无锡市宜兴2016年3月中考数学模拟试卷含答案解析

合集下载

江苏省无锡市宜兴实验中学2016年中考数学一模试卷(解析版)

江苏省无锡市宜兴实验中学2016年中考数学一模试卷(解析版)

江苏省无锡市宜兴实验中学2016年中考数学一模试卷(解析版)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.若二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣1 B.x≥﹣1 C.x≤1 D.x≥1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.3.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()亿元.A.0.845×104B.8.45×103C.8.45×104D.84.5×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于8450有4位,所以可以确定n=4﹣1=3.【解答】解:8450=8.45×103.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.二元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为.故选:B【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<3【分析】直接根据一次函数的性质可得m﹣3>0,解不等式即可确定答案.【解答】解:∵一次函数y=(m﹣3)x+5中,y随着x的增大而增大,∴m﹣3>0,解得:m>3.故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y 随x的增大而减小是解答此题的关键.6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:【分析】根据相似多边形的面积的比等于相似比的平方解答.【解答】解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选:D.【点评】本题考查了相似多边形的性质,熟记性质是解题的关键.8.七边形外角和为()A.180° B.360° C.900° D.1260°【分析】根据多边形的外角和等于360度即可求解.【解答】解:七边形的外角和为360°.故选:B.【点评】本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360°是解题的关键.9.)如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.【点评】考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A.1 B.2 C.3 D.4【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题(本大题共8小题,每小题2分,满分16分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.()因式分解:2x2﹣18=2(x+3)(x﹣3).【分析】提公因式2,再运用平方差公式因式分解.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.已知反比例函数y=的图象经过点A(﹣1,4),则当x=﹣2时,y=2.【分析】先把点A(﹣1,4)代入y=求得k的值,然后将x=﹣2代入,即可求出y的值.【解答】解:∵反比例函数y=的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣,∴当x=﹣2时,y=﹣=2.故答案为:2.【点评】本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.14.若圆锥的底面半径为3cm,母线长为4cm,则圆锥的侧面积为12πcm2.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12πcm2.故答案为:12π.【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.15.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,EF与AC交于点O,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为2.【分析】先根据解直角三角形得到DF和CF的长,再根据勾股定理求得AC的长,并得出AO的长,然后利用勾股定理求得OF的长,最后根据等腰三角形的性质,求得EF的长等于OF长的2倍.【解答】解:∵矩形ABCD中,AB=CD=,∠D=90°∴DF=1,CF=2由折叠可得,AC被EF垂直平分∴AF=CF=2∴AD=2+1=3∴直角三角形ACD中,AC===∴AO=AC=∴直角三角形AOF中,OF==1又∵由折叠得∠AEO=∠CE0,由AD∥BC得∠AFO=∠CEO∴∠AFO=∠AEO,即AF=AE∵AO⊥EF∴EF=2FO=2故答案为:2【点评】本题主要考查了矩形的性质以及折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.解题时注意:对应点的连线段被折痕垂直平分.此题也可以通过判定△AEF 为等边三角形进行求解.16.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD=1,则弦AB 的长是 6 .【分析】连接AO ,得到直角三角形,再求出OD 的长,就可以利用勾股定理求解.【解答】解:连接AO ,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB 的长是6.【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO ,这是解题的关键.17.一组数据3,5,5,4,5,6的众数是 5 .【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:这组数据中出现次数最多的数据为:5.故众数为5.故答案为:5.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.18.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本大题共10小题,满分84分)19.计算:(1);(2).【分析】结合二次根式的乘除法、分式的加减法和零指数幂的运算法则求解即可.【解答】解:(1)原式=3﹣1+4=6.(2)原式=﹣(x﹣3)=(x﹣1)﹣(x﹣3)=2.【点评】本题考查了二次根式的乘除法、分式的加减法和零指数幂的知识,解答本题的关键是熟练掌握各知识点的运算法则.20.解方程:(1)x2﹣3x+2=0;(2).【分析】(1)根据因式分解法解一元二次方程的步骤:①移项使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零得到两个一元一次方程;④解这两个一元一次方程,即可得答案;(2)依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)方程左边因式分解,得:(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2;(2)去分母,得:3(x+2)﹣x=0,去括号,得:3x+6﹣x=0,移项、合并,得:2x=﹣6,系数化为1,得:x=﹣3,经检验:x=﹣3是原分式方程的解,故该分式方程的解为x=﹣3.【点评】本题主要考查解分式方程和一元二次方程的能力,熟练掌握解方程的转化思想:分式方程转化为整式方程、一元二次方程因式分解转化为两个一元一次方程是解题的关键.21.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【分析】(1)连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;(2)连接OE,利用(1)的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,=4π,S△AOE=8,∴S扇形AOE=4π﹣8.∴S阴影【点评】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.23.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=35;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.【分析】(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;(3)根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可;(4)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.【解答】解:(1)a=100﹣(5+20+30+10)=35.故答案为35;(2)补全条形统计图如下所示:(3)根据中位数的定义可知,这组数据的中位数落在C类别,所以小王每天进行体育锻炼的时间范围是1<t≤1.5;(4)30×=22.5(万人).即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.【点评】本题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数的定义以及利用样本估计总体.25.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?【分析】(1)利用A、B两种礼盒的单价比为2:3,单价和为200元,得出等式求出即可;(2)利用两种礼盒恰好用去9600元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用a,b关系得出符合题意的答案.【解答】解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.【点评】此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.26.(1)如图①,已知D、E分别是△ABC的边AB、AC上一点,DE∥BC,连接CD、BE,CD、BE交于点F,连接AF并延长,分别交DE、BC于点H、G.求证:①;②G是BC的中点.(2)运用(1)中的方法,在图②中,只用一把无刻度的直尺画出矩形ABCD的一条对称轴.(不写画法,保留画图痕迹)【分析】(1)①由DE∥BC,得到△ADH∽△ABG和△AHE∽△AGC,即可得到结论;②易证△DEN∽△AEM,△OND∽△OMB,则依据相似三角形的对应边的比相等,可以证得,得到BG=CG即可;(2)①连接AC ,BD ,两线交于点O 1.②在矩形ABCD 外任取一点E ,连接EA ,EB ,分别交DC 于点G ,H ③连接BG ,AH ,两线交于点O 2.④作直线EO 2,交AB 于点M .⑤作直线MO 1.直线MO 1就是矩形ABCD 的一条对称轴.【解答】(1)证明:①∵DE ∥BC ,∴△ADH ∽△ABG ,∴,同理:,∴; ②∵DE ∥BC∴△FDH ∽△FCG ,∴=,同理:,∴,∴,由(1)得:,∴,∴BG=CG ,即点G 是BC 的中点;(2)解:如图所示,直线MO 1即为所求.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、矩形的性质,正确根据相似三角形的对应边的比相等,通过等量代换得到是解决问题的关键.27.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.【分析】(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=80°,根据多边形内角和定理求出∠C即可;(2)①连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;②先画出反例图形,即可得出答案;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°,∴∠D=∠B=80°,∴∠C=360°﹣80°﹣80°﹣70°=130°;(2)①证明:如图1,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;②解:小红的猜想不正确,如图:四边形ABCD是“等对角四边形”∠A=∠C=90°,AB=AD,但是BC和CD不等,所以小红的猜想不正确;(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.【点评】本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.28.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.【分析】(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(2)根据A、C的坐标求得直线AC的解析式为y=x+1,根据题意求得EF=4,求得EF∥y轴,设F(m,﹣m2+m+),则E(m,m+1),从而得出(m+1)﹣(﹣m2+m+)=4,解方程即可求得F的坐标;(3)①先求得四边形DFBC是矩形,作EG⊥AC,交BF于G,然后根据△EGN∽△EMC,对应边成比例即可求得tan∠ENM==2;②根据勾股定理和三角形相似求得EN=,然后根据三角形中位线定理即可求得.【解答】解:(1)∵抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0),∴解得,∴抛物线C1的解析式为y=﹣x2+x+,∵y=﹣x2+x+=﹣(x﹣1)2+2,∴顶点C的坐标为(1,2);(2)如图1,作CH⊥x轴于H,∵A(﹣1,0),C(1,2),∴AH=CH=2,∴∠CAB=∠ACH=45°,∴直线AC的解析式为y=x+1,∵△DEF是以EF为底的等腰直角三角形,∴∠DEF=45°,∴∠DEF=∠ACH,∴EF∥y轴,∵DE=AC=2,∴EF=4,设F(m,﹣m2+m+),则E(m,m+1),∴(m+1)﹣(﹣m2+m+)=4,解得m=3(舍)或m=﹣3,∴F(﹣3,﹣6);(3)①tan∠ENM的值为定值,不发生变化;如图2,∵DF⊥AC,BC⊥AC,∴DF∥BC,∵DF=BC=AC,∴四边形DFBC是矩形,作EG⊥AC,交BF于G,∴EG=BC=AC=2,∵EN⊥EM,∴∠MEN=90°,∵∠CEG=90°,∴∠CEM=∠NEG,∴△ENG∽△EMC,∴=,∵F(﹣3,﹣6),EF=4,∴E(﹣3,﹣2),∵C(1,2),∴EC==4,∴==2,∴tan∠ENM==2;∵tan∠ENM的值为定值,不发生变化;②点P经过的路径是线段P1P2,如图3,∵四边形BCEG是矩形,GP2=CP2,∴EP2=BP2,∵△EGN∽△ECB,∴=,∵EC=4,EG=BC=2,∴EB=2,∴=,∴EN=,∵P1P2是△BEN的中位线,∴P1P2=EN=;∴点M到达点C时,点P经过的路线长为.。

