2021人教A版高考数学总复习《空间几何体的结构、三视图和直观图》
2021年中考数学总复习——第48讲 空间几何体的结构,三视图和直观图
空间几何体的结构特征 例 1 (1)给定下列四个命题: ①圆锥是由正方形绕对角线旋转所形成的曲面围 成的几何体; ②圆锥是由三角形绕其一边上的高旋转所形成曲 面围成的几何体; ③圆锥是角 AOB 绕其角平分线旋转一周所形成 曲面围成的几何体; ④底面在水平平面上的圆锥用平行于底面的平面 所截得的位于截面上方的部分是圆锥. 其中正确的命题为__________.(只填正确命题的 序号)
[解析] 由斜二测画法的规则可知①正确;②错 误,是一般的平行四边形;③错误,等腰梯形的直观 图不可能是平行四边形;而菱形的直观图也不一定是 菱形,④也错误.
[答案] ①
(2)已知正△ABC 的边长为 a,那么它的平面直观 图△A′B′C′的面积为__________.
[解析] 如图所示是实际图形和直观图,由图可知,
5.一个三棱锥的正(主)视图和俯视图如 图所示,则该三棱锥的侧(左)视图可能为 ()
[解析] 由题图可知,该几何体为如图所示的三棱 锥,其中平面 ACD⊥平面 BCD,故选 D.
[答案] D
空间几何体的直观图 例 3 (1)利用斜二测画法得到的: ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上正确结论的序号是________.
a2+(2 2a)2=3a cm,则原图形的周长是 2(3a+ a)=8a cm.
[答案] 8a
【知识要点】
1.简单几何体
(1)多面体的结构特征
名称 棱柱
棱锥
棱台
图形
底面
互相平__行__ 且相__等__
多边形
互相_平_行__
侧棱
平行且
相交于
___相_等_____
高考数学总复习8.1空间几何体的结构及其三视图和直观图课件文新人教A版
-13知识梳理
考点自测
解析:直观图如图①的几何体(上部是一个正四棱锥,下部是一个 正四棱柱)的俯视图为题图①;直观图如图②的几何体(上部是一个 正四棱锥,下部是一个圆柱)的俯视图为题图②;直观图如图③的几 何体(上部是一个圆锥,下部是一个圆柱)的俯视图为题图③;直观图 如图④的几何体(上部是一个圆锥,下部是一个正四棱柱)的俯视图 为题图④.
点连线所在直线旋转得到. (2) ②圆锥可以由直角三角形绕其 直角边 所在直线或等腰 旋 三角形绕底边中点与其所对顶点连线所在直线旋转得到. 转 ③圆台可以由直角梯形绕 直角腰 所在直线或等腰梯形 体 绕上、 下底中点连线所在直线旋转得到,也可由平行于圆锥底面 的平面截 圆锥 得到. ④球可以由 半圆面或圆面 绕直径所在直线旋转得到
-14知识梳理
考点自测
5.利用斜二测画法得到的: ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的个数是 . 1
解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四 边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直 观图也不一定是菱形,④也错误.
-9知识梳理
考点自测
2.如图为某个几何体的三视图,根据三视图可以判断这个几何体 为( C )
A.圆锥
B.三棱锥
C.三棱柱D.三棱台
解析:由三视图可知,该几何体是一个横放的三棱柱,故选C.
