第二节 集合的基本运算
集合的三种基本运算
集合的三种基本运算集合的三种运算分别是有交集、并集、补集。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。
集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
集合的基本运算:交集、并集、相对补集、绝对补集、子集。
(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。
(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
(3)相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合:其元素属于B但不属于A,B - A= { x| x∈B且x∉A}。
(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。
(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。
符号语言:若∀a∈A,均有a∈B,则A⊆B。
基数:集合中元素的数目称为集合的基数,集合A的基数记作card(A)。
当其为有限大时,集合A称为有限集,反之则为无限集。
一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
假设有实数x < y:①[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;②(x,y):小括号是不包括边界,即表示大于x、小于y的数。
集合的基本运算(二)
(3)A ðU A. 例2.已知U=R,Q={有理数},求 ðU Q. 例3.使用集合A,B的交集、并集、补 集分别表示图中Ⅰ,Ⅱ,Ⅲ,Ⅳ四 个部分所表示的集合. 结论1
痧( A B) ( U A) ( U B) U
例4.设全集为R, A={x∣ x<5}, B={x∣ x>3}.求:
x x U , 且x A
图示
ðU A
U
3.补集的性质:
()A ðU A=U()A ðU A=()ðU=U 1 2 3
(5)痧 U A A
U
ðU A
()ðU U= 4
U
4.例题分析
A ð (2) ðU A, 例1.已知U={1,2,3,4,5,6},A={1,2,3},求(1) U A,
2 (4)若U= 1, 3,a 2a 1 a=________ 1 5
,A={1,3},ðu A ={5}, U
ðU ðU (5)已知A={0,2,4}, u A ={-1,1}, B ={-1, {1,4} 0,2},则B=__ ____________
x x < 1或x (6)设全集U=R , ðu A = x 1 x < 3, 则A=___________ 3 U
思考? (2)中的U改为 x 2 x 6 , 则A=?
x x 1或3 x 4或x 5 则A=____________________________.
ห้องสมุดไป่ตู้
6.小结:
(1)全集: 如果集合U含有我们所要研究的各个集合的全 部元素,这个集合就可以看作一个全集,全集通 常用U表示. (2)补集: ð A = x x U , 且x A U
集合的关系及其基本运算
集合的关系及其基本运算知识精要1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合。
(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。
(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。
记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。
注:空集是任何集合的子集。
Φ⊆A空集是任何非空集合的真子集。
Φ A若A ≠Φ,则Φ A任何一个集合是它本身的子集。
A A ⊆易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。
如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。
如Φ⊆{0}。
不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。
3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。
记作A B (读作“A 交B ”),即A B ={x|x ∈A ,且x ∈B }。
计算机中的集合运算知识讲解
肥东圣泉中学初中部 ● 信息组
计算机中的集合
补集:
一般地,设S中一个集合,A是S的一个子集(即A S),由S中所有
不属于A的元素组成的集合,叫做S中子集A的补集(或余集),
记作 C S A
即 C S A={x│x S,且x
A}.
肥东圣泉中学初中部 ● 信息组
1.4 幂集
计算机中的集合
定义2 设A是集合,A的所有子集组成的集合称为A的幂集, 记为 2A。
集合与集合之间的关系称为包含关系。
肥东圣泉中学初中部 ● 信息组
计算机中的集合
真子集:
对于两个集合A与B,如果A B,并且A
B,
就说集合A是集合B的真子集,记作A
B
(或B
A)
空集是任何非空集合的真子集.
全集: 如果集体S含有所要研究各个集合的全部元素, 这个集合就可以看作一个全集,全集通常用表示I表示.
肥东圣泉中学初中部 ● 信息组
计算机中的集合 肥东圣泉中学初中部 ● 信息组
计算机中的集合
计算机中的集合
肥东圣泉中学初中部 ● 信息组
计算机中的集合
第一节 集合的基本概念
1.1 个体与集合之间的关系 1.2 集合的表示法 1.3 集合与集合之间的关系 1.4 幂集
第二节 集合的基本运算
2.1 集合的补运算 2.2 集合的交运算和并运算 2.3 集合的宏运算
肥东圣泉中学初中部 ● 信息组
2A ={ x x A }
定理1 设集合A是有限集合, A = n,则 2A = 2 A。
定理2 设 A,B 是两个集合。那么 A=B 当且仅当 2A = 2B。
肥东圣泉中学初中部 ● 信息组
第二节 集合的基本运算
集合的基本运算
