第10课--绝对值不等式(经典例题练习、附答案)word版本

合集下载

绝对值不等式(高考版)(含经典例题+答案)

绝对值不等式(高考版)(含经典例题+答案)

绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。

b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。

x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。

分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

含绝对值不等式测试题及答案

含绝对值不等式测试题及答案

实用精品文献资料分享含绝对值不等式测试题及答案高二数学含绝对值不等式人教版【同步教育信息】一. 本周教学内容含绝对值不等式二. 重点、难点 1. 基本性质:或 2. 重要不等式【典型例题】 [例1] a、b、c 求证:左若不等式显然成立若∴ 左 [例2] 求证:(1)若显然成立(2)显然成立 [例3] 求证:证:(1)时显然成立(2)左 [例4] 解不等式解:或或得 [例5] 不等式的解集为A,若 A,求a取值范围。

解:作函数的图象∴ [例6] a、b、c为的三边求证:证:同理迭加∴ ∴ [例7] 解不等式解:即:∴ [例8] 二次函数,开口向上,且,解不等式解:图象关于对称∴ 递减递增∴ ∴ 原不等式【模拟试题】 1. 下列不等式① ② ③ ,其中正确的有()个 A.0 B. 1 C. 2 D. 3 2. 已知,,下列各式中最大的一个为() A.B. C. D. 3. a、b、c、d ,,,则abcd的最小值为() A. B. C.D. 4. 不等式的解为,则不等式的解为() A.(1 , 2) B. C.D. 5. 不等式的解为R,则a的取值范围为() A. B. C. D. 6. 不等式的解为() A. B. C. D. 7. 函数在区间上为递增,求a取值范围() A. B. 或 C. D. 8. 函数,R上递增,若,则() A.B. C. D. 9. 奇函数,,的解为,解为,则解为() A. B.C. D. 10. 一批救灾物资用26辆汽车从A市以V公里/小时的速度匀速直达灾区B地,A,B间公路长400公里,为了安全行车,车队中相邻两辆汽车不得小于公里,那么物资全部运到灾区,最少需多少小时?(车长不计)试题答案 1. C 2. D 3. C 4. D 5. A 6. C 7.C 8.A 9. C 10. 解:26辆有25个车距∴ 时间∴。

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析1.设函数(1)解不等式;(2)求函数的最小值.【答案】(1);(2).【解析】(1)解含绝对值的不等式,关键是去掉绝对值符号,其方法有三种:①定义法;②平方法;③分区间讨论法,这里用的是分区间讨论法,遇到多个绝对值时常用此方法;(2)求绝对值函数的值域,通常是通过分区间讨论,去掉绝对值符号,将绝对值函数改写成分段函数,然后就每段求的范围,最后再将每段求得的范围求并集,注意不是求交集,从而得到绝对值函数的值域.试题解析:(1)不等式等价于:①;②;③,综合①②③得不等式的解集为:(2)①当时,;②当时,③当时,综合①②③得函数的值域为,因此求函数的最小值为.【考点】1.含绝对值的不等式的解法;2.绝对值函数的值域的求法;3.分类讨论思想.2.已知定义在R上的函数的最小值为.(1)求的值;(2)若为正实数,且,求证:.【答案】(1);(2)证明见解析.【解析】解题思路:(1)利用求得的最小值;(2)利用证明即可.规律总结:不等式选讲内容,一般难度不大,主要涉及绝对值不等式和不等式的证明,证明或求最值,要灵活选用有关定理或公式.试题解析:(1)因为,当且仅当时,等号成立,所以的最小值等于3,即.(2)由(1)知,又因为是正数,所以,即.【考点】1.绝对值不等式;2.重要不等式.3.设函数(1)求不等式的解集;(2)若不等式(,,)恒成立,求实数的范围.【答案】(1);(2).【解析】(1)欲解不等式,需去掉绝对值,考虑到含有两个绝对值,因此分三段去,然后解.(2)要使不等式恒成立,则,考虑到不等式性质,不等式右侧可化简.试题解析:去绝对值,函数可化为,分三段解不等式,可得解集为:.由, 可得, 由(1)可解得:【考点】(1)含绝对不等会的解法;(2)恒成立问题(一般采用分离常数).4.已知函数(1)解关于的不等式;(2)若存在,使得的不等式成立,求实数的取值范围.【答案】(1);(2)【解析】(1)先去掉绝对值得到,然后遂个求解不等式最终可得解集;(2)利用含参不等式的求解方法先确定因为所以则.试题解析:(1)原不等式等价于①: 1分或②: 2分或③: 3分解不等式组①无解; 4分解不等式组②得: 5分解不等式组③得: 6分所以原不等式的解集为 7分;(2)依题意 9分因为,所以 11分所以, 12分所以实数的取值范围为 13分.【考点】1,分段函数2,含参函数不等式的求解.5.对于实数,若,则的最大值为()A.4B.6C.8D.10【答案】B【解析】因为又因为,可得,故选B.【考点】绝对值不等式.6.不等式的解集为A.[-5.7]B.[-4,6]C.D.【答案】C【解析】本题利用绝对值的几何意义,结合数轴求解。

