类比、拓展探究题
类比探究(习题及答案)
➢例题示范类比探究(习题)例1:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G.(1)尝试探究:如图1,若AF= 3 ,则CD的值是.EF CG(2)类比延伸:如图2,在原题的条件下,若AF=m (m>EF0),则CD的值是CG解答过程.(用含m 的代数式表示),试写出(3)拓展迁移:如图3,在梯形ABCD 中,DC∥AB,点E是BC 延长线上一点,AE 和BD 相交于点F.若AB=a ,CDBC=b(a>0,b>0),则AF的值是(用含a,b 的代BE EF 数式表示).1【思路分析】根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,考虑通过相似传递比例关系,进而求 CD的值.CG构造相似利用作平行线的方法,即过中点 E 作 EH ∥AB 交 BG于点 H ,可得“A ”字型相似△BEH ∽△BCG ,“X ”型相似△EFH ∽△AFB ,结合 AF= 3 ,可得 CG =2EH ,AB =3EH ,故EFCD = 3 .CG 2类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是 AF ,EF 的比例,照搬第一问思路,过点 E 作 EH ∥AB 交BG 于点 H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时 CG =2EH ,AB =mEH ,故 CD = m.CG 2照搬思路解决第三问.虽然此问中图形、中点 E 、比例关系均发生变化,但 DC ∥AB 不变,依然可利用相似来整合条件,可照搬前面思路处理, 依然构造平行.过点 E 作 EH ∥AB 交 BD 的延长线于点 H ,可得△BCD ∽△BEH ,△AFB ∽△EFH ,可得 BC = CD,BE EHAF = AB ,结合 AB = a , BC = b ,可知 EF EH CD BE AF = AB = a ⋅CD = ab . EF EH EH212 3➢巩固练习1.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P,边EF 与边BC 交于点Q.【探究】在旋转过程中,(1)如图2,当CE=1时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(2)如图3,当CE= 2 时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(3)根据你对(1),(2)的探究结果,试写出当CE=m时,EAEP 与EQ 满足的数量关系式为.3,=2.如图1,在等边三角形ABC 中,线段AD 为其内角角平分线,过点D 的直线B1C1⊥AC 于C1,交AB 的延长线于B1.(1)请你探究:AC =CD AC1 C1D 是否都成立?AB BD AB1DB1(2)请你继续探究:如图2,若△ABC 为任意三角形,线段AD 为其内角角平分线,请问AC=CD一定成立吗?并证明AB BD你的判断.(3)如图3,在Rt△ABC 中,∠ACB=90°,AC=8,AB=40,3E 为AB 上一点且AE=5,CE 交其内角角平分线AD 于F.试求DF的值.FA43.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1) 操作发现如图 2,固定△ABC ,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空:①线段 DE 与 AC 的位置关系是 ;②设△BDC 的面积为 S 1,△AEC 的面积为 S 2,则 S 1 与 S 2 的数量关系是.图 1图 2(2) 猜想论证当△DEC 绕点 C 旋转到图 3 所示的位置时,小明猜想(1) 中 S 1 与 S 2 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中 BC ,CE 边上的高,请你证明小明的猜想.(3) 拓展探究如图 4 , 已知∠ ABC =60°, 点 D 是其角平分线上一点, BD =CD =4,DE ∥AB 交 BC 于点 E .若在射线 BA 上存在点 F , 使 S △DCF =S △BDE ,请直.接.写.出.相应的 BF 的长.5➢思考小结总结类比探究问题中的常见结构①旋转结构始终含有等腰结构(正方形、等腰直角三角形等),并且经过旋转后,能将各条件重新组合应用.②中点结构平行夹中点(类)倍长中线中位线始终含有中点,常考虑利用中点结构补全图形,然后将所证目标放在一个较大的背景下(等腰三角形、直角三角形、等腰直角三角形等)研究.③直角结构始终含有直角,常构造直角与斜直角配合,得到同角的余角相等;再配合构造的其他直角证明相似,所求目标往往和比例关系相关.6④平行结构所求目标为线段间的比例关系,题目中没有相似三角形,往往考虑利用平行线构造相似求解.78 3 3 【参考答案】 ➢ 巩固练习1. (1)EP =EQ ,证明略;(2) EP = 1EQ ,证明略;2 (3) EP = 1EQ .m2. (1)都成立,证明略; (2)一定成立,证明略;(3) DF = 5 .FA 83. (1)①DE ∥AC ;②S 1=S 2.(2) 证明略; (3) BF 的长为4 3或 .38。
类比探究
中考专题类比探究(二)1、在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;(2)拓展探究:若AC≠BC.①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.2、有一副直角三角板,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD 在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.3、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.4.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN 于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.5.已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G .(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证CDADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDADCF DE =成立?并证明你的结论; (3)如图③,若BA =BC =6,DA =DC =8,∠BAD =90°,DE ⊥CF ,请直接写出CFDE的值.6.如图1,△ABC 为等腰直角三角形,∠ACB=90°,F 是AC 边上的一个动点(点F 与A 、C 不重合),以CF 为一边在等腰直角三角形外作正方形CDEF ,连接BF 、AD . (1)①猜想图1中线段BF 、AD 的数量关系及所在直线的位置关系,直接写出结论; ②将图1中的正方形CDEF ,绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF 交AC 于点H ,交AD 于点O ,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC 改为直角三角形ABC ,∠ACB=90°,正方形CDEF 改为矩形CDEF ,如图4,且AC=4,BC=3,CD=,CF=1,BF 交AC 于点H ,交AD 于点O ,连接BD 、AF ,求BD 2+AF 2的值.E F GA B CD第24题图①第24题图②ABCDF GE第24题图③ABCDFGE。
推理类比 探究拓展——对一道课本例题的推广
A 01 .( , ) C 12 .(, ]
B 12 .(,) D 12 .[ 】 ,
分析 这 种类 型 的不 等式直 接 求解 是很 困难 的 ,
不等式来讨论 ,就显得很繁琐 ,然而若将 确定为 主元 ,则 其求 解立 显快 捷 . 解 不 等 式 转 化 为 ( 一1 ) m+1 2 0 , 设 — x>
体 的题设条件 ,认真观察题 目的结构特征 ,从不同 的角 度 ,不 同的 方 向 ,加 以 分析 探 讨 ,从而 选择 适 当的方 法快速 而 准确 地解 出 .
推 理 类 比 探 究 拓 展
— —
对 一 道课 本例 题 的推广
福建 省 安溪 梧桐 中学 (6 4 2 32 0 ) 设 A x Y ) B x Y ) ( , , (e, B ,
4 .数形结合法 若所给的不等式涉及到两个不同名函数 ,参数 又 无法 分 离 出来 ,这 时应 综合 考 虑 研究 两 个 图象 的 相对 位 置来 确定 参数 的取 值 范 围 . 例 5 若 X∈ 12 时 ,不 等式 一1 <l 。 (,) ) o X恒成 g
立 ,求 实数 口的取值 范 围 .
f( ) X 一 ) m =( 1 m+1 2 — , 当 l l <2时 , f m) 图象 ( 的 是一 条 线段 .要 使 ( 1 1 2 X 一) m+ — x>0 成 立 ,只 需 恒
所以一般来说采用数形结合 的方法 ,先构造函数 , 作 出符 合 已知条 件 的图 形 ,再 考 虑在 给 定 区间 上 函 数与 函数 图象之 间 的关 系 ,得 出答 案 或列 出条 件 , 求 出参数 的取 值 范 围 .
lg1 a .