江苏省无锡市 2016年中考数学真题试卷附解析

江苏省无锡市 2016年中考数学真题试卷附解析

2016年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(2016·江苏无锡)﹣2的相反数是()A.B.±2 C.2 D.﹣【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是2;故选C.2.(2016·江苏无锡)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:依题意有:2x﹣4≥0,解得x≥2.故选:B.3.(2016·江苏无锡)sin30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A.4.(2016·江苏无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计A.3.75 B.3 C.3.5 D.7【考点】众数.【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.5.(2016·江苏无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.6.(2016·江苏无锡)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【考点】切线的性质;圆周角定理.【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.7.(2016·江苏无锡)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【考点】圆锥的计算.【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.8.(2016·江苏无锡)下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直【考点】菱形的性质;矩形的性质.【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A )对角线相等是矩形具有的性质,菱形不一定具有;(B )对角线互相平分是菱形和矩形共有的性质;(C )对角线互相垂直是菱形具有的性质,矩形不一定具有;(D )邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C .9.(2016·江苏无锡)一次函数y=x ﹣b 与y=x ﹣1的图象之间的距离等于3,则b 的值为( )A .﹣2或4B .2或﹣4C .4或﹣6D .﹣4或6【考点】一次函数的性质;含绝对值符号的一元一次方程.【分析】将两个一次函数解析式进行变形,根据两平行线间的距离公式即可得出关于b 的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:一次函数y=x ﹣b 可变形为:4x ﹣3y ﹣3b=0;一次函数y=x ﹣1可变形为4x ﹣3y ﹣3=0.两平行线间的距离为:d==|b ﹣1|=3,解得:b=﹣4或b=6.故选D .10.(2016·江苏无锡)如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A .B .2C .3D .2【考点】旋转的性质;含30度角的直角三角形.【分析】首先证明△ACA 1,△BCB 1是等边三角形,推出△A 1BD 是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.二、填空题:本大题共8小题,每小题2分,共16分11.(2016·江苏无锡)分解因式:ab﹣a2=a(b﹣a).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:ab﹣a2=a(b﹣a).故答案为:a(b﹣a).12.(2016·江苏无锡)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 5.7×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107.13.(2016·江苏无锡)分式方程=的解是x=4.【考点】分式方程的解.【分析】首先把分式方程=的两边同时乘x(x﹣1),把化分式方程为整式方程;然后根据整式方程的求解方法,求出分式方程=的解是多少即可.【解答】解:分式方程的两边同时乘x(x﹣1),可得4(x﹣1)=3x解得x=4,经检验x=4是分式方程的解.故答案为:x=4.14.(2016·江苏无锡)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m 的值为﹣1.【考点】反比例函数图象上点的坐标特征.【分析】由A、B点的坐标结合反比例函数图象上点的坐标特征即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:∵点A(1,﹣3),B(m,3)在同一反比例函数的图象上,∴1×(﹣3)=3m,解得:m=﹣1.故答案为:﹣1.15.(2016·江苏无锡)写出命题“如果a=b”,那么“3a=3b”的逆命题如果3a=3b,那么a=b.【考点】命题与定理.【分析】先找出命题的题设和结论,再说出即可.【解答】解:命题“如果a=b”,那么“3a=3b”的逆命题是:如果3a=3b,那么a=b,故答案为:如果3a=3b,那么a=b.16.(2016·江苏无锡)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是3.【考点】矩形的性质.【分析】根据矩形的面积公式,可得关于AD的方程,根据解方程,可得答案.【解答】解:由边AB的长比AD的长大2,得AB=AD+2.由矩形的面积,得AD(AD+2)=15.解得AD=3,AD=﹣5(舍),故答案为:3.17.(2016·江苏无锡)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【考点】平行四边形的性质;坐标与图形性质.【分析】当B在x轴上时,对角线OB长的最小,由题意得出∠ADO=∠CEB=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.【解答】解:当B在x轴上时,对角线OB长的最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5;故答案为:5.18.(2016·江苏无锡)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【考点】直线与圆的位置关系.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C 为圆心,1.5cm 为半径的圆与直线EF 相切时,此时,CF=1.5,∵AC=2t ,BD=t ,∴OC=8﹣2t ,OD=6﹣t ,∵点E 是OC 的中点,∴CE=OC=4﹣t ,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC ∽△DCO∴=∴EF===由勾股定理可知:CE 2=CF 2+EF 2,∴(4﹣t )2=+,解得:t=或t=, ∵0≤t ≤4,∴t=.故答案为:三、解答题:本大题共10小题,共84分19.(2016·江苏无锡)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a ﹣b )2﹣a (a ﹣2b )【考点】单项式乘多项式;完全平方公式;零指数幂.【分析】(1)原式利用绝对值的代数意义,乘方的意义,以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=5﹣9﹣1=﹣5;(2)a 2﹣2ab+b 2﹣a 2+2ab=b 2.20.(2016·江苏无锡)(1)解不等式:2x ﹣3≤(x+2)(2)解方程组:.【考点】解一元一次不等式;解二元一次方程组.【分析】(1)根据解一元一次不等式的步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;(2)用加减法消去未知数y求出x的值,再代入求出y的值即可.【解答】解:(1)2x﹣3≤(x+2)去分母得:4x﹣6≤x+2,移项,合并同类项得:3x≤8,系数化为1得:x≤;(2).由①得:2x+y=3③,③×2﹣②得:x=4,把x=4代入③得:y=﹣5,故原方程组的解为.21.(2016·江苏无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE 和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.22.(2016·江苏无锡)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【考点】作图—复杂作图.【分析】(1)由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;(2)①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;②根据线段的三等分点的画法,结合OA=2AC,即可得出结论.【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.23.(2016·江苏无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:(1)表中a=12,b=0.08;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b的值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.【解答】解:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b==0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=648(人),答:该校在上学期参加社区活动超过6次的学生有648人.24.(2016·江苏无锡)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有4种情况,确保两局胜的有4种,所以,P=.25.(2016·江苏无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)【考点】一次函数的应用.【分析】(1)设p=kx+b,,代入即可解决问题.(2)根据利润=销售额﹣经销成本,即可解决问题.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.【解答】解:(1)设p=kx+b,,代入得解得,∴p=x+10,.(2)∵x=150时,p=85,∴三月份利润为150﹣85=65万元.∵x=175时,p=97.5,∴四月份的利润为175﹣97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元∵5月份以后的每月利润为90万元,∴65+77.5+90(x﹣2)﹣40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元26.(2016·江苏无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a的值,最后将A(或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.27.(2016·江苏无锡)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.【考点】坐标与图形性质;勾股定理;相似三角形的判定与性质.【分析】(1)如图1,易证S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,从而可得S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题.【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.28.(2016·江苏无锡)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【考点】垂径定理.【分析】(1)根据d=FH2,求出EH2即可解决问题.(2)假设C n D n与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由r÷r=2+2≈4.8,求出n即可解决问题.【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC 的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.(2016·广西南宁)计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.20.(2016·广西南宁)解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,。

