面积等于△ABC面积的,则根据三角形的面积公式,得PB•BQ=××6×8,2t(6﹣t)=18,(t﹣3)2=0,解得t=3.故经过3秒钟△PQB的面积等于△ABC面积的.故答案是:3.三.解答题(共5小题,满分40分)17.解:(1)3x2﹣4x﹣1=0,∵a=3,b=﹣4,c=﹣1,∴Δ=b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0.∴x==,∴x1=,x2=.(2)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x+4=0或x﹣1=0,∴x1=﹣4,x2=1.18.(1)证明:∵Δ=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即Δ>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,该直角三角形的面积为=;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的面积为=;综上,该直角三角形的面积为或.19.解:(1)①设x1,x2是一元二次方程x2﹣4x﹣5=0的两个实数根,∴x1+x2=4,x1•x2=﹣5,∴|x1﹣x2|===6,∴方程x2﹣4x﹣5=0不是差根方程;②设x1,x2是一元二次方程2x2﹣2x+1=0的两个实数根,∴x1+x2=,x1•x2=,∴|x1﹣x2|===1,∴方程2x2﹣2x+1=0是差根方程;(2)x2+2ax=0,因式分解得:x(x+2a)=0,解得:x1=0,x2=﹣2a,∵关于x的方程x2+2ax=0是“差根方程”,∴2a=±1,即a=±;(3)设x1,x2是一元二次方程ax2+bx+1=0(a,b是常数,a>0)的两个实数根,∴x1+x2=﹣,x1•x2=,∵关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,∴|x1﹣x2|=1,∴|x1﹣x2|==1,即=1,∴b2=a2+4a.20.解:(1)设每天增长的百分率是x,依题意得:300(1+x)2=432,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率是20%.(2)设应该增加y条生产线,则每条生产线的最大产能为(900﹣30y)万个/天,依题意得:(900﹣30y)(1+y)=3900,整理得:y2﹣29y+100=0,解得:y1=4,y2=25.又∵要节省投入,∴y=4.答:应该增加4条生产线.21.解:(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为y,依题意,得:100(1+y)2=256,解得:y1=0.6=60%,y2=﹣2.6(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为60%.(2)①设售价应降低x元,则每天可售出(200+45x)千克;②依题意,得:(20﹣10﹣x)(200+45x)=2125,整理,得:9x2﹣50x+25=0,解得:x1=5,x2=.∵要尽量减少库存,∴x=5.答:售价应降低5元.。
九年级数学 第22章一元二次方程达标检测卷含试卷分析
第22章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.1x2-1x=0 B.xy+x2=9C.7x+6=x2D.(x-3)(x-5)=x2-4x2.一元二次方程3x2-4x-5=0的二次项系数、一次项系数、常数项分别是() A.3,-4,-5 B.3,-4,5C.3,4,5 D.3,4,-53.方程2(x+3)(x-4)=x2-10的一般形式为()A.x2-2x-14=0 B.x2+2x+14=0C.x2+2x-14=0 D.x2-2x+14=04.下列方程中,常数项为零的是()A.x2+x=1 B.2x2-x-12=12 C.2(x2-1)=3(x-1) D.2(x2+1)=x+25.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,设平均每次降价的百分率为x,则下面所列方程正确的是() A.300(1-x)2=243 B.243(1-x)2=300C.300(1-2x)=243 D.243(1-2x)=3006.下列方程,适合用因式分解法解的是()A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.(·烟台)关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5 B.1 C.5 D.-18.三角形的一边长为10,另两边长是方程x2-14x+48=0的两个实数根,则这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.(·安顺)若一元二次方程x2-2+1)x+m-1的图象不经过第()象限.A.四B.三C.二D.一10.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13 C.13 D.以上选项都不正确二、填空题(每题3分,共30分)11.当m________时,关于x的方程(m-2)x2+n+n2的值为________.13.若将方程=________.14.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是________.15.(·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.16.2月28日,前央视知名记者柴静推出了关于雾霾的纪录片——《穹顶之下》,引起了极大的反响.某市准备加大对雾霾的治理力度,第一季度投入资金100万元,第二季度和第三季度计划共投入资金260万元,求这两个季度计划投入资金的平均增长率.设这两个季度计划投入资金的平均增长率为x,根据题意可列方程为____________.17.(·毕节)关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.18.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.19.现定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是________.(第20题)20.(·贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(21题8分,22、23题每题6分,24、25题每题9分,26题10分,27题12分,共60分)21.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.22.关于-2)+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.23.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称晓东这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.24.已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.25.(·随州)楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)26.如图,A ,B ,C ,D 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10 cm?(第26题)27.目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.C点拨:因为1x2-1x=0中分母含有未知数,B中xy+x2=9含有两个未知数,所以A、B都不是一元二次方程,D中可变形为x2-8x+15=x2-4x.化简后不含x2,故不是一元二次方程,故选C .2.A 3.A 4.D5.A 点拨:第一次降价后的价格为300×(1-x)元,第二次降价后的价格为300×(1-x)×(1-x)元,则列出的方程是300(1-x)2=243.6.C 7.D8.C 点拨:由x 2-14x +48=0,得x 1=6,x 2=8.因为62+82=102,所以该三角形为直角三角形.9.D 10.C二、11.≠2 12.1 13.4 14.a <1且a ≠015.2 点拨:∵x 2-6x +k =0的两根分别为x 1,x 2, ∴x 1+x 2=6,x 1x 2=k. ∴1x 1+1x 2=x 1+x 2x 1x 2=6k=3. 解得k =2.经检验,k =2满足题意. 16.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度计划投入资金100(1+x)万元,第三季度计划投入资金100(1+x)2万元.∴100(1+x)+100(1+x)2=260.17.1 点拨:由方程x 2-4x +3=0,得 (x -1)(x -3)=0, ∴x -1=0,或x -3=0. 解得x 1=1,x 2=3;当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a ,解得a =1,经检验a =1是方程13-1=23+a的解.18.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝⎛⎭⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10(舍去).19.-1或4 点拨:根据题中的新定义将x ★2=6变形得x 2-3x +2=6,即x 2-3x -4=0,解得x 1=4,x 2=-1,则实数x 的值是-1或4.20.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm .又∵AP =2t cm ,∴S 1=12AP·BD =12×2t ×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE =(82-2t)·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t)·2t.解得t 1=0(舍去),t 2=6.三、21.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5.所以x =-b±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52,x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,所以a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.22.解:(1)∵关于-2)+3=0有两个不相等的实数根, ∴m -2≠0且Δ=(2m)2-4(m -2)(m +3)=-4(m -6)>0. 解得m<6且m ≠2.(2)在m<6且m ≠2的范围内,最大整数为5. 此时,方程化为3x 2+10x +8=0. 解得x 1=-2,x 2=-43.23.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5,原方程可变形,得[(x -1)-2][(x -1)+2]=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2.24.解:(1)Δ=4a 2-4a(a -6)=24a ,∵一元二次方程有两个实数根,∴Δ≥0,即a ≥0.又∵a -6≠0,∴a ≠6.∴a ≥0且a ≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a.解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24;(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +aa -6+1=-6a -6.∵-6a -6为负整数,∴整数a 的值应取7,8,9,12.25.解:(1)当x ≤5时,y =30.当5<x ≤30时,y =30-(x -5)×0.1=-0.1x +30.5.∴y =⎩⎪⎨⎪⎧30,(x ≤5,且x 为正整数),-0.1x +30.5,(5<x ≤30,且x 为正整数).(2)当x ≤5时,(32-30)x =2x ≤10<25,不合题意. 当5<x ≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. 答:该月需售出10辆汽车.(第26题)26.解:(1)设P ,Q 两点从出发开始到2,则AP =3,所以PB =(16-3x)cm .因为(PB +CQ)×BC ×12=33,所以(16-3x +2x)×6×12=33.解得x =5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm . 如图,过点Q 作QE ⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ).在直角三角形PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245 s 时,点P 和点Q 之间的距离是10 cm .27.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km , 由题意得x +120103=x2,解得.(2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y -1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.。
2022秋九年级数学上册第二十一章一元二次方程达标测试卷习题课件新版新人教版
求 m 的值及方程的另一实根.
解:设方程的另一根为 x2,则-1+x2=-1, 解得 x2=0. 把 x=-1 代入 x2+x+m2-2m=0, 得(-1)2+(-1)+m2-2m=0,即 m(m-2)=0, 解得 m1=0,m2=2. 综上所述,m 的值是 0 或 2,方程的另一实根是 0.
还小 25,则这三个数分别为_-___3_,__-__1_,_1__或___1_5_,1__7_,1_9__.