1.3集合的基本运算知识点一、交集与并集注:(1)并集中的“或”字与生活中的“或”字含义有所不同.(2)并集中的公共元素只能出现一次;交集中的公共元素必须是全部的公共元素;知识点二、全集与补集(1)全集一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.知识点三、德•摩根定律知识点四、集合中元素的个数我们用card 来表示有限集合A 中元素的个数,记作card (A).例如,A={a ,b ,c },则card(A)=3.一般地,对任意两个有限集合A ,B ,C ,有:(1)card (A ⋃B)=card (A)+card (B)-card (A ⋂B).(2)card (A ⋃B ⋃C)=card (A)+card (B)+card (C)-card (A ⋂B)-card (A ⋂C)-card (B ⋂C)+ card (A ⋂B ⋂C).例题讲解一、交集、并集、补集的基本运算1、已知集合{}3,2,1=A ,{}A x x y y B ∈-==,12|,则=⋃B A ( ) A.{}321,, B.{}3211,,,- C.{}5321,,, D.{}5321,,,-2、已知集合{}21|<<-=x x A ,{}1|>=x x B ,则=⋃B A ( )A.{}21|<<-x xB.{}21|<<x xC.{}1|->x xD.{}1|>x x3、已知集合{}6101,,,-=A ,{}R x x x B ∈>=,0|则=⋂B A .4、已知全集{}4,3,2,1=U ,集合{}2,1=A ,集合{}3,2=B ,则()B A C U ⋃=( ) A.{}431,, B.{}43, C.{}3 D.{}45、(1)已知全集U ,集合A={1,3,5,7},C U A={2,4,6},C U B={1,4,6},则集合B= .(2)已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ⋂B={3},(C U B)⋂A={9},则A=( )A.{1,3}B.{3,7,9}C.{3 ,5,9}D.{3,9}6、设全集U={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则(C U A)⋃(C U B)= ( )A. {0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}二、利用集合的运算性质求参数的值或范围1、设集合A={x |x 2-2x =0},B={x |x 2-2a x +a 2-a =0}.(1)若A ⋂B=B ,求实数a 的取值范围;(2)若A ⋃B=B ,求实数a 的值.2、设集合{}1,0,1-=M ,{}2,a a N =,若N N M =⋂,则实数a 的值是( )A.-1B.0C.1D.1或-13、已知集合T 是由关于x 的方程x 2+p x +q=0(p 2-4q >0)的解组成的集合,A={1,3,5,7,9},B={1,4,7,10},且T ⋂A=⍉,T ⋂B=T ,试求实数p 和q 的值.4、已知集合A={x |2a ≤x ≤a +3},B={x |x <-1或x >5},若A ⋂B=⍉,求实数a 的取值范围.三、补集思想1、已知集合A={y l y >a 2+1或y <a },B={y |2≤y ≤4},若A ⋂B ≠⍉,则实数a 的取值范围为( )A.{a l a ≥2}B.{a l-3<a <3}C.{a l a >2或-3<a <3}D.{a l a ≥2或-3≤a ≤3}2、已知集合{}R x m mx x x A ∈=++-=,0624|2,{}R x x x B ∈<=,0|,若=⋂B A ⍉,求实数m 的取值范围.四、易错题型1、设M 和P 是两个非空集合,规定M-P={x l x ∈M ,且x ∉P },根据这一规定,计算M-(M-P)等于( ).A.MB.PC.M ⋃PD.M ⋂P2、设全集S={2,3,a 2+2a -3},A={|2a -1|,2},C S A={5},求实数a 的值.基础巩固1、已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( )A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}2、已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A .{0}B .{1}C .{1,2}D .{0,1,2}3、已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( )A .{0,1}B .{-1,0,1}C .{-2,0,1,2}D .{-1,0,1,2}4、已知集合{}35A x x =-≤≤,{}141B x a x a =+≤≤+ A B B =,B ≠∅,则实数a 的取值范围是( )A .1a ≤B .01a ≤≤C .0a ≤D .41a -≤≤5、设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,则A ∩B = .6、已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围为________.7、已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(∁U B )=( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}8、已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ).A . {|02}x x x ≤≥或B . {|02}x x x <>或C . {|2}x x ≥D . {|2}x x > 9、设全集U =R ,M ={x |x <-2或x >2},N ={x |1<x <3},则图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}10、已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =() A .{1,3} B .{3,7,9}C .{3,5,9}D .{3,9}11、已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,则p = ;q = .12、设全集{}22,4,1U a a =-+,{}22,2A a a =--,且{}7U C A =,求实数a 的值.能力提升13、(1)设A ={4,5,6,8},B ={3,5,7,8},求A ∪B .(2)设集合A ={x |-1<x <2},集合B ={x |1<x <3},求A ∪B .(3)设集合A ={1,2},求满足A ∪B ={1,2,3}的集合B .14、(1)已知集合{}4,5,6,8A =,{}3,5,7,8B =,{}1,3C =,求()A B C .(2)已知集合A ={x |-5≤x ≤5},B ={x |x ≤-2或x >3},则A ∩B =________.(3)设A ={等腰三角形},B ={直角三角形},求A B .15、已知A ={x |x 2-a x +a 2-19=0},B ={x |x 2-5x +8=2},C ={x |x 2+2x -8=0},若()A B ∅⊂,且A C =∅,求a 的值.16、已知集合{}0232=+-=x x x A ,{}20B x mx =+=,A B A =,求m 的取值范围.17、已知集合{}0232=+-=x x x A ,{}022=+-=mx x x B ,B B A = ,求m 的取值范围.18、已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若A ∩B =B ,求实数a 的取值范围.19、求下列集合的补集(1)设U ={x |x 是小于9的正整数},A ={1,2,3},B ={3,4,5,6},求∁U A ,∁U B .(2)设全集U =R ,M ={x |x <-2或x >2},N ={x |1<x <3},求∁U M ,∁U N .20、已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3<x ≤3}. 求A B ,A B ,U C A 、U C B ,()U C A B ,()U C A B .21、试用集合,A B 的交集、并集、补集分别表示图中Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分所表示的集合.Ⅰ部分:______ ____Ⅱ部分:______ ____Ⅲ部分:____ ______Ⅳ部分:________ __或_________________.22、设全集U ={3,6,m 2-m -1},A ={|3-2m |,6},∁U A ={5},求实数m .23、设全集{}010,*U x x x N =<<∈,若{}3A B =,{}1,5,7U A C B =,()()U U C A C B ={}9,求A 、B .24、已知集合A={x|x2-4x+2m+6=0},B={x|x<0},若A B=∅,求实数m的取值范围.。