思路 3 利 用抛 物线 定义 及根 与 系数 关系
四川省中考数学复习难题突破专题八:类比、拓展探究题
难题突破专题八 类比、拓展探究题类比、拓展探究题是近两年中考热门考题,题型的模式基本分为三步:初步尝试、类比发现、深入探究,考查的知识点有:三角形旋转、平行四边形性质、相似、全等、矩形折叠、勾股定理等.此类问题解答往往是层层深入,从特殊到一般,然后是拓展运用.在解题时需要牢牢把握特殊情况、特殊位置下的结论,然后探寻一般情况下是否也成立,最后是类比应用.类比模仿是解决此类问题的重要手段.1 [2019·湖州] 数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图Z8-1放置在平行四边形ABCD 所在平面内旋转,且60°角的顶点始终与点C 重合,较短的直角边和斜边所在的两直线分别交线段AB ,AD 于点E ,F(不包括线段的端点).(1)初步尝试如图①,若AD =AB ,求证:①△BCE≌△ACF,②AE +AF =AC ; (2)类比发现如图②,若AD =2AB ,过点C 作CH⊥AD 于点H ,求证:AE =2FH ; (3)深入探究如图③,若AD =3AB ,探究得AE +3AFAC的值为常数t ,则t =________.图Z8-1例题分层分析(1)①先证明△ABC,△ACD 都是________三角形,再证明∠BCE=________,即可解决问题. ②根据①的结论得到________,由此可证明.(2)设DH =x ,由题意,可得CD =________,CH =________(用含x 的代数式表示),由△ACE∽△HCF,得AE FH =ACCH,由此即可证明. (3)如图③,过点C 作CN⊥AD 于N ,CM ⊥BA ,交BA 的延长线于点M ,CM 与AD 交于点H.先证明△CFN∽△CEM,得CN CM =FN EM ,由AB·CM=AD·CN,AD =3AB ,推出CM =3CN ,所以CN CM =FN EM =13,设CN =a ,FN=b ,则CM =3a ,EM =3b ,想办法求出AC ,AE +3AF 即可解决问题.2 [2019·舟山] 我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.(1)概念理解请你根据上述定义举一个等邻角四边形的例子;(2)问题探究如图Z8-2①,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展如图②,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图③),当凸四边形AD′BC为等邻角四边形时,求出它的面积.图Z8-2例题分层分析(1)矩形或正方形邻角相等,满足“等邻角四边形”的条件;(2)连结PD,PC,根据PE,PF分别为AD,BC的垂直平分线,可得到PA=________,PB=________,∠DAP=________=∠ABC=________,从而可得∠APC=∠DPB,利用SAS可证得△APC≌△DPB,即可得到AC=BD.(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,由S四边形ACBD′=S△ACE-S△BED′,求出四边形ACBD′的面积;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′的面积即可.专题训练1.[2019·淮安] 【操作发现】如图Z8-3,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.图Z8-3(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连结BB′;(2)在(1)所画图形中,∠AB′B=________.【问题解决】如图Z8-4,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC 的面积.图Z8-4小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连结PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连结PP′,寻找PA,PB,PC三条线段之间的数量关系.……请参考小明同学的想法,完成该问题的解答过程.(―种方法即可)【灵活运用】如图Z8-5,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k 为常数),求BD的长(用含k的式子表示).图Z8-52.[2019·连云港] 问题呈现:如图Z8-6①,点E,F,G,H分别在矩形ABCD的边AB,BC,CD,DA上,AE=DG.求证:2S四边形EFGH=S矩形ABCD.(S表示面积)图Z8-6实验探究:某数学实验小组发现:若图①中AH≠BF,点G在CD上移动时,上述结论会发生变化.分别过点E,G 作BC边的平行线,再分别过点F,H作AB边的平行线,四条平行线分别相交于点A1,B1,C1,D1,得到矩形A1B1C1D1.如图②,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+S矩形A1B1C1D1.如图③,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与S矩形A1B1C1D1之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图Z8-7,点E,F,G,H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S 四边形EFGH=11,HF=29,求EG的长.图Z8-7(2)如图Z8-8,在矩形ABCD中,AB=3,AD=5,点E,H分别在边AB,AD上,BE=1,DH=2,点F,G分别是边BC,CD上的动点,且FG=10,连结EF,HG,请直接写出四边形EFGH面积的最大值.图Z8-83.[2019·盐城]【探索发现】如图Z8-9①是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE,EF剪下时,所得的矩形的面积最大.随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为________.图Z8-9【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P,N分别在边AB,AC上,顶点Q,M在边BC上,则矩形PQMN面积的最大值为________.(用含a,h的代数式表示) 【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图Z8-10,现有一块四边形的木板余料ABCD,经测量AB=50 cm,BC=108 cm,CD=60 cm,且tanB=tanC=43,木匠徐师傅从这块余料中裁出了顶点M,N在边BC上且面积最大的矩形PQMN,求该矩形的面积.图Z8-10参考答案例1 【例题分层分析】(1)①等边∠ACF②BE=AF (2)2x 3x解:(1)证明:①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°.∵AD=AB,∴▱ABCD是菱形,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC.∵∠ECF =60°,∴∠BCE +∠ACE=∠ACF+∠ACE=60°, ∴∠BCE =∠ACF. 在△BCE 和△ACF 中, ⎩⎪⎨⎪⎧∠B=∠CAF,BC =AC ,∠BCE =∠ACF, ∴△BCE ≌△ACF.②∵△BCE ≌△ACF ,∴BE =AF , ∴AE +AF =AE +BE =AB =AC.(2)证明:设DH =x ,由题意,CD =2x ,CH =3x , ∴AD =2AB =4x ,∴AH =AD -DH =3x. ∵CH ⊥AD ,∴AC =AH 2+CH 2=2 3x , ∴AC 2+CD 2=AD 2,∴∠ACD =90°, ∴∠BAC =∠ACD=90°,∴∠CAD =30°, ∴∠ACH =60°,∵∠ECF =60°,∴∠HCF =∠ACE,∴△ACE ∽△HCF ,∴AE FH =ACCH=2,∴AE =2FH. (3)如图,过点C 作CN⊥AD 于N ,CM ⊥BA ,交BA 的延长线于M ,CM 与AD 交于点H.∵∠ECF +∠EAF=180°, ∴∠AEC +∠AFC=180°. ∵∠AFC +∠CFN=180°, ∴∠CFN =∠AEC.∵∠M =∠CNF=90°,∴△CFN ∽△CEM , ∴CN CM =FN EM. ∵AB ·CM =AD·CN,AD =3AB , ∴CM =3CN ,∴CN CM =FN EM =13. 设CN =a ,FN =b ,则CM =3a ,EM =3b , ∵∠MAH =60°,∠M =90°,∴∠AHM =∠CHN=30°, ∴HC =2a ,HM =a ,HN =3a , ∴AM =33a ,AH =2 33a , ∴AC =AM 2+CM 2=2 213a , AE +3AF =(EM -AM)+3(AH +HN -FN)=EM -AM +3AH +3HN -3FN =3AH +3HN -AM =14 33a ,∴AE +3AFAC =14 33a 2 213a =7.故答案为7.例2 【例题分层分析】(2)PD PC ∠ADP ∠BCP 解:(1)矩形或正方形. (2)AC =BD ,理由如下: 连结PD ,PC ,如图①所示:∵PE 是AD 的垂直平分线,PF 是BC 的垂直平分线,∴PA =PD ,PC =PB , ∴∠PAD =∠PDA,∠PBC =∠PCB, ∴∠DPB =2∠PAD,∠APC =2∠PBC, 又∠PAD=∠PBC, ∴∠APC =∠DPB, ∴△APC ≌△DPB(SAS), ∴AC =BD.(3)分两种情况考虑:(i)当∠AD′B=∠D′BC 时,延长AD′,CB 交于点E ,如图②所示,∴∠ED ′B =∠EBD′, ∴EB =ED′.∵BC =B ′D′=3,AB =AB′=5, ∴AC =AD′=4. 设EB =ED′=x ,由勾股定理得42+(3+x)2=(4+x)2, 解得x =4.5.过点D′作D′F⊥CE 于F , ∴D ′F ∥AC ,∴△ED ′F ∽△EAC , ∴D′F AC =ED′AE ,即D′F 4= 4.54+4.5, 解得D′F=3617,∴S △ACE =12AC×EC=12×4×(3+4.5)=15,S △BED ′=12BE×D′F=12×4.5×3617=8117,∴S 四边形ACBD′=S △ACE -S △BED ′=15-8117=10417. (ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC 于点E ,如图③所示,∴四边形ECBD′是矩形, ∴ED ′=BC =3.在Rt △AED ′中,根据勾股定理得 AE =42-32=7,∴S △AED ′=12AE×ED′=12×7×3=3 72,S 矩形ECBD′=CE×CB=(4-7)×3=12-3 7,则S 四边形ACBD′=S △AED ′+S 矩形ECBD′=3 72+12-3 7=12-3 72. 专题训练1.解:【操作发现】 (1)如图①所示.(2)45°. 