-10知识梳理
考点自测
3.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几 何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( B )
-3知识梳理
考点自测
1.空间几何体的结构特征 平行且相等 ①棱柱的侧棱都 , (1) 上、下底面是 全等 且平行的多边形. 多 ②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形 . 面 ③棱台可由平行于棱锥底面的平面截棱锥得到,其上、 下底面是 体 相似 多边形 ①圆柱可以由 矩形 绕其任一边所在直线或矩形绕对边中
2021届高考数学总复习:空间几何体的结构特征及三视图和直观图
2021届高考数学总复习:空间几何体的结构特征及三视图和直观图一、知识点1.空间几何体的结构特征2.空间几何体的三视图(1)三视图的形成与名称空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图。
(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线。
②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线。
3.空间几何体的直观图 空间几何体的直观图常用斜二测画法来画,基本规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直。
(2)原图形中平行于坐标轴的线段,直观图中还是平行于坐标轴的线段。
平行于x 轴和z 轴的线段长度在直观图中保持不变,平行于y 轴的线段长度在直观图中变为原来的一半。
1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点。
2.三视图的基本要求(1)长对正,高平齐,宽相等。
(2)在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”。
在三视图的判断与识别中要特别注意其中的虚线。
3.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变。
“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变。
一、走进教材1.(必修2P 8T 1改编)在如图所示的几何体中,是棱柱的为________。
(填写所有正确的序号)答案 ③⑤2.(必修2P 15练习T 1改编)已知如图所示的几何体,其俯视图正确的是( )解析 由俯视图定义易知选项C 符合题意。
故选C 。
答案 C二、走近高考3.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示。
人教高中数学A版必修2 空间几何体的三视图和直观图 精讲精析
1·2 空间几何体的三视图和直观图1·2·1平行投影与中心投影1. 投影是光线通过物体,向选定的面投射,并在该面上得到图形的方法.这里的光线称为投影线,被选定的面称为投影面.2. 常见的两种投影方式:平行投影与中心投影平行投影:投影线互相平行的投影称为平行投影.中心投影:投影线交于一点的投影称为中心投影.平行投影的投影线是互相平行的,中心投影的投影线相交于一点.平行投影的分类:按投影方向是否正对着投影面,可以把平行投影分为正投影与斜投影.3.点的平行投影:已知图形F ,直线l 与平面α相交,过F 上任何一点M 作直线'MM 平行于l ,交平面α于'M ,则'M 叫做M 在平面α内关于直线l 的平行投影.4.图形的平行投影:如果图形F 的所有点在平面α内关于直线l 得到平行投影构成图形'F ,则'F 叫做图形F 在平面α内关于直线l 的平行投影.平面α叫做投射面,l 叫做投射线. 5.平行投影的性质:当图形中的直线或线段不平行于投射线时 ,平行投影都具有以下性质:①直线或线段的平行投影仍是直线或线段;②平行直线的平行投影是平行或重合的直线;③平行于投射面的线段,它的投影与这条线段平行且等长;④与投射面平行的平面图形,它的图形与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影长度的比等于这两条线段长度之比.例1(1)如图,在正四面体A -BCD 中,E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心,则△EFG 在该正四面体各个面上的射影所有可能的序号是( )① ② ③ ④A B C D ∙∙∙E F G(例1(1)题图)A.①③B.②③④C.③④D.②④(2)(2000全国,16)如图9—15(1),E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是图9—15(2)的(要求:把可能的图的序号都.填上).(例1(2)题图)解析:(1)正四面体各面的中点在四个面上的射影不可能落到正四面体的边上,所以①②不正确,根据射影的性质E、F、G、三点在平面ABC内的射影形状如“④”所示,在其它平面上的射影如“③”所示.答案:C;(2)答案:②③;解析:∵面BFD1E⊥面ADD1A1,所以四边形BFD1E在面ADD1A1上的射影是③,同理,在面BCC1B1上的射影也是③.过E、F分别作DD1和CC1的垂线,可得四边形BFD1E在面DCC1D1上的射影是②,同理在面ABB1A1,面ABCD和面A1B1C1D1上的射影也是②.点评:考查知识立足课本,对空间想象能力、分析问题的能力、操作能力和思维的灵活性等方面要求较高,体现了加强能力考查的方向.1·2·2 空间几何体的三视图将物体按正投影向投影面投影所得到的图形,称为视图.光线自物体的前面向后投射所得的投影称为主视图或正视图,自上向下的称为俯视图,自左向右的称为侧视图.这三种视图即可刻画空间物体的集合结构,称为三视图.1.空间几何体的三视图三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形.它具体包括:(1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度;(2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度;(3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度;一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样;侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.