解:设三个连续奇数中间的一个为 x,则最小的一个为 x-2,最大的一个为 x+2, 由题意,得 x2+(x+2)2=3(x-2)2-25, 解得 x1=-1,x2=17, 当 x=-1 时,这三个连续奇数分别为-3,-1,1; 当 x=17 时,这三个连续奇数分别为 15,17,19.
( B ).
A. 12
B. 15
C. 12 或 10
D. 12 或 15
解:∵方程的一个实数根是 3, ∴把 x=3 代入方程,得 9-3m+2m=0,解得 m=9, 把 m=9 代入原方程,得 x2-9x+18=0,解得 x1=3,x2=6. ∵方程的两个实数根是等腰三角形的两边长,3 为腰 6 为底不能构成三角形, ∴只有一种情况,6 为腰 3 为底,此时△ABC 的周长为 6+6+3=15. 故选 B.
24. (10 分)(2021·河北衡水期中)如图,A,B,C,D 为矩形的四个顶点,AB =16 cm,AD=6 cm,动点 P,Q 分别从点 A,C 同时出发,点 P 以 3 cm/s 的速度向点 B 移动,一直到达点 B 为止,点 Q 以 2 cm/s 的速度向点 D 移动. (1)P,Q 两点从出发开始到几秒时,四边形 APQD 为矩形?
2020年北师大版九年级上册第2章一元二次方程达标测试卷 含答案
2020年北师大版九年级上册第2章达标测试卷题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0C.a≠0D.a≤2.将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1B.5,4C.5,﹣4D.5,13.用配方法解方程x2﹣6x+1=0,方程应变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x﹣6)2=10D.(x﹣6)2=8 4.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣20195.下列方程中,没有实数根的是()A.x2﹣2x﹣3=0B.(x﹣5)(x+2)=0C.x2﹣x+1=0D.x2=16.关于x的一元二次方程x2+(a2﹣3a)x+a=0的两个实数根互为倒数,则a的值为()A.﹣3B.0C.1D.﹣3 或07.已知m、n是方程x2﹣x﹣1=0的两个解,若m>n,则m的值应在()A.0和1之间B.1和1.5之间C.1.5和2之间D.2和3之间8.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1109.对于任何实数m、n,多项式m2+n2﹣6m﹣10n+36的值总是()A.非负数B.0C.大于2D.不小于210.若x1是方程ax2﹣2x﹣c=0(a≠0)的一个根,设p=(ax1﹣1)2,q=ac+1.5,则p 与q的大小关系为()A.p<q B.p=q C.p>q D.不能确定二.填空题(共6小题,满分18分,每小题3分)11.下列方程中,①x2=0;②x2=y+4;③ax2+2x﹣3=0(其中a是常数);④x(2x﹣3)=2x(x﹣1);⑤(x2+3)=x,一定是一元二次方程的有(填序号).12.将方程2x2﹣5x=1﹣3x化为一般形式是.13.方程(x﹣5)2=4的解为.14.已知关于x的方程x2﹣mx+1=0的一个根为1,那么m的值是.15.已知关于x的一元二次方程(m+2)x2﹣3x+1=0有实数根,则m的取值范围是.16.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为cm.三.解答题(共7小题,满分52分)17.(8分)解一元二次方程:(1)x2+2x=29;(2)2x2﹣x﹣1=0.18.(6分)如果关于x的方程(m﹣2)x2﹣5x=4是一元二次方程,试判断关于y的方程y2﹣my+m=1根的情况,并说明理由.19.(6分)某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.求进馆人次的月平均增长率.20.(7分)在实数范围内,对于任意实数m、n(m≠0)规定一种新运算:m⊗n=m n+mn ﹣3,例如:3⊗2=32+3×2﹣3=12.(1)计算:(﹣2)⊗(﹣1);(2)若x⊗1=﹣27,求x的值;(3)若(﹣y)⊗2的最小值为a,求a的值.21.(7分)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根x1,x2.(1)若m为正整数,求m的值;(2)在(1)的条件下,求代数式(x12+x1)(x12+x22)的值.22.(9分)“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.23.(9分)[阅读材料]把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题中都有着广泛的应用.例如:①用配方法因式分解:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3﹣1)(a+3+1)=(a+2)(a+4)②求x2+6x+11的最小值.解:x2+6x+11=x2+6x+9+2=(x+3)2+2;由于(x+3)2≥0,所以(x+3)2+2≥2,即x2+6x+11的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a2+4a+;(2)用配方法因式分解:a2﹣12a+35;(3)用配方法因式分解:x4+4;(4)求4x2+4x+3的最小值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵关于x的方程ax2+3x+1=0是一元二次方程,∴a≠0,故选:C.2.解:5x2﹣1=4x,5x2﹣4x﹣1=0,二次项的系数和一次项系数分别是5、﹣4,故选:C.3.解:∵x2﹣6x+1=0,∴x2﹣6x+9=8,∴(x﹣3)2=8,故选:A.4.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2﹣1=a,﹣a2+a=﹣1,∴﹣a3+2a+2020=﹣a(a2﹣1)+a+2020=﹣a2+a+2020=2019.故选:C.5.解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等的实数根,不符合题意;B.方程(x﹣5)(x+2)=0的两根分别为x1=5,x2=﹣2,不符合题意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根,符合题意;D.方程x2=1的两根分别为x1=1,x2=﹣1,不符合题意;故选:C.6.解:∵关于x的一元二次方程x2+(a2﹣3a)x+a=0的两个实数根互为倒数,∴x1•x2=a=1,则a的值为1.故选:C.7.解:∵a=1,b=﹣1,c=﹣1,∴x==.∵m、n是方程x2﹣x﹣1=0的两个解,且m>n,∴m=.∵2<<3,∴=1.5<m<=2.故选:C.8.解:设有x个队参赛,则x(x﹣1)=110.故选:D.9.解:m2+n2﹣6m﹣10n+36=m2﹣6m+9+n2﹣10n+25+2=(m﹣3)2+(n﹣5)2+2,∵(m﹣3)2≥0,(n﹣5)2≥0,∴(m﹣3)2+(n﹣5)2+2≥2,∴多项式m2+n2﹣6m﹣10n+36的值总是不小于2,故选:D.10.解:∵x1是方程ax2﹣2x﹣c=0(a≠0)的一个根,∴ax12﹣2x1=c,则p﹣q=(ax1﹣1)2﹣(ac+1.5)=a2x12﹣2ax1+1﹣ac﹣1.5=a(ax12﹣2x1)﹣ac﹣0.5=ac﹣ac﹣0.5=﹣0.5,∴p﹣q<0,∴p<q.故选:A.二.填空题(共6小题,满分18分,每小题3分)11.解:①x2=0是一元二次方程;②x2=y+4,含有两个未知数x、y,不是一元二次方程;③ax2+2x﹣3=0(其中a是常数),a=0时不是一元二次方程;④x(2x﹣3)=2x(x﹣1),整理后是一元一次方程;⑤(x2+3)=x是一元二次方程;一定是一元二次方程的有①⑤.故答案为:①⑤.12.解:2x2﹣5x=1﹣3x,2x2﹣5x﹣1+3x=0,2x2﹣2x﹣1=0,故答案为:2x2﹣2x﹣1=0.13.解:(x﹣5)2=4,开方得:x﹣5=±2,解得:x1=7,x2=3,故答案为x1=7,x2=3.14.解:当x=1时,方程x2﹣mx+1=0为12﹣m+1=0,即2﹣m=0,解得m=2,故答案为:2.15.解:∵关于x的一元二次方程(m+2)x2﹣3x+1=0有实数根,∴△=(﹣3)2﹣4×(m+2)×1≥0且m+2≠0,解得m≤且m≠﹣2.故答案为:m≤且m≠﹣2.16.解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:,解得a=10﹣2x,b=6﹣x,代入ab=24中,得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,解得x=2或x=9(舍去),答;剪去的正方形的边长为2cm.故答案为:2.三.解答题(共7小题,满分52分)17.解:(1)∵x2+2x=29,∴x2+2x+1=29+1,即(x+1)2=30,则x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵a=2,b=﹣,c=﹣1,∴△=(﹣)2﹣4×2×(﹣1)=10>0,则x=,即x1=,x2=.18.解:关于y的方程y2﹣my+m=1有两个不相等的实数根,理由如下:∵关于x的方程(m﹣2)x2﹣5x=4是一元二次方程,∴m﹣2≠0,∴m≠2.在方程y2﹣my+m=1中,a=1,b=﹣m,c=m﹣1,∴△=b2﹣4ac=(﹣m)2﹣4×1×(m﹣1)=m2﹣4m+4=(m﹣2)2,∵m≠2,∴(m﹣2)2>0,即△>0,∴关于y的方程y2﹣my+m=1有两个不相等的实数根.19.解:设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x﹣7=0∴(2x﹣1)(2x+7)=0,∴x=0.5=50%或x=﹣3.5(舍)答:进馆人次的月平均增长率为50%.20.解:(1)(﹣2)⊗(﹣1)=(﹣2)﹣1+(﹣2)×(﹣1)﹣3=;(2)由题意得x⊗1=x+x﹣3=﹣27,解得x=﹣12;(3)(﹣y)⊗2=y2﹣2y﹣3=(y﹣1)2﹣4,∵(y﹣1)2﹣4的最小值为﹣4,∴a的值为﹣4.21.解:(1)∵方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根,∴△=(2m﹣1)2﹣4(m2﹣)=﹣4m﹣11>0,解得:m<2.∵m为正整数,∴m=1,答:m的值为1;(2)∵m=1,∴x2+x+﹣=0,∴x1+x2=﹣1,x1x2=﹣,∴(x12+x1)(x12+x22)=﹣[(x1+x2)2﹣2x1x2]=.22.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品捐款的数额为45元.23.解:(1)a2+4a+4=(a+2)2,故答案为:4;(2)a2﹣12a+35=a2﹣12a+36﹣1=(a﹣6)2﹣1=(a﹣6+1)(a﹣6﹣1)=(a﹣5)(a﹣7);(3)x4+4=x4+4+4x2﹣4x2=(x2+2)2﹣4x2=(x2+2+2x)(x2+2﹣2x);(4)4x2+4x+3=4x2+4x+1+2=(2x+1)2+2,∵(2x+1)2≥0,∴(2x+1)2+2≥2,∴4x2+4x+3的最小值为2.。