集合的基本运算(二)
1.1.3集合的基本运算(二)一、三维目标:知识与目标:(1)掌握交集与并集的区别,了解全集、补集的意义;(2)正确理解补集的概念,正确理解符号“U C A ”的含义;(3)会求已知全集的补集,并能正确应用它们解决一些具体问题。
过程与方法:通过观察和类比,借助图理解集合补集的含义和集合的基本运算。
情感态度与价值观:体会直观图示对理解抽象概念的作用,培养数形结合的思想。
二、学习重、难点:重点:补集的有关运算及数轴的应用。
难点:对补集概念的理解。
三、学法指导:研读学习目标,了解本章重难点,精读教材,独立完成学案,通过小组学习解决部分疑难问题,再通过课堂各小组展示及质疑对抗,共同提高,完成学习任务。
四、知识链接:1.什么叫子集、真子集、集合相等?符号分别是怎样的?2.什么叫交集、并集?符号语言如何表示?3.已知A ={x|x +3>0},B ={x|x ≤-3},则A 、B 与R 有何关系?五、学习过程:思考1. U={全班同学}、A={全班参加足球队的同学}、B={全班没有参加足球队的同学},则U 、A 、B 有何关系?全集、补集概念及性质1.全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U ,全集是相对于所研究问题而言的一个相对概念。
2.补集的定义:对于一个集合A , ,叫作集合A 相对于全集U 的补集,记作:读作:“A 在U 中的补集”,即{},U C A x x U x A =∈∉且用Venn 图表示:(阴影部分即为A 在全集U 中的补集)讨论:集合A 与U C A 之间有什么关系?→借助Venn 图分析。
,(),U U U U U U A C A A C A U C C A AC U C U ⋂=∅⋃===∅∅=巩固练习①.U={2,3,4},A={4,3},B=φ,则U C A = ,U C B = ;②.设U ={x|x<8,且x ∈N},A ={x|(x-2)(x-4)(x-5)=0},则U C A = ; ③.设U ={三角形},A ={锐角三角形},则U C A = 。
集合的基本运算相关知识点
集合的基本运算是集合论中的重要内容,涉及到集合的交、并、差和补运算。
在数学和计算机科学中,集合的基本运算是解决问题和推理的基础。
本文将介绍集合的基本运算及其相关知识点。
一、集合的定义集合是由一些确定的事物组成的整体,这些事物称为集合的元素。
用大写字母表示集合,用小写字母表示集合的元素。
集合中的元素是无序的,且不重复。
例如,集合A={1, 2, 3},表示A是由元素1、2和3组成的集合。
二、集合的基本运算1.交集交集运算是指给定两个集合,求出两个集合共有的元素所组成的集合。
用符号∩表示交集。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。
2.并集并集运算是指给定两个集合,求出两个集合所有元素的组合所组成的集合。
用符号∪表示并集。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∪B={1, 2, 3, 4}。
3.差集差集运算是指给定两个集合,求出第一个集合减去与第二个集合交集后的元素所组成的集合。
用符号-表示差集。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A-B={1}。
4.补集补集运算是指给定一个全集和一个子集,求出子集相对于全集的差集所组成的集合。
用符号’表示补集。
例如,全集U={1, 2, 3, 4},集合A={2, 3},则A’={1, 4}。
三、集合运算的性质1.交换律集合的交集和并集满足交换律,即A∩B=B∩A,A∪B=B∪A。
2.结合律集合的交集和并集满足结合律,即(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)。
3.分配律集合的交集和并集满足分配律,即A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。
4.互补律集合的补集满足互补律,即(A’)’=A。
四、集合运算的应用1.逻辑推理集合运算可以用于逻辑推理中。
通过对集合的交、并、差和补运算,可以分析给定条件的关系和推导出新的结论。
集合的基本运算
集合的基本运算集合是数学中的一个基本概念,它是由一组确定的元素所构成的整体。
集合的基本运算包括并集、交集、差集和补集。
本文将介绍集合的基本运算及其性质。
1. 并集:并集是指将两个或多个集合中的所有元素合并成一个集合的操作。
用符号"∪"表示。
假设集合A={a, b, c},集合B={b, c, d},则A∪B={a, b, c, d}。
并集的定义可以推广到多个集合的情况。
2. 交集:交集是指将两个或多个集合中共有的元素提取出来形成一个新的集合。
用符号"∩"表示。
假设集合A={a, b, c},集合B={b, c, d},则A∩B={b, c}。
交集运算同样适用于多个集合。
3. 差集:差集是指从一个集合中去除与另一个集合相同的元素,得到剩余的元素构成的新集合。
用符号"-"表示。
假设集合A={a, b, c},集合B={b, c, d},则A-B={a}。
差集运算同样适用于多个集合。
4. 补集:补集是指在给定的全集中去除一个集合中的所有元素,得到的剩余元素所构成的新集合。
全集是指包含所研究对象所有元素的集合。
用符号"′"或"'"表示补集运算。
假设全集为U,集合A={a, b, c},则A′=U -A。
集合的基本运算具有以下性质:a) 结合律:对于任意集合A、B、C,有(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
b) 交换律:对于任意集合A和B,有A∪B=B∪A,A∩B=B∩A。
c) 分配律:对于任意集合A、B和C,有A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。
d) 对偶律:对于任意集合A和B,有(A∪B)′=A′∩B′,(A∩B)′=A′∪B′。
除了基本运算,集合还具有其他相关概念和运算,如幂集、笛卡尔积等。
幂集是指一个集合的所有子集所构成的集合。
集合的基本运算(第2课时)
2.补集
对于一个集合A,由全集U中不属于集合A的所有 元素组成的集合称为集合A的补集 (complementary set ),记作
C A,即
U
CU A { x | x U , 且 x A}.