江苏省无锡市2016年中考数学真题试题(含参考答案)

江苏省无锡市2016年中考数学真题试题(含参考答案)

22.如图,OA=2,以点 A 为圆心,1 为半径画⊙A 与 OA 的延长线交于点 C,过点 A 画 OA 的垂线,垂线与 ⊙A 的一个交点为 B,连接 BC (1)线段 BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题: ①以点 为圆心,以线段 的长为半径画弧,与射线 BA 交于点 D,使线段 OD 的长 等于 ②连 OD,在 OD 上画出点 P,使 OP 得长等于,请写出画法,并说明理由.
(1)求经销成本 p(万元)与销售额 y(万元)之间的函数关系式; (2)分别求该公司 3 月,4 月的利润; (3)问:把 3 月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额 比同期用线下方式销售所能获得的利润总额至少多出 200 万元?(利润=销售额﹣经销成本) 26.已知二次函数 y=ax2﹣2ax+c(a>0)的图象与 x 轴的负半轴和正半轴分别交于 A、B 两点,与 y 轴交 于点 C,它的顶点为 P,直线 CP 与过点 B 且垂直于 x 轴的直线交于点 D,且 CP:PD=2:3 (1)求 A、B 两点的坐标; (2)若 tan∠PDB=,求这个二次函数的关系式.
17.如图,已知▱OABC 的顶点 A、C 分别在直线 x=1 和 x=4 上,O 是坐标原点,则对角线 OB 长的最小值为 .
18.如图,△AOB 中,∠O=90°,AO=8cm,BO=6cm,点 C 从 A 点出发,在边 AO 上以 2cm/s 的速度向 O 点运 动,与此同时,点 D 从点 B 出发,在边 BO 上以 1.5cm/s 的速度向 O 点运动,过 OC 的中点 E 作 CD 的垂线 EF,则当点 C 运动了 s 时,以 C 点为圆心,1.5cm 为半径的圆与直线 EF 相切.

2016年江苏省无锡市中考数学试卷

2016年江苏省无锡市中考数学试卷

2016年江苏省无锡市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•无锡)﹣2的相反数是()A.B.±2 C.2 D.﹣2.(3分)(2016•无锡)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠23.(3分)(2016•无锡)sin30°的值为()A.B.C.D.4.(3分)(2016•无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.75.(3分)(2016•无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.6.(3分)(2016•无锡)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°7.(3分)(2016•无锡)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm28.(3分)(2016•无锡)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直9.(3分)(2016•无锡)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或610.(3分)(2016•无锡)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3 D.2二、填空题:本大题共8小题,每小题2分,共16分11.(2分)(2016•无锡)分解因式:ab﹣a2=______.12.(2分)(2016•无锡)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为______.13.(2分)(2016•无锡)分式方程=的解是______.14.(2分)(2016•无锡)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m 的值为______.15.(2分)(2016•无锡)写出命题“如果a=b”,那么“3a=3b”的逆命题______.16.(2分)(2016•无锡)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是______.17.(2分)(2016•无锡)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为______.18.(2分)(2016•无锡)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了______s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.三、解答题:本大题共10小题,共84分19.(8分)(2016•无锡)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)20.(8分)(2016•无锡)(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.21.(8分)(2016•无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.22.(8分)(2016•无锡)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于______;(2)请在图中按下列要求逐一操作,并回答问题:①以点______为圆心,以线段______的长为半径画弧,与射线BA交于点D,使线段OD 的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.23.(6分)(2016•无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3 10 0.203<x≤6 a 0.246<x≤9 16 0.329<x≤12 6 0.1212<x≤15 m b15<x≤18 2 n根据以上图表信息,解答下列问题:(1)表中a=______,b=______;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?24.(8分)(2016•无锡)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)25.(10分)(2016•无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)26.(10分)(2016•无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x 轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.27.(10分)(2016•无锡)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.28.(8分)(2016•无锡)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?2016年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•无锡)﹣2的相反数是()A.B.±2 C.2 D.﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是2;故选C.2.(3分)(2016•无锡)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:依题意有:2x﹣4≥0,解得x≥2.故选:B.3.(3分)(2016•无锡)sin30°的值为()A.B.C.D.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A.4.(3分)(2016•无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.7【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.5.(3分)(2016•无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.6.(3分)(2016•无锡)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.7.(3分)(2016•无锡)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.8.(3分)(2016•无锡)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.9.(3分)(2016•无锡)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6【分析】设直线y=x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x﹣b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.【解答】解:设直线y=x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x ﹣b于点D,如图所示.∵直线y=x﹣1与x轴交点为C,与y轴交点为A,∴点A(0,﹣1),点C(,0),∴OA=1,OC=,AC==,∴cos∠ACO==.∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,∴∠BAD=∠ACO.∵AD=3,cos∠BAC==,∴AB=5.∵直线y=x﹣b与y轴的交点为B(0,﹣b),∴AB=|﹣b﹣(﹣1)|=5,解得:b=﹣4或b=6.故选D.10.(3分)(2016•无锡)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3 D.2【分析】首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.二、填空题:本大题共8小题,每小题2分,共16分11.(2分)(2016•无锡)分解因式:ab﹣a2=a(b﹣a).【分析】直接把公因式a提出来即可.【解答】解:ab﹣a2=a(b﹣a).故答案为:a(b﹣a).12.(2分)(2016•无锡)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 5.7×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107.13.(2分)(2016•无锡)分式方程=的解是x=4.【分析】首先把分式方程=的两边同时乘x(x﹣1),把化分式方程为整式方程;然后根据整式方程的求解方法,求出分式方程=的解是多少即可.【解答】解:分式方程的两边同时乘x(x﹣1),可得4(x﹣1)=3x解得x=4,经检验x=4是分式方程的解.故答案为:x=4.14.(2分)(2016•无锡)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m 的值为﹣1.【分析】由A、B点的坐标结合反比例函数图象上点的坐标特征即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:∵点A(1,﹣3),B(m,3)在同一反比例函数的图象上,∴1×(﹣3)=3m,解得:m=﹣1.故答案为:﹣1.15.(2分)(2016•无锡)写出命题“如果a=b”,那么“3a=3b”的逆命题如果3a=3b,那么a=b.【分析】先找出命题的题设和结论,再说出即可.【解答】解:命题“如果a=b”,那么“3a=3b”的逆命题是:如果3a=3b,那么a=b,故答案为:如果3a=3b,那么a=b.16.(2分)(2016•无锡)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是3.【分析】根据矩形的面积公式,可得关于AD的方程,根据解方程,可得答案.【解答】解:由边AB的长比AD的长大2,得AB=AD+2.由矩形的面积,得AD(AD+2)=15.解得AD=3,AD=﹣5(舍),故答案为:3.17.(2分)(2016•无锡)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【分析】当B在x轴上时,对角线OB长的最小,由题意得出∠ADO=∠CEB=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.【解答】解:当B在x轴上时,对角线OB长的最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5;故答案为:5.18.(2分)(2016•无锡)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s 时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:三、解答题:本大题共10小题,共84分19.(8分)(2016•无锡)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)【分析】(1)原式利用绝对值的代数意义,乘方的意义,以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=5﹣9﹣1=﹣5;(2)a2﹣2ab+b2﹣a2+2ab=b2.20.(8分)(2016•无锡)(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.【分析】(1)根据解一元一次不等式的步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;(2)用加减法消去未知数y求出x的值,再代入求出y的值即可.【解答】解:(1)2x﹣3≤(x+2)去分母得:4x﹣6≤x+2,移项,合并同类项得:3x≤8,系数化为1得:x≤;(2).由①得:2x+y=3③,③×2﹣②得:x=4,把x=4代入③得:y=﹣5,故原方程组的解为.21.(8分)(2016•无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE 和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.22.(8分)(2016•无锡)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD 的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【分析】(1)由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;(2)①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;②根据线段的三等分点的画法,结合OA=2AC,即可得出结论.【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.23.(6分)(2016•无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3 10 0.203<x≤6 a 0.246<x≤9 16 0.329<x≤12 6 0.1212<x≤15 m b15<x≤18 2 n根据以上图表信息,解答下列问题:(1)表中a=12,b=0.08;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【分析】(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b的值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.【解答】解:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b==0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=672(人),答:该校在上学期参加社区活动超过6次的学生有672人.24.(8分)(2016•无锡)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有4种情况,确保两局胜的有3种,所以,P=.25.(10分)(2016•无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)【分析】(1)设p=kx+b,(100,60),(200,110)代入即可解决问题.(2)根据利润=销售额﹣经销成本,即可解决问题.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.【解答】解:(1)设p=kx+b,(100,60),(200,110)代入得解得,∴p=x+10,.(2)∵x=150时,p=85,∴三月份利润为150﹣85=65万元.∵x=175时,p=97.5,∴四月份的利润为175﹣97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元∵5月份以后的每月利润为90万元,∴65+77.5+90(x﹣2)﹣40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元26.(10分)(2016•无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x 轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a的值,最后将A(或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.27.(10分)(2016•无锡)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.【分析】(1)如图1,易证S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,从而可得S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题.【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.28.(8分)(2016•无锡)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【分析】(1)根据d=FH2,求出EH2即可解决问题.(2)假设C n D n与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由r÷r=2+2≈4.8,求出n即可解决问题.【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.参与本试卷答题和审题的老师有:lantin;HJJ;zgm666;曹先生;ZJX;梁宝华;三界无我;神龙杉;弯弯的小河;HLing;gbl210;放飞梦想;zjx111;2300680618;sks;****************;sd2011;星期八;1160374(排名不分先后)菁优网2016年9月21日。