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.不等式有实数解的充要条件是_____.【答案】.【解析】记,则不等式有实数解等价于,因为,故【考点】绝对值三角不等式.4.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是_________.【答案】(﹣∞,8]【解析】由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].5.解不等式|2x-4|<4-|x|.【答案】【解析】原不等式等价于①或②或③不等式组①无解.由②0<x≤2,③2<x<,得不等式的解集为.6.已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x 的取值范围.【答案】≤x≤【解析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8. A.(坐标系与参数方程)已知直线的参数方程为 (为参数),圆的参数方程为(为参数), 则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A. ; B.; C.【解析】A. 先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C. 由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.9.不等式的解集是【答案】【解析】解答本题可利用“分段讨论法”,也可利用“几何法”,根据绝对值的几何意义,结合数轴得,不等式的解集是.【考点】绝对值不等式的解法10.已知关于x的不等式|ax-2|+|ax-a|≥2(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围.【答案】(1)(2)a≥4【解析】(1)当a=1时,不等式为|x-2|+|x-1|≥2,由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2.∴x≥或x≤.∴不等式的解集为.注:也可用零点分段法求解.(2)∵|ax-2|+|ax-a|≥|a-2|,∴原不等式的解集为R等价于|a-2|≥2,∴a≥4或a≤0.又a>0,∴a≥4.11.设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.【答案】(1)M={x|0<x<1}(2)ab+1>a+b【解析】(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.12.不等式的解集是 .【答案】【解析】由题意可得,,解得.【考点】绝对值不等式的解法.13.不等式的解集是________.【答案】【解析】,当即时,则或,所以,故此时不成立;当即时,显然恒成立,故答案为.【考点】绝对值不等式的解法.14.已知不等式|x+2|+|x|≤a的解集不是空集,则实数a的取值范围是().A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】D【解析】因为|x+2|+|x|的最小值为2,所以要使不等式的解集不是空集,则有a≥2.15.不等式的解集是.【答案】【解析】含绝对值的不等式我们可以通过根据绝对值的定义通过分类讨论的方法去掉绝对值符号,然后解决问题,本题也可不分类讨论,首先不等式变形为,它等价于,这是二次不等式,解得,还要注意题目要求写成集合形式.【考点】解不等式.16.不等式的解集为 .【答案】【解析】即两边平方得,,,所以,不等式的解集为.【考点】绝对值不等式的解法17.已知函数f(x)=|x+2|+|2x-4|(1)求f(x)<6的解集;(2)若关于的不等式f(x)≥m2-3m的解集是R,求m的取值范围【答案】(1)不等式的解是{x|0<x<};(2)【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力第一问,利用零点分段法进行求解;第二问,利用函数的单调性求出最小值证明恒成立问题试题解析:(I)由题设知:当时,不等式等价与,即; 2分当时,不等式等价与,即; 4分当时,不等式等价与,即无解所以满足不等式的解是 6分(II)由图像或者分类讨论可得的最小值为4 8分则,解之得,【考点】1 绝对值不等式的解法;2 恒成立问题;3 分段函数的最值问题18.设关于的不等式的解集为,且,则实数的取值范围是 .【答案】.【解析】由题意当时,,当时,,即,由,则或,所以实数的取值范围为.【考点】绝对值不等式.19.若关于x的不等式的解集为空集,则实数a的取值范围是 .【答案】【解析】∵|x-1|-|x-2|=|x-1|-|2-x|≤|x-1-x+2|=1,若不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则|x-1|-|x-2|<a2+a+1恒成立,即a2+a+1>1,解得x<-1或x>0.∴实数a的取值范围是(-∞,-1)∪(0,+∞).【考点】1.绝对值不等式的解法;2.函数恒成立问题20.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.21.已知函数,其中实数.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.【答案】(1)不等式的解集为;(2)【解析】(1)将代入得一绝对值不等式:,解此不等式即可.(2)含绝对值的不等式,一般都去掉绝对值符号求解。

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析1.已知实数满足,证明:.【答案】见解析【解析】有已知条件,可得,,然后得到,展开进行整理即可。

证明:证法一,∴,,∴,. 2分∴,即, 4分∴,∴, 6分即,∴. 8分证法二:要证,只需证 2分只需证只需证 4分即. 6分,∴,,∴成立.∴要证明的不等式成立. 8分【考点】绝对值不等式;不等式证明的基本方法.2.不等式的解集是 ( )A.B.C.D.【答案】D【解析】由得,即或,解得或【考点】解含绝对值不等式3.不等式的解集为A.[-5.7]B.[-4,6]C.D.【答案】C【解析】本题利用绝对值的几何意义,结合数轴求解。

不等式的解集为,选C。

【考点】绝对值不等式解法点评:简单题,绝对值不等式解法,通常以“去绝对值符号”为出发点。

有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。

4.已知关于x的不等式的解集是非空集合,则的取值范围是【答案】【解析】根据题意,关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,即为存在y=|x+a|+|x-1|的图形在y=2013-a的下方. y=|x+a|+|x-1|的图形是一条有两个折点的折线.y=2013-a是一条平行于x轴的直线.a的取值范围是(-∞,1006);6所以答案为:(-∞,1006).【考点】绝对值不等式点评:(1)关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,等价于存在y=|x+a|+|x-1|的图形在y=2013-a的下方.与恒成立是有本质区别的.(2)y=|x+a|+|x+b|的图形为一条带有两个折点的直线.5.在实数范围内,不等式的解集为__________【答案】【解析】解:由不等式|2x-1|+|2x+1|≤6,可得①-(2x-1)+(-2x-1)≤6, x<-,或②-(2x-1)+(2x+1)≤6-≤x<,或③2x-1+2x+1≤6,X解①得-≤x<-,解②得-≤x<,解③得≤x≤把①②③的解集取并集可得不等式的解集为【考点】分式不等式点评:本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于中档题.6.不等式的解集为。

第10课--绝对值不等式(经典例题练习、附答案)

第10课--绝对值不等式(经典例题练习、附答案)

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;◇知识梳理1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >⎧⎪= =⎨⎪ <⎩②几何意义:a 是数轴上表示a 的点____________。