可用Venn图表示为
U
A
CA
U
四 知识创新
1.表示全集和补集的三种数学语言互译.
设集合U是一个集合, A是U的一个子集( A B), 由U中所有不属于 A的元素组成的集合,叫 作U中 子集A的补集.
一 学习目标
1. 在理解两个集合的并集与交集的含义的基础上 理解全集和补集的概念. 2. 能使用Venn图表达集合的关系和运算体会直观 图示对理解抽象概念的作用. 3. 能够正确的理解不同语言表示的集合的本质并 且能够在解题时准确表达.
二 知识铺垫
根据上节课学习到的内容,观察下面的Venn图, 试说明集合之间的关系.
是笑意. "呵呵,不咋大的白,别高兴の太早,那个光头估计没死,不过肯定受伤了,最少要在神城躺几个月." 鹿老望着地上の深坑,微微有些惋惜,他身子变大了,力量变强了,移动速度也增加了.但是…反应和攻击速度却弱了一丝,不能将这光头留下,有些遗憾.不过片刻之后,他却笑了起 来:"保命传送符!嘿嘿,这次要让他心疼得割了几块肉了,一些传送符可是最少值十万神石!他卖灵魂元丹最少要卖数百枚!哈啥,走了,回去!这次估计再也没人敢来紫岛骚扰了,俺们可以安静の修炼了…" 本书来自 聘熟 当前 第肆叁肆章 又见菊花盛开! 神城今日再次亮起一条七 彩神光,神城の子民在几年之后再次见到了久违了の神迹.请大家检索(度#扣¥网)看最全!更新最快の但是这次却没有引起神城子民の惊讶和膜拜,反而许多人露出轻蔑嗤之以鼻の表情. 这段时候来,神迹产生の太多了,不说金角神主,不说那张巨脸.就说昨天在妖族上方亮起の那道骇 人听闻の七彩霞光和那响了半个时辰の雷鸣,都比神城这神神迹威猛恢弘了无数倍. 再说了,许多人此刻都对,他们信仰の神主感到深深の质疑.往日守护着他们,战无不胜の神主,在神城被破の时候在哪里?他们の子女莫名消失の时候,他在哪里?神城四卫用铁血手段镇压神城子民の时候, 他又在哪里? 神城中唯一有反应の就是屠神卫焚神卫和刚刚上位の新弑神卫,以及神城の使者. 此刻屠神卫和焚神卫,正在屠仙楼教新上位の弑神卫合击战阵,突然见神主阁上方亮起一条七彩霞光,纷纷大惊.惊恐の对视一眼,三人匆匆の朝神主阁赶去. 神主去紫岛他们是知道了,只是怎 么去了半天却突然回来了?回来很正常,但是他不是瞬移回来,而是传送过来の,那就不正常了. 当她们匆忙赶到神主阁の时候,刚走到门口,却看到让她们无比震惊の一幕. 神主阁院子内,神主正宛如狗吃屎一样,狼狈の趴在地上,浑身都是血迹,正不断の颤抖着,身体附近还闪耀着七彩の 霞光.他の一身大红袍子,却全部化成了焦炭,独留下上身几块碎步正在那,不断の冒着青烟. 全身皮肤不少地方都是一片焦黑和血迹,最奇怪の是…他两瓣雪白の屁股却没有半点受伤,此刻正翘着面对着大门微微颤抖扭动着,一朵褐色の菊花正在那不断の收缩着,宛如菊花正是悄然の盛开 … "神主,您,您怎么了?" 屠神卫和焚神卫刚踏到门前,看到这一幕,没有半分犹豫,立刻转身朝门两旁闪去.而那名新上位の弑神卫,一路上却是走在最前面,一看这情况,连忙面带慌色,急忙冲了过去就要扶起神主,似乎要表示他对神主の忠诚和关切之心. "轰!" 屠神卫和焚神卫,一闪出 大门,立刻跪下地面,闭着眼睛.果然片刻之后,传来一阵巨大の响声,以及弑神卫の惨叫声.两人更加哆嗦了,惶恐の对着院子磕头起来. "将所有の暗卫…全部派出去,给俺将紫岛围住,一旦发现有人出来,立刻捏碎传音玉符…给俺送一百人来,全部要妖族少女.再选一名新の弑神卫…记住, 刚才你呀们什么都没看见,否则…死!" 片刻之后,屠虚弱の声音传了出来,屠神卫和焚神卫两人如临大赦,宛如两只丧家之犬一样,慌忙の爬起来,一溜烟跑没影了. 良久之后,院子内又传来一阵咬牙切齿の怨毒声:"你呀们给俺等着,等那个女人回神界,俺要你呀们全都死.一旦俺得到神 剑,整个炽火位面の人都要死,老女人,金角神族,俺一些都不放过,全部都要死…" …… "琤琤…" 那日鹿老大发神威之后,紫岛再次恢复了平静,月倾城和夜轻语也终于可以安心の在紫岛修炼了.夜轻语每日听月倾城弹半天琴,而后在紫岛在不咋大的白の带领下游玩半天,晚上则回到不咋 大的院修炼,日子过得惬意无比. 鹿老也索性在紫岛修炼了,对于他这种境界来说,多修炼几年和少修炼几年区别不大,反而每日在月倾城和夜轻语恭敬の伺候下,好好享受了一把天伦之乐. 春来春去,花开花落! 眨眼间,一晃又是一年过去了. 期间夜轻舞出来了一次,不到一年半の时候 就突破了帝王境,让月倾城和夜轻语非常高兴,她在紫岛休息了几天之后,却又钻进了逍遥阁,苦练起来. 而白重炙却已经闭关了一年半の时候了,没有半点消息传来.他半年前突然启动了练功房の禁制,并且同时隔绝了和不咋大的白の灵魂联系,就连鹿老和不咋大的白都不能探到他の任何 消息,这点也让几人为之担心起来.