2016年江苏省无锡市中考数学试题

2016年江苏省无锡市中考数学试题

2016年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣2的相反数是()A.B.±2 C.2 D.﹣2.(3分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠23.(3分)sin30°的值为()A.B.C.D.4.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个)123457人数(人)114231这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.75.(3分)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C. D.AOD的度数6.(3分)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠为()A.70°B.35°C.20°D.40°7.(3分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm28.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直9.(3分)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6AC=2,△ABC绕点C顺时针旋转得△A1B1C,当10.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2 C.3 D.2二、填空题(本大题共8小题,每小题2分,共16分。

不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)分解因式:ab﹣a2= .12.(2分)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为.13.(2分)分式方程=的解是.14.(2分)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m的值为.15.(2分)写出命题“如果a=b”,那么“3a=3b”的逆命题.16.(2分)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是.17.(2分)如图,已知?OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB 长的最小值为.AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s 18.(2分)如图,△AOB中,∠O=90°,的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心, 1.5cm为半径的圆与直线EF相切.三、解答题(本大题共10小题,共84分。

江苏省无锡市宜兴市中考数学三模试卷(含解析)

江苏省无锡市宜兴市中考数学三模试卷(含解析)

2016年江苏省无锡市宜兴市中考数学三模试卷一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.下列计算正确的是()A.3a2﹣a2=3 B.a2•a4=a8C.(a3)2=a6D.a6÷a2=a33.一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A.0,2 B.1.5,2 C.1,2 D.1,34.不等式组的解集是()A.x>﹣1 B.x≤1 C.x<﹣1 D.﹣1<x≤15.将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位6.在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是()A.40° B.50° C.60° D.70°7.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.68.如图,AB是⊙O直径,∠AOC=140°,则∠D为()A.40° B.30° C.20° D.70°9.如图,E是▱ABCD的AD边上一点,CE与BA的延长线交于点F,则下列比例式:①=;②=;③=;④=,其中一定成立的是()A.①②③④ B.①②③C.①②④D.①②10.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为()A. +B. +C.4 D.3二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.使有意义的x取值范围是______.12.分解因式:a2﹣4=______.13.2015年12月,无锡市梁溪区正式成立.梁溪区包含原崇安区、南长区、北塘区,总人口近1015000人,这个人口数据用科学记数法可表示为______.14.点(1,y1)、(2,y2)都在一次函数y=kx+b(k>0)的图象上,则y1______y2(填“>”或“=”或“<”).15.用一张边长为4πcm的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径长为______cm.16.如图,在正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为______.17.锐角△ABC中,已知某两边a=1,b=3,那么第三边c的取值范围是______.18.如图,在Rt△OAB中,∠AOB=90°,OA=8,AB=10,⊙O的半径为4.点P是AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点.设AP=x(0≤x≤10),PQ2=y,则y与x的函数关系式为______.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.计算:(1)﹣(﹣3)2+(﹣0.2)0;(2)(x+3)(x﹣3)﹣(x﹣2)2.20.(1)解方程:x2﹣4x+1=0;(2)解方程组:.21.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.22.有三个质地、大小都相同的小球分别标上数字2,﹣2,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).(1)求这个点(a,b)恰好在函数y=﹣x的图象上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)如果再往口袋中增加n(n≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a,b)恰好在函数y=﹣x的图象上的概率是______(请用含n的代数式直接写出结果).23.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,使得△BPC是一个等腰三角形.(1)用尺规作图画出符合要求的点P.(保留作图痕迹,不要求写作法)(2)求出PA的长.24.无锡有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对部分游客随机调查,要求游客在列举的旅游产品中选出最喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整.(2)参与随机调查的游客有______人;在扇形统计图中,A部分所占的圆心角是______度.(3)根据调查结果估计在2000名游客中最喜爱惠山泥人的约有______人.25.初夏五月,小明和同学们相约去森林公园游玩.从公园入口处到景点只有一条长15km 的观光道路.小明先从入口处出发匀速步行前往景点,1.5h后,迟到的另3位同学在入口处搭乘小型观光车(限载客3人)匀速驶往景点,结果反而比小明早到45min.已知小型观光车的速度是步行速度的4倍.(1)分别求出小型观光车和步行的速度.(2)如果小型观光车在某处让这3位同学下车步行前往景点(步行速度和小明相同),观光车立即返回接载正在步行的小明后直接驶往景点,并正好和这3位同学同时到达.求这样做可以使小明提前多长时间到达景点?(上下车及车辆调头时间忽略不计)26.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH ⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求的值.27.已知,如图1,直线l与反比例函数y=(k>0)位于第一象限的图象相交于A、B两点,并与y轴、x轴分别交于E、F.(1)试判断AE与BF的数量关系并说明理由.(2)如图2,若将直线l绕点A顺时针旋转,使其与反比例函数y=的另一支图象相交,设交点为B.试判断AE与BF的数量关系是否依然成立?请说明理由.28.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示).(2)若以AD为直径的圆经过点C.①求a的值.②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段BF=2MF,求点M、N的坐标.③如图3,点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.2016年江苏省无锡市宜兴市中考数学三模试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.2.下列计算正确的是()A.3a2﹣a2=3 B.a2•a4=a8C.