为了便于记忆,通常说:“长对正,高平齐,宽相等”或“正侧一样高,正俯一样高,俯侧一样宽”.2.柱、棱、台、球的三视图(1)圆柱的正视图和侧视图都是矩形,俯视图是一个圆.(2)圆锥的正视图和侧视图都是三角形,俯视图是圆和圆心.(3)圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆.(4)球的三视图都是圆.3.组合体的三视图应先分析组合体的组合形式,把组合体分解成基本的几何体,在按基本几何体画图,就可以画出组合体的三视图.4. 三视图的画法步骤:(1)先确定主视图的位置,分析几何体的构造,画主视图;(2)按“长对正”原则画俯视图;一般地,俯视图画在主视图的正下方;(3)按“高平齐”原则画左视图;并注意左视图与俯视图“宽相等”;一般地,左视图画在主视图的正右方.注意:①若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出;②不可见轮廓线用虚线画出例1.(1)画出下列几何体的三视图解析:这二个几何体的三视图如下(例1(1)题图)(2)如图,设所给的方向为物体的正前方,试画出它的三视图(单位:cm )(例1(2)题图) (例1(1)题图)点评:画三视图之前,应把几何体的结构弄清楚,选择一个合适的主视方向.一般先画主视图,其次画俯视图,最后画左视图.画的时候把轮廓线要画出来,被遮住的轮廓线要画成虚线.物体上每一组成部分的三视图都应符合三条投射规律.例2.如图,图(1)是常见的六角螺帽,图(2)是一个机器零件(单位:cm ),所给的方向为物体的正前方. 试分别画出它们的三视图.(例2题图)解析:图(1)为圆柱和正六棱柱的组合体. 图(2)是由长方体切割出来的规则组合体.从三个方向观察,得到三个平面图形,绘制的三视图如下图分别所示.(例2题图)点评:画三视图之前,先把几何体的结构弄清楚,确定一个正前方,从三个不同的角度进行观察. 在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分用虚线表示出来. 绘制三视图,就是由客观存在的几何物体,从观察的角度,得到反应出物体形象的几何学知识.1·2·3 空间几何体的直观图1.概念:用来表示空间图形平面图像,叫做空间图形的直观图.把空间图形画在平面内,使得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形.2.斜二测画法斜二测画法为国家规定的画直观图的一种方法,它的规则为:(1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX ,OY ,建立直角坐标系;(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的''X O ,''Y O ,使'''X OY=450(或1350),它们确定的平面表示水平平面;(3)画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于'X轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于'Y轴,且长度变为原来的一半;(4)擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线).例1.画正五棱柱的直观图,使底面边长为3cm侧棱长为5cm.解析:先作底面正五边形的直观图,再沿平行于Z轴方向平移即可得.作法:(1)画轴:画X′,Y′,Z′轴,使∠X′O′Y′=45°(或135°),∠X′O′Z′=90°.(2)画底面:按X′轴,Y′轴画正五边形的直观图ABCDE.(3)画侧棱:过A、B、C、D、E各点分别作Z′轴的平行线,并在这些平行线上分别截取AA′,BB′,CC′,DD′,EE.′(4)成图:顺次连结A′,B′,C′,D′,F′,加以整理,去掉辅助线,改被遮挡的部分为虚线.点评:用此方法可以依次画出棱锥、棱柱、棱台等多面体的直观图.点评:该题属于斜二测画法的应用,解题的关键在于建立实物图元素与直观图元素之间的对应关系.特别底和高的对应关系.例2. 已知斜二测画法得得的直观图 A/B/C/是正三角形,画出原三角形的图形.(例2题图)解析:在直角坐标系xOy中, 取OB=O/B/, OC=O/C/, OA=2O/A/, 如图, 连结ABC便得到原图.(例2题图)。
高考数学总复习导学第八篇立体几何第1讲空间几何体的结构、三视图和直观图理新人教A版
第1讲空间几何体的结构、三视图和直观图【高考会这样考】1.几何体的展开图、几何体的三视图仍是高考的热点.2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.【复习指导】1.备考中,要重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.2.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.基础梳理1.多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ′轴且长度不变.一个规律三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法. 两个概念(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.双基自测1.(人教A 版教材习题改编)下列说法正确的是( ). A .有两个面平行,其余各面都是四边形的几何体叫棱柱 B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 C .有一个面是多边形,其余各面都是三角形的几何体叫棱锥 D .棱台各侧棱的延长线交于一点 答案 D2.(2012·杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ). A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析 当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面. 