但是又恐怕他正在闭关感悟玄奥の紧要关头,所以几人都没敢去打扰他. 白重炙の确在闭关,但是却没有感悟玄奥. 一年前,他无意将看到了那个头顶那双眼睛内の那个女人之后,便一直在想办法,不断の用灵识去靠近她,然后…拥有她!得到那个大机 缘! "啊!" 逍遥阁内,一条黑白色の身影,不停の惨叫着,不断の翻滚着.一会在地上滚动,一会突然弹起而后猛烈の撞向墙上,一会头和全身不断の在地面上磨擦…… 身体上都是血液,衣服磨破了,皮磨掉了,肉裂开了,露出白森森の骨头.但是他身体此时却被一阵柔和の白色光芒笼罩着, 血一流出来就又被止住,皮肉被磨破了,又慢慢长出皮肉,而后慢慢愈合,如此不断の反复着… 一些不咋大的时后,白重炙终于停止了翻滚,一张冷峻の脸,半张脸都是血迹,脸上の肌肉还在不时の抽动着.一双眼睛深深の陷了进去,紧紧の闭着,胸膛剧烈の起伏,长长の呼吸着,不时还痛苦の 身影一声. "你呀妹の,差一点,就差一点啊,啊!啊!啊!" 片刻之后,白重炙突然睁开了眼睛,同时张大嘴巴愤怒の大吼起来,一只手无力の抬起,胡乱の擦拭了一下脸上凝固の鲜血.另一只手却撑着地面,艰难の坐了起来. 而后他在逍遥戒上一抹,从藏宝阁内取出一身衣服,将身体上一身 血迹破烂不堪の衣服换下.又取出几个灵果,慢慢の吃了起来. 一年时候过去了,他整个人整整瘦了一圈,除了眼睛内依旧闪耀の炯炯精光,和往常一样,整个人看起来更加弱不禁风,羸弱无比. 吃了数个灵果,补充身体内の能量,而后他又开始盘坐修炼起来,将战气在身体内运转了十二个周 天,将身体内の伤势完全修复好.这才摊开身子,在地上平躺着休息起来. "就差一点,下次俺就能看清楚你呀了,到时候…可别让俺失望啊!" 白重炙呢喃了一声,就这样沉沉睡去,这一觉足足睡了五天五夜.当他再次醒来,从地面弹跳而起の时候,一张冷峻の脸却尽是の兴奋和期待. 他相 信,等会再用灵识去探查,他一定可以将那个女人看清楚,一定能看清楚那个让自己整整痛苦了一年の女人…那个lu~体の女人! …… 【作者题外话】:第二天爆发,明天,看情况吧… 当前 第肆叁伍章 中品神丹 "咻!" 安静の夜里,天空突然落下一条流星,只是这道流星却不似往常の 流星般是单一の亮白色或者是白黄色,这道流星却有五彩光芒闪耀,并且速度奇快,在大陆の天空一闪而过,最后直接没入了高高の神山上.请大家检索(品&书¥网)看最全!更新最快の 神城时隔一年之后,在今夜再次降下神迹,当然这次同样没有人感到惊讶和膜拜.反而有更多の人露出 鄙夷の表情. 屠神卫和焚神卫虽然微微错愕,但是却没有赶去神主阁,一年前の那两瓣雪白の屁股…可是让她们记忆犹新啊. "桀桀!果然不出俺所料啊…" 片刻之后,神主屠尖锐の笑声,从神主阁传来,声音很是肆意和张狂.此刻他正在站在院子の中央,手拿着一枚焕发着五色神彩上面刻 有繁琐符号の石头.这是神界专用の传讯符,也就是刚才の那道流星. 他是神界の人,很清楚神界一千年一次の府主挑战赛,一年前那个骑着白马の英俊男人降临炽火大陆,他就隐隐猜到了一些.而后他传讯回族中,现在终于得到了族中の准确答案了. "桀桀!" 屠手握着泛着幽光の石头, 抬头望着北方,双瞳亮起一条血红の光芒,最后开始放声大笑起来.尖锐刺耳の笑声在神城内飘荡,将神城子民惊得一片毛骨悚然. …… "大人,看来你呀要回神界の事情,已经被屠打探清楚了!" 暗黑城堡
集合的基本运算(全集、补集)
重要性及应用领域
集合的基本运算是数学逻辑和集合论 中的基础,对于理解更高级的数学概 念和解决实际问题至关重要。
在计算机科学、统计学、概率论等领 域中,全集和补集的概念被广泛应用 ,它们是理解和处理数据的基础。
02 全集的概念
定义
全集是指包含所有研究对象(元素)的集合,通常用大写字 母U表示。
在数学中,全集被视为一个默认的参照框架,用于定义和比 较其他集合。
在逻辑推理中,全集与补集的 概念可以帮助我们更好地理解 和分析命题的真假关系。
在计算机科学中,全集与补集 的概念可以用于数据分析和处 理,例如在数据库查询和数据 挖掘中。
THANKS FOR WATCHING
感谢您的观看
通过全集和补集,可以研究集合的并、交、差等运算,以及集合的基数、
势等属性。
02
实数理论
在实数理论中,全集通常表示所有的实数,而补集则用于描述某个特定
子集以外的实数。例如,考虑全体实数集合,非正实数集合的补集就是
正实数集合。
03
拓扑学
在拓扑学中,全集通常表示某个拓扑空间中的所有点,而补集则用于描
述该空间中某个子集以外的点。通过研究全集和补集的性质,可以深入
查询、更新等操作。
06 总结
全集与补集的基本概念回顾
全集
一个集合中所有元素的集合,通 常用大写字母U表示。
补集
一个集合中不属于某一子集的所 有元素的集合,通常用大写字母A 和B表示。
对全集与补集的理解和掌握的重要性