2. 含绝对值的不等式的解法①0a >时,|()|f x a >⇔____________;|()|f x a <⇔____________;②去绝对值符号是解绝对值不等式的常用方法;③根据绝对值的几何意义,通过数形结合解绝对值不等式.◇基础训练1.函数|||3|y x x =--的最大值为 ___________.2.(2008惠州调研) 函数46y x x =-+-的最小值为 .3.(2008珠海质检)已知方程20x ax b -+=的两根分别为1和2,则不等式1ax b -≤的解集为 ____________ (用区间表示).4.(2008广州二模)不等式21<-+x x 的解集是 .◇典型例题例1 .解不等式512x x +>-例2. 解不等式125x x -++>变式1:12x x a -++<有解,求a 的取值范围变式2:212x x a -++<有解,求a 的取值范围变式3:12x x a -++>恒成立,求a 的取值范围◇能力提升1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<<x x ,则实数=a .2.(2008韶关二模)不等式4|2||12|<++-x x 的解集为3.(2008揭阳调研)若()5f x x t x =-+-的最小值为3, 则实数t 的值是________.4. (2008汕头一模) 若不等式121x a x+>-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。

含绝对值的不等式考试试题及答案

含绝对值的不等式考试试题及答案

含绝对值的不等式考试试题及答案例5-3-13解下列不等式:(1)|2-3x|-1<2(2)|3x+5|+1>6解(1)原不等式同解于(2)原不等式可化为|3x+5|>5 3x+5>5或3x+5<-5注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。

解5-3-14解不等式4<|x2-5x|≤6。

解原不等式同解于不等式组不等式(i)同解于x2-5x<-4或x2-5x>4不等式(ii)同解于-6≤x2-5x≤6取不等式(i),(ii)的解的交集,即得原不等式的解集其解集可用数轴标根法表示如下:注本例的难点是正确区别解集的交、并关系。

“数轴标根法”是确定解集并防止出错的有效辅助方法。

例5-3-15解不等式|x+2|-|x-1|≥0。

解原不等式同解于|x+2|≥|x-1| (x+2)2≥(x-1)2注解形如|ax+b|-|cx+d|≥0的不等式,适合于用移项后两边平方脱去绝对值符号的方法。

但对其他含多项绝对值的情形,采用此法一般较繁,不可取。

例5-3-16解下列不等式:解(1)原不等式同解于不等式组左边不等式同解于右边不等式同解于取(i),(ii)的交集,得原不等式的解集为{x|1<x<2} (2)原不等式同解于取(Ⅰ)、(Ⅱ)、(Ⅲ)的并集,得原不等式的解集为例5-3-17解不等式||x+1|-|x-1||<x+2。

分析要使不等式有解,必须x+2>0即x>-2。

又|x+1|,|x-1|的零点分别为-1,1,故可在区间(-2,-1),[-1,1],[1,+∞)内分别求解。

解原不等式同解于注解含多个绝对值项的不等式,常采用分段脱号法。

其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,确定所求解集。

例5-3-18已知a>0,b>0,解不等式|ax-b|<x。

解显然x>0,故原不等式同解于注含绝对值的不等式中,若含有参数,则先去掉绝对值符号并化简,再根据具体情况对参数进行分类讨论。

绝对值不等式练习题

绝对值不等式练习题

绝对值及指数对数的不等式1.解绝对值不等式的常用方法:①讨论法:讨论绝对值中的式于大于零还是小于零,然后去掉绝对值符号,转化为一般不等式; ②等价变形:解绝对值不等式常用以下等价变形:|x|<a ⇔x 2<a 2⇔-a<x<a(a>0),|x|>a ⇔x 2>a 2⇔x>a 或x<-a(a>0)。

一般地有:|f(x)|<g(x)⇔-g(x)<f(x)<g(x),|f(x)|>g(x)⇔f(x)>g (x)或f(x)<g(x)。

2.指数不等式a a f x g x ()()>⇒()()()11当时,a f x g x >>;()()()201当时,<<<a f x g x ;3.对数不等式a Nb N b a=⇔=l o g (l o g )l o g l o g l o g a b b n mb b a an a abm>>⇔=001,,,等,l o g ()l o g ()a af xg x >⇒ (1)当a >1时,g x f x g x ()()()>>⎧⎨⎪⎩⎪0;(2)当01<<a 时,f x f x g x ()()()><⎧⎨⎪⎩⎪0。

绝对值的不等式练习1.不等式243<-x 的整数解的个数为( )A 0B 1C 2D 大于22.若两实数y x ,满足0<xy ,那么总有( )A yx y x -<+ B y x y x ->+ C y x y x -<-D x y y x -<+3.已知0,<+>b a b a ,那么( )A ba > Bba11>C b a < Dba11<4.不等式13-<-x x 的解是( )A 52<<xB 36≥xC 2>xD 32≤<x5.已知,b c a <-且,0≠abc 则( )A c b a +<B b c a ->C c b a +<D c b a ->6.不等式652>-x x 的解集为( )A 1{-<x x 或}6>xB }32{<<x xC ∅D 1{-<x x 或32<<x 或}6>x7.若1lg lg ≤-b a ,那么( )A ba 100≤< B ab 100≤< C b a 100≤<或a b 100≤< Dba b 1010≤≤8.函数22--=x x y 的定义域是( )A ]2,2[-B ),2[]2,(+∞--∞C ),1[]1,(+∞--∞D ),2[+∞9.不等式b a b a +≤+取等号的条件是 ,ba b a +≤-取等号的条件.10.不等式x x ->+512的解集11.如果不等式21<x和31>x 同时成立,则x 的取值范围12.不等式xx xx ->-11的解集是13.函数xx x y -+=0)21(的定义域是14.不等式331≤-<x 的解集是15.解下列不等式 :(1)xx 1< (2)321>++-x x16.解不等式:x x +<-1log2log 414118.使不等式a x x <-+-34有解的条件是( )A 1>aB1101<<a C 101<a D 1010<<a19.不等式组⎪⎩⎪⎨⎧+-<+-<x x x x x 22330的解集是( )A }02{<<-x xB }025{<<-x x C }06{<<-x x D }03{<<-x x。