【问题解决】如图②,将△APC 绕点A 按顺时针方向旋转60°,得到△AP′B,连结PP′,则AP′=AP ,∠PAP ′=60°,∠AP ′B =∠APC.∴△APP′是等边三角形.∴∠APP′=∠AP′P=60°.∵AP⊥PC,∴∠APC=90°.又∵∠BPC=120°,∴∠APB=360°-∠APC-∠BPC=360°-90°-120°=150°. ∴∠BPP′=∠APB-∠APP′=150°-60°=90°.∴∠BP′P=∠AP′B-∠AP′P=∠APC-∠AP′P=90°-60°=30°.设BP=a.在Rt△BPP′中,∵∠BP′P=30°,∴P′B=2a,P′P=3a,∴AP=3a,PC=2a.在Rt△APC中,由勾股定理得AP2+PC2=AC2,∴(3a)2+(2a)2=72.解得a=7.∴AP=21,PC=2 7.∴S△APC=12AP·PC=12×21×2 7=7 3.【灵活运用】连结AC.∵AE⊥BC,BE=CE,∴AB=AC.又∵AE⊥BC,∴∠BAE=∠CAE.设∠BAE=α,则∠CAE=α,∠ABE=90°-α,∠ADC=α.如图③,将△ACD绕点A顺时针旋转2α,得到△ABD′,则BD′=CD=5,AD=AD′,∠DAD′=2α,∠BD′A=α.过点A作AF⊥DD′,垂足为点F,则∠D′AF=α,∠AD′F=90°-α,DD′=2D′F,∴∠BD ′D =∠BD′A+∠AD′F=α+90°-α=90°.在Rt △AD ′F 中,D ′F =AD′·cos ∠AD ′F =AD·cos(90°-α)=kAB·cos(90°-α)=k·BE=2k.∴DD ′=4k.在Rt △BDD ′中,由勾股定理得BD =BD′2+D′D 2=52+(4k )2=25+16k 2. 2.解:问题呈现:证明:因为四边形ABCD 是矩形, 所以AB∥CD,∠A =90°,又因为AE =DG ,所以四边形AEGD 是矩形, 所以S △HEG =12EG·AE=12S 矩形AEGD ,同理可得S △FEG =12S 矩形BCGE .因为S 四边形EFGH =S △HEG +S △FEG , 所以2S 四边形EFGH =S 矩形ABCD .实验探究:由题意得,当点G 向点D 靠近(DG<AE)时,如图所示,S △HEC 1=12S 矩形HAEC 1,S △EFB 1=12S 矩形EBFB 1,S △FGA 1=12S 矩形FCGA 1,S △GHD 1=12S 矩形GDHD 1,所以S 四边形EFGH =S △HEC 1+S △EFB 1+S △FGA 1+S △GHD 1-S 矩形A 1B 1C 1D 1,所以2S 四边形EFGH =S 矩形HAEC 1+S 矩形EBFB 1+S 矩形FCGA 1+S 矩形GDHD 1-2S 矩形A 1B 1C 1D 1, 即2S 四边形EFGH =S 矩形ABCD -S 矩形A 1B 1C 1D 1. 迁移应用:(1)如图所示,由“实验探究”的结论可知2S 四边形EFGH =S 矩形ABCD -S 矩形A 1B 1C 1D 1, 所以S 矩形A 1B 1C 1D 1=S 矩形ABCD -2S 四边形EFGH =25-2×11=3=A 1B 1·A 1D 1. 因为正方形面积是25,所以边长为5, 又A 1D 12=HF 2-52=29-25=4, 所以A 1D 1=2,A 1B 1=32,所以EG 2=A 1B 12+52=94+25=1094,所以EG =1092.(2)四边形EFGH 面积的最大值为172. 3.解:【探索发现】12.【拓展应用】14ah.【灵活应用】如图①,设四边形BFGK 是从“缺角矩形”中剪出的一个矩形,显然,当顶点G 在线段DE 上时,矩形的面积才可取最大值.作直线DE ,分别交线段BA ,BC 的延长线于点P ,Q ,过点E 作EH⊥BC 于点H. ∵四边形ABCM 是矩形,∴AM ∥BC , ∴△DEM ∽△DQC ,∴EM CQ =MDCD.∵CD =16,CM =AB =32,∴MD =CD =16, ∴EMCQ=1,即CQ =EM. ∵AE =20,AM =BC =40, ∴EM =AE =20.∴AE=CQ. 同理PA =MD =CD =16.∴当BK =12PB =24,即当顶点G 在DE 中点处时,矩形的面积最大,最大面积为14×60×48=720.【实际应用】分三种情形:(Ⅰ)如图②,当矩形的另两个顶点P ,Q 分别在边AB ,CD 上时,延长BA ,CD 相交于点E. ∵∠EBC =∠DCG,∴EB =EC. 过点E 作EH⊥BC 于点H , ∴BH =12BC =12×108=54(cm).在Rt △EBH 中,EH =BH·tanB =54×43=72(cm),∴EB =90 cm.由结论知,当PB =12EB =45 cm <AB 时,矩形面积有最大值为14×108×72=1944(cm 2).(Ⅱ)如图③,当矩形的另两个顶点P,Q分别在边AD,CD上时,延长BA,CD相交于点E,延长QP交AE于点F,过点F作FG⊥BC于点G,则矩形PQMN的面积小于矩形FQMG的面积.由(Ⅰ)知,矩形FQMG的面积<1944 cm2.(Ⅲ)当矩形另两个顶点P,Q分别在边AB,AD上时,此时不能裁出矩形.综上所述,矩形面积的最大值为1944 cm2.2019-2020学年数学中考模拟试卷一、选择题1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠2.如图,在平面直角坐标系中,点A (0,6),点B 在x 轴的负半轴上,将线段AB 绕点A 逆时针旋转90°至AB',点M 是线段AB'的中点,若反比例函数ky x=(k≠0)的图象恰好经过点B',M ,则k =( )A.4B.6C.9D.123.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃4.一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sin α•cos β+cos α•sin β;sin (α﹣β)=sin α•co s β﹣cos α•sin β.例如sin90°=sin (60°+30°)1122+⨯=1.类似地,可以求得sin15°的值是( )A B C D 5.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳6.电影《流浪地球》从2月5日上映以来,凭借其气势磅礴的特效场面与动人的父子情获得大众的喜爱与支持,截止3月底,中国电影票房高达4559000000元.数据4559000000用科学记数法表示为( ) A .845.5910⨯;B .945.5910⨯;C .94.55910⨯;D .104.55910⨯.7.在同一平面内,⊙O 的半径为5cm ,点A 到圆心O 的距离OA =3cm ,则点A 与圆O 的位置关系为( ) A .点A 在圆内B .点A 在圆上C .点A 在圆外D .无法确定8.如图,二次函数y =ax 2+bx+c 的图象与x 轴的一个交点坐标是(3,0),对称轴为直线x =1,下列结论:①abc >0;②2a+b =0;③4a ﹣2b+c >0;④当y >0时,﹣1<x <3;⑤b <c .其中正确的个数是( )A .2B .3C .4D .59.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=26,BD=18,AB=x,那么x 的取值范围是 ( )A .4< m <13B .4< m <22C .9< m <13D .4< m <910.用计算器求35值时,需相继按“133”,“y x ”,“5”,“=”键,若小颖相继按“””4”,“y x ”,“(﹣)”,“3”,“=”键,则输出结果是( ) A .8B .4C .﹣6D .0.12511.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点B 逆时针旋转60°得到△A'BC’,连接A'C ,则A'C 的长为( )A .6B .C .D .12.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数和中位数分别是( ) A .15,14 B .15,13C .14,14D .13,14二、填空题13.把多项式a 3b-ab 分解因式的结果为______.14.如图,a//b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=______.15.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出8.42万元利息。
中考数学解答题压轴题突破 重难点突破八 几何综合探究题 类型一:类比拓展型探究问题
(2)【问题解决】如图②,在任意直角三角形 ABC 内,找一点 D,过点 D 作正方形 DECF,分别交 BC,AC 于点 E,F,若 AB=BE+AF,求∠ADB 的 度数;
如答图,延长 AC,使 FM=BE,连接 DM, ∵四边形 DECF 是正方形, ∴DF=DE,∠DFC=∠DEC=90°, ∵BE=FM,∠DFC=∠DEB=90°,DF=DE, ∴△DFM≌△DEB(SAS),∴DM=DB, ∵AB=AF+BE,AM=AF+FM,FM=BE, ∴AM=AB,又∵DM=DB,AD=AD,
重难点突破八 几何综 合探究题
类型一 类比拓展型探究 问题
(2022·贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关 系进行了拓展探究.如图,在▱ ABCD 中,AN 为 BC 边上的高,AADN=m,点 M 在 AD 边上,且 BA=BM,点 E 是线段 AM 上任意一点,连接 BE,将△ABE 沿 BE 翻折得△FBE.
解:∵∠BAD=45°,BA=BM,∴△AMB 是等腰直角三角形, ∴∠MBC=∠AMB=∠BAM=45°,∵EF∥BM,∴∠FEM=∠AMB=45°, ∴∠AEB=∠FEB=12(180°+45°)=112.5°, ∴∠ABE=180°-∠AEB-∠BAE=22.5°, ∵AADN=m,△AMB 是等腰直角三角形,AN 为底边上的高,则 AN=12AM, ∵点 M 在 AD 边上,∴当 AD=AM 时,m 取得最小值,最小值为 AAMN=2,
2
2.(2022·铜仁)如图,在四边形 ABCD 中,对角线 AC 与 BD 相交于点 O, 记△COD 的面积为 S1,△AOB 的面积为 S2.
(1)问题解决:
如图①,若 AB∥CD,求证:SS21=OOCA··OODB; (1)证明:过点 D 作 DE⊥AC 于点 E,过点 B 作 BF⊥AC 于点 F,如图①所
2020中考数学37_专题五 类比、拓展与探究
专题五 类比、拓展与探究
总纲目录
专题概述 专题突破 专题训练
总纲目录
栏目索引
专题概述
栏目索引
专题概述
类比探究问题是一类共性条件与特殊条件相结合,由特殊情形到一般情形 (或由简单情形到复杂情形)逐步深入,解决方法一脉相承的综合性题目.
专题突破
栏目索引
专题突破
解决类比探究问题的一般步骤: 1.根据题干条件,结合分支条件先解决第一问; 2.用解决上一问的方法类比解决下一问,如果不能,两问结合起来分析,找出不能 类比的原因和不变特征,依据不变的特征,探索新的方法;(照搬字母,照搬辅助线, 照搬全等,照搬相似,也就是知识的迁移) 3.类比解题思路,类比前两问的图形来“补形”解决第三问.
专题训练
栏目索引
拓展延伸: (3)如图3,在△ADE持续旋转过程中,若CE与BD的交点为点P,则△BCP面积的最 小值为 4 .