(a3)2=a6D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项系数相加字母及指数不变;同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.3.一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A.0,2 B.1.5,2 C.1,2 D.1,3【考点】众数;中位数.【分析】把这组数据按照从小到大的顺序排列,第3、4个数的平均数是中位数,在这组数据中出现次数最多的是1,得到这组数据的众数.【解答】解:把这组数据按照从小到大的顺序排列﹣3,﹣1,0,2,2,3,第3、4个两个数的平均数是(0+2)÷2=1,所以中位数是1;在这组数据中出现次数最多的是2,即众数是2,故选C.4.不等式组的解集是()A.x>﹣1 B.x≤1 C.x<﹣1 D.﹣1<x≤1【考点】解一元一次不等式组.【分析】利用“大小小大中间取”即可解决问题.【解答】解:因为不等式组的解集是﹣1<x≤1,故选D.5.将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位【考点】二次函数图象与几何变换.【分析】先利用顶点式得到两抛物线的顶点坐标,然后通过点的平移情况判断抛物线平移的情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),∵点(0,0)向左平移3个单位可得到(﹣3,0),∴将抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选A.6.在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是()A.40° B.50° C.60° D.70°【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:B.7.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.6【考点】多边形内角与外角.【分析】设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【解答】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=4.故选B.8.如图,AB是⊙O直径,∠AOC=140°,则∠D为()A.40° B.30° C.20° D.70°【考点】圆周角定理.【分析】根据邻补角的性质,求出∠BOC的值,再根据圆周角与圆心角的关系求出∠D的度数.【解答】解:∵∠AOC=140°,∴∠BOC=180°﹣140°=40°,∴∠D=∠BOC=×40°=20°.故选C.9.如图,E是▱ABCD的AD边上一点,CE与BA的延长线交于点F,则下列比例式:①=;②=;③=;④=,其中一定成立的是()A.①②③④ B.①②③C.①②④D.①②【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD,AD=BC,AB∥CD,AD∥BC,根据平行线分线段成比例定理得到,即=;根据相似三角形的性质得到,即=,根据相似三角形的性质得到,即=.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,AD∥BC,∴,即=;故①正确;∵AB∥CD,∴△AEF∽△CDE,∴,即=,故②正确;∵AE∥BC,∴△AEF∽△FBC,∴,即=,故③正确;∵AF∥CD,∴,故④错误,故选B.10.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为()A. +B. +C.4 D.3【考点】正方形的性质;轴对称-最短路线问题.【分析】如图将△ABP绕点A顺时针旋转60°得到△AEF,当E、F、P、C共线时,PA+PB+PC 最小,作EM⊥DA交DA的延长线于M,ME的延长线交CB的延长线于N,在RT△ECN中理由勾股定理即可解决问题.【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AEF,当E、F、P、C共线时,PA+PB+PC 最小.理由:∵AP=AF,∠PAF=60°,∴△PAF是等边三角形,∴PA=PF=AF,EF=PB,∴PA+PB+PC=EF+PF+PC,∴当E、F、P、C共线时,PA+PB+PC最小,作EM⊥DA交DA的延长线于M,ME的延长线交CB的延长线于N,则四边形ABNM是矩形,在RT△AME中,∵∠M=90°,∠MAE=30°,AE=2,∴ME=1,AM=BN=,MN=AB=2,EN=1,∴EC====+.∴PA+PB+PC的最小值为+.故选B.二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.使有意义的x取值范围是x≠﹣2 .【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.12.分解因式:a2﹣4= (a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).13.2015年12月,无锡市梁溪区正式成立.梁溪区包含原崇安区、南长区、北塘区,总人口近1015000人,这个人口数据用科学记数法可表示为 1.015×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:总人口近1015000人,这个人口数据用科学记数法可表示为1.015×106,故答案为:1.015×106.14.点(1,y1)、(2,y2)都在一次函数y=kx+b(k>0)的图象上,则y1<y2(填“>”或“=”或“<”).【考点】一次函数图象上点的坐标特征.【分析】先根据k>0判断出函数的增减性,再由两点横坐标的值即可得出结论.【解答】解:∵一次函数y=kx+b中,k>0,∴函数图象经过一三象限,y随x的增大而增大.∵1<2,∴y1<y2.故答案为:<.15.用一张边长为4πcm的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径长为 2 cm.【考点】展开图折叠成几何体.【分析】圆柱的底面半径=底面周长÷2π,依此即可求解.【解答】解:圆柱的侧面展开图是边长为4πcm的正方形,则圆柱的底面周长就是4πcm,所以半径=4π÷2π=2cm.故答案为:2.16.如图,在正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为.【考点】锐角三角函数的定义.【分析】作AD⊥BC于D,利用勾股定理分别求出AC、AB、BC的长,根据三角形的面积公式求出AD、CD,根据正切的定义解答即可.【解答】解:作AD⊥BC于D,由勾股定理得,AC=,AB=3,BC=4,△ABC的面积为:×AB×CE=6,∴×CB×AD=6,解得AD=,CD==,tan∠ACB==.故答案为:.17.锐角△ABC中,已知某两边a=1,b=3,那么第三边c的取值范围是2<c<.【考点】三角形三边关系;勾股定理.【分析】题中已知△ABC是锐角三角形,没有指明哪个角是最大角,从而无法确定边之间的关系,从而可以分两种情况进行分析,从而确定第三边c的变化范围.【解答】解:①∵当∠C是最大角时,有∠C<90°,∴c<,∴c<,②当∠B是最大角时,有∠B<90°∴b2<a2+c2∴9<1+c2∴c>2,∴第三边c的变化范围:2<c<,故答案为:2<c<.18.如图,在Rt△OAB中,∠AOB=90°,OA=8,AB=10,⊙O的半径为4.点P是AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点.设AP=x(0≤x≤10),PQ2=y,则y与x的函数关系式为y=x2﹣x+48 .【考点】切线的性质.【分析】连接OQ、OP、作PM⊥OA于M,由PM∥BO,得==,求出PM、AM,利用OP2=PQ2+OQ2=PM2+OM2,列出等式即可解决问题.【解答】解:如图连接OQ、OP、作PM⊥OA于M.∵PQ是⊙O切线,∴∠PMA=∠BOA=90°,AO=8,AB=10,∴PM∥BO,BO==6,∴==,∴PM=x,AM=x.OM=8﹣x,∵OP2=PQ2+OQ2=PM2+OM2,∴y+16=x2+64﹣x+x2,∴y=x2﹣x+48,故答案为y=x2﹣x+48三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.计算:(1)﹣(﹣3)2+(﹣0.2)0;(2)(x+3)(x﹣3)﹣(x﹣2)2.【考点】平方差公式;完全平方公式;零指数幂.【分析】(1)根据实数的混合运算,先计算乘方,再计算加减可得;(2)根据平方差和完全平方公式展开后再合并同类项即可.【解答】解:(1)原式=2﹣9+1=﹣6.(2)原式=x2﹣9﹣x2+4x﹣4=4x﹣13.20.(1)解方程:x2﹣4x+1=0;(2)解方程组:.【考点】解二元一次方程组;解一元二次方程-公式法.【分析】(1)方程利用公式法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)这里a=1,b=﹣4,c=1,∵△=16﹣4=12,∴x=,∴x=2±;(2)由①,得x=1+3y③,由②,得2x﹣y=12④,把③代入④得2+6y﹣y=12,解得:y=2,把y=2代入③得x=7,∴方程组的解为.21.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由在▱ABCD中,AE⊥BD,CF⊥BD,利用AAS,易证得△ABE≌△CDF,然后由全等三角形的性质,证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.22.有三个质地、大小都相同的小球分别标上数字2,﹣2,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).