2019-2020学年人教版九年级数学上册 第二十一章 一元二次方程 达标测试卷(含答案)
第二十一章达标测试卷一、选择题(每题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+2=x(x+1) B.x2+1x=3C.x2+2x=y2-1 D.3(x+1)2=2(x+1)2.如果2是方程x2-3x+k=0的一个根,那么常数k的值为()A.1 B.2 C.-1 D.-23.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x-2)2=3 C.(x-2)2=5 D.(x+2)2=54.方程x2-42x+9=0的根的情况是()A.有两个不相等的实根B.有两个相等的实根C.无实根D.以上三种情况都有可能5.等腰三角形的两边长为方程x2-7x+10=0的两根,则它的周长为() A.12 B.12或9 C.9 D.76.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行(或列),则列方程得() A.(8-x)(10-x)=8×10-40 B.(8-x)(10-x)=8×10+40C.(8+x)(10+x)=8×10-40 D.(8+x)(10+x)=8×10+40(第7题) 7.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x -3=0的根,则▱ABCD的周长为()A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 28.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()9.在直角坐标系xOy中,已知点P(m,n),m,n满足(m2+1+n2)(m2+3+n2)=8,则OP的长为()A. 5 B.1 C.5 D.5或110.如图,某小区规划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条同样宽的路,使其中两条与AB平行,另一条与AD平行,其余部分种植草坪,若使每块草坪(阴影部分)的面积都为144 m2,则路的宽为()(第10题) A.3 m B.4 mC.2 m D.5 m二、填空题(每题3分,共30分)11.方程(x-3)2+5=6x化成一般形式是__________________,其中一次项系数是________.12.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长为________________.13.已知x=1是一元二次方程x2+ax+b=0的一个根,则(a+b)2 019的值为________.14.若关于x的一元二次方程2x2-5x+k=0无实数根,则k的最小整数值为________.15.已知x1,x2是关于x的一元二次方程x2-5x+a=0的两个实数根,且x21-x22=10,则a=________.16.对于任意实数a,b,定义f(a,b)=a2+5a-b,如f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是________.17.下面是某同学在一次测试中解答的填空题:①若x2=a2,则x=a;②方程2x(x-2)=x-2的解为x=12;③已知x1,x2是方程2x2+3x-4=0的两根,则x1+x2=32,x1x2=-2.其中错误的答案序号是__________.18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是______三角形.19.若x2-3x+1=0,则x2x4+x2+1的值为________.20.如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15 m,一面利用墙,其余三面用篱笆围,篱笆长为24 m.当围成的花圃面积为40 m2时,平行于墙的边BC的长为________m.(第20题) 三、解答题(21、26题每题12分,22、23题每题8分,其余每题10分,共60分) 21.用适当的方法解下列方程:(1)x(x-4)+5(x-4)=0;(2)(2x+1)2+4(2x+1)+4=0;(3)x2-2x-2=0; (4)(y+1)(y-1)=2y-1.22.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为倒数?请说明理由.23.已知关于x的方程(a-1)x2-4x-1+2a=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个三角形的三条边长都是这个方程的根,求这个三角形的周长.24.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程的两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.25.为了贯彻党中央、国务院关于倡导开展全民阅读的重要部署,落实《关于实施中华优秀传统文化传承发展工程的意见》.某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7 500本,2017年图书借阅总量是10 800本.(1)求该社区从2015年至2017年图书借阅总量的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1 350人,预计2018年达到1 440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?26.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动.问:(1)P,Q两点出发多长时间后,四边形PBCQ的面积是33 cm2?(2)P,Q两点出发多长时间后,点P与点Q之间的距离是10 cm?(第26题)答案一、1.D 2.B 3.A 4.C 5.A 6.D7.A 8.B 9.B 10.C 二、11.x 2-12x +14=0;-1212.6或10或1213.-1 点拨:将x =1代入方程x 2+ax +b =0,得1+a +b =0,∴a +b =-1,∴(a +b )2 019=-1.14.415.214 点拨:由根与系数的关系,得x 1+x 2=5,x 1·x 2=a .由x 21-x 22=10得,(x 1+x 2)(x 1-x 2)=10,∴x 1-x 2=2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=25-4a =4,∴a =214.16.-6或1 17.①②③ 18.直角19.18 点拨:由已知x 2-3x +1=0得x 2=3x -1,则x 2x 4+x 2+1=x 2(3x -1)2+x 2+1=x 210x 2-6x +2=3x -110(3x -1)-6x +2=3x -124x -8=3x -18(3x -1)=18.20.4三、21.解:(1)原方程可化为(x -4)(x +5)=0,∴x -4=0或x +5=0, 解得x =4或x =-5. (2)原方程可化为(2x +1+2)2=0,即(2x +3)2=0, 解得x 1=x 2=-32. (3)∵a =1,b =-2,c =-2,∴Δ=4-4×1×(-2)=12>0, ∴x =2±122=2±232=1±3. ∴x 1=1+3,x 2=1- 3. (4)原方程化为一般形式为y 2-2y =0.因式分解,得y(y-2)=0.∴y1=2,y2=0.22.(1)证明:在关于x的一元二次方程x2-(t-1)x+t-2=0中,Δ=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)解:设方程的两根分别为m,n,则mn=t-2.∵方程的两个根互为倒数,∴mn=t-2=1,解得t=3.∴当t=3时,方程的两个根互为倒数.23.解:(1)将x=3代入方程(a-1)x2-4x-1+2a=0中,得9(a-1)-12-1+2a=0,解得a=2.将a=2代入原方程中得x2-4x+3=0,因式分解得(x-1)(x-3)=0,∴x1=1,x2=3.∴方程的另一个根是x=1.(2)∵三角形的三边长都是这个方程的根.∴①当三边长都为1时,周长为3;②当三边长都为3时,周长为9;③当两边长为3,一边长为1时,周长为7;④当两边长为1,一边长为3时,不满足三角形三边关系,∴不能构成三角形.故三角形的周长为3或9或7.24.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,解得k>3 4.(2)∵k>34,∴x1+x2=-(2k+1)<0.又∵x1·x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1.∵|x1|+|x2|=x1·x2,∴2k+1=k2+1,解得k1=0,k2=2.又∵k >34,∴k =2.25.解:(1)设该社区从2015年至2017年图书借阅总量的年平均增长率为x ,根据题意,得7 500(1+x )2=10 800, 即(1+x )2=1.44,解得x 1=0.2=20%,x 2=-2.2(舍去).因此该社区从2015年至2017年图书借阅总量的年平均增长率为20%. (2)10 800×(1+0.2)=12 960(本),10 800÷1 350=8(本),12 960÷1 440=9(本). (9-8)÷8×100%=12.5%. 故a 的值至少是12.5.26.解:(1)设P ,Q 两点出发x s 后,四边形PBCQ 的面积是33 cm 2,则由题意得(16-3x +2x )×6×12=33,解得x =5.即P ,Q 两点出发5 s 后,四边形PBCQ 的面积是33 cm 2.(2)设P ,Q 两点出发t s 后,点P 与点Q 之间的距离是10 cm ,过点Q 作QH ⊥AB 于点H .在Rt △PQH 中,有(16-5t)2+62=102,解得t 1=1.6,t 2=4.8.即P ,Q 两点出发1.6 s 或4.8 s 后,点P 与点Q 之间的距离是10 cm.。
人教版九年级上册第21章《一元二次方程》达标测试卷 附答案
4.解:把 x=﹣3 代入方程 x2+ax+a=0 得 9﹣3a+a=0, 解得 a=4.5. 故选:B.