专题训练
解析 (1)45°;NF= 2 MN (2)如图2所示,连接MF,EC,BD.设EC交AB于点O,BD交EC于点H.
栏目索引
∵AC=AB,AE=AD,∠EAD=∠CAB=90°, ∴∠BAD=∠CAE, ∴△BAD≌△CAE(SAS),
2
6 CD时,请直接写出α的值.
2
解析 (1)AM= 2 AE;45° (2)成立. (3)α=60°或300°.
专题突破
栏目索引
专题突破
栏目索引
变式训练1-1 (2019河南二模)问题发现: 如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线 段AD绕点A逆时针旋转60°得到AE,连接EC,则: (1)①∠ACE的度数是 60° ; ②线段AC,CD,CE之间的数量关系是 AC=CD+EC ; 拓展探究: (2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将 线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD, BD,CD之间的数量关系,并说明理由;
类比探究(习题)
类比探究(习题)➢ 例题示范例1:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G .(1)尝试探究:如图1,若3AFEF=,则CD CG 的值是_______. (2)类比延伸:如图2,在原题的条件下,若AFm EF=(m >0),则CD CG 的值是_______(用含m 的代数式表示),试写出解答过程.(3)拓展迁移:如图3,在梯形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .若AB a CD =,BCbBE=(a >0,b >0),则AFEF 的值是_____(用含a ,b 的代数式表示).【思路分析】GF E DC BA图1GF E DC BA图2ADCEFB图3GF E D BA 图1GF ED C BA图2AD CE FB图3① 根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,考虑通过相似传递比例关系,进而求CD CG的值. 构造相似利用作平行线的方法,即过中点E 作EH ∥AB 交BG 于点H ,可得“A ”字型相似△BEH ∽△BCG ,“X ”型相似△EFH ∽△AFB ,结合3AFEF=,可得CG =2EH ,AB =3EH ,故32CD CG =. ② 类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是AF ,EF 的比例,照搬第一问思路,过点E 作EH ∥AB 交BG 于点H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时CG =2EH ,AB =mEH ,故2CD mCG =.③ 照搬思路解决第三问.虽然此问中图形、中点E 、比例关系均发生变化,但DC ∥AB 不变,依然可利用相似来整合条件,可照搬前面思路处理,依然构造平行.过点E 作EH ∥AB 交BD 的延长线于点H ,可得△BCD ∽△BEH ,△AFB ∽△EFH ,可得CD EH BC BE =,AF AB EF EH =,结合AB a CD =,BCb BE=,可知AF AB a CD ab EF EH EH⋅===.➢ 巩固练习1. 如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 交于点Q .【探究】在旋转过程中,(1)如图2,当1=EA CE时,EP 与EQ 满足怎样的数量关系?并给出证明. (2)如图3,当2=EACE时,EP 与EQ 满足怎样的数量关系?并给出证明.(3)根据你对(1),(2)的探究结果,试写出当m EACE=时,EP 与EQ 满足的数量关系式为______________________.图1图2图3AC BF E DPQ AC B FEDPQFBC (E )A (D )2. 如图1,在等边三角形ABC 中,线段AD 为其内角角平分线,过点D 的直线B 1C 1⊥AC 于C 1,交AB 的延长线于B 1.(1)请你探究:1111AC C DAC CD AB BD AB DB ==,是否都成立? (2)请你继续探究:如图2,若△ABC 为任意三角形,线段AD 为其内角角平分线,请问AC CDAB BD=一定成立吗?并证明你的判断.图1C 1B 1BADC 图2B CDABCD图3FE3. 如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置关系是___________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是______________.图4图3CB (E )A (D )E图1 图2(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC BC ,CE 边上的高,请你证明小明的猜想.(3)拓展探究如图4,已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4DE ∥AB 交BC 于点E .若在射线BA 上存在点F ,使S △DCF =S △BDE ,请直接写出....相应的BF 的长.➢ 思考小结总结类比探究问题中的常见结构 ①旋转结构AB=AC DB CD'A始终含有等腰结构(正方形、等腰直角三角形等),并且经过旋转后,能将各条件重新组合应用. ②中点结构MDCBA FE BAMCNM CBA平行夹中点 (类)倍长中线 中位线始终含有中点,常考虑利用中点结构补全图形,然后将所证目标放在一个较大的背景下(等腰三角形、直角三角形、等腰直角三角形等)研究. ③直角结构AB CDEF始终含有直角,常构造直角与斜直角配合,得到同角的余角相等;再配合构造的其他直角证明相似,所求目标往往和比例关系相关.④平行结构A BEF所求目标为线段间的比例关系,题目中没有相似三角形,往往考虑利用平行线构造相似求解.【参考答案】➢巩固练习1.(1)EP=EQ,证明略;(2)12EP EQ=,证明略;(3)1EP EQm=.2.(1)都成立,证明略;(2)一定成立,证明略;(3)58 DFFA=.3.(1)①DE∥AC;②S1=S2.(2)证明略;(3)BF.。
专题10类比、拓展探究题-备战2022年中考数学母题题源解密(全国通用)(解析版)
专题10 类比、拓展探究题考向1 图形旋转引起的探究【母题来源】2021年中考日照卷【母题题文】问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为.【试题解析】解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA,∴cos∠ABD,如图2,设AB与DF交于点O,AE与DF交于点H,∵△BEF绕点B按逆时针方向旋转90°,∴∠DBF=∠ABE=90°,∴△FBD∽△EBA,∴,∠BDF=∠BAE,又∵∠DOB=∠AOF,∴∠DBA=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°,故答案为:,30°;(2)结论仍然成立,理由如下:如图3,设AE与BD交于点O,AE与DF交于点H,∵将△BEF绕点B按逆时针方向旋转,∴∠ABE=∠DBF,又∵,∴△ABE∽△DBF,∴,∠BDF=∠BAE,又∵∠DOH=∠AOB,∴∠ABD=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G,∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°,∴BE,AD=2,DB=4,∵∠EBF=30°,EF⊥BE,∴EF=1,∵D、E、F三点共线,∴∠DEB=∠BEF=90°,∴DE,∵∠DEA=30°,∴DG DE,由(2)可得:,∴,∴AE,∴△ADE的面积AE×DG;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G,同理可求:△ADE的面积AE×DG;故答案为:或.【命题意图】等腰三角形与直角三角形;矩形菱形正方形;平移、旋转与对称;图形的相似;推理能力。
类比探究专题训练
类比探究专题训练1. 已知OM 是∠AOB 的平分线,点P 是射线OM 上一点,点C ,D 分别在射线OA ,OB 上,连接PC ,PD . (1)发现问题如图1,当PC ⊥OA ,PD ⊥OB 时,则PC 与PD 的数量关系是_________. (2)探究问题如图2,点C ,D 在射线OA ,OB 上滑动,且∠AOB =90°,当PC ⊥PD 时,PC 与PD 在(1)中的数量关系还成立吗?说明理由.图1CBA ODM P图2D OBPM A C2. 如图,AD ∥BC ,若∠ADP =∠α,∠BCP =∠β,射线OM 上有一动点P .(1)当点P 在A ,B 两点之间运动时,∠CPD 与∠α,∠β之间有何数量关系?请说明理由.(2)如果点P 在A ,B 两点外侧运动时(点P 与点A ,B ,O 三点不重合),请你直接写出∠CPD 与∠α,∠β之间的数量关系.备用图ON MD CBA3. 已知:如图,直线a ∥b ,直线c 与直线a ,b 分别相交于C ,D 两点,直线d与直线a ,b 分别相交于A ,B 两点,点P 在直线AB 上运动(不与A ,B 两点重合).(1)如图1,当点P 在线段AB 上运动时,总有:∠CPD =∠PCA +∠PDB ,请说明理由;(2)如图2,当点P 在线段AB 的延长线上运动时,∠CPD ,∠PCA ,∠PDB 之间有怎样的数量关系,并说明理由;(3)如图3,当点P 在线段BA 的延长线上运动时,∠CPD ,∠PCA ,∠PDB 之间又有怎样的数量关系(只需直接给出结论)?图1d DC B AP abc 图2c baP A B C Dd 图3c baP A BC Dd4. 综合与实践:(1)如图,已知:在等腰直角△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E .小明观察图形特征后猜想线段DE ,BD 和CE 之间存在DE =BD +CE 的数量关系,请你判断他的猜想是否正确,并说明理由.(2)如图,将(1)中的条件改为:△ABC 为等边三角形,D ,A ,E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =60°,请问结论DE =BD +CE 是否成立?并说明理由.(3)如图,若将(1)中的三角形变形为一般的等腰三角形,△ABC 中,AB =AC ,∠BAC =α,其中α为任意锐角或钝角,D ,A ,E 三点都在直线m 上.问:满足什么条件时,结论DE =BD +CE 仍成立?直接写出条件即可.EDCBAm图1BD A CEm图2mA BCDE图35. 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,△ADC 和△CEB 全等吗?请说明理由.(2)聪明小亮发现,当直线MN 绕点C 旋转到图1的位置时,可得DE =AD +BE ,请你说明其中的理由.(3)小亮将直线MN 绕点C 旋转到图2的位置,线段DE ,AD ,BE 之间存在着什么的数量关系,请写出这一关系,并说明理由.的图1EDCBAMN 图2EDC BAMN6. 阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD的取值范围.小聪同学是这样思考的:延长BD 至E ,使DE =BD ,连接CE .利用全等将边AB 转化到CE ,在△BCE 中利用三角形三边关系即可求出中线BD 的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是______________;中线BD 的取值范围是_______________.(2)问题解决:如图2,在△ABC 中,点D 是AC 的中点,点M 在AB 边上,点N 在BC 边上,若DM ⊥DN .求证:AM +CN >MN .(3)问题拓展:如图3,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,探索BD 与MN 的关系,并说明理由.图1ED C BANM图2ABC D 图3NMD C BA7. 乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧!点C 是直线l 1上一点,在同一平面内,乐乐他们把一个等腰直角三角板ABC 任意摆放,其中直角顶点C 与点C 重合,过点A 作直线l 2⊥l 1,垂足为点M ,过点B 作l 3⊥l 1垂足为N .(1)如图1时,线段BN ,AM 与MN 之间的数量关系是__________________(不必说明理由);(2)当直线l 2,l 3,位于点C 的右侧时,如图2,判断线段BN ,AM 与MN 之间的数量关系,并说明理由;(3)当直线l 2,l 3,位于点C 的左侧时,如图3,请你补全图形,并直接写出线段BN ,AM ,MN 之间的数量关系.图1图2图3l 3NMl 1l 2ABCl 3C BAl 2l 1MNl 3l 2l 1MN8. (1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .请直接写出线段EF ,BE ,FD 之间的数量关系:____________;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是边BC ,CD所在直线上的点,且∠EAF =12∠BAD .请直接写出线段EF ,BE ,FD 之间的数量关系:______________.图1FE D CBAABCD E F图2ABCD备用图ABCD备用图9.认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠1+∠2)=180°-(90°-12∠A)=90°+12∠A.(1)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.(2)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO 的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO 和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)图1CBAO12图2CBAOD 图3EDOAB C图4DCBAO10. (1)如图1,已知四边形ABCD 为长方形,∠CAB 和∠ABD 的平分线恰好交于CD 边上的点E ,试判断:AB ___________AC +BD (填﹥,﹤或=); (2)如图2,已知AC ∥BD ,EA ,EB 分别平分∠CAB 和∠ABD ,CD 过点E ,且CD ⊥AC 试探究AB ,AC 与BD 之间的数量关系,并说明理由; (3)如图3,在(2)题中,如果没有“CD ⊥AC ”这个条件,(2)题的结论还成立吗,请说明理由.图1EDCBAEDCBA图2图3ABCDE11. 已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,过点C 的直线交MN 于点D ,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线与∠DCA 的平分线交于点P ,求∠BOC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线与∠DCA 的平分线交于点P ,求∠BPC 的度数;(3)当点C 在点C 左边且点D 在点B 左边时,∠DBA 的平分线与∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.图1图2图3DCBAMNGHP PH GNMABCDHGNMAB12. 如图1,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,以AD 为直角边且在AD 的上方作等腰直角三角形ADF ,连接CF . (1)若AB =AC ,∠BAC =90°.①当点D 在线段BC 上时(与点B 不重合),试探究CF 与BD 的数量关系和位置关系,并说明理由.②当点D 在线段BC 的延长线上时,①中的结论是否仍然成立,请在图2中画出相应图形并直接写出你的猜想.(2)如图3,若AB ≠AC ,∠BAC ≠90°,∠BCA =45°,点D 在线段BC 上运动,试探究CF 与BC 的位置关系,并说明理由.图1DC BAF图2ABC图3DC BAF13. 已知△ABC 是直角三角形,∠BAC =90°,AB =AC ,直线l 经过点A ,分别过点B ,C 向直线l 作垂线,垂足分别为D ,E .(1)如图1,当点B ,C 位于直线l 同侧时,证明:△ABD ≌△CAE . (2)如图2,若点B ,C 在直线l 的异侧,其他条件不变,△ABD ≌△CAE 是否依然成立?请说明理由.(3)图形变式:如图3,锐角△ABC 中,AB =AC ,直线l 经过点A ,点D ,E 分别在直线l 上,点B ,C 位于l 的同一侧,如果∠CEA =∠ADB = ∠BAC ,请找到图中的全等三角形,并直接写出线段ED ,EC ,DB 的数量关系.的图1lA BCDE图2ED CBA ll图3ECA DB14. 平面内的两条直线有相交和平行两种位置关系.(1)观察与思考:如图1,若AB ∥CD ,点P 在AB ,CD 外部,∠BPD ,∠B ,∠D 之间的数量关系为__________________. (2)猜想与证明:①将点P 移到AB ,CD 内部,如图2,则∠BPD ,∠B ,∠D 之间有何数量关系?请证明你的结论;②在图2中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图3,则∠BPD ,∠B ,∠PDQ ,∠BQD 之间有何数量关系?请证明你的结论.(3)拓展与应用:在图4中,∠A +∠B +∠C +∠D +∠E +∠F =___________.图1A B CDOPABCD P图2AB C DP Q图3AB CDEF 图415. 已知直线AB ∥CD ,点M ,N 分别在直线AB ,CD 上,点E 为平面内一点.(1)如图1,∠BME ,∠E ,∠END 的数量关系为______(直接写出答案); (2)如图2,∠BME =m °,EF 平分∠MEN ,NP 平分∠END ,EQ ∥NP ,求 ∠FEQ 的度数(用含m 的式子表示);(3)如图3,点G 为CD 上一点,∠BMN =n ∠EMN ,∠GEK =n ∠GEM ,EH ∥MN 交AB 于点H ,探究∠GEK ,∠BMN ,∠GEH 之间的数量关系(用含n 的式子表示).图1图2图3A BC DMENFQ PNME DCBA KH GA BCDE N M。
中考复习数学--类比探究专题
类比探究专题1. 如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在边AB ,AC上,AD =AE ,连接DC ,BE ,点P 为DC 的中点. (1)观察猜想图1中,线段AP 与BE 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出线段AP 的取值范围.(1)操作:如图1,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图1画出一对以点O 为对称中心的全等三角形.(不写画法)根据上述操作得到的经验完成下列探究活动:(2)探究一:如图2,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE =∠EAF ,AF 与DC 的延长线相交于点F .试探究线段AB 与AF ,CF 之间的等量关系,并证明你的结论. (3)探究二:如图3,DE ,BC 相交于点E ,BA 交DE 于点A ,且BE :EC =1:2,∠BAE =∠EDF ,CF ∥AB .若AB =5,CF =1,求DF 的长度.PEDA BC 图1PEDABC图2图1M NQ PO图2F EDC B AAB C D E F图32.特殊:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为_________________;②线段BC,DE的位置关系为_________________.一般:(2)如图2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图3,在等边三角形ABC中,作BM平分∠ABC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD,AE.若AB=4,当△ADM 与△AFD全等时,请直接写出DE的值.M F ED CB A图1EMDCBA图2MFEDC BA图33. 已知△ABC 中,CA =CB ,0°<∠ACB ≤90°.点M ,N 分别在边CA ,CB 上(不与端点重合),BN =AM ,射线AG ∥BC 交BM 延长线于点D ,点E 在直线AN 上,EA =ED .(1)【观察猜想】如图1,点E 在射线NA 上,当∠ACB =45°时, ①线段BM 与AN 的数量关系是_________; ②∠BDE 的度数是____________.(2)【探究证明】如图2,点E 在射线AN 上,当∠ACB =30°时,判断并证明线段BM 与AN 的数量关系,求∠BDE 的度数;(3)【拓展延伸】如图3,点E 在直线AN 上,当∠ACB =60°时,AB =3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F ,请直接写出线段CF 的长.图1A B CD ENMG图2AB CD MN EG 图3A BCG4.如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=__________.(2)数学思考:①如图2,若点E在线段AC上,则DEDF=__________(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明.(3)拓展应用:若ACBC=DF=CE的长.FEDC BA图1图2ABCDEFDB FECA图3DC BA备用图5. (1)【问题发现】如图1,△ABC 和△CEF 都是等腰直角三角形,∠BAC =∠EFC =90°,点E 与点A 重合,则线段BE 与AF 的数量关系为__________; (2)【拓展研究】在(1)的条件下,将△CEF 绕点C 旋转,连接BE ,AF ,线段BE 与AF 的数量关系有无变化?仅就图2的情形给出证明; (3)【问题发现】当AB =AC =2,△CEF 旋转到B ,E ,F 三点共线时,直接写出线段AF 的长.(1)问题发现:如图1,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 的中点,以点D 为顶点作正方形DFGE ,使点A ,C 分别在DE 和DF 上,连接BE ,AF ,则线段BE 和AF 数量关系是________.(2)类比探究:如图2,保持△ABC 固定不动,将正方形DFGE 绕点D 旋转α(0<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC =DF =2,在(2)的旋转过程中,连接AE ,请直接写出AE 的最大值.F图1CBA (E )EABC图2F备用图CBA图1A BC DEF G图2GFED CB A 备用图A BC DEFG6.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是__________,CE与AD的位置关系是__________.(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明).(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=BE= ADPE的面积.(直接写出结果)P EDCBA图1图2ABCDEPPEDCBA图3图4ABCDEP7. (1)操作发现如图1,AD 是等边三角形ABC 的角平分线,请你按下列要求画图:过点A 作AM ⊥AB ,过点C 作CN ∥AB ,AM 与CN 相交于点E .则AD 与AE 的数量关系是________,∠EAC =________°. (2)问题探究将图1中的△AEC 绕点A 逆时针旋转,点C 落在点F 的位置,连接EC ,DF ,如图2所示,请你探究DF 与EC 的数量关系并说明理由. (3)拓展延伸若(2)中等边△ABC 的边长为2,当F A ⊥AC 时,请直接写出DF 2的值.在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是边AB ,AC 的中点,若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)问题发现如图1,当α=90°时,线段BD 1的长等于__________,线段CE 1的长等于__________. (2)探究证明如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1. (3)问题解决求点P 到AB 所在直线的距离的最大值.(直接写出结果)图1AB CD图2EFDCBA备用图CBAE1(D1)ABCDE PEDCBAD1E1图2图18. 如图1,在正方形ABCD 和正方形AB′C′D′中,AB =2,AB′=,连接CC′.(1)问题发现:CC BB'='__________;(2)拓展探究:将正方形AB′C′D′绕点A 逆时针旋转,记旋转角为θ,连接BB′,试判断:当0°≤θ<360°时,CC BB ''的值有无变化?请仅就图2中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C ,C′,D′三点共线时BB′的长.问题发现:如图1,△ABC 是等边三角形,点D 是边AB 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 的数量关系为___________;拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明;问题解决:如果△ABC的边长等于AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.D′C′B′ABCD 图1图2DCBA B′C′D′A BCD备用图图1EDCBA 图2ABCDE备用图E D A9. 