答案 C3.(2011·陕西)某几何体的三视图如图所示,则它的体积是( ). A .8-2π3B .8-π3C .8-2π D.2π3解析 圆锥的底面半径为1,高为2,该几何体体积为正方体体积减去圆锥体积,即V =22×2-13×π×12×2=8-23π,正确选项为A. 答案 A4.(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析 所给选项中,A 、C 选项的正视图、俯视图不符合,D 选项的侧视图不符合,只有选项B 符合. 答案 B5.(2011·天津)一个几何体的三视图如图所示(单位:m)则该几何体的体积为________m 3. 解析 由三视图可知该几何体是组合体,下面是长方体,长、宽、高分别为3、2、1,上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+13π×3=6+π(m 3).答案 6+π考向一 空间几何体的结构特征【例1】►(2012·天津质检)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( ). A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上[审题视点] 可借助几何图形进行判断.解析如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A 正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.选B.答案 B三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决.【训练1】以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( ).A.0 B.1 C.2 D.3解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②错,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 B考向二空间几何体的三视图【例2】►(2011·全国新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( ).[审题视点] 由正视图和俯视图想到三棱锥和圆锥.解析由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.答案 D(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.【训练2】(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析A中正视图,俯视图不对,故A错.B中正视图,侧视图不对,故B错.C中侧视图,俯视图不对,故C错,故选D.答案 D考向三空间几何体的直观图【例3】►已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( ).A.34a2 B.38a2 C.68a2 D.616a2[审题视点] 画出正三角形△ABC的平面直观图△A′B′C′,求△A′B′C′的高即可.解析如图①②所示的实际图形和直观图.由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′, 则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.答案 D直接根据水平放置的平面图形的直观图的斜二测画法规则即可得到平面图形的面积是其直观图面积的22倍,这是一个较常用的重要结论. 【训练3】 如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( ). A .正方形 B .矩形C .菱形D .一般的平行四边形解析将直观图还原得▱OABC ,则∵O ′D ′=2O ′C ′=2 2 (cm),OD =2O ′D ′=4 2 (cm),C ′D ′=O ′C ′=2 (cm),∴CD =2 (cm), OC =CD 2+OD 2=22+422=6 (cm),OA =O ′A ′=6 (cm)=OC ,故原图形为菱形. 答案 C阅卷报告9——忽视几何体的放置对三视图的影响致错【问题诊断】 空间几何体的三视图是该几何体在两两垂直的三个平面上的正投影.同一几何体摆放的角度不同,其三视图可能不同,有的考生往往忽视这一点.【防范措施】应从多角度细心观察.【示例】►一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.错因忽视几何体的不同放置对三视图的影响,漏选③.实录①②⑤正解①三棱锥的正视图是三角形;②当四棱锥的底面是四边形放置时,其正视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的正视图是三角形;④对于四棱柱,不论怎样放置,其正视图都不可能是三角形;⑤当圆锥的底面水平放置时,其正视图是三角形;⑥圆柱不论怎样放置,其正视图也不可能是三角形.答案①②③⑤【试一试】(2011·山东)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图,俯视图如右图.其中真命题的个数是( ).A. 3 B.2C.1 D.0[尝试解答] 如图①②③的正(主)视图和俯视图都与原题相同,故选A.答案 A。
2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理
§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。
2021届高考数学一轮总复习第8章立体几何第1节空间几何体的结构特征及三视图和直观图跟踪检测文含解析