含绝对值不等式练习题

含绝对值不等式练习题

含绝对值不等式练习题绝对值不等式是数学中的一种重要的概念和工具,它在解决实际问题和推导数学定理时起着重要的作用。

在学习绝对值不等式时,我们需要掌握一些基本的性质和解题方法。

下面,我将通过一些练习题来帮助大家更好地理解和掌握绝对值不等式的应用。

练习题一:求解不等式|x-3|<5。

解法一:我们可以将不等式|x-3|<5拆分成两个不等式,即x-3<5和x-3>-5。

解得x<8和x>-2。

将这两个不等式合并,得到-2<x<8,即x的取值范围为-2到8之间。

解法二:我们可以利用绝对值的定义来解这个不等式。

根据绝对值的定义,|x-3|<5等价于-5<x-3<5。

我们可以将这个不等式拆分成两个不等式,即-5<x-3和x-3<5。

解得x>2和x<8。

将这两个不等式合并,得到2<x<8,即x的取值范围为2到8之间。

练习题二:求解不等式|2x-1|>3。

解法一:我们可以将不等式|2x-1|>3拆分成两个不等式,即2x-1>3和2x-1<-3。

解得x>2和x<-1。

将这两个不等式合并,得到x的取值范围为负无穷到-1并且2到正无穷。

解法二:我们可以利用绝对值的定义来解这个不等式。

根据绝对值的定义,|2x-1|>3等价于2x-1>3或者2x-1<-3。

解得x>2或者x<-1。

将这两个不等式合并,得到x的取值范围为负无穷到-1并且2到正无穷。

练习题三:求解不等式|3x+2|-4<1。

解法一:我们可以将不等式|3x+2|-4<1拆分成两个不等式,即|3x+2|<5和|3x+2|>-3。

解得-5<3x+2<5和3x+2<-3或者3x+2>3。

将这三个不等式合并,得到-5<3x+2<5并且3x+2不等于-3。

高一数学绝对值不等式试题答案及解析

高一数学绝对值不等式试题答案及解析

高一数学绝对值不等式试题答案及解析1.不等式|2-x|≥1的解集是A.{x|1≤x≤3}B.{x|x≤1或x≥3}C.{x|x≤1}D.{x|x≥3}【答案】B【解析】∵|2-x|≥1,∴2-x≥1或2-x≤1,解得x≤1或x≥3, 故不等式|2-x|≥1的解集是{x|x≤1或x≥3},选B【考点】本题考查了绝对值不等式的解法点评:解含绝对值不等式的关键是脱掉绝对值符号,有时利用定义,有时利用公式,属基础题2.不等式对任意实数恒成立,则实数的取值范围为()A.B.C.D.【答案】A【解析】因为不等式对任意实数恒成立,那么则可知,故选A.3.不等式的解集为_______________.【答案】(– 1,1)【解析】解:因为4.关于的不等式在上恒成立,求实数的取值范围.【答案】【解析】解:去掉绝对值符号,利用分段函数的思想得到解析式为分段研究最小值,并结合图像求解得到a的范围。