如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形;②推断AGBE的值为_______.(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H .若AG =6,GH=BC =________.GFDC BAE图1ABCD EFG图2H GF EDCBA 图310. (1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB,PC =2.求∠BPC 的度数. 为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得△AP′C ,连接PP′,则PP′的长为__________;在△P AP′中,易证∠P AP′=90°,且∠PP′A 的度数为__________,综上可得∠BPC 的度数为__________. (2)类比迁移 如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB,PC =1.求∠APC 的度数. (3)拓展应用如图3,在四边形ABCD 中,BC =3,CD =5,AB =AC =12AD ,∠BAC =2∠ADC ,请直接写出BD 的长.P′ABCP图1图2P CBAD图3C BA11. 如图,在□ABCD 中,AC 与BD 交于点O ,以点O 为顶点的∠EOF 的两边分别与边AB ,AD 交于点E ,F ,且∠EOF 与∠BAD 互补. (1)观察猜想若四边形ABCD 是正方形,则线段OE 与OF 有何数量关系?请直接写出结论.(2)延伸探究若四边形ABCD 是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由. (3)拓展证明若AB :AD =m :n ,探索线段OE 与OF 的数量关系,并证明你的结论.(1)阅读理解:如图1,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系为_____________;(2)问题探究:如图2,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图3,AB ∥CF ,AE 与BC 交于点E ,BE :EC =2:3,点D 在线段AE 上,且∠EDF =∠BAE ,试判断AB ,DF ,CF 之间的数量关系,并证明你的结论.A BCDOEFABCD EF图1ABCDE F图2A BCDE F图312. 如图1,菱形ABCD 与菱形GECF 的顶点C 重合,点G 在对角线AC 上,且∠BCD =∠ECF =60°. (1)问题发现: AGBE的值为__________. (2)探究与证明:将菱形GECF 绕点C 按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:菱形GECF 在旋转过程中,当点A ,G ,F 三点在一条直线上时,如图3所示,连接CG 并延长,交AD 于点H ,若CE =2,GHAH 的长为__________.已知∠AOB =90°,点C 是∠AOB 的角平分线OP 上的任意一点,现有一个直角∠MCN 绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD ⊥OA ,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由.(2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.图1AB CDEFGG FE DCB A图2H图3AB CD E FG(3)如图3,若点D 在射线OA 的反向延长线上,且OD =2,OE =8,请直接写出线段CE 的长度.图1OABC D EMPN N PMED CBAO图2图3O ABCD E MPN13.如图,在矩形ABCD中,AB=8,AD=6,点E,F分别是边DC,DA的中点,四边形DFGE为矩形,连接BG.(1)问题发现在图1中,CEBG__________.(2)拓展探究将图1中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图2的情形给出证明. (3)问题解决当矩形DFGE 旋转至B ,G ,E 三点共线时,请直接写出线段CE 的长.GFED CBA 图1图2ABCDEFG备用图ABCD14. 四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD 等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD 中,AB =AD ,CB =CD ,则AC 与BD 的位置关系是__________,请说明理由.(2)试探究图1中四边形ABCD 的两组对边AB ,CD 与BC ,AD 之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接CE ,BG ,GE ,已知AC =4,AB =5,求GE 的长.观察猜想(1)如图1,在Rt △ABC 中,∠BAC =90°,AB =AC =3,点D 与点A 重合,点E 在边BC 上,连接DE ,将线段DE 绕点D 顺时针旋转90°得到线段DF ,连接BF ,BE 与BF 的位置关系是_________,BE +BF =_________; 探究证明(2)在(1)中,如果将点D 沿AB 方向移动,使AD =1,其余条件不变,如图2,判断BE 与BF 的位置关系,并求BE +BF 的值,请写出你的理由或计算过程; 拓展延伸ABCD图1图2DCB AABCDEFG图3(3)如图3,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BA 的延长线上,BD =n ,连接DE ,将线段DE 绕着点D 顺时针旋转,旋转角∠EDF =α,连接BF ,则BE +BF 的值是多少?请用含有n ,α的式子直接写出结论.图1A (D )B CE FD FE C B A 图2图3A C D E F。
2020年中考数学一轮复习题型09几何类比、拓展、探究题(原卷版)
题型09 几何类比、拓展、探究题一、解答题1.如图1,ABC ∆(12AC BC AC <<)绕点C 顺时针旋转得DEC ∆,射线AB 交射线DE 于点F . (1)AFD ∠与BCE ∠的关系是 ;(2)如图2,当旋转角为60°时,点D ,点B 与线段AC 的中点O 恰好在同一直线上,延长DO 至点G ,使OG OD =,连接GC .①AFD ∠与GCD ∠的关系是 ,请说明理由;②如图3,连接,AE BE ,若45ACB ∠=o ,4CE =,求线段AE 的长度.2.(问题)如图1,在Rt ABC V 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点A B 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.3.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图 1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6 ,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图 2,任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结B N′并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2 中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,于波利业线B N上截取NE=NM,连结EQ,EM(如图 3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.4.问题提出:如图,图①是一张由三个边长为1 的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为 1 的小正方形,其中a≥2 ,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2× 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2 个位置不同的2 ×2方格,依据探究一的结论可知,把图①放置在3×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有2 ×4=8种不同的放置方法.探究三:把图①放置在a ×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a ×2 的方格纸中,共可以找到______个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a× 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有______种不同的放置方法.探究四:把图①放置在a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a ×3 的方格纸中,共可以找到______个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_____种不同的放置方法.……问题解决:把图①放置在a ×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2 ,b≥2 ,c≥2 ,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1 的小立方体.在图⑧的不同位置共可以找到______个图⑦这样的几何体.5.在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D ,(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN ∠=︒,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=;6.如图,正方形ABDE 和BCFG 的边AB ,BC 在同一条直线上,且2AB BC =,取EF 的中点M ,连接MD ,MG ,MB .(1)试证明DM MG ⊥,并求MBMG的值. (2)如图,将如图中的正方形变为菱形,设()2090EAB αα∠=<<︒,其它条件不变,问(1)中MBMG的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.7.定义:有一组邻边相等且对角互补的四边形叫做等补四边形. 理解:()1如图1,点A B C ,,在O e 上,ABC ∠的平分线交O e 于点D ,连接AD CD ,.求证:四边形ABCD 是等补四边形; 探究:()2如图2,在等补四边形ABCD 中AB AD ,=,连接AC AC ,是否平分?BCD ∠请说明理由. 运用:()3如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点105F CD AF ,=,=,求DF 的长.8.已知V ABC 内接于O e ,BAC ∠的平分线交O e 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=o 时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ; (2)如图②,当90BAC ∠=o 时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论; (3)如图③,若BC =5,BD =4,求ADAB AC+ 的值.9.如图,在ABC ∆中,AB BC =,AD BC ⊥于点D ,BE AC ⊥于点E ,AD 与BE 交于点F ,BH AB ⊥于点B ,点M 是BC 的中点,连接FM 并延长交BH 于点H .(1)如图①所示,若30ABC ∠=o ,求证:DF BH +=; (2)如图②所示,若45ABC ∠=o ,如图③所示,若60ABC ∠=o (点M 与点D 重合),猜想线段DF 、BH 与BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.10.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)11.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB AD =,CB CD =,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线AC 、BD 交于点O ,AC BD ⊥.试证明:2222AB CD AD BC +=+;(3)解决问题:如图3,分别以Rt ACB V 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长.12.