第八章立体几何第一节空间几何体的结构特征及三视图和直观图A级·基础过关|固根基|1.由平面六边形沿某一方向平移形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体解析:选C 平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义.2.下列说法中,正确的是( )A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等解析:选C 棱柱的侧面都是平行四边形,选项A错误;若棱柱的底面是矩形,其他侧面可能是平行四边形,选项B错误;棱柱的侧棱长与底面边长不一定相等,选项D错误;易知选项C正确.3.水平放置的△ABC的直观图如图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC是一个( )A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形解析:选A AO=2A′O′=2×32=3,在Rt△AOB中,AB=12+(3)2=2,同理AC=2,又由题意可知,BC=2,所以△ABC是等边三角形.故选A. 4.(2019届沈阳市教学质量监测一)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B.5.如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,则剩余的部分是( )A.三棱锥B.四棱锥C.三棱柱D.组合体解析:选B如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,剩余部分是四棱锥A′-BCC′B′.6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④解析:选A 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.故选A.7.如图所示,网格纸上每个小方格都是边长为1的正方形,粗线画出的是一个几何体的三视图,记该几何体的各棱长度构成的集合为A,则( )A.3∈A B.3∈AC.23∈A D.22∈A解析:选D如图,该几何体可看成是由大三棱锥A-BCD(其中CD=DA=DB=2,CD,DA,DB两两垂直)截去小三棱锥A-CDE(其中E为BD中点)后形成的新三棱锥A-BCE,六条棱的长分别为22,22,22,1,5,5,故选D.8.如图是一个几何体的直观图、正视图和俯视图,该几何体的侧视图为( )解析:选B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面PAD,EC投影在面PAD上且为实线,点E的投影点为PA的中点,故选B.9.一个正方体截去两个角后所得几何体的正视图、俯视图如图所示,则其侧视图为( )解析:选C 根据正方体截去两个角后所得几何体的正视图、俯视图可得,此几何体的直观图如图所示.所以侧视图为选项C.10.如图所示的纸篓,观察其几何结构,可以看出是由许多条直线围成的旋转体,该几何体的正视图为________(填序号).解析:①②④中的几何体是由圆台、圆锥、圆柱组成的,而圆台、圆锥、圆柱的侧面除了与旋转轴在同一平面的母线以外,没有其他直线,即①②④不可能为该几何体的正视图.答案:③11.如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为________.解析:根据题意,三棱锥P-BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P-BCD的正视图与侧视图的面积之比为1∶1.答案:1∶112.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB=122+52=13(cm).答案:13B级·素养提升|练能力|13.某多面体的三视图如图所示,其中正视图和侧视图都是由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.则该多面体的各个面中,面积最大的面的面积为( )A .2 3B .6C .6 2D .12解析:选B由三视图可画出直观图,如图所示,该多面体中两个全等的梯形的面,为该多面体的各个面中面积最大的面,S 梯形=12×2×(2+4)=6.故选B.14.一只蚂蚁从正方体ABCD -A 1B 1C 1D 1的顶点A 出发,经正方体的表面,按最短路线爬行到顶点C 1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A .①②B .①③C .③④D .②④解析:选D 由点A 经正方体的表面,按最短路线爬行到达顶点C 1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB 1A 1和平面BCC 1B 1展开到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过BB 1的中点,此时对应的正视图为②;若把平面ABCD 和平面CDD 1C 1展开到同一平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过CD 的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.15.如图1,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.则该几何体的俯视图的面积为________,棱PA的长度为________.解析:该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.由侧视图可求得PD=PC2+CD2=62+62=62(cm).由正视图可知AD=6 cm,且AD⊥PD,所以在Rt△APD中,PA=PD2+AD2=(62)2+62=63(cm).答案:36 cm26 3 cm16.如图所示,在侧棱长为23的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A作截面AEF,△AEF周长的最小值为________.解析:如图,将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,则线段AA1的长即为所求△AEF的周长的最小值.取AA1的中点D,连接VD,则VD⊥AA1,∠AVD=60°.在Rt△VAD中,AD=VA·sin 60°=3,所以AA1=2AD=6,即△AEF周长的最小值为6.答案:6。
2021版高考文科数学(人教A版)一轮复习教师用书:第八章 第1讲 空间几何体的结构、三视图和直观图
cm,对应原图形平行四边形的高为 2 2
cm,所以原图形中,OA=BC=1
cm,AB=OC= (2 2)2+12=3 cm,故原图形的周长为 2×(1+3)=8 cm.