理解全集与补集的概念是学习集合论的基础,有助于更好地理解集合之间的关系和 性质。
补集运算的优先级
在进行集合运算时,应优先处理 补集运算。
先求出各个集合的补集,再进行 其他集合运算,如交集、并集等。
离散数学---集合的基本运算
E
A
B
广义的并集
集合的并(union):集合A和B的并AB定义 为:AB = {x | xA或者xB},集合的并可 推广到多个集合,设A1, A2, …, An都是集合, 它们的并定义为:
A1A2∪…An = {x | 存在某个i,使得xAi}
广义的交集
集合的交(intersection):集合A和B的并AB定义 为:AB = {x | xA而且xB},集合的交也可推广 到多个集合,设A1, A2, …, An都是集合,它们的交 定义为:
集合的化简
化简((ABC)(AB))-((A(B-C))A) 证明:原集合=(AB)-A(吸收律)
=(AB)A =(AA)(BA)(分配律)
=(BA) =BA
(互补律) (同一律)
集合包含的性质
• AE •如果ABC,则AC •ABAA∪B •AB A∪B=B AB=A ~B ~A
利用集合等式证明
求证:A-(B∪C)=(A-B)∩(A-C)
(A-B)∩(A-C)=A∩~B∩A∩~C =A∩~B∩~C =A∩~(B∪C) =A-(B∪C)
证明吸收律A(AB)=A
证明:A(AB) =(A)(AB) =A(B) =A =A
已知AB=AC,AB=AC,求证B=C
6、零一律 A∩=,A∪E=E
(A∩B)=A∪B
7、补余律 A∩A=,A∪A=E
10、双重否定律(A)=A
8、吸收律 A∪(A∩B)=A
注:A-B=A∩B
A∩(A∪B)=A
集合相等的证明的方法
一、利用集合的定义证明; 二、利用集合等式证明;(常用) 三、利用谓词公式证明; 四、用集合成员表。(略)
即AB={xxA且x BxB且x A}
集合的基本运算(第2课时)
对称差集定义及表示方法
定义
对于任意两个集合A和B,由所有属于A或属于B但不同时属于A和B的元素所组成的集合称为A和B的对称 差集。
表示方法
记作AΔB,即AΔB = (A∪B) - (A∩B)。
对称差集运算规则与性质
运算规则
对称差集运算满足交换律和结合律,即AΔB = BΔA,(AΔB)ΔC = AΔ(BΔC)。
A⊂B。
空集
不包含任何元素的集合称为空 集,记作∅。空集是任何集合的
子集。
集合的相等
如果两个集合A和B的元素完 全相同,则称A与B相等,记
作A=B。
举例说明
01
02
03
例1
设A={1,2,3},B={2,3,4}, 则A⊆B,因为A中的每一 个元素都是B中的元素。
例2
设A={x|x是三角形}, B={x|x是等边三角形},则 B⊂A,因为等边三角形是 三角形的一种特殊情况。
集合的运算
并集、交集、补集。
拓展延伸:其他相关概念探讨
幂集
一个集合所有子集(包括空集和自身)组成的集合称为该集合的幂集。
笛卡尔积
两个集合中所有元素的有序对组成的集合称为这两个集合的笛卡尔积。
集合的基数
集合中元素的个数称为该集合的基数,有限集的基数是一个自然数, 无限集的基数有多种,如可数集和不可数集。
性质
对称差集运算具有幂等性,即AΔA = ∅;同时,任意集合与空 集的对称差集等于该集合本身,即AΔ∅ = A。
举例说明
例子1
设集合A = {1, 2, 3},集合 B = {2, 3, 4},则AΔB = {1, 4}。
例子2
设集合C = {a, b, c},集合 D = {b, c, d},则CΔD = {a, d}。
1.1.3 集合的基本运算(2)
1.反思你前面哪个步骤停留时间最长; 2.总结是什么原因造成的 (是之前相关知识基础不牢固 还是这次的某个概念自己理解错了);
3.反思你思考的时候在哪里卡住了, 着重这个地方,再次理解。
费曼学习法-实操
第六步 实践检验
(六) 实 践 检 验
1.实践是检验真理的唯一标准。前面你可能觉得自己学的都还不错, 那么最 后这步帮你再次验证,也帮你进一步加深理解;
场景记忆法小妙招
超级记忆法--身 体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆 方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一 些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正 常在我们常识中不可能发生的事情,会让我们印象更深。
利用Venn图: card(A∪B∪C)=card(A)+ card(B)+ card(C) - card(A∩B)- card(A∩C)- card(C∩B)+ card(A∩B∩C)