(1)求这个点(a,b)恰好在函数y=﹣x的图象上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)如果再往口袋中增加n(n≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a,b)恰好在函数y=﹣x的图象上的概率是(请用含n的代数式直接写出结果).【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与这个点(a,b)恰好在函数y=﹣x的图象上的情况,再利用概率公式即可求得答案;(2)由再往口袋中增加n(n≥1)个标上数字2的小球,共有(n+3)2种等可能的结果,其中符合要求的结果有2(n+1)种,直接利用概率公式求解即可求得答案.∴P(点在函数图象上)=;(2)∵再往口袋中增加n(n≥1)个标上数字2的小球,共有(n+3)2种等可能的结果,其中符合要求的结果有2(n+1)种,故答案为:.23.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,使得△BPC是一个等腰三角形.(1)用尺规作图画出符合要求的点P.(保留作图痕迹,不要求写作法)(2)求出PA的长.【考点】作图—复杂作图;等腰三角形的判定与性质.【分析】(1)直接利用等腰三角形的性质得出符合题意的答案;(2)直接利用勾股定理结合等腰三角形的性质分别求出答案.【解答】解:(1)如图所示:P,P1,P2即为所求;(2)当BC=BP1=6时,∵AB=4,∴P1A==2,当CB=CP2=6时,P2A=AD﹣P2D=6﹣2,当PB=PC时,PA=AD=3.综上,PA的长为2,6﹣2,3.24.无锡有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对部分游客随机调查,要求游客在列举的旅游产品中选出最喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整.(2)参与随机调查的游客有400 人;在扇形统计图中,A部分所占的圆心角是72 度.(3)根据调查结果估计在2000名游客中最喜爱惠山泥人的约有560 人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可以求得调查的总人数,从而可以求得喜爱B的人数,进而可以将条形统计图补充完整;(2)根据统计图可以得到调查的总人数,也可以得到A部分所占的圆心角;(3)根据统计图可以求得2000名游客中最喜爱惠山泥人的人数.【解答】解:(1)由题意可得,调查的总人数为:60÷15%=400人,故喜爱B的人数为:400﹣80﹣72﹣60﹣76=112,补全的条条形统计图如下图所示,(2)由题意可得,调查的总人数为:60÷15%=400人,A部分所占的圆心角是:,故答案为:400,72;(3)由题意可得,在2000名游客中最喜爱惠山泥人的约有:2000×=560人,故答案为:560.25.初夏五月,小明和同学们相约去森林公园游玩.从公园入口处到景点只有一条长15km 的观光道路.小明先从入口处出发匀速步行前往景点,1.5h后,迟到的另3位同学在入口处搭乘小型观光车(限载客3人)匀速驶往景点,结果反而比小明早到45min.已知小型观光车的速度是步行速度的4倍.(1)分别求出小型观光车和步行的速度.(2)如果小型观光车在某处让这3位同学下车步行前往景点(步行速度和小明相同),观光车立即返回接载正在步行的小明后直接驶往景点,并正好和这3位同学同时到达.求这样做可以使小明提前多长时间到达景点?(上下车及车辆调头时间忽略不计)【考点】分式方程的应用;一元一次方程的应用.【分析】(1)分别表示出小型观光车和步行所用的时间,进而得出等式求出答案;(2)首先表示出观光车返回与小明相遇用时,进而求出观光车在距景点的距离,求出小明全程用时进而得出答案.【解答】解:(1)设步行的速度为x km/h,则小型观光车的速度为4x km/h.由题意得: =1.5++,解得x=5.经检验,x=5是原方程的根,答:步行的速度为5 km/h,小型观光车的速度为20 km/h;(2)设观光车在距景点m km处把人放下,此时观光车行驶用时h,小明已步行路程为:5×(1.5+)= km.故观光车返回与小明相遇用时= h.由题意得×2+=,解得:m=.小明此时全程用时为1.5++=(h),故小明可提前﹣= h,答:这样做可以使小明提前h到达景点.26.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH ⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求的值.【考点】正方形的性质;全等三角形的判定与性质;菱形的判定与性质.【分析】(1)先证明△AHG≌△AHB,得出GH=BH,由线段垂直平分线的性质得出EG=EB,FG=FB;再证出∠BEF=∠BFE,得出EB=FB,因此EG=EB=FB=FG,即可得出结论;(2)设OA=OB=OC=a,菱形BEGF的边长为b,由该菱形的性质CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b);然后在Rt△GOE中,由勾股定理可得a和b的关系,通过相似三角形△CGP∽△AGB的对应边成比例得到: =;最后由(1)△OAE≌△OBG得到:AE=GB,进而得到答案.【解答】解(1)四边形BEGF是菱形,理由如下:∵∠GAH=∠BAH,AH=AH,∠AHG=∠AHB=90°,∴△AHG≌△AHB,∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB,∵∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四边形BEGF是菱形.(2)设OA=OB=OC=a,菱形BEGF的边长为b.∵四边形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∵四边形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH.∴∠GAH=∠OBG,∴△OAE≌△OBG.∴OG=OE=a﹣b.∵在Rt△GOE中,GE=OG,∴b=(a﹣b),整理得a=b.∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b.∵PC∥AB,∴===1+,由△OAE≌△OBG得AE=BG,∴=1+.27.已知,如图1,直线l与反比例函数y=(k>0)位于第一象限的图象相交于A、B两点,并与y轴、x轴分别交于E、F.(1)试判断AE与BF的数量关系并说明理由.(2)如图2,若将直线l绕点A顺时针旋转,使其与反比例函数y=的另一支图象相交,设交点为B.试判断AE与BF的数量关系是否依然成立?请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)作AM⊥y轴于M,BN⊥x轴于N,连接MN、OA、OB、BM、AN,由AM∥x轴,得到S△AMN=S△AMO=,同理,S△BMN=S△BNO=,于是得到S△AMN=S△BMN,推出A、B两点到MN的距离相等,且A、B位于MN同侧,故AB∥MN,得到四边形AMNF与BNME均为平行四边形,根据平行四边形的性质得到AM=FN,EM=BN.根据全等三角形的性质即可得到结论;(2)作AM⊥y轴于M,BN⊥x轴于N,连接MN、OA、OB、BM、AN,由AM∥x轴,得到S△AMN=S=,同理,S△BMN=S△BNO=,于是得到S△AMN=S△BMN,推出A、B两点到MN的距离相等,且A、△AMOB位于MN同侧,故AB∥MN,得到四边形AMNF与BNME均为平行四边形,根据平行四边形的性质得到AM=FN,EM=BN.根据全等三角形的性质即可得到结论;【解答】解:(1)AE=BF,理由如下:作AM⊥y轴于M,BN⊥x轴于N,连接MN、OA、OB、BM、AN,∵AM∥x轴,∴S△AMN=S△AMO=,同理,S△BMN=S△BNO=,∴S△AMN=S△BMN,即A、B两点到MN的距离相等,且A、B位于MN同侧,故AB∥MN,∴四边形AMNF与BNME均为平行四边形,∴AM=FN,EM=BN.又∵∠AME=∠BNF=90°,在△EMA与△BNF中,,∴△EMA≌△BNF,∴AE=BF;(2)结论依然成立,AE=BF,理由:作AM⊥y轴于M,BN⊥x轴于N,连接MN、OA、OB、BM、AN,∵AM∥x轴,∴S△AMN=S△AMO=,同理,S△BMN=S△BNO=,∴S△AMN=S△BMN,即A、B两点到MN的距离相等,且A、B位于MN同侧,故AB∥MN,∴四边形AMNF与BNME均为平行四边形,∴AM=FN,EM=BN.又∵∠AME=∠BNF=90°,在△EMA与△BNF中,,∴△EMA≌△BNF,∴AE=BF.28.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示).(2)若以AD为直径的圆经过点C.①求a的值.②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段BF=2MF,求点M、N的坐标.③如图3,点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.【考点】二次函数综合题.【分析】(1)根据配方法,可得顶点坐标;(2)①根据圆的直径所对的圆周角是90°,可得直角三角形,根据勾股定理,可得关于a 的方程,根据解方程,可得答案;②根据BF=2MF,可得关于x的方程,根据解方程,可得x的值,根据自变量与函数值的对应关系,可得答案;③根据等腰三角形的判定,可得△QGD也是等腰直角三角形,根据腰长相等,可得关于b的方程,根据解方程,可得答案.【解答】解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).。