答案:8
[基础题组练]
1.某空间几何体的正视图是三角形,则该几何体不可能是( )
A.圆柱
B.圆锥
C.四面体
D.三棱柱
解析:选 A.由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正
6.一个圆台上、下底面的半径分别为 3 cm 和 8 cm,若两底面圆心的连线长为 12 cm,则这个圆台
的母线长为
cm.
解析:如图,过点 A 作 AC⊥OB,交 OB 于点 C.
在 Rt△ABC 中,AC=12 cm,BC=8-3=5(cm). 所以 AB= 122+52=13(cm).
答案:13 7.正四棱锥的底面边长为 2,侧棱长均为 3,其正视图和侧视图是全等的等腰三角形,则正视图的
错.
(2)命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题②错,因为这条腰必须是垂
直于两底的腰;命题③对.
【答案】 (1)B (2)B
空间几何体概念辨析问题的常用方法
1.把一个半径为 20 的半圆卷成圆锥的侧面,则这个圆锥的高为( )
A.10
B.10 3
C.10 2
D.5 3
解析:选 B.设圆锥的底面半径为 r,高为 h,因为半圆的弧长等于圆锥的底面周长,半圆的半径等 于圆锥的母线,所以 2πr=20π,所以 r=10,所以 h= 202-102=10 3.
解析:选 B.根据选项 A,B,C,D 中的直观图,画出其三视图,只有 B 项正确.
2021年高考数学10.1 空间几何体的直观图、三视图及其应用
立体几何高考第一轮复习第一节 空间几何体的直观图、三视图及其应用1高考引航2必备知识3关键能力高考引航平行四边形答案知识清单平行多边形三角形答案平行四边形全等平行四边形矩形答案等腰三角形直角三角形答案直角三角形等腰梯形直角梯形直角三角形直角三角形直角梯形直角梯形矩形一边答案直角三角形任一直角边直角腰圆直角梯形等腰三角形等腰梯形矩形答案正(主)视图正前方俯视图侧(左)视图正左方正上方答案45°(或135°)斜二测画法不变平行于坐标轴垂直一半答案ch侧面积两个底面积侧面积一个底面积答案基础训练BB题型归纳题型一 空间几何体的三视图答案C关键能力点拨:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正(主)视图、侧(左)视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.D题型二 空间几何体的表面积与体积点拨:求解几何体的表面积与体积的技巧:(1)求三棱锥的体积:等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一个面上.(2)求不规则几何体的体积:常用分割或补形的方法,将不规则几何体转化为规则几何体求解.答案118.8题型三 空间几何体的综合问题——识图与计算26 -1点拨:求解本题的关键是将立体几何平面化,另外还要熟练掌握常见几何体的相关性质,如遇到直观图画法的问题,还需要有较强的直观想象能力.方法突破空间几何体表面积的求法方法一答案方法二 空间几何体体积的求法答案B谢谢观赏。
2021版新高考数学(文科)一轮复习 第8章 第1节 空间几何体的结构特征、三视图和直观图
探 反例法
究
的,只要举出一个反例即可
返 首 页
课
前 自
1.下列结论正确的是( )
主
回 顾
A.侧面都是等腰三角形的三棱锥是正三棱锥
课 后
B.六条棱长均相等的四面体是正四面体
限 时
集
课 堂
C.有两个侧面是矩形的棱柱是直棱柱
训
考
点
D.用一个平面去截圆锥,底面与截面之间的部分叫圆台
探
究
返 首 页
课
前
自
主 回
主
回 顾
B.以三角形的一条边所在直线为旋转轴,其余两边旋转
课 后
形成的曲面所围成的几何体叫圆锥
限 时
集
课 堂
C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是 训
考
点 六棱锥
探
究
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
返 首 页
课
D [A错误.如图1所示,由两个结构相同的三棱锥叠放在一起
2.用一个平行于水平面的平面去截球,得到如图所示的几何体,
课
前 自
则它的俯视图是(
)
主
回
课
顾
后
限
时
集
课
训
堂
考
点
探
究
A
B
C
D
返 首 页
课 前 自 主 回 顾
B
选 B.]