5.解:设全市 5G 用户数年平均增长率为 x,则 2020 年底全市 5G 用户数为 2(1+x)万户, 2021 年底全市 5G 用户数为 2(1+x)2 万户, 依题意,得:2+2(1+x)+2(1+x)2=8.72, 整理,得:x2+3x﹣1.36=0, 解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去). 故选:C.
项式 x2+2ax﹣3a2 中先加上一项 a2,使它与 x2+2ax 成为一个完全平方式,再减去 a2,整
个式子的值不变,于是有:
x2+2ax﹣3a2
=(x2+2ax+a2)﹣a2﹣3a2
=(x+a)2﹣4a2
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)
像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的
8 / 12
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∵(a※x)※x= ,
∴(ax+x)x+x= ,
整理得(a+1)x2+x﹣ =0,
根据题意得 a+1≠0 且△=12﹣4(a+1)×(﹣ )=0,
∴a=﹣ .
故答案为﹣ .
三.解答题(共 7 小题,满分 66 分) 19.解:(1)x2+4x=﹣3
1.关于 x 的方程 x +x﹣3=0 是一元二次方程,则( )
九年级数学人教版(上) 期末专题过关训练 一元二次方程
2020-2021学年九年级数学人教版(上) 期末专题过关训练 一元二次方程解答题1. 已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)x 1+x 2; (2)x 1x 2; (3)x 12+x 22;(4)1x 1+1x 2.2. 已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值; (2)判断三角形的形状.3. 设x 1,x 2是方程x 2+3x ﹣3=0的两个实数根,求的值.4. 用配方法解方程:x 2+10x +16=0.解:移项,得____________.两边同时加上________,得____________. 左边写成完全平方的形式,得____________. 直接开平方,得____________. 解得____________.5. 毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为多少?6. 若a 是方程x 2﹣2020x+1=0的一个根,求代数式a 2﹣2021a 的值.7. 已知关于x的一元二次方程x2+(2k-1)x+k2+k-1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.8. 如果m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,求代数式2n2-mn+2m+2021的值.9. 红旗连锁超市花2000元购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买,结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少?10. 已知关于x的一元二次方程mx2﹣4x﹣5=0.(1)求证:当m>0时,方程一定有两个不相等的实数根;(2)已知x=n是它的一个实数根,若mn2﹣4n+m=3+m2,求m的值.11. 某校要组织“风华杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?12. 已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.13. 关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0(1)求证:方程总有两个不相等的实数根.(2)m为何整数时,此方程的两个根都是正整数?(3)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC 是等腰三角形时,求m的值.14. 解方程(x2﹣1)2﹣3(x2﹣1)=0时,我们将x2﹣1作为一个整体,设x2﹣1=y,则原方程化为y2﹣3y=0.解得y1=0,y2=3.当y=0时,x2﹣1=0,解得x=1或x=﹣1.当y=3时,x2﹣1=3,解得x=2或x=﹣2.所以,原方程的解为x1=1,x2=﹣1,x3=2,x4=﹣2.模仿材料中解方程的方法,求方程(x2+2x)2﹣2(x2+2x)﹣3=0的解.15. 已知关于x的方程x2+2(a+1)x+(3a2+4ab+4b2+2)=0有实根,求a、b的值.16. 象棋比赛中,每个选手与其他选手将比赛一场,每局胜者记2分,败者记0分,如果平局,每人各记1分,今有4 位同学统计了比赛中全部选手得分的总和分别为2025,2070,2080,2085分,经核实,其中只有一位同学是正确的,试求这次比赛中共有多少名选手参加?17. 已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.18. 若关于x方程4x2-4(m +1)x+m2=0.请你为方程的字母m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根。
初三数学:第1章一元二次方程达标验收题
初三数学:第1章一元二次方程达标验收题一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1、下列方程属于一元二次方程的是( )A .29xy x +=B .276x x =+C .()213x x -+=D .12x x+=2、把方程2x (x ﹣1)=3x 化成一元二次方程的一般形式,则二次项系数、一次项系数、常数项分别是( ) A .2,5,0B .2,﹣5,0C .2,5,1D .2,3,03、方程x 2﹣x =﹣2的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 4、用公式法解方程3x 2+5x +1=0,正确的是( ) A .B .C .D .5、一元二次方程2810x x --=,配方后可变形为( )A .()2417x -=B .()2418x -=C .()281x -=D .()241x -=6、设方程x 2+5x ﹣2=0的两根为x 1,x 2,则x 1+x 2的值为( ) A .5B .C .﹣5D .﹣27、关于x 的方程x 2+(k 2﹣4)x +k ﹣1=0的两实数根互为相反数,则k 的值为( ) A .±2B .2C .﹣2D .不能确定8、如图,把一块长为50cm ,宽为40cm 的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为8002cm ,设剪去小正方形的边长为x cm ,则可列方程为( ) A .()()50240800x x --= B .()()5040800x x --= C .()()50402800x x --=D .()()502402800x x --=9、已知关于x 的方程mx 2﹣2x +1=0有两个不相等的实数根,则m 的取值范围是( ) A .m <1B .m >1C .m <1,且m ≠0D .m >1,且m ≠010、一种药品原价每盒64元,经过两次降价后每盒49元.设两次降价的百分率都为x ,则x 满足方程( )A .49(1+2x )=64B .64(1﹣2x )=49C .49(1+x )2=64 D .64(1﹣x )2=49二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)11、一元二次方程x (x ﹣3)=x ﹣3的解是 _______.12、已知 1x = 是方程 20x ax b +-= 的一个根,则 2022a b -+= _______. 13、已知关于x 的方程2x 2+x +a =0有一个根为1,则另一个根是 _______.14、已知实数x 满足(x 2﹣2x +1)2+4(x 2﹣2x +1)﹣5=0,那么x 2﹣2x +1的值为_______.15、关于x 的一元二次方程m 2x ﹣mx ﹣14=0有两个相等的实数根,则m =_____.16、已知a 、b 实数且满足(a 2+b 2)2﹣(a 2+b 2)﹣6=0,则a 2+b 2的值为 _______. 17、若方程x 2﹣2x +1=0的两根分别为x 1,x 2,则x 12+x 22的值为_______.18、一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是 _______.19、已知关于x 的方程mx 2﹣2x +1=0有两个不相等的实数根,则m 的取值范围是 _______. 20、某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,求该公司5、6两个月营业额的月均增长率.若设该公司5、6两个月营业额的月均增长率为x ,则可列方程为_______.三、解答题(本大题共有8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)21、(10分)解方程:(1)()421x x -=(公式法)(2)()()3222x x x -=-22、(10分)如果x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)两根,那么x 1+x 2=﹣b a,x 1•x 2=c a,这就是著名的韦达定理.已知m ,n 是方程2x 2﹣5x ﹣1=0的两根,不解方程计算: (1)22m n+; (2) m -3n .23、(10分)已知关于x 的方程04322=-+-a a x x 的一根为4. (1)求51232+-a a 的值; (2)求方程的另一根.24、(本题满分12分)已知关于x 的一元二次方程22120x m x m +++-=(). (1)试说明无论m 取何值时,方程总有两个不相等的实数根;(2)若该方程有两个实数根分别为1x 和2x ,当121231x x x x ++=时,求m 的值.25、(12分)如图,在ABC 中,B 90∠=,AB 12cm =,BC 24cm =,动点P 从点A 开始沿着边AB 向点B 以2cm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿着边BC 向点C 以4cm /s 的速度移动(不与点C 重合).