(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.13.如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP FD =.(1)求AFAP的值; (2)如图1,连接EC ,在线段EC 上取一点M ,使EM EB =,连接MF ,求证:MF PF =; (3)如图2,过点E 作EN CD ⊥于点N ,在线段EN 上取一点Q ,使AQ AP =,连接BQ ,BN .将AQB ∆绕点A 旋转,使点Q 旋转后的对应点'Q 落在边AD 上.请判断点B 旋转后的对应点'B 是否落在线段BN 上,并说明理由.14.在ABC ∆中,90ABC ∠=︒,ABn BC=,M 是BC 上一点,连接AM (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM BN =(2)过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BMPQ BQ=②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示)15.⑴如图1,E 是正方形ABCD 边AB 上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G . ①线段DB 和DG 的数量关系是 ; ②写出线段BE BF 、和DB 之间的数量关系.⑵当四边形ABCD 为菱形,ADC 60∠=o ,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段上时,请探究线段BE BF 、和BD 之间的数量关系,写出结论并给出证明; ②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ;若 BE 1,AB 2==,直接写出线段GM 的长度.16.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==,证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD Y 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD Y 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD Y 的面积为 .17.如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称'PAB ∆,设点P 的运动时间为()t s(1)若AB =①如图2,当点B ’落在AC 上时,显然△PCB ’是直角三角形,求此时t 的值②是否存在异于图2的时刻,使得△PCB ’是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由(2)当P 点不与C 点重合时,若直线PB ’与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠P AM =45°成立,试探究:对于t >3的任意时刻,结论∠P AM =45°是否总是成立?请说明理由.18.在等腰三角形ABC ∆中,AB AC =,作CM AB ⊥交AB 于点M ,BN AC ⊥交AC 于点N . (1)在图1中,求证:BMC CNB ∆≅∆;(2)在图2中的线段CB 上取一动点P ,过P 作//PE AB 交CM 于点E ,作//PF AC 交BN 于点F ,求证:PE PF BM +=;(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作//PE AB 交CM 的延长线于点E ,作//PF AC 交NB 的延长线于点F ,求证:···AM PF OM BN AM PE +=.19.问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.20.箭头四角形,模型规律:如图1,延长CO 交AB 于点D ,则1BOC B A C B ∠∠+∠∠+∠+∠==..因为凹四边形ABOC 形似箭头,其四角具有“BOC A B C ∠∠+∠+∠=”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用:(1)直接应用:①如图2,A B C D E F ∠+∠+∠+∠+∠+∠= .②如图3,ABE ACE ∠∠、的2等分线(即角平分线)BF CF 、交于点F ,已知12050BEC BAC ∠=∠=o o ,,则BFC ∠=③如图4,i i BO CO 、分别为ABO ACO ∠∠、的2019等分线12320172018i =⋯(,,,,,).它们的交点从上到下依次为1232018O O O O ⋯、、、、.已知BOC m BAC n ∠=∠=o o ,,则1000BO C ∠= 度 (2)拓展应用:如图5,在四边形ABCD 中,2BC CD BCD BAD =∠=∠,.O 是四边形ABCD 内一点,且OA OB OD ==.求证:四边形OBCD 是菱形.21.如图1,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现 ① 当0α︒=时,AEBD= ;② 当时,AEBD= (2)拓展探究试判断:当0°≤α<360°时,AEDB的大小有无变化?请仅就图2的情况给出证明. (3)问题解决当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长.22.操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)23.如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,.CD)24.(1)(探究发现)如图1,EOF ∠的顶点O 在正方形ABCD 两条对角线的交点处,90EOF ︒∠=,将EOF ∠绕点O 旋转,旋转过程中,EOF ∠的两边分别与正方形ABCD 的边BC 和CD 交于点E 和点F (点F 与点C ,D 不重合).则,,CE CF BC 之间满足的数量关系是 . (2)(类比应用)如图2,若将(1)中的“正方形ABCD ”改为“120BCD ∠=o 的菱形ABCD ”,其他条件不变,当60EOF ∠=o 时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由. (3)(拓展延伸)如图3,120BOD =o ∠,34OD =,4OB =,OA 平分BOD ∠,AB =且2OB OA >,点C 是OB 上一点,60CAD ∠=o ,求OC 的长.25.根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①条边成比例的两个凸四边形相似;( 命题) ②三个角分别相等的两个凸四边形相似;( 命题) ③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,111111AB BC CDA B B C C D ==,求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFDE 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.26.在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .(1)如图1,当EF ∥BC 时,求证:1BE CFAE AF+=; (2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.27.如图,在等腰Rt ABC V 中,90,ACB AB ∠==o 点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90º得到EF .(1)如图1,若AD BD =,点E 与点C 重合,AF 与DC 相交于点O .求证:2BD DO =. (2)已知点G 为AF 的中点.①如图2,若,2AD BD CE ==,求DG 的长.②若6AD BD =,是否存在点E ,使得DEG △是直角三角形?若存在,求CE 的长;若不存在,试说明理由.28.(1)方法选择如图①,四边形ABCD 是O e 的内接四边形,连接AC ,BD ,AB BC AC ==.求证:BD AD CD =+. 小颖认为可用截长法证明:在DB 上截取DM AD =,连接AM …小军认为可用补短法证明:延长CD 至点N ,使得DN AD =…请你选择一种方法证明.(2)类比探究(探究1)如图②,四边形ABCD 是O e 的内接四边形,连接AC ,BD ,BC 是O e 的直径,AB AC =.试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论.(探究2)如图③,四边形ABCD 是O e 的内接四边形,连接AC ,BD .若BC 是O e 的直径,30ABC ∠=︒,则线段AD ,BD ,CD 之间的等量关系式是______.(3)拓展猜想如图④,四边形ABCD 是O e 的内接四边形,连接AC ,BD .若BC 是O e 的直径,::::BC AC AB a b c =,则线段AD ,BD ,CD 之间的等量关系式是______.29.(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.①求证:DQ AE =; ②推断:GF AE的值为 ; (2)类比探究:如图(2),在矩形ABCD 中,BC k AB =(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE CP 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP ∠=,GF =CP 的长.30.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当60α︒=时,BD CP 的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BD CP 的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP的值.。
中考数学类比拓展探究题 (2)
河南中考数学类比拓展探究题 第1页河南中考数学 类比拓展探究题1. 在正方形ABCD 中,BD 是一条对角线,点E 在直线CD 上(与点C ,D 不重合),连接AE ,平移△ADE ,使点D 移动到点C ,得到△BCF ,过点F 作FG ⊥BD 于点G ,连接AG ,EG .(1)问题猜想:如图1,若点E 在线段CD 上,试猜想AG 与EG 的数量关系是__________,位置关系是____________;(2)类比探究:如图2,若点E 在线段CD 的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;(3)解决问题:若点E 在线段DC 的延长线上,且∠AGF =120°,正方形ABCD 的边长为2,请在备用图中画出图形,并直接写出DE 的长度.GF ED C BA图1GF E DCBA图2DCBA 备用图2. 如图1,在Rt △ABC 中,︒=∠90C ,2==BC AC ,点D 、E 分别在边AC 、AB 上,AB DE AD 21==,连结DE .将△ADE 绕点A 沿逆时针方向旋转,记旋转角为θ. (1)问题发现①当︒=0θ时,=CD BE_________; ②当︒=180θ,=CDBE_________.(2)拓展探究试判断:当︒0≤︒<360θ时, CDBE的大小有无变化?请仅就图2的情形给出证明.(3)问题解决①在旋转过程中,BE 的最大值为_________;②当△ADE 旋转至B 、D 、E 三点共线时,线段CD 的长为__________.图 1B图 2B3. 在△ABC 中,∠A =90°,点D 在线段BC 上,∠EDB =21∠C ,BE ⊥DE ,垂足为E ,DE 与AB 相交于点F . (1)当AB =AC 时,(如图1), ①∠EBF =_________;②探究线段BE 与FD 的数量关系,并加以证明; (2)当AB =kAC 时(如图2),求FDBE的值(用含k 的式子表示).。
中考数学题型八 类比、拓展探究题
=2.
考法
类型1 “手拉手”模型
模型讲解
典例剖析
高分技法
解决类比探究题的一般思路 第一问通过操作发现,找到解决问题的思路和方法; 第二问通常是在第一问的基础上,改变其中的一个条件,只需观察改变的条 件,即可利用同样的思路解决问题; 第三问通常将原题中的特殊情况推广到一般情况,利用前两问的做题思路进 行求解.
参考答案 (1)①1 ②40° 解法提示:①∵∠AOB=∠COD,∴∠BOD=∠AOC, 又∵OC=OD,OA=OB, ∴△AOC≌△BOD,(此为“手拉手”模型3的应用,△OAB和△OCD是共顶点相似三角形,AC,BD 是“拉手线”) ∴AC=BD,∠OBD=∠OAC,∴ =1.
考法
类型1 “手拉手”模型
模型2:
1.△AOB≌△COD(两三 角形重 合 ),OA≠OB,∠AOB=α;2. 将△COD绕点O旋转, 直线AC,BD交于点E,夹 角为β.