课 堂 考 点 探 究
课
[俯视图中显然应有一个被遮挡的图,所以内部为虚线,故
后 限
时
集
训
返 首 页
3.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则
2021年高考数学复习 专题03 立体几何 空间几何体的结构及其三视图和直观图考点剖析
2021年高考数学复习专题03 立体几何空间几何体的结构及其三视图和直观图考点剖析主标题:空间几何体的结构及其三视图和直观图副标题:为学生详细的分析空间几何体的结构及其三视图和直观图的高考考点、命题方向以及规律总结。
关键词:多面积,旋转体,三视图难度:2重要程度:4考点剖析:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).命题方向:在空间几何体部分,主要是以空间几何体的三视图为主展开,考查空间几何体三视图的识别判断、考查通过三视图给出的空间几何体的表面积和体积的计算等问题,试题的题型主要是选择题或者填空题,在难度上也进行了一定的控制,尽管各地有所不同,但基本上都是中等难度或者较易的试题.规律总结:1.两点提醒一是从棱柱、棱锥、棱台、圆柱、圆锥、圆台的定义入手,借助几何模型强化空间几何体的结构特征.二是图形中与x轴、y轴、z轴都不平行的线段可通过确定端点的办法来解,即过端点作坐标轴的平行线段,再借助所作的平行线段来确定端点在直观图中的位置.2.一个防范三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.该部分要牢牢抓住各种空间几何体的结构特征,通过对各种空间几何体结构特征的了解,认识各种空间几何体的三视图和直观图,通过三视图和直观图判断空间几何体的结构,在此基础上掌握好空间几何体的表面积和体积的计算方法.知识梳理1.多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆锥可以由直角三角形绕其任一直角边旋转得到.(2)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(3)球可以由半圆面或圆面绕直径旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.31057 7951 祑26315 66CB 曋37839 93CF 鏏 Qz29440 7300 猀hqe21041 5231 刱22381 576D 坭39987 9C33 鰳34183 8587 薇H。
2021版高考数学一轮复习第8章立体几何第1节空间几何体的结构特征及三视图和直观图课件文新人教A版
(2)三视图的画法 ①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,挡住的轮 廓线和棱要画成虚线. ② 三 视 图的 正 视 图、 侧 视 图、 俯 视 图分 别 是 从几 何 体 的 11 _正__前______ 方 、 12 ____正__左___方、 13 ____正__上___方观察几何体画出的轮廓线.
3.空间几何体的直观图 空间几何体的直观图常用 14 __斜__二__测___画法来画,基本规则是:
(1)原图形中 x 轴、y 轴、z 轴两两垂直,直观图中, x′轴、y′轴的夹角为 15 4_5_°__(_或__1_3_5_°__)___,z′轴与 x′轴、y′轴所在平面垂直.
(2)原图形中平行于坐标轴的线段,直观图中 16 _还__是__平__行__于__坐__标__轴__的__线__段___.平行 于 x 轴和 z 轴的线段长度在直观图中 17 _保__持__不__变__,平行于 y 轴的线段长度在直观图中 18 _变__为__原__来__的__一__半____________.
第八章 立体几何
第一节 空间几何体的结构 特征及三视图和直观图
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2航Βιβλιοθήκη 3 课 时 ·跟 踪 检 测
[最新考纲]
1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中 简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识 别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形 式.
[考情分析]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
何体为( )
A.圆锥
B.三棱椎
C.三棱柱
D.三棱台
解析 三由视图可知,该几何体是一个横放的三棱柱,故选 C.