若P 、Q 两点同时移动()t s ; 1()当移动几秒时,BPQ 的面积为232cm .2()设四边形APQC 的面积为()2S cm ,当移动几秒时,四边形APQC 的面积为2108cm ?26、(12分)阅读理解:材料1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=-ba,x1x2=ca.材料2.已知实数m,n满足m2-m-1=0,n2-n-1=0,且m≠n,求n mm n+的值.解:由题知m,n是方程x2-x-1=0的两个不相等的实数根,根据材料1得m+n=1,mn=-1,∴()22221231m n mnn m m nm n mn mn+-+++====--.解决问题:(1)一元二次方程x2-4x-3=0的两根为x1,x2,则x1+x2= ,x1x2= .(2)已知实数m,n满足2m2-2m-1=0,2n2-2n-1=0,且m≠n,求m2n+mn2的值.(3)已知实数p,q满足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.27、(本题满分12分)某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元.经市场调查,该商品每天的销售量y(千克)与售价x(元/千克)满足一次函数关系,如图所示:(1)求y与x之间的函数表达式;(2)该商场销售这种商品要想每天获得1350元的利润,每件商品的售价应定为多少元?y(千克x(元/千克)28、(本题满分12分)某商场销售一批衬衫,平均每天可售出30件,每件盈利50元.为了扩大销售,增加盈利,商场采取了降价措施.经调査发现,衬衫的单价每降1元,商场平均每天可多售出2件.(1)若某天该衬衫每件降价5元,则当天该衬衫的销量为件,当天可获利元;(2)设每件衬衫降价x元,则商场日销售量增加件,每件衬衫盈利元(用含x的代数式表示);(3)如果商场销售这批衬衫要保证每天盈利2000元,同时尽快减少库存,那么衬衫的单价应降多少元?参考答案: 一、选择题1-5 BBAAA 6-10 CCDCD 二、填空题 11、x 1=3,x 2=1,12、2021 13、14、1 15、-116、3 17、6 18、1519、m <1且m ≠0.20、2500[1+(1+x )+(1+x )2]=9100 三、解答题21、(1)解:()421x x -=整理得4x 2-8x -1=0,∵a =4,b =-8,c =-1,∴∆=b 2-4ac =()()2844180--⨯⨯-=, ∴一元二次方程有两个不相等的实数根,∴x ==∴12x x ==; (2)()()3222x x x -=- 3x (x -2)+2(x -2)=0 (x -2)(3x +2)=0∴1222,3x x ==-;22、(1)解:∵m ,n 是方程2x 2﹣5x ﹣1=0的两根,∴m +n =52,mn =1-2.2m +2n =()2m n mn +=52212⨯-=﹣10; (2)m -3n =m -2n -n =m -2n -(52-m )=2(m -n )- 52.(m -n ) 2=(m +n ) 2-4mn =334, m -n;m -n =;23、解:(1)把4=x 代入得:0412162=-+-a a ∴442-=-a a∴75)4(3512322-=+-=+-a a a a(2)设方程的另一根为m则此时方程的两根分别为4、m∴34=+m ∴1-=m即方程的另一根为-1 24、解:(1)224(21)4(2)b ac m m -=+-- 249m =+ ∵240m ≥ ∴249m +>0 即24b ac ->0∴无论m 取何值时,方程总有两个不相等的实数根 (2)∵x 1和x 2是该方程的两个实数根∴1221x x m +=--122x x m ⋅=-又∵121231x x x x ++=∴213(2)1m m --+-= ∴8m =25、(1)P 、Q 同时出发后经过的时间为ts ,的面积为,则有:(12-2t )×4t=32, 解得:t=2或t=4. 答:当移动秒或秒时,的面积为.,解得:.答:当移动秒时,四边形的面积为.26、(1)x 1+x 2=﹣,x 1x 2=﹣;故答案为﹣ ,﹣;(2)∵m 、n 满足2m 2﹣2m ﹣1=0,2n 2﹣2n ﹣1=0, ∴m 、n 可看作方程2x 2﹣2x ﹣1=0的两实数解, ∴m+n=1,mn=﹣,∴m 2n+mn 2=mn (m+n )=﹣×1=﹣;(3)设t=2q ,代入2q 2=3q+1化简为t 2=3t+2, 则p 与t (即2q )为方程x 2﹣3x ﹣2=0的两实数解, ∴p+2q=3,p •2q=﹣2,∴p 2+4q 2=(p+2q )2﹣2p •2q=32﹣2×(﹣2)=1327、解:(1)设y 与x 的函数关系式为:b kx y += 把(50,120),(70,80)代入得:⎩⎨⎧+=+=b k bk 708050120 ∴⎩⎨⎧=-=2202b k∴y 与x 的函数关系式为:2202+-=x y (2)由题意得:1350)2202)(50(=+--x x061751602=+-x x∴651=x ,952=x (舍去) ∴每件商品的售价应定为65元28、(1)40,1800(2)2x;(50-x)(3)解:设衬衫的单价应降价x元,根据题意得:(50-x)(30+2x)=2000x2-35x+250=0解得:x1=10,x2=25.为了去库存,∴x1=10应舍去答:单价应降25元.。
《认识一元二次方程》知识点分类基础达标训练(附答案)
2021-2022学年年北师大版九年级数学上册《2.1认识一元二次方程》知识点分类基础达标训练(附答案)一.一元二次方程的定义1.若关于x的方程ax2+2x﹣5=0是一元二次方程,则a的取值范围是()A.a=0B.a>0C.a≠0D.a<02.下列方程式一元二次方程的是()A.x2+y+3=0B.3x2﹣2=0C.D.5x+3=03.关于x的方程(m﹣3)x2﹣x=0是一元二次方程,则m的取值范围是.4.已知方程(m﹣2)+(m﹣3)x+1=0.(1)当m为何值时,它是一元二次方程?(2)当m为何值时,它是一元一次方程?二.一元二次方程的一般形式5.方程3x2=5x+7的二次项系数、一次项系数、常数项分别为()A.3,5,7B.3,﹣5,﹣7C.3,﹣5,7D.3,5,﹣76.方程5x2=21﹣9x化成一般形式后,若二次项的系数为5,则它的一次项系数是()A.9B.﹣9C.9x D.﹣9x7.一元二次方程2x2+1=6x化成一般形式后,一次项和常数项分别是()A.2x2、1B.2、6C.﹣6x、1D.﹣6、18.一元二次方程x2﹣2x+1=0的二次项是x2,则一次项和常数项分别是()A.2x和1B.2x和﹣1C.﹣2x和﹣1D.﹣2x和19.方程x(x+5)=5x﹣10化成一般形式后,它的一次项系数是()A.﹣5B.5C.0D.1010.一元二次方程x(x﹣2)=1化成一般形式后,若一次项系数为﹣2,则它的常数项是()A.﹣2B.2C.﹣1D.111.将一元二次方程3x2+1=6x化为一般形式后二次项系数为3,则一次项系数为.三.一元二次方程的解12.已知a是方程x2+x﹣2021=0的一个根,则的值为()A.2020B.2021C.D.13.若x=0是一元二次方程x2+x+b2﹣4=0的一个根,则b的值是()A.2B.﹣2C.±2D.414.已知x=﹣2是关于x的方程2x2﹣4a=0的一个解,则a的值是()A.﹣1B.1C.﹣2D.215.关于x的一元二次方程x2﹣2x+m=0的一个根为﹣1,则m的值为()A.﹣3B.﹣1C.1D.216.若x=3是关于x的一元二次方程x2﹣mx﹣3=0的一个解,则m的值是()A.2B.1C.0D.﹣217.若关于x的方程x2+2mx+n=0的一个根为2,则代数式4m+n的值为.18.已知关于x的一元二次方程x2+a2x+a﹣3=0的一个根是1,则3a2+3a﹣4的的值为.19.若x=2是方程x2﹣mx+2=0的根,则m=.20.若2是方程x2﹣c=0的一个根,则c的值为.21.若a是方程x2﹣2020x+1=0的一个根,求代数式a2﹣2021a+的值.22.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案一.一元二次方程的定义1.解:∵关于x的方程ax2+2x﹣5=0是一元二次方程,∴a≠0,故选:C.2.解:A、该方程属于二元二次方程,故本选项不符合题意.B、该方程属于一元二次方程,故本选项符合题意.C、该方程属于分式方程,故本选项不符合题意.D、该方程属于一元一次二次方程,故本选项不符合题意.故选:B.3.解:由题意得:m﹣3≠0,解得:m≠3,故答案为:m≠3.4.解:(1)∵方程(m﹣2)+(m﹣3)x+1=0为一元二次方程,∴,解得:m=±,所以当m为或﹣时,方程方程(m﹣2)+(m﹣3)x+1=0为一元二次方程;(2)∵方程(m﹣2)+(m﹣3)x+1=0为一元一次方程,∴或m2=1或m=2,解得,m=2或m=±1,0,故当m为2或±1,0时,方程方程(m﹣2)+(m﹣3)x+1=0为一元一次方程.二.一元二次方程的一般形式5.解:方程3x2=5x+7转化为一般形式为3x2﹣5x﹣7=0,其中二次项系数、一次项系数、常数项分别为3,﹣5,﹣7,故选:B.6.解:5x2=21﹣9x,5x2+9x﹣21=0,一次项系数是9,故选:A.7.解:2x2+1=6x,2x2﹣6x+1=0,所以一次项和常数项分别是﹣6x,1,故选:C.8.解:因为项包括前面的符号,所以方程x2﹣2x+1=0的一次项和常数项分别是:﹣2x和1.故选:D.9.解:x(x+5)=5x﹣10,∴x2+5x=5x﹣10,∴x2+5x﹣5x+10=0,即x2+0×x+10=0,∴一次项系数是0,故选:C.10.解:x(x﹣2)=1,x2﹣2x﹣1=0,一次项系数是﹣2,常数项是﹣1,故选:C.11.解:一元二次方程3x2+1=6x化为一般形式为3x2﹣6x+1=0,二次项系数和一次项系数分别为3,﹣6,故答案是:﹣6.三.一元二次方程的解12.解:∵a是一元二次方程x2+x﹣2021=0的一个根,∴a2+a﹣2021=0,∴a2+a=2021,∴=﹣==,故选:D.13.