5.不等式解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)【答案】A.【解析】,应选A.6.不等式对任意实数恒成立,则实数的取值范围为()A.B.(C.D.【答案】A【解析】即解得故选A7.不等式的解集为________________.【答案】【解析】略8.若,则下列不等式:中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(3)(4)【答案】C【解析】略9. (不等式选讲选做题)若的最小值为3,则实数的值是________.【答案】2或8【解析】由,得或810.不等式的解集为()A.B.C.D.【答案】D【解析】把x=1代入不等式组验算得x=1是不等式组的解,则排除(B)、(C), 再把x=-3代入不等式组验算得x=-3是不等式组的解,则排除(B),所以选(D).11.(2014•九江三模)若关于x的不等式|x﹣1|+x≤a无解,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】通过去掉绝对值符号化简不等式的左侧为函数的表达式,通过函数的最值求出a的范围.解:令y=x+|x﹣1|=,∴函数的最小值为1,∴要使关于x的不等式x+|x﹣1|≤a无解,实数a的取值范围为a<1.故答案为:(﹣∞,1).点评:本题考查绝对值不等式的解法,函数的最值的应用,绝对值的基本知识的考查,属于中档题.12.(2013•临沂一模)已知集合A={},B={x||x﹣1|≤1},则A∩B=()A.{﹣1,0}B.{0,1}C.{0}D.{1}【答案】B【解析】依题意,可求得A={﹣1,0,1},解不等式|x﹣1|≤1可求得集合B,从而可求得A∩B.解:∵A={x|x=sin,k∈Z},∴A={﹣1,0,1};∵|x﹣1|≤1,∴﹣1≤x﹣1≤1,∴0≤x≤2.∴集合B={x|0≤x≤2},∴A∩B={0,1}.故选B.点评:本题考查绝对值不等式的解法,考查交集及其运算,求得A={﹣1,0,1}是关键,属于中档题.13.(2013•南开区一模)已知A={x||2x﹣1|<5},B={x|x2﹣5x+4<0},C=(1,3),则“x∈A∩B”是“x∈C”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】解一元二次不等式求得A和B,可得A∩B=C,故由“x∈A∩B”,可得“x∈C”,而且由“x∈C”可得“x∈A∩B”,从而得“x∈A∩B”是“x∈C”的充要条件.解:∵已知A={x||2x﹣1|<5}={x|﹣5<2x﹣1<5 }=(﹣2,3),B={x|x2﹣5x+4<0}={x|(x﹣1)(x﹣4)<0}=(1,4),C=(1,3),∴A∩B=(1,3),即A∩B=C.故由“x∈A∩B”,可得“x∈C”,而且由“x∈C”可得“x∈A∩B”,“x∈A∩B”是“x∈C”的充要条件,故选C.点评:本题主要考查绝对值不等式的解法,充分条件、必要条件、充要条件的定义,属于中档题.14.(2013•红桥区二模)已知集合M={x||x+2|+|x﹣1|≤5},N={x|a<x<6},且M∩N=(﹣1,b],则b﹣a=()A.﹣3B.﹣1C.3D.7【答案】C【解析】解绝对值不等式求得M={x|﹣3≤x≤2},再由N={x|a<x<6},且M∩N=(﹣1,b],可得a=﹣1,b=2,从而求得b﹣a的值.解:由于|x+2|+|x﹣1|表示数轴上的x对应点到﹣2和1对应点的距离之和,而﹣3和2对应点到﹣2和1对应点的距离之和正好等于5,故由|x+2|+|x﹣1|≤5可得﹣3≤x≤2,∴集合M={x||x+2|+|x﹣1|≤5}={x|﹣3≤x≤2}.再由N={x|a<x<6},且M∩N=(﹣1,b],可得a=﹣1,b=2,b﹣a=3,故选C.点评:本题主要考查绝对值的意义,绝对值不等式的解法,两个集合的交集的定义,属于中档题.15.(2014•江西二模)若存在x∈R,使|2x﹣a|+2|3﹣x|≤1成立,则实数a的取值范围是()A.[2,4]B.(5,7)C.[5,7]D.(﹣∞,5]∪[7,+∞)【答案】C【解析】利用绝对值不等式可得|2x﹣a|+2|3﹣x|≥|a﹣6|,依题意,解不等式|a﹣6|≤1即可.解:∵|2x﹣a|+2|3﹣x|=|2x﹣a|+|6﹣2x|≥|2x﹣a+6﹣2x|=|a﹣6|,∴|a﹣6|≤1,解得:5≤a≤7.∴实数a的取值范围是[5,7].故选:C.点评:本题考查绝对值不等式的解法,求得|2x﹣a|+2|3﹣x|≥|a﹣6|是关键,考查理解与运算能力,属于中档题.16.(2014•南昌三模)若关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,则实数a的取值范围为()A.(0,1)B.(﹣1,0)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(0,+∞)【答案】D【解析】依题意,关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集⇔a2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|,可求其最大值,从而可解关于a的不等式即可.解:∵|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,∴a2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|=,则a2+a+1>f(x)max ,∵f(x)max =1,∴a2+a+1>1,∴a2+a>0,解得a>0或a<﹣1.∴实数a的取值范围为(﹣∞,﹣1)∪(0,+∞)故选D.点评:本题考查绝对值不等式的解法,考查函数恒成立问题,突出等价转化思想的应用与一元二次不等式的解法的考查,属于中档题.17.(2014•南昌模拟)对任意x∈R,且x≠0,不等式|x+|>|a﹣5|+1恒成立,则实数a的取值范围是()A.(﹣∞,4)∪(6,+∞)B.(2,8)C.(3,5)D.(4,6)【答案】D【解析】根据|x+|≥2结合题意可得2>|a﹣5|+1,去掉绝对值,求得不等式的解集.解:∵|x+|≥2,不等式|x+|>|a﹣5|+1恒成立,∴2>|a﹣5|+1,即|a﹣5|<1,﹣1<a﹣5<1,解得 4<a<6,故选:D.点评:本题主要考查基本不等式、绝对值不等式的解法,体现了转化的数学思想,属于中档题.18.(2014•江西二模)若存在x∈R,使|2x﹣a|+2|3﹣x|≤1成立,则实数a的取值范围是()A.[2,4]B.(5,7)C.[5,7]D.(﹣∞,5]∪[7,+∞)【答案】C【解析】利用绝对值不等式可得|2x﹣a|+2|3﹣x|≥|a﹣6|,依题意,解不等式|a﹣6|≤1即可.解:∵|2x﹣a|+2|3﹣x|=|2x﹣a|+|6﹣2x|≥|2x﹣a+6﹣2x|=|a﹣6|,∴|a﹣6|≤1,解得:5≤a≤7.∴实数a的取值范围是[5,7].故选:C.点评:本题考查绝对值不等式的解法,求得|2x﹣a|+2|3﹣x|≥|a﹣6|是关键,考查理解与运算能力,属于中档题.19. (2013•中山模拟)若集合M={x ∈N *|x <6},N={x||x ﹣1|≤2},则M∩∁R N=( ) A .(﹣∞,﹣1) B .[1,3) C .(3,6) D .{4,5}【答案】D【解析】用列举法求得集合M ,解绝对值不等式求得集合N ,可得C R N ,再根据交集的定义求得M∩C R N 的值.解:∵集合M={x ∈N *|x <6}={1,2,3,4,5},N={x||x ﹣1|≤2}={x|﹣2≤x ﹣1≤2}={x|﹣1≤x≤3},∴C R N={x|x <﹣1,或x >3}, ∴M∩C R N={4,5}, 故选D .点评:本题主要考查绝对值不等式的解法,求集合的补集,两个集合的交集的定义和求法,属于中档题.20. 解不等式组.【答案】【解析】由题可知,通过十字相乘法求得的解集为或;再由分式不等式的解法求得的解集为,两者取交集,即不等式组的解集为; 试题解析:由得,解得或;由得,解得;即不等式组的解集为;【考点】不等式的解法。