B
A
A∩B
A∩B∩C B∩C A∩C
C
作业布置
1.教材P12 9,10 B组 4 2 补.某班有学生55人,其中音乐爱好 者34人,体育爱好者43人,还有4人既 不爱好体育也不爱好音乐,班级中既爱 好体育又爱好音乐的有多少人?
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必 备习惯
集合的基本运算知识点
集合的基本运算知识点集合是数学中一个基础而重要的概念,广泛应用于各个领域。
在集合理论中,我们需要掌握一些基本的运算知识点,包括交集、并集、差集和补集。
下面将逐一介绍这些知识点。
交集是指两个集合中共同元素的集合。
假设有两个集合A和B,表示为A ∩ B,那么A ∩ B = {x | x ∈ A 且 x ∈ B}。
简单来说,就是A 和B中共同存在的元素组成的集合。
并集是指两个集合中所有元素的集合。
同样假设有集合A和B,表示为A ∪ B,那么A ∪ B = {x | x ∈ A 或者 x ∈ B}。
简而言之,就是A和B所有元素的集合。
差集是指从一个集合中减去另一个集合,得到的元素的集合。
假设有集合A和B,表示为A - B,那么A - B = {x | x ∈ A 且 x ∉ B}。
简单说来,就是从A集合中消去与B集合相同的元素,得到的集合。
补集是指在一个全集中减去一个集合,得到的元素的集合。
假设有全集U和集合A,表示为A',那么A' = {x | x ∈ U 且 x ∉ A}。
简单来说,就是从全集中减去集合A的元素,得到的集合。
接下来,我们可以通过一个例子来更加具体地理解这些概念。
假设有两个集合A = {1, 2, 3, 4, 5}和B = {4, 5, 6, 7, 8}。
那么A ∩ B = {4, 5},即A和B的交集是{4, 5};A ∪B = {1, 2, 3, 4, 5, 6, 7, 8},即A和B的并集是{1, 2, 3, 4, 5, 6, 7, 8};A -B = {1, 2, 3},即A减去B的差集是{1, 2, 3};B - A = {6, 7, 8},即B减去A的差集是{6, 7, 8};A' = {6, 7, 8},即A在全集U中的补集是{6, 7, 8};B' = {1, 2, 3},即B在全集U中的补集是{1, 2, 3}。
通过以上的例子,我们可以看到集合的基本运算是相对简单明了的。
集合的基本运算
集合的基本运算集合是数学中一种重要的基础概念,它是由一些具有共同性质或特征的对象组成的。
在集合理论中,集合的基本运算包括并集、交集、差集和补集。
本文将对这些基本运算进行解释和说明。
1. 并集并集是指将两个或多个集合中的所有元素组合为一个新的集合。
假设集合A={1,2,3},集合B={3,4,5},则A和B的并集记为A∪B={1,2,3,4,5}。
并集操作可以表示为:A∪B={x | x∈A或x∈B}。
并集的结果包含了A和B中的所有元素,不重复计算。
2. 交集交集是指两个或多个集合中共有的元素组成的新集合。
假设集合A={1,2,3},集合B={3,4,5},则A和B的交集记为A∩B={3}。
交集操作可以表示为:A∩B={x | x∈A且x∈B}。
交集的结果只包含A和B 中共有的元素。
3. 差集差集是指从一个集合中去除另一个集合中的元素所得到的新集合。
假设集合A={1,2,3},集合B={3,4,5},则A和B的差集记为A-B={1,2}。
差集操作可以表示为:A-B={x | x∈A且x∉B}。
差集的结果只包含在A中出现而不在B中出现的元素。
4. 补集补集是指关于某个全集的一个集合中不包含于另一个给定集合的元素的集合。
假设全集为U,集合A={1,2,3},则A的补集记为A'或A^C。
补集操作可以表示为:A'={x | x∈U且x∉A}。
补集的结果包含了全集U中不属于A的所有元素。
为了更好地理解这些基本运算,我们可以通过下面几个实例来加以说明:(1)假设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5}。
则A∪B={1,2,3,4,5}。
A∩B={3}。
A-B={1,2}。
A'={4,5}。
(2)假设全集U={红,黄,蓝,绿,紫},集合A={红,蓝},集合B={蓝,绿}。
则A∪B={红,黄,蓝,绿}。
A∩B={蓝}。
A-B={红}。
A'={黄,绿,紫}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节集合的基本运算
A组
1.(2009年高考浙江卷改编)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=____.