解:把x=0代入x2+x+b2﹣4=0得b2﹣4=0,解得b=±2,∵b﹣1≥0,∴b≥1,∴b=2.故选:A.14.解:把x=﹣2代入方程得:2×4﹣4a=0,解得:a=2.故选:D.15.解:∵关于x的一元二次方程x2﹣2x+m=0的一个根是﹣1,∴(﹣1)2﹣2×(﹣1)+m=0,解得:m=﹣3.故选:A.16.解:将x=3代入方程得:9﹣3m﹣3=0,解得:m=2.故选:A.17.解:把x=2代入方程x2+2mx+n=0得4+4m+n=0,所以4m+n=﹣4.故答案为﹣4.18.解:由题意,得1+a2+a﹣3=0,∴a2+a﹣2=0,则a2+a=2,∴3a2+3a﹣4=3(a2+a)﹣4=6﹣4=2.故答案为:2.19.解:∵x=2是方程x2﹣mx+2=0的一个根,∴22﹣2m+2=0,解得m=3,故答案为:3.20.解:根据题意,将x=2代入方程x2﹣c=0,得:4﹣c=0,解得c=4,故答案为:4.21.解:∵a是方程x2﹣2020x+1=0的一个根,∴a2﹣2020a+1=0,∴a2=2020a﹣1,∴a2﹣2021a+=2020a﹣1﹣2021a+=﹣a+a﹣1=﹣1.22.解:(1)△ABC是等腰三角形,理由是:∵把x=1代入方程(a+c)x2﹣2bx+(a﹣c)=0得:a+c﹣2b+a﹣c=0,∴2a=2b,∴a=b,∴△ABC的形状是等腰三角形;(2)∵△ABC是等边三角形,∴a=b=c,∵(a+c)x2﹣2bx+(a﹣c)=0,∴(a+a)x2﹣2ax+a﹣a=0,即x2﹣x=0,解得:x1=0,x2=1,即这个一元二次方程的根是x1=0,x2=1.。
第2章一元二次方程+解答题能力达标测评++2022-2023学年北师大版九年级数学上册+
2022-2023学年北师大版九年级数学上册《第2章一元二次方程》解答题能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.解方程:(1)x2﹣3x+1=0;(2)(x+3)(x﹣1)=5.2.若关于x的方程(m+1)x|m|+1+x﹣3=0是一元二次方程,求m的值.3.已知关于x的一元二次方程kx2﹣4x+1=0有实数解,求k的非负整数解,并求出k取最大整数解时方程的根.4.解方程:(1)x2﹣x﹣=0;(2)x(x﹣4)=8﹣2x.5.阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,(1)求m2+2m+4的最小值;(2)求4﹣x2+2x的最大值.6.解一元二次方程:(x﹣3)2=2(x﹣3).7.已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求2a+3b+4c的值.8.已知关于x的方程(m2﹣1)x2﹣3(3m﹣1)x+18=0有两个正整数根(m是正整数).△ABC的三边a、b、c满足,m2+a2m﹣8a=0,m2+b2m﹣8b=0.求:(1)m的值;(2)△ABC的面积.9.如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?10.北京冬奥会开幕日的前期,某特许零售店“冰墩墩”的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年1月“冰墩墩”的销量有没有超过4万件?请利用计算说明.11.已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.12.将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求代数式x2+2x+3的最小值解:原式=x2+2x+1+2=(x+1)2+2.∵(x+1)2≥0,∴(x+1)2+2≥2.∴当x=﹣1时,x2+2x+3的最小值是2.(1)请仿照上面的方法求代数式x2+6x﹣1的最小值.(2)已知△ABC的三边a,b,c满足a2﹣6b=﹣14,b2﹣8c=﹣23,c2﹣4a=8.求△ABC的周长.13.某大型果品批发商场经销一种高档坚果,原价每千克64元,连续两次降价后每千克49元.(1)若每次下降的百分率相同,求每次下降的百分率;(2)若该坚果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少40千克.现该商场要保证销售该坚果每天盈利4500元,且要减少库存,那么每千克应涨价多少元?14.某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.15.如图,在长方形ABCD中,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发,沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点C出发,沿CD向点D 运动,当其中一个动点到达终点时,另一点也随之停止运动.(1)两动点运动几秒时,四边形PBCQ的面积是长方形ABCD面积的?(2)是否存在某一时刻,使得点P与点Q之间的距离为cm?若存在,求出该时刻;若不存在,请说明理由.16.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?17.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.18.附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)(1)解方程x(x﹣1)=2.有学生给出如下解法:∵x(x﹣1)=2=1×2=(﹣1)×(﹣2),∴或或或解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=﹣1.∴x=2或x=﹣1.请问:这个解法对吗?试说明你的理由.(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上边的事实,解答下面的问题:用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.19.阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.20.利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC 周长的最大值.参考答案1.解:(1)x2﹣3x+1=0,∵△=b2﹣4ac=9﹣4=5,∴x=,=,∴x1=,x2=;(2)(x+3)(x﹣1)=5,方程整理得,x2+2x﹣8=0,(x﹣2)(x+4)=0,x﹣2=0或x+4=0,解得x1=2,x2=﹣4.2.解:∵关于x的方程(m+1)x|m|+1+x﹣3=0是一元二次方程,∴,解得m=1.3.解:根据题意的:△≥0且k≠0,Δ=16﹣4k≥0,解得:k≤4,∴k的非负整数解为:k=1,2,3,4,当k=4时,方程为:4x2﹣4x+1=0,(2x﹣1)2=0,x1=x2=.4.解:(1)x2﹣x﹣=0;a=1,b=﹣,c=﹣,∴b2﹣4ac=(﹣)2﹣4×1×(﹣)=4>0,∴x===,∴该方程的解为:,.。
苏科版九年级上册数学第1章一元二次方程单元达标测试题
第1章一元二次方程、选择题1.下列方程中,关于x的一元二次方程的是()A. x2- _"、一:〔;B. ax+bx+c=0C. (x—1)( x+2) =12D. x (x—1) =x +2x2. 一兀二次方程5x2— 1 —4x= 0的一次项系数是()A. —1B. —4C. 4D. 53.方程:x (x+1)=3 (x+1)的解的情况是()A. x=—1B. x=3G=x— 1, X2=3D以上答案都不对4.关于x的方程2ax +bx+c=3 的解与(x—1)(x—4)=0的解相同,则a+b+c的值为()A. 2B. 31 D. 425•方程x +3=4x用配方法解时,应化成()2 2 _ 2 2A.(x—2)=7B. (x+2)=1C. (x+2)=2D. (x —2)=12 26.已知关于x的一元二次方程(a-1)x +ax+a -1=0的一个根是0,则a的值为().A. 1B. -1C. 1 或-1D.7•关于的二次方程:i「一lh 1 的一个根是0,则a的值为()A. 1B.C.或D. 0.58. 若关于x的一元二次方程x2-2x+m=0没有实数根,则实数m的取值是()A. m v 1B. m>-1C. m> 1D. m v -19. 经计算整式与$7 的积为.汀-汪-二」U •”的所有根为()A. '' ' ' ■B.C. L 一i. :一:D. < 一L.-辽一…!10. 若关于x的方程x2+ (m+1)x+ T =0的一个实数根的倒数恰是它本身,则m的值是()5 1 5十1A. —TB.C. —t 或tD. 111. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()C. 50(1+2x)= 182D. 50+501+x) +50 (1+2x) =1822 2A. 50 (1+x)=182B. 50+50 (1+x)+50 (1+x)=182C. 50(1+2x)= 182D. 50+501+x) +50 (1+2x) =18212. 今年以来,某种食品不断上涨,在9月份的售价为8.1元/kg, 11月份的售价为10元/kg。
人教版九年级上册数学第二十一章一元二次方程单元达标测试题(含答案)