含有绝对值不等式的解法 典型例题

含有绝对值不等式的解法 典型例题

含绝对值不等式的解法例1解绝对值不等式|x+3|>|x-5|.解:由不等式|x+3|>|x-5|两边平方得|x+3|2>|x-5|2,即(x+3)2>(x-5)2,x>1.∴原不等式的解集为{x|x>1}.评析对于两边都含“单项”绝对值的不等式依据|x|2=x2,可在两边平方脱去绝对值符号.当然,此例可按绝对值定义讨论脱去绝对值符号,但解题繁琐.例2对任意实数x,若不等式|x+1|-|x-2|>k恒成立,则实数k的取值范围是(),A.k<3 B.k<-3 C.k≤3D.k≤-3分析要使|x+1|-|x-2|>k对任意实数x恒成立,只要|x+1|-|x-2|的最小值大于k.因|x+1|的几何意义为数轴上点x到-1的距离,|x-2|的几何意义为点x到2的距离,|x+1|-|x-2|的几何意义为数轴上点x到-1与2的距离的差,其最小值为-3,∴k<-3,∴选B.评析此例利用绝对值的几何意义使问题迅速得解,若采用其他方法则解答过程冗长.例3解不等式|3x-1|>x+3.分析解此类不等式,要分x+3≥0和x+3<0两种情况讨论.解:当x+3≥0,即x≥-3时,原不等式又要分-3≤x< 和x≥ 两种情况求解:当-3≤x< 时,-3x+1>x+3,即x<- ,此时不等式的解为-3≤x<- ;①当x≥ 时,3x-1>x+3,即x>2,此时不等式的解为x>2.②又当x+3<0,即x<-3时,不等式是绝对不等式.③—取①、②、③并集知不等式的解集为{x|x<- ,或x>2}.例4解不等式|x-5|-|2x+3|<1解:x=5和x=- 分别使上式两个绝对值中代数式的值为零,它们将数轴分成三段:于是,原不等式变为(Ⅰ)或(Ⅱ)或(Ⅲ)解(Ⅰ)得x<-7,解(Ⅱ)得<x≤5,¥解(Ⅲ)得x>5;(Ⅰ)(Ⅱ)(Ⅲ)的并集{x|x<-7或x> }即为原不等式的解集.说明解这类绝对值不等式(仅限绝对值符号里面是一次式)可分如下几个步骤:第一步令每个绝对值号里的一次因式等于零求出相应的根;第二步把这些根按从小到大的顺序排号并把数轴分成相应的若干个区间;第三步根据所分区间去掉绝对值符号,组成若干个不等式组,最后分别解每个不等式组,取结果的并集就是原不等式的解.例5解不等式1≤|2x-1|<5.解法一:原不等式等价于① 或②解①得1≤x<3;解②得-2<x≤0.∴原不等式的解集为{x|-2<x≤0或1≤x<3}.\解法二:原不等式等价于1≤2x-1<5,或-5<2x-1≤-1,即2≤2x<6,或-4<2x≤0,解得1≤x<3,或-2<x≤0.∴原不等式的解集为{x|-2<x≤0,或1≤x<3}.评析比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是a≤|x|≤b a≤x≤b,或-b≤x≤-a(a≥0).这一规律对我们今后解题很有作用,要在理解的基础上加以记忆.本例亦可用图像法求解,不妨一试.例6 解不等式|x+3|+|x-3|>8."分析这是一个含有两个绝对值符号的不等式,为了使其转化为解不含绝对值符号的不等式,要进行分类讨论.解法一:由代数式|x+3|、|x-3|知,-3和3把实数集分为三个区间:x<-3,-3≤x<3,x≥3.当x<-3时,-x-3-x+3>8,即x<-4,此时不等式的解为x<-4;①当-3≤x<3时,x+3-x+3>8,此时无解;②当x≥3时,x+3+x-3>8,即x>4,此时不等式的解为x>4.③取①、②、③的并集得原不等式的解集为{x|x<-4,或x>4}.点评解这类绝对值符号里是一次式的不等式,其一般步骤是:(1)令每个绝对值符号里的一次式为零,并求出相应的根;(2)把这些根由小到大排序并把实数集分为若干个区间;…(3)由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集;(4)取这些不等式的解集的并集就是原不等式的解集.模仿例1,我们还有解法二:不等式|x+3|+|x-3|>8表示数轴上与A(-3),B(3)两点距离之和大于8的点,而A,B两点距离为6.因此线段AB上每一点到A、B的距离之和都等于6.如下图,要找到A,B距离之和为8的点,只须由点B向右移1个单位(这时距离之和增加2个单位),即移到点B1(4),或由点A向左移1个单位,即移到点A1(-4).可以看出,数轴上点B1(4)向右的点或者点A1(-4)向左的点到A、B两点的距离之和均大于8.∴原不等式的解集为{x|x<-4,或x>4}.解法三:分别画出函数y1=|x+3|+|x-3|和y2=8的图像,如下图.y1=不难看出,要使y1>y2,只须x<-4,或x>4.∴原不等式的解集为{x|x<-4,或x>4}.点评对于形如|x-a|+|x-b|>c,或|x-a|-|x-b|<c的不等式,利用不等式的几何意义或者画出左、右两边函数的图像去解不等式,更为直观、简捷.这又一次体现了数形结合思想方法的优越性!;。

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析1.已知函数.(1)当时,求不等式的解集;(2)若不等式存在实数解,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,不等式,化简可得,或,或.解出每个不等式组的解集,再取并集,即为所求.(2)令,则由绝对值的意义可得的最小值为,依题意可得,由此求得实数的取值范围.试题解析:(1)当时,不等式可化为,化简可得,或,或.解得或,即所求解集为.(2)令,则,所以的最小值为.依题意可得,即.故实数的取值范围是.【考点】绝对值不等式的解法;函数的零点.2.已知实数满足,证明:.【答案】见解析【解析】有已知条件,可得,,然后得到,展开进行整理即可。