无锡市实验学校2016年中考三模数学试卷含答案

无锡市实验学校2016年中考三模数学试卷含答案

第9题图第8题图无锡市初三三模数学试卷一、选择题:(本大题共10小题,每题3分,共30分.)1、下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ ) A .正三角形 B .平行四边形 C .矩形 D .等腰梯形2、计算32)2(b a -的结果是 ( ▲ )A .366b a - B .b a 28- C .362b a - D .368b a -3、若a b 3a b 7+=-=,,则22a b -的值为 ( ▲ ) A .-21 B .21 C .-10 D .104( ▲ ) A.12 D .185、已知直角三角形ABC 的一条直角边AB=4cm ,另一条直角边BC=3 cm ,则以AB 为轴旋转一周,所得到的圆锥的侧面积是 ( ▲ )A .230cm πB .215cm πC .212cm πD .220cm π6、在某校“我的中国梦”演讲比赛中,有15名学生参加决赛,他们决赛的最终成绩各不相同。

其中的一名学生想要知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的 ( ▲ ).A .众数B .方差C .平均数D .中位数7、 若二次函数2()1y x m =--.当x ≤ 3时,y 随x 的增大而减小,则m 的取值范围是A .m = 3B .m >3C .m ≥ 3D .m ≤ 3 ( ▲ )8、如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是( ▲ )A .PA ,PB ,AD ,BC B .PD ,DC ,BC ,AB C .PA ,AD ,PC ,BC D .PA ,PB ,PC ,AD9、如图,在直角坐标系中放置一个边长为2的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 第三次回到x 轴上时,点A 运动的路线与x 轴围成的图形的面积和为( ▲ )A .ππ+2B .22+πC .ππ323+D .66+π10.如图,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x轴上运动时,点C 随之在y 轴上运动.在运动过程中,点B 到原点的最大距离是( ▲ ) A .6 B .2 6 C .2 5 D .22+2第15题 第18题第17题二、填空(本大题共8小题,每题2分,共16分) 11、函数xy -=11中自变量x 的取值范围是 ▲ .12、我国因环境污染造成的巨大经济损失每年高达680000000元,这个数用科学记数法表示为 ▲ 元.13、已知点A (x 1,y 1)、B (x 1―3,y 2)在直线y =―2x +3上,则y 1 ▲ y 2 (用“>”、“<”或“=”填空)14、若关于x 的二次方程032=+++a ax x 有两个相等的实数根,则实数a = ▲ 15、如图,点A 在双曲线x y 3=上,点B 在双曲线xy 5=上,且AB∥x 轴,C 、D 在x 轴上,若四边形ABCD 为平行四边形,则它的面积为 ▲16、如图,方格纸中有三个格点A 、B 、C ,则点A 到BC 的距离为= ▲ .17、如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为_ _▲__18、如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(3n-2)步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,第2016次电子跳蚤能跳到的圆圈内所标的数字为___▲__三、解答题(本大题共10小题,共84分) 19、(每小题5分,共10分)①解不等式组⎪⎩⎪⎨⎧+<≥+325,5)5.1(2m m m ,并将解集在数轴上表示出来 .②先化简,再求代数式的值:a a a a a -÷⎪⎭⎫⎝⎛+--+112122,其中13-=a .20、(本题满分6分)如图,线段AB 绕点O 顺时针旋转一定的角度得到线段A 1B 1. (1)请用直尺和圆规作出旋转中心O (不写作法,保留作图痕迹);(2)连接OA 、OA 1、OB 、OB 1,如果∠AO A 1=∠BOB 1=α;OA =OA 1=a ;OB =OB 1=b .则线段AB 扫过的面积是 ▲ .111210987654321AB A 1B 121、(本题满分6分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:AB=CD22、(本题满分8分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了▲名同学;(2)条形统计图中,m=▲,n=▲;(3)扇形统计图中,艺术类读物所在扇形的圆心角是▲度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?23、(本题满分7分)现有4根小木棒,长度分别为:2、3、3、5(单位:cm),从中任意取出3根,请用画树状图或例举法求它们能首尾顺次相接搭成三角形的概率.24、(本题满分8分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=8米,AE=10米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.)25、(本题满分9分)某景区门票价格80元/人,为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=___▲____,b=___▲_____(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王4月15日(非节假日)带A旅游团,5月1日带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?26.(本题满分10分)已知点O是四边形ABCD内一点,AB=BC,OD=OC,∠ABC=∠DOC=α.(1)如图1,α=60°,探究线段AD与OB的数量关系,并加以证明;(2)如图2,α=120°,探究线段AD与OB的数量关系,并说明理由;(3)结合上面的活动经验探究,请直接写出如图3中线段AD与OB的数量关系为▲(直接写出答案)27.(本题满分10分)在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为___▲___;(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;28、(本题满分10分)如图,在平面直角坐标系中,O 为坐标原点,直线6+-=x y 交y 轴于点A ,交x 轴于点B ,点C 、B 关于原点对称,点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P 、D 、B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF . (1)求A 、B 、C 三点的坐标;(2)当点P 在线段AB (不包括A ,B 两点)上时.求证:DE=EF ;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.无锡市初三三模数学答卷(2016.5)一、选择题:(本大题共10小题,每题3分,共30分.)二、填空(本大题共8小题,每题2分,共16分)11、______________12、_____________ 13、_____________ 14、_____________ 15、_____________ 16、_____________ 17、_____________ 18、_____________ 三、解答题(本大题共10小题,共84分) 19、(每小题5分,共10分)①解不等式组⎪⎩⎪⎨⎧+<≥+325,5)5.1(2m m m ,并将解集在数轴上表示出来 .②先化简,再求代数式的值:a a a a a -÷⎪⎭⎫ ⎝⎛+--+112122,其中13-=a . 20、(本题满分6分) ⑴(2)______________________ 21、(本题满分6分)ABA 1B 122、(本题满分8分)(1)一共调查了名同学;(2)m=,n=;(3)度;(4)23、(本题满分7分)24、(本题满分8分)(1)(2)25、(本题满分9分)(1)a=__ _____,b=_______ (2)(3)26.(本题满分10分)(1)(2)备用图(3)27.(本题满分10分) (1)___________________ (2) (3)①②_________________________________________.28、(本题满分10分)⑴ ⑵ ⑶初三适应性考试数学答案及评分标准一、选择题:(本大题共10小题,每题3分,共30分.)二、填空(本大题共8小题,每题2分,共16分)11、x<1 12、6.8810 13、 < 14、6或-215、2 16、559 17、21-2 18、10 三、解答题(本大题共10小题,共84分)19、m ≥1 (1分)m<2 (1分)∴1≤m<2 (1分)数轴表示 (2分)②先化简,再求代数式的值:a a a aa -÷⎪⎭⎫ ⎝⎛+--+112122,其中13-=a . 化简得,原式=a+13(3分), 当13-=a 时,原式=3 (2分)20、(本题满分6分)⑴作图 4分(2))(36022a b -∂π (2分)21、(本题满分6分)略22、(本题满分8分)(1)200 (2分)(2)m=40,n=60;(2分)(3)72度;(2分)(4)750本 (2分)23、(本题满分7分)树状图 (4分)P(搭成三角形)=21 (3分) 24、(本题满分8分)(1)BH=4 (4分)(2)CD=14-63≈3.6 (4分)25、(本题满分9分)(1)a=6,b=8 (2分)(2)y 1=48xy 2=80x (0≤x ≤10)y 2=64x+160(x>10) (3分)(3)设A 团有n 人,B 团有(50-n)人若50-n>10 则48n+64(50-n)=160=3040n=20 (2分)若50-n ≤10 则48n+80(50-n)=3040n=30(不合题意,舍去) (2分)答:A团有20人,B团有30人26.(本题满分10分)解:(1)AD=OB,(1分)如图1,连接AC,∵AB=BC,OD=OC,∠ABC=∠DOC=60°,∴△ABC与△COD是等边三角形,∴∠ACB=∠DCO=60°,∴∠ACD=∠BCO,在△ACD与△BCO中,,∴△ACD≌△BCO,∴AD=OB;(3分)(2)AD=OB;(1分)如图2,连接AC,过B作BF⊥AC于F,∵AB=BC,OD=OC,∠ABC=∠DOC=120°,∴∠ACB=∠DCO=30°,∴∠ACD=∠BCO,∴△ACD∽△BCO,∴,∵∠CFB=90°,∴=2sin60°=,∴AD=OB;(3分)(3)如图3,连接AC,过B作BF⊥AC于F,∵AB=BC,OD=OC,∠ABC=∠DOC=α,∴∠ACB=∠DCO=,∴∠ACD=∠BCO,∴△ACD ∽△BCO ,∴,∵∠CFB=90°,∴=2sin ,∴AD=2sinOB . (2分)27.(本题满分10分)(1)(3,0) (2分)(2) 图 (每点1分)A(1,a+b) B (ab -,0) (3)① C 在直线y=-4x 上,所以b=-4a 抛物线为y=a ax 42-对称轴为x=2, 所以D (2,0)∵E(0,-4a) C(a,-4a) ∴CE ∥DF 又∵DE ∥CF 所以CEDF 为平行四边形,CE=DF=1 ∴a=-1 C(-1,4) (4分) ②21-≤b<0 或485<<b (2分)28、(本题满分10分)解:∴A (0,6),B (6,0)∴C (-6,0), (3分)(2)①由已知得:OB=OC ,∠BOD=∠COD=90°,又∵OD=OD ,∴△BDO ≌△CDO ,∴∠BDO=∠CDO ,∵∠CDO=∠ADP ,∴∠BDE=∠ADP ,如图1,连结PE ,∴∠ADB=∠PDE ∵∠DEP=∠ABD ,∴△DEP 相似于△ADB ∴ ∠DPE=∠OAB ,∵OA=OB=6,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF 是⊙Q 的直径,∴∠DEF=90°,∴△DEF 是等腰直角三角形,∴DE=EF 。