人教版九年级上册数学第二十一章一元二次方程单元达标测试题(含答案)一、选择题1.下列是一元二次方程的是A. B. C. D.2.一元二次方程的解是()A. B. C. D.3.已知关于x的一元二次方程有一个根为,则a的值为()A. 0B.C. 1D.4.关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则()A. m=4B. m=2C. m=2或m=﹣2D. m=﹣25.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠06.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A. 12B. 13C. 14D. 12或147.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=18.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根9.一元二次方程的解为()A. B. x1=0,x2=4 C. x1=2,x2=-2 D. x1=0,x2=-410.若x1·x2是一元一次方程的两根,则x1·x2的值为()A. -5B. 5C. -4D. 411.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3012.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.二、填空题13.已知x= 是关于x的方程的一个根,则m=________.14.已知,是关于的一元二次方程的两个实数根,且,则的值为________.15.已知关于的方程有两个不相等的实数根,则的取值范围是________.16.把方程用配方法化为的形式,则m=________,n=________.17.如图,是一个简单的数值运算程序.则输入x的值为________.18.关于x的一元二次方程有两个不相等的实数根,则m的最小整数值是________.19.一元二次方程(x﹣3)(x﹣2)=0的根是________.20.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是________.21.某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡78张,设这个小组的同学共有x人,可列方程:________.22.我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x步,则所列方程为________.三、计算题23.用适当的方法解方程(1)x2﹣3x=0(2)x2+4x﹣5=0(3)3x2+2=1﹣4x24.解下列方程.(1)x2﹣2x﹣2=0(2)3x(x﹣2)=x﹣2四、解答题25.关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.26.已知关于x的一元二次方程有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且,求m的值.27.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.28.如图,某校准备一面利用墙,其余—面用篱笆围成一个矩形花辅ABCD.已知旧墙可利用的最大长度为13 m,篱笆长为24 m,设垂直于墙的AB边长为xm.(1)若围成的花圃面积为70m 2时,求BC的长;(2)如图,若计划将花圃中间用一道篱笆隔成两个小矩形,且花圃面积为78 m2,请你判断能否围成这样的花圃?如果能,求BC的长;如果不能,请说明理由.29.如图,等边三角形ABC的边长为6cm,点P自点B出发,以1cm/s的速度向终点C运动;点Q自点C出发,以1cm/s的速度向终点A运动.若P,Q两点分别同时从B,C两点出发,问经过多少时间△PCQ的面积是2 cm2?参考答案一、选择题1. A2. C3. D4. D5. B6. B7. A8. A9. B 10. A 11. A 12. C二、填空题13. 1 14. -2 15. 且16. ;17.,218. 0 19. x1=3,x2=2 20. -2 21. x2﹣x﹣78=0 22. x(x+12)=864三、计算题23. (1)x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3;(2)x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1;(3)3x2+2=1﹣4x,3x2+4x+1=0,(3x+1)(x+1)=0,3x+1=0,x+1=0,x1=,x2=﹣1.24. (1)解:∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,则x﹣1=± ,∴x1=1+ ,x2=1﹣(2)解:∵3x(x﹣2)=x﹣2,∴3x(x﹣2)﹣(x﹣2)=0,则(x﹣2)(3x﹣1)=0,∴x﹣2=0或3x﹣1=0,解得x1=2,x2=.四、解答题25. 解:∵关于x的方程x2-2x+2m-1=0有实数根,∴b2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴此时二次方程为:x2-2x+1=0,则(x-1)2=0,解得:x1=x2=1.26. 解:①根据题意得:,解得:,②根据题意得:,,,解得:,(不合题意,舍去),∴m的值为.27.解:设原来的两位数的个位数字为x,则十位数字为(x+2),根据题意,得(10x+x+2)2=10(x+2)+x+138.解得x1=- (舍去),x2=1.答:原来的两位数为3128. (1)解:(1)根据题意得:BC=24-2x则(24-2x)x=70解得:x1=5,x2=7当x1=5时,BC=14x2=7时,BC=10墙可利用的最大长度为13m,BC=14舍去.答:BC的长为10m.(2)解:依题意可知:(24-2x)·x=78即x2-12x+39=0△=122-4×1×39<0方程无实数根答:不能围成这样的花圃.29.解:设经过xs△PCQ的面积是2 cm2,由题意得(6﹣x)× x=2解得:x1=2,x2=4,答:经过2s或4s△PCQ的面积是2 cm2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=420、解:(1)<1>()()x x +-=110,所以x x 1211=-=,<2>()()x x +-=210,所以x x 1221=-=,<3>()()x x +-=310,所以x x 1231=-=,…… <n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。
九上数学一元二次方程配方法
九上数学一元二次方程配方法一元二次方程是一般形式为ax²+bx+c=0的方程,其中a,b,c是已知常数且a≠0。
解一元二次方程最常见的方法是使用配方法,也称为因式分解法。
配方法是通过将方程变形为两个一次方程的乘积形式,然后分别求解这两个一次方程得到方程的解。
配方法的步骤如下:1. 将一元二次方程变形为标准形式:ax²+bx+c=0。
确保方程的系数a不为0,如果a=0,则方程不是一元二次方程。
2.对于一元二次方程,我们要找到两个数m和n使得m+n=b/a,并且m×n=c/a。
换句话说,我们要找到两个数的和等于b/a,并且乘积等于c/a。
3. 将一元二次方程ax²+bx+c=0变形为(ax²+mx)+(nx+c)=0。
我们将方程分成两部分,每部分为一次项的乘积。
4.对方程进行因式分解:a(x²+m/a·x)+(n/a)·x+c/a=0。
将方程进行因式分解,可以得到两个一次项多项式的乘积形式。
5.将因式分解后的方程再次进行变形:[x(x+m/a)]+[n/a]x+c/a=0。
6.接下来,我们要将方程中的两个一次项多项式进行分别求解。
将[x(x+m/a)]部分拆解为(x+u)(x+v),其中u和v是两个数,x+u和x+v分别是一次项多项式。
7. 将方程进行重新整理:(x+u)(x+v) + nx + c/a = 0。
这样就得到了方程的两个因式分解形式。
8. 然后,将两个因式化简:x²+x(u+v)+uv+nx+c/a = 0。
9. 现在我们要将方程进行重新整理,因为我们知道(u+v)x是一个一次项。
将方程变形为x²+(u+v+u/a)x+uv+c/a = 0。
10. 我们已经找到了方程的两个因式分解(或配方法)形式:(x+u)(x+v) + nx + c/a = 0和x²+(u+v+u/a)x+uv+c/a = 0。
第二十一章一元二次方程单元达标检测试题及答案
新人教版数学九年级上册第二十一章一元二次方程单元达标检测试题一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36B.(x﹣6)2=4+36C.(x﹣3)2=﹣4+9D.(x﹣3)2=4+92.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1B. a≤4C.a≤1D.a≥13.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm4.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥5/4 B.k>5/4 C.k<5/4D.k≤5/45.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.10B.-10C.-6D.26.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A. x2+9x﹣8=0B. x2-9x﹣8=0C. x2-9x+8=0D. 2x2﹣9x+8=07.下列方程有两个相等的实数根的是()A.x2+x+1=0 B.4x2+2x+1=0C.x2+12x+36=0 D.x2+x-2=08.我省的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,增速位居全国第一.若的快递业务量达到4.5亿件,设与这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.59.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10B.14C.10或14D.8或1010.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5﹣x)=6C.x(10﹣x)=6D.x(10﹣2x)=6二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在题中的横线上11.设x1, x2是一元二次方程x2-2x﹣3=0的两根,则x12+x22=12.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为.13.若实数a、b满足(4a+4b) (4a+4b-2)-8=0,则a+b=__________.14.将x 2+6x+3配方成(x+m )2+n 的形式,则m= . 15.若)n x )(3x (m x x 2+-=++对x 恒成立,则m=_________.16.若关于x 的一元二次方程x 2﹣3x+m=0有两个相等的实数根,则m= .17.一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L ,则每次倒出的液体是 L .19.一元二次方程(a+1)x 2﹣ax+a 2﹣1=0的一个根为0,则a= .关于x 的方程kx 2-4x-2/3=0有实数根,则k 的取值范围是20.已知若分式(x 2﹣2x-3)/(x+1)的值为0,则x 的值为 .三、解答题(每小题10分,共90分)21.某地区投入教育经费2500万元,投入教育经费3025万元. (1)求至该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计该地区将投入教育经费多少万元.22.已知关于x 的方程x 2+2x+a –2 =0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.1 一元二次方程(1)设计人: 东疏中学 刘娟美 老师 得分1、(2分)方程两边都是 ,只含有 未知数,并且整理后未知数的最高次数是 这样的方程叫做一元二次方程。