证明:证法一,∴,,∴,. 2分∴,即, 4分∴,∴, 6分即,∴. 8分证法二:要证,只需证 2分只需证只需证 4分即. 6分,∴,,∴成立.∴要证明的不等式成立. 8分【考点】绝对值不等式;不等式证明的基本方法.3.设函数,.(1)解不等式:;(2)若的定义域为,求实数的取值范围.【答案】(1),(2)【解析】(1)或或,不等式的解集为;(2)若的定义域为R,则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2,所以m>-2.【考点】本题考查了绝对值不等式的解法点评:问题(1)考查绝对值的代数意义,去绝对值的过程体现了分类讨论的思想方法,属中档题;问题(2)考查应用绝对值的几何意义求最值,体现了转化的思想,属中等题.4.若,使不等式在上的解集不是空集的的取值是A.B.C.D.以上均不对【答案】C【解析】不等式在上的解集不是空集,即不等式能够成立。

而由绝对值的几何意义,表示数轴上点到定点3,4的距离之和。

其最小值为1,所以,使不等式在上的解集不是空集的的取值是,选C。

【考点】本题主要考查绝对值不等式的解法,绝对值的几何意义。

绝对值不等式题型解法练习

绝对值不等式题型解法练习

一、几种常见的含绝对值不等式的解法1.类型一:形如a x f a x f ><)(,)(型不等式(1)当0>a 时a x f a a x f <<-⇔<)()(a x f a x f >⇔>)()(或a x f -<)((2)当0=a 时a x f <)(,无解⇔>a x f )(使()0)()(≠=x f x f y 成立的x 的解集(3)当0<a 时a x f <)(,无解⇔>a x f )(使)(x f y =成立的x 的解集例1(2009年理科第2题5分)若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A∩B 是( )A.11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 B.{}23x x <<C.122x x ⎧⎫-<<⎨⎬⎩⎭D.112x x ⎧⎫-<<-⎨⎬⎩⎭分析:要解决这个题,就是解两个不等式,其中312<-x 即为含绝对值的不等式,这是形如a x f <)(型的绝对值不等式,其中0>a ,则a x f a <<-)(。

解:因为312<-x ,所以3123<-<-x ,即解得)2,1(-∈x 解0312<-+x x 得,3>x 或21-<x 所以⎭⎬⎫⎩⎨⎧-<<-=211x x B A ,故答案选D.二,形如)0()(>><<a b b x f a 型不等式b x f a a b b x f a <<⇔>><<)()0()(或a x f b -<<-)(。

例2不等式311<+<x 的解集为( )A.(0,2)B.)4,2()0,2( -C .)0,4(- D.)2,0()2,4( -- 分析:原不等式是形如)0()(>><<a b b x f a 型不等式,需将原不等式转化为以下的不等式求解:113311-<+<-<+<x x 或,这样就转化为解简单的不等式问题。

绝对值不等式(经典)

绝对值不等式(经典)

绝对值不等式专题2010全国24.(本小题满分10分)设函数f(x)=|2x -4|+1.(1)画出函数y =f(x)的图象;(2)若不等式f(x)≤ax 的解集非空,求a 的取值范围.2011全国.(本小题满分10分)设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2012全国(本小题满分10分)已知函数()f x =|||2|x a x ++-. (Ⅰ)当3a =-时,求不等式 ()f x ≥3的解集;(Ⅱ) 若()f x ≤|4|x -的解集包含[1,2],求a 的取值范围.2013全国(本小题满分10分)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围.2015全国(本小题满分10分)已知函数f (x )=|x+1|-2|x-a|,则a>0.(1) 当a=1时,求不等式f (x )>1的解集;(2) 若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2016全国24. (本小题满分10分)已知函数()|1||23|f x x x =+-- (I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式|()|1f x >的解集2017全国23(本小题满分10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.2018全国23(本小题满分10分)已知()11f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集;(2)若()01x ∈,时不等式()f x x >成立,求a 的取值范围.。

综合算式专项练习解绝对值不等式

综合算式专项练习解绝对值不等式

综合算式专项练习解绝对值不等式绝对值不等式是数学中常见的一类不等式,它与绝对值函数密切相关。

在解决绝对值不等式时,我们需要将不等式拆分成两个部分,分别考虑绝对值函数的正负情况。

在本文中,我们将重点进行综合算式专项练习解绝对值不等式的讲解。

一、绝对值不等式的基本性质在解绝对值不等式之前,我们首先需要了解一些绝对值函数的基本性质。

对于任意实数a,有以下性质:1. |a| ≥ 0,绝对值永远大于等于0。

2. 若a ≥ 0,则|a| = a;若a < 0,则|a| = -a。

3. |ab| = |a|·|b|,绝对值函数具有乘法性质。

4. 若|a| = b,则a = b 或 a = -b。

基于以上性质,我们可以将绝对值不等式进行拆分,并根据具体情况求解。

二、综合算式专项练习下面,我们来解决一些综合算式专项练习题,这些题目将帮助我们更好地理解和掌握解决绝对值不等式的方法。

题目一:解不等式 |2x + 1| < 5。

解答过程:根据绝对值的定义,我们可以将不等式拆分为两个不等式:2x + 1< 5 和 2x + 1 > -5。

解第一个不等式:2x + 1 < 52x < 4x < 2解第二个不等式:2x + 1 > -52x > -6x > -3综合以上两个不等式的解集,得到最终解为 -3 < x < 2。