1.点A,O,C不共线时,有 △AOC∽△BOD,△AOC和△BOD均 为等腰三角形; 2.当α≤90°时,β=α,当
α>90°时,β=180°-α; 3.点E在△OAB的外接圆上.
模型讲解
典例剖析
高分技法
②设BD,OA交于点N,∵∠MNA=∠ONB,∠OBD=∠OAC,
∴∠AMB=∠AOB=40°.(“拉手线”AC,BD所在直线所夹锐角与∠AOB相等)
(2)
,∠AMB=90°.
理由如下:
∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°,
∴
,∠COD+∠AOD=∠AOB+∠AOD,即∠AOC=∠BOD,
则△APD∽△ABC,∴∠APD=∠ABC=30°,∠ADP=∠ACB=90°,
第2部分题型9 类比、拓展探究题 考点命题解读-2021年中考数学一轮复习课件(河南专用)
解:(1)AB,CE,BD,DC之间的数量关系是DABC=BCDE. 理由如下:∵△ABC是等边三角形, ∴∠B=∠C=60°, ∴∠BAD+∠ADB=180°-60°=120°. ∵∠ADE=60°, ∴∠CDE+∠ADB=180°-60°=120°, ∴∠BAD=∠CDE, ∴△ABD∽△DCE,
∴△O′PE≌△FPC(AAS), ∴O′E=FC=O′A,O′P=FP, ∴AB-O′A=BC-FC, 即BO′=BF, ∴△O′BF为等腰直角三角形, ∴BP⊥O′F,O′P=BP, ∴△BPO′也为等腰直角三角形. 又∵点Q为O′B的中点, ∴PQ⊥O′B,且PQ=BQ, ∴△PQB的形状是等腰直角三角形.
题型九 类比、拓展探究题
命题非常解读
与图形变换有关的探究
(2020·贵州安顺)如图,四边形ABCD是正方形,点O为对角线AC的
中点.
(1)问题解决
如图1,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量
关系是 PQ=12BO ,位置关系是 PQ⊥BO
.
(2)问题探究 如图2,△AO′E是将图1中的△AOB绕点A按顺时针方向旋转45°得到的三角 形,连接CE,点P,Q分别为CE,BO′的中点,连接PQ,PB.判断△PQB的形 状,并证明你的结论. (3)拓展延伸 如图3,△AO′E是将图1中的△AOB绕点A按逆时针方向旋转45°得到的三角 形,连接BO′,点P,Q分别为CE,BO′的中点,连接PQ,PB.若正方形ABCD 的边长为1,求△PQB的面积.
☞思路分析 (1)由正方形的性质,得 BO⊥AC,BO=CO.由中位线定理,得 PQ∥OC,PQ=12OC,则可得出结论;(2)连接 O′P 并延长交 BC 于点 F.由旋转 的性质得出△AO′E 是等腰直角三角形,O′E∥BC,O′E=O′A,证得∠O′EP =∠FCP,∠PO′E=∠PFC,△O′PE≌△FPC(AAS),则 O′E=FC=O′A, O′P=FP,证得△O′BF 为等腰直角三角形,进而△BPO′也为等腰直角三角 形,则可得出结论;(3)延长 O′E 交 BC 边于点 G,连接 PG,O′P.证明△O′GP ≌△BCP(SAS),得出∠O′PG=∠BPC,O′P=BP,得出∠O′PB=90°,则 △O′PB 为等腰直角三角形,由直角三角形的性质和勾股定理可求出 O′A 和 O′B,求出 PQ,BQ,由三角形面积公式即可得出答案.
第八题类比探究专练之旋转结构
第八题类比探究专练之旋转结构旋转结构,简而言之,就是物体在空间中以其中一个点为旋转中心,在平面上旋转一定的角度。
这种结构在实际生活中非常常见,例如,机械装置中的转盘、水泵的转子、电动风扇的叶片等等,都属于旋转结构。
本文将通过类比的方式来探究旋转结构的原理和特点。
我们可以类比一台电动风扇来理解旋转结构。
电动风扇由电机、叶片和机架三部分组成,其中叶片是旋转结构的核心部分。
当电机得到电能供给时,会通过传动装置将电能转化为机械能,然后传递给叶片,使其开始旋转。
这个过程可以类比为现实中的旋转结构。
在旋转结构中,旋转中心是非常关键的概念。
它是物体旋转的轴心,在平面上通常是一个点。
在电动风扇中,电机的转轴就是旋转中心。
另外,旋转角度也是一个重要的参数,它表示物体旋转的大小。
在电动风扇中,转动叶片的角度决定了风扇的风力大小。
旋转中心和旋转角度共同决定了旋转结构的特点和性能。
旋转结构具有一些共同的特点。
首先,旋转结构具有很强的灵活性和变化性,可以通过改变旋转中心和旋转角度来实现对物体运动轨迹的控制。
在电动风扇中,我们可以通过调节叶片的角度来控制风向和风力。
其次,旋转结构具有高效的能量转换能力,可以将一种能量转化为另一种能量。
例如,电动风扇将电能转化为机械能,从而产生风力。
最后,旋转结构在实际应用中具有广泛的用途,不仅在家电领域有应用,在工业生产中也非常常见。
例如,工厂中的机械设备、电机等都采用了旋转结构。
除了电动风扇,还可以通过类比其他实例来进一步理解旋转结构。
例如,螺旋桨就是一种旋转结构。
螺旋桨通过转动产生的推力来推动船只或飞机等运输工具。
旋转中心就是螺旋桨的中心点,旋转角度则决定了推力的大小。
螺旋桨的旋转结构非常高效,能够产生强大的推力,使得运输工具能够顺利前进。
除了机械装置,生物体中也存在类似的旋转结构。
例如,植物的花转子是一种旋转结构。
花转子通常由多个花瓣组成,它们围绕旋转中心旋转,展示出美丽的花朵。
旋转中心和旋转角度决定了花转子的旋转速度和方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型七:第22题类比、拓展探究题
命题规律总结:类比、拓展、探究近8年共考查6次,其中2009年,2010年未考查,设题的背景为特殊三角形(2013----2016)和特殊四边形(2012和2010年)常涉及旋转、折叠,利用全等相似的知识加以解决。
典例精讲
例题(16年河南22题).(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐
标.
【分析】
(1)(思路分析)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;
解:CB的延长线上,a+b
【解法提示】:(1)∵点A为线段BC外一动点,且BC=a,AB=b,
∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为
BC+AB=a+b,
故答案为:CB的延长线上,a+b;
(2)(思路分析)①根据等边三角形的性质得到AD=AB,AC=AE,∠
BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到
CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;
解:①CD=BE,
理由:∵△ABD与△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD与△EAB中,,
∴△CAD≌△EAB,
∴CD=BE;
②∵线段BE长的最大值=线段CD的最大值,
由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)(思路分析)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.
解:2,P(2﹣,).
(解法提示)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,
则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=AP=2,
∴最大值为2+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE=,
∴OE=BO﹣﹣3=2﹣,
∴P (2﹣,).
【方法指导】对于类比探究题,一般会有三问,每一问都是对前一问的升华和知识迁移应用,因此,在做这类题时,应从第(1)问开始,逐步进行,对于每一问都不能跳跃.一般地,第(1)问中,通过操作发现,找出解决问题的方法,可以利用全等或者相似进行求解,注意这一问有时会因为简单而不要求写出求解过程(如:直接写出结论等),但对于考生而言,最好能不怕麻烦,将其解决过程完全呈现,从而找出其中演变的方法和思路;对于第(2)问,通过改变第(1)问的某个条件来计算求值,这样可以在做第(1)问的基础上,将变化的条件代入其中,观察其变化的特点;第(3)问一般是在原题设的情景下,将条件改变,而应用相同的解题思路做题,因此,可以沿用第(1)问的解题方法,或者反方向思维,找出解决第(3)问的方法加以求解. 试题演练
1. (15长春)在矩形ABCD 中,已知AD >AB .在边AD 上取点E ,使AE =AB ,连接CE ,过点E 作EF ⊥CE ,与边AB 或其延长线交于点F .
猜想:如图①,当点F 在边AB 上时,线段AF 与DE 的大小关系为________.
探究:如图②,当点F 在边AB 的延长线上时,EF 与边BC 交于点G .判断线段AF 与DE 的大小关系,并加以证明.
应用:如图②,若AB =2,AD =5,利用探究得到的结论,求线段BG 的长.
第1题图
2.(16郑州二模)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,/EDF =90°,DE 交AC 于点G ,DF 经过点C .
(1)求/ADE 的度数;
(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求QN PM 的值; (3)若图1中∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出
QN PM 的值(用含β的式子表示).
3.(16石家庄一模)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°,
【操作1】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
在旋转过程中,如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.
【操作2】在旋转过程中,如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.
【总结操作】根据你以上的探究结果,试写出当时,EP与EQ满足的数量关系是什么?其中m的取值范围是什么?(直接写出结论,不必证明)m.
第1题
4.(16黄石)在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.
5. (16·陕西)问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
6.(15河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当α=0°时,= ;②当α=180°时,=.
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.
7.(16龙东)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE 之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.。