答案 C 6.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头, 凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一 带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )
其中 EH∥A′D′.剩下的几何体是( )
A.棱台 C.五棱柱
B.四棱柱 D.六棱柱
解析 由几何体的结构特征,剩下的几何体为五棱柱. 答案 C
4.(2020·衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中 有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问: 积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽 3 丈、长 4 丈,上棱长 2 丈,高 2 丈,问:它的体积是多少?”已知该楔体的正视图和俯视 图如图中粗实线所示,则该楔体的侧视图的周长为( )
意其中的虚线.
诊断自测
1.判断下列结论正误(在括号内打“√”或“×”) (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )
(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于 x 轴和 y 轴,且 ∠A=90°,则在直观图中,∠A=45°.( ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( ) 解析 (1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.
解析 由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所 以是虚线,结合榫头的位置知选 A. 答案 A
考点一 空间几何体的结构特征
【例 1】 (1)给出下列命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;
1.空间几何体的结构特征
(1)多面体的结构特征
名称
棱柱
知识梳理 棱锥
棱台
图形
底面 互相平行且全等
侧棱
平行且相等
侧面形状 平行四边形
(2)旋转体的结构特征
名称
圆柱
多边形 相交于一点, 但不一定相等
三角形
互相平行且相似 延长线交 于一点 梯形
圆锥
圆台
球
图形
母线
互相平行且相 相交于一点
延长线交
等,垂直于底面
来的一半.
3.三视图
(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正
左方、正上方观察几何体画出的轮廓线.
(2)三视图的画法
①基本要求:长对正,高平齐,宽相等.
②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.
[常用结论与微点提醒]
1.常见旋转体的三视图
(1)球的三视图都是半径相等的圆.
A.3 丈
B.6 丈
C.8 丈
D.(5+ 13)丈
解析 由题意可知该楔体的侧视图是等腰三角形,它的底边长为 3 丈,相应高为
2 丈,所以腰长为
22+
3 2
2=5(丈),所以该楔体侧视图的周长为
3+2×5=8(丈).
2
2
答案 C
5.(2019·济宁一中月考)如图为某个几何体的三视图,根据三视图可以判断这个几
2.(新教材必修第二册 P112T5 改编)一个菱形的边长为 4 cm,一内角为 60°,用斜
二测画法画出的这个菱形的直观图的面积为( )
A.2 3 cm2
B.2 3 cm2
解析 直观图的面积为 2× 3×42=2 6(cm2). 42
答案 B
3.(老教材必修 2P10B 组 T1 改编)如图,长方体 ABCD-A′B′C′D′被截去一部分,
(2)反例:如图所示的图形满足条件但不是棱锥. (3)用斜二测画法画水平放置的∠A 时,把 x,y 轴画成相交成 45°或 135°,平行于 x 轴的线段还平行于 x 轴,平行于 y 轴的线段还平行于 y 轴,所以∠A 可能为 45° 也可能为 135°. (4)球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形, 其俯 视图为圆心和圆,正方体的三视图不一定相同. 答案 (1)× (2)× (3)× (4)×
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A.0
B.1
C.2
D.3
(2)(多选题)下列说法正确的是( )
A.棱柱的侧棱都相等,侧面都是全等的平行四边形
B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 C.存在每个面都是直角三角形的四面体
D.棱台的侧棱延长后交于一点
(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.
(3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形.
(4)水平放置的圆柱的正视图和侧视图均为全等的矩形.
2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线
用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注
第 1 节 空间几何体的结构、三视图和直观图
考试要求 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特 征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、 圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用 斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图 与直观图,了解空间图形的不同表示形式.
于一点
轴截面
矩形
等腰三角形
等腰梯形
圆
侧面展 开图
矩形
扇形
扇环
2.直观图
空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中 x 轴、y 轴、z
轴两两垂直,直观图中,x′轴、y′轴的夹角为 45°(或 135°),z′轴与 x′轴、y′轴所在
平面垂直.
(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于 x 轴和 z 轴的线段在直观图中保持原长度不变,平行于 y 轴的线段长度在直观图中变为原
解析 (1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以
斜边所在直线为旋转轴时,其余两边旋转一周形成的面所围成的几何体不是圆锥,
如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似