题目二:解不等式 |3x - 4| ≥ 7。

解答过程:同样地,我们将不等式拆分为两个不等式:3x - 4 ≥ 7 和 3x - 4 ≤ -7。

解第一个不等式:3x - 4 ≥ 7x ≥ 11/3解第二个不等式:3x - 4 ≤ -73x ≤ -3x ≤ -1综合以上两个不等式的解集,得到最终解为x ≤ -1 或x ≥ 11/3。

题目三:解不等式 |4x - 3| > 9。

解答过程:将不等式拆分为两个不等式:4x - 3 > 9 或 4x - 3 < -9。

含绝对值不等式计算题100道

含绝对值不等式计算题100道

含绝对值不等式计算题100道
(原创实用版)
目录
1.绝对值不等式的基本概念
2.绝对值不等式的解题方法
3.100 道含绝对值不等式的计算题
正文
一、绝对值不等式的基本概念
绝对值不等式是代数学中的一种不等式,它的一般形式为|ax+b|≤c,其中 a、b、c 为常数,x 为未知数。

绝对值不等式的解集是所有使得绝对值不等式成立的实数的集合。

二、绝对值不等式的解题方法
解绝对值不等式通常有以下几种方法:
1.分类讨论法:根据 ax+b 的正负情况进行讨论,分别列出绝对值不等式的解集,最后取并集。

2.符号法:通过分析 ax+b 的符号,确定绝对值不等式的解集。

3.平移法:将绝对值不等式转化为一般的一元一次不等式,通过平移法求解。

三、100 道含绝对值不等式的计算题
由于篇幅限制,这里只给出部分题目,读者可以自行寻找或编写其他题目。

1.已知|x-2|≤1,求 x 的取值范围。

2.已知|2x+3|≤5,求 x 的取值范围。

3.已知|x+4|≥6,求 x 的取值范围。

4.已知|3x-1|≤2,求 x 的取值范围。

5.已知|x-5|≥3,求 x 的取值范围。

解:
1.-1≤x≤3
2.-4≤x≤1
3.x≤-2 或 x≥10
4.-1/3≤x≤1
5.2≤x≤8
以上就是关于含绝对值不等式计算题的简要介绍,希望对读者有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10课 绝对值不等式
◇考纲解读 ①理解不等式a b a b a b -≤+≤+
②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;
◇知识梳理
1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >⎧⎪= =⎨⎪ <⎩
②几何意义:a 是数轴上表示a 的点____________。

2. 含绝对值的不等式的解法
①0a >时,
|()|f x a >⇔____________;
|()|f x a <⇔____________;
②去绝对值符号是解绝对值不等式的常用方法;
③根据绝对值的几何意义,通过数形结合解绝对值不等式.
◇基础训练
1.函数|||3|y x x =--的最大值为 ___________.
2.(2008惠州调研) 函数46y x x =-+-的最小值为 .
3.(2008珠海质检)已知方程20x ax b -+=的两根分别为1和2,则不等式1ax b -≤的解集为 ____________ (用区间表示).
4.(2008广州二模)不等式21<-+x x 的解集是 .
◇典型例题
例1 .解不等式512x x +>-
例2. 解不等式125x x -++>
变式1:12x x a -++<有解,求a 的取值范围
变式2:212x x a -++<有解,求a 的取值范围
变式3:12x x a -++>恒成立,求a 的取值范围
◇能力提升
1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<<x x ,则实数=a .
2.(2008韶关二模)不等式4|2||12|<++-x x 的解集为
3.(2008揭阳调研)若()5f x x t x =-+-的最小值为3, 则实数t 的值是________.
4. (2008汕头一模) 若不等式121x a x
+
>-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。

5.(2008佛山二模)关于x 的不等式2121x x a a -+-≤++的解集为空集,则实数a 的取值范围是 ____.
6. 若关于x 的不等式a x x ≥-++12的解集为R ,则实数a 的取值范围是_____________.
第10课 绝对值不等式
◇知识梳理
1.① ,0,a a -, ② 到原点的距离.
2. ①()()f x a f x a ><-或,()a f x a -<<
◇基础训练
1. 3 ,
2. 2 ,
3. 1,13⎡⎤
⎢⎥⎣⎦ , 4.⎪⎭⎫ ⎝
⎛-23,21 ◇典型例题
例1. 解:原不等式又化为
4
361)
2(15215-<>--<+->+x x x x x x 或解之得或 ∴ 原不等式的解集为}4
361{-<>x x x 或 例2. 解:分区间去绝对值(零点分段法): ∵125x x -++>
∴(1)23(1)(2)5x x x x <-⎧⇒<-⎨---+>⎩
(2) 21(1)(2)5
x x x x φ-≤<⎧⇒∈⎨--++>⎩
(3) 12(1)(2)5x x x x ≥⎧⇒>⎨-++>⎩
∴ 原不等式的解集为{}32x x x <- >或
变式1:解:设()12f x x x =-++
要使()f x a <有解,则a 应该大于()f x 的最小值, ()12(1)(2)3f x x x x x =-++≥--+=Q , 所以f(x)的最小值为3,
∴3a >
变式2:解:设()212f x x x =-++
要使()f x a <有解,则a 应该大于()f x 的最小值,
113()212(21)(2)222
f x x x =-++≥-++=Q
g , 所以f(x)的最小值为3
2, ∴3
2a >
变式3:解:设()12f x x x =-++
要使()f x a >恒成立,则a 应该小于()f x 的最小值, ()12(1)(2)3f x x x x x =-++≥--+=Q , 所以f(x)的最小值为3,
∴3a <
◇能力提升
1. 3 ,
2. (-1,1) ,
3. 2或8 ,
4. 13a << ,
5. (1,0)- ,
6.3a ≤.。

相关文档
最新文档