解析:∁U B={x|x≤1},∴A∩∁U B={x|0<x≤1}.答案:{x|0<x≤1}
2.(2009年高考全国卷Ⅰ改编)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有________个.
解析:A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8}.答案:3
3.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.
解析:由题意知,N={0,2,4},故M∩N={0,2}.答案:{0,2}
4.(原创题)设A,B是非空集合,定义AⓐB={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤2},B={y|y≥0},则AⓐB=________.
解析:A∪B=[0,+∞),A∩B=[0,2],所以AⓐB=(2,+∞).
答案:(2,+∞)
5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.
解析:设两项运动都喜欢的人数为x,画出韦恩图得到方程15-x+x+10-x+8=30x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:12
6.(2010年浙江嘉兴质检)已知集合A={x|x>1},集合B={x|m≤x≤m+3}.
(1)当m=-1时,求A∩B,A∪B;
(2)若B⊆A,求m的取值范围.
解:(1)当m=-1时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.(2)若B⊆A,则m>1,即m的取值范围为(1,+∞)
B组
1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.
解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0}
2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则(∁U A)∩B=________.
解析:∁U A={0,1},故(∁U A)∩B={0}.答案:{0}
3.(2010年济南市高三模拟)若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁U N)=________.
解析:根据已知得M∩(∁U N)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{x|-2≤x<0} 4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.
解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.
答案:{2,3,4}
5.(2009年高考江西卷改编)已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为________.
解析:U=A∪B中有m个元素,
∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:m-n
6.(2009年高考重庆卷)设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.
解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},
得∁U(A∪B)={2,4,8}.答案:{2,4,8}
7.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1},则集合(A⊗B)⊗C的所有元素之和为________.
解析:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.答案:18
8.若集合{(x,y)|x+y-2=0且x-2y+4=0} {(x,y)|y=3x+b},则b=________.
解析:由⇒点(0,2)在y=3x+b上,∴b=2.
9.设全集I={2,3,a2+2a-3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M的所有子集是________.
解析:∵A∪(∁I A)=I,∴{2,3,a2+2a-3}={2,5,|a+1|},∴|a+1|=3,且a2+2a-3=5,解得a=-4或a=2,∴M={log22,log2|-4|}={1,2}.
答案:∅,{1},{2},{1,2}
10.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
解:由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=-1或a=-3;当a=-1时,B ={x|x2-4=0}={-2,2},满足条件;当a=-3时,B={x|x2-4x+4=0}={2},满足条件;综上,a的值为-1或-3.
(2)对于集合B,Δ=4(a+1)2-4(a2-5)=8(a+3).∵A∪B=A,∴B⊆A,
①当Δ<0,即a<-3时,B=∅满足条件;②当Δ=0,即a=-3时,B={2}满足条件;③当Δ>0,即a>-3时,B=A={1,2}才能满足条件,则由根与系数的关系得
⇒矛盾.综上,a的取值范围是a≤-3.
11.已知函数f(x)=的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.
(1)当m=3时,求A∩(∁R B);
(2)若A∩B={x|-1<x<4},求实数m的值.
解:A={x|-1<x≤5}.
(1)当m=3时,B={x|-1<x<3},则∁R B={x|x≤-1或x≥3},
∴A∩(∁R B)={x|3≤x≤5}.
(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},
∴有-42+2×4+m=0,解得m=8,此时B={x|-2<x<4},符合题意.
12.已知集合A={x∈R|ax2-3x+2=0}.
(1)若A=∅,求实数a的取值范围;
(2)若A是单元素集,求a的值及集合A;
(3)求集合M={a∈R|A≠∅}.
解:(1)A是空集,即方程ax2-3x+2=0无解.
若a=0,方程有一解x=,不合题意.
若a≠0,要方程ax2-3x+2=0无解,则Δ=9-8a<0,则a>.
综上可知,若A=∅,则a的取值范围应为a>.
(2)当a=0时,方程ax2-3x+2=0只有一根x=,A={}符合题意.
当a≠0时,则Δ=9-8a=0,即a=时,
方程有两个相等的实数根x=,则A={}.
综上可知,当a=0时,A={};当a=时,A={}.
(3)当a=0时,A={}≠∅.当a≠0时,要使方程有实数根,
则Δ=9-8a≥0,即a≤.
综上可知,a的取值范围是a≤,即M={a∈R|A≠∅}={a|a≤}。