2、(2分)下列方程是关于x 的一元二次方程的是( )A:ax 2+bx+c=0 B:k 2x+bk+6+0 C:3x 2+2x+1=0 D(m 2+3)x 2+3x-2=0 3、(2分)若方程0321=-+-x xa 是一元二次方程,则a= 。
4、(2分)方程(3x-1)(2x+4)=1化为一般形式是 其中二次项系数为_________,一次项系数为______,常数项为_______.5、(2分)若方程1)1(2=+-x m x m 是关于x 的一元二次方程,则m 的取值范围是§4.1 一元二次方程(2)设计人: 东疏中学 刘娟美 老师时间:(10分钟) 分数:(10分)判断方程ax +bx+c=0(a ≠0,a ,b ,c 为常数)一个解x 的取值范围是( )A 、3<x <3.23B 、3.23<x <3.24C 、3.24<x <3.25D 、3.25<x <3.26则方程x +Px+q=0的正数解的大致范围是: 3、(6分)用估算法求2x 2+5x-7=0的解,写大致过程§4.2 用配方法解一元二次方程(1)设计人: 东疏中学 学校 刘娟美 老师时间:(10分钟) 分数:(10分)1、(2分)对于方程(x-3)2=25,由平方根的意义,可得X 1= ,x 2= .这种解一元二次方程的方法,是 。
2、(2分)如果一个方程(二次项系数为1的方程)不能用直接开平方的办法,我们可以在方程的两边都加上 ,就把方程的左边配成了 ,从而可以有平方根的意义求解。
这种解一元二次方程的方法叫做配方法 4、(6分)解方程:(1) 5(x-3)2=125 (2)x 2-5x=6§4.2 用配方法解一元二次方程(2)设计人: 东疏中学 刘娟美 得分时间:(10分钟) 分数:(10分)1、(2分)填空:运用配方法解一元二次方程的是建立在 法基础之上2、(2分)(1)x 2-7x+_____=(x-____) 2, (2)x 2+20x+_____=(x+____)23、(6分)利用配方法解下列方程(1) 2250x x --= (2) 2t 2+8t=16选做题:(4分)解下列方程:(x+1)2+2(x+1)=3§4.3 用公式法解一元二次方程(1)设计人:东疏中学学校李冬英老师时间:(10分钟)分数:(10分)1、(2分)一元二次方程ax2+bx+c=0 (a,b,c都是常数,且a≠0)的求根公式:___________________________.用求根公式的前提条件是___________2、(2分)一元二次方程x2其中a=____,b=____,c=___,b2-4ac=___3、(6分)解下列方程:(1)2x2+11x+5=0 (2) 5x2=4-2x§4.3 用公式法解一元二次方程(2)设计人:东疏中学吴秀荣老师时间:(10分钟)分数:(10分)1、(2分)一元二次方程ax2+bx+c=0 (a,b,c都是常数,且a≠0)的求根公式:___________________________.用求根公式的前提条件是___________2、(8分)公式法解方程:(1)2x2+7x=4 (2)(x-2)(3x-5)=1选做题:(5分)已知关于x的方程x2+kx-12=0的一个根是4,求k及另一个根。
§4.4 用因式分解法解一元二次方程设计人:东疏中学胡登远老师时间:(10分钟)分数:(10分)1、(2分)因式分解法解方程,通过降低未知数的次数,把解一元二次方程的问题转化为解的问题,这就是数学上常用的思想。
2、(6分)用因式分解法解方程:①x(x+3)=x+3 ②x2=8x ③(x-2)2=(2x+3)23、(2分)解方程2x(x-1)=x-1时,有的同学在方程的两边同时除以(x-1),得2x=1,解方程得x=0.5,这种做法对吗?如果不对,请你写出正确的答案.§4.5一元二次方程根的判别式设计人:东疏中学学校刘娟美老师时间:(10分钟)分数:(10分)1、(2分)对于一元二次方程ax2+bx+c=0(a≠0),由判别式确定根的三种情况是:2、(2分)一元二次方程3x2-2x+1=0的根的判别式的值为______ ,所以方程根的情况是_______________.3、(2分)若一元二次方程x2-ax+1=0的两实根相等,则a的值是()A.a=0B.a =2或a =-2C.a =2D.a =2或a =04、(2分)若一元二次方程(1-2k)x2+8x=6没有实数根,那么k的最小整数值是()A .2;B .0;C .1;D .3. 5、 (2分)不解方程,判别下列方程根的情况:x(x +1)=3 .§4.6一元二次方程根与系数的关系 设计人: 东疏中学 刘娟美 老师 时间:(10分钟) 分数:(10分)1、(2分)已知一元二次方程x 2+2x -7=0的两个根为x 1、x 2,则x 1+x 2的值是( )A .-2B .2C .-7D .7 2、(2分)若1x 、2x 是一元二次方程0572=+-x x 的两根,则2111x x +的值是( ) A .57 B .57- C .75 D .75- 3、(2分)如果方程2x 2+k x -5=0 的实数根互为相反数,那么k=4、(2分)已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值5、(2分)求一个一元二次方程,使它的两个根分别为4,-7§4.7一元二次方程的应用(1)设计人: 东疏中学 王淑玲老师时间:(10分钟) 分数:(10分)1、(2分)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是 ( ) A. x (x + 1) = 182B. x (x -1) = 182C. 2x ( x + 1) = 182D. x (x -1) = 182×22、(4分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元.每件商品降价多少元时,商场日盈利可达到2100元?3、(4分)如图3-9-2所示要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为18m,另三边用竹篱笆围成,已知篱笆总长为35m.求鸡场的长与宽各为多少米?§4.7一元二次方程的应用(2)设计人: 东疏中学 学校 王淑玲 老师时间:(10分钟) 分数:(10分)1、(2分)原价a 元的某商品经过两次降价后,现售价b 元,如果每次降价的百分比都为x , 请列出相关方程2、(2分)某厂去年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?若设平均每月增长的百分率是x ,则列出的方程是( ) (A )()72150=+x (B )()()721501502=+++x x(C )()722150=⨯+x (D )()721502=+x3、(3分)某农场的粮食产量在两年内从600吨增加到726吨,该农场平均每年的增长率是多少?4、(3分)某农机厂一月份生产联合收割机300台,为了满足夏收季节市场对联合收割机的需求,三月份比一月份多生产132台,求二、三两个月平均每月的增长率.§第四章《一元二次方程解法(回顾与思考)》(1) 设计人: 东疏中学 学校 刘娟美 老师时间:(10分钟) 分数:(10分)1、(2分)方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 .2、(1分)下列方程是关于x 的一元二次方程的是( );A 、02=++c bx axB 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x 3、(1分)当k = 时,方程0)1(2=+++k x k x 有一根是0.4、若一元二次方程(1-2k )x 2+12x-10=0有实数根,那么k 的最大整数值是 [ ].A .1;B .2;C .-1;D .0. 5、(4分)用适当的方法解方程 (1)0432=-+x x (用配方法) (2)42)2)(1(+=++x x x 6、(1分)已知方程3x 2-19x+m=0的一个根是1,求它的另一个根及m 的值7、选做题:若一元二次方程2x +ax+2=0的两根满足:21x +22x =12,求a 的值。
§第四章《一元二次方程解法(回顾与思考)》(2) 设计人: 东疏中学 学校 刘娟美 老师时间:(10分钟) 分数:(10分)1、(3分)某农机厂一月份生产联合收割机300台,为了满足夏收季节市场对联合收割机的需求,三月份比一月份多生产132台,求二、三两个月平均每月的增长率. 2、(3分)已知两个数的和是12,积为23,求这两个数. 3、(4分)佳华商场服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?达标题命题要求:知识点要注意对应目标,建议分三个层次:(1)识记:基本概念、基本性质,90%以上的学生能完成,分值占3分(2)直接应用,80%以上的学生能完成,分值占4分(3)多个知识点综合应用或变式应用,60%以上的学生能完成,分值占3分;可适度结合本节实际设计2分的选做题,30%的学生能完成,也可以不设计。