中考数学一模试卷含解析27

中考数学一模试卷含解析27

江苏省无锡市宜兴市2016年中考数学一模试卷一、选择题(共10小题,每题3分,总分值30分)1.的值为()A.2 B.﹣2 C.±2 D.2.太阳的半径大约是696 000千米,用科学记数法可表示为()A.696×103千米 B.×105千米C.×106千米D.×106千米3.﹣a3•(﹣a)2的运算结果是()A.a5B.﹣a5C.a6D.﹣a64.tan30°的值为()A.B.C.D.5.一次数学测试,某小组五名同窗的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,6.以下四个命题中,真命题是()A.对角线相互垂直平分的四边形是正方形B.对角线相等且相互平分的四边形是矩形C.对角线垂直相等的四边形是菱形D.四边都相等的四边形是正方形7.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,那么DE:EC=()A.2:5 B.2:3 C.3:5 D.3:28.如图,△ABC中,∠C=90°,∠B=60°,AC=2,点D在AC上,以CD为直径作⊙O与BA相切于点E,那么BE的长为()A.B.C.2 D.39.图1是一个正六面体,把它按图2中所示方式切割,能够取得一个正六边形的截面,那么以下展开图中正确画出所有的切割线的是()A.B.C.D.10.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E别离是AC、BC上的一点,且DE=3.假设以DE为直径的圆与斜边AB相交于M、N,那么MN的最大值为()A.B.2 C.D.二、填空题(本大题共8小题,每题3分,共16分.不需写出解答进程,只需把答案直接填写在答题卡上相应的位置)11.分解因式:3x2﹣3y2= .12.已知方程组,那么x+y= .13.假设反比例函数的图象通过第一、三象限,那么 k的取值范围是.14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,那个圆锥的底面圆的半径是.15.已知关于x的方程的解是负数,那么m的取值范围为.16.如图,△ABC中,∠ABC=70°,∠BAC的外角平分线与∠ACB的外角平分线交于点O,那么∠ABO= 度.17.一张矩形纸片通过折叠取得一个三角形(如图),那么矩形的长与宽的比为.18.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=,有一只蚂蚁从A动身,先以1单位/s的速度爬到线段BE上的点D处,再以单位/s 的速度沿着DE爬到E点处觅食,那么蚂蚁从A到E的最短时刻是s.三、解答题19.(1)2cos30°+()﹣1+|1﹣|﹣(3﹣π)0;(2)÷﹣1,再选取一个适合的a的值代入求值.20.(1)解方程:x2+4x﹣1=0;(2)解不等式组.21.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,而且△CDE可由△ABC 逆时针旋转而取得.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.22.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上别离标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就能够够在箱子里前后摸出两个球(第一次摸出后不放回),商场依照两小球所标金额的和返还相应价钱的购物券,能够从头在本商场消费,某顾客恰好消费200元.(1)该顾客至少可取得元购物券,最多可取得元购物券;(2)请你用画树状图或列表的方式,求出该顾客所取得购物券的金额不低于30元的概率.23.为了解某校九年级男生的体能情形,体育教师从中随机抽取部份男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,依照图形信息回答以下问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)假设规定引体向上6次以上(含6次)为体能达标,那么该校125名九年级男生中估量有多少人体能达标?24.(10分)(2016•宜兴市一模)如图,在平面直角坐标中,点D在y轴上,以D为圆心,作⊙D交x轴于点E、F,交y轴于点B、G,点A在⊙D上,连接AB交x轴于点H,连接AF 并延长到点C,使∠FBC=∠A.(1)判定直线BC与⊙D的位置关系,并说明理由;(2)求证:BE2=BH•AB;(3)假设点E坐标为(﹣4,0),点B的坐标为(0,﹣2),AB=8,求F与A两点的坐标.25.小米电话愈来愈受到公共的喜爱,各类样式接踵投放市场,某店经营的A款电话去年销售总额为50000元,今年每部销售价比去年降低400元,假设卖出的数量相同,销售总额将比去年减少20%.(1)今年A款电话每部售价多少元?(2)该店打算新进一批A款电话和B款电话共60部,且B款电话的进货数量不超过A款电话数量的两倍,应如何进货才能使这批电话获利最多?A,B两款电话的进货和销售价钱如下表:A款手机B款手机进货价格(元)1100 1400销售价格(元)今年的销售价格200026.(10分)(2016•宜兴市一模)甲乙两台智能机械人从同一地址动身,沿着笔直的线路行走了450cm.甲比乙先动身,乙动身一段时刻后速度提高为原先的2倍.两机械人行走的路程y(cm)与时刻x(s)之间的函数图象如下图.依照图象所提供的信息解答以下问题:(1)乙比甲晚动身秒,乙提速前的速度是每秒cm,t= ;(2)己知甲匀速走完了全程,请补全甲的图象;(3)当x为何值时,乙追上了甲?27.(10分)(2016•宜兴市一模)如图,在平面直角坐标系中,过A(﹣2,0), C(0,6)两点的抛物线y=﹣x2+a x+b与x轴交于另一点B,点D是抛物线的极点.(1)求a、b的值;(2)点P是x轴上的一个动点,过P作直线l∥AC交抛物线于点Q.随着点P的运动,假设以A、P、Q、C为极点的四边形是平行四边形,请直接写出符合条件的点Q的坐标;(3)在直线AC上是不是存在一点M,使△BDM的周长最小?假设存在,请找出点M并求出点M的坐标;假设不存在,请说明理由.28.(10分)(2016•宜兴市一模)已知:在直角坐标系中,点A(0,6),B(8,0),点C是线段AB的中点,CD⊥OB交OB于点D,Rt△EFH的斜边EH在射线AB上,极点F在射线AB的左侧,EF∥OA.点E从点A动身,以每秒1个单位的速度向点B运动,到点B停止.AE=EF,运动时刻为t(秒).(1)在Rt△EFH中,EF= ,EH= ;F(,)(用含有t的代数式表示)(2)当点H与点C重合时,求t的值.(3)设△EFH与△CDB重叠部份图形的面积为S(S>0),求S与t的关系式;(4)求在整个运动进程中Rt△EFH扫过的面积.2016年江苏省无锡市宜兴市中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每题3分,总分值30分)1.的值为()A.2 B.﹣2 C.±2 D.【考点】算术平方根.【分析】依照算术平方根的概念得出即为4的算术平方根,进而求出即可.【解答】解: =2.应选A【点评】此题要紧考查了算术平方根的概念,熟练利用算术平方根的概念得出是解题关键.2.太阳的半径大约是696 000千米,用科学记数法可表示为()A.696×103千米 B.×105千米C.×106千米D.×106千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确信n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696000=×105;应选A.【点评】此题考查科学记数法的表示方式.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确信a的值和n的值.3.﹣a3•(﹣a)2的运算结果是()A.a5B.﹣a5C.a6D.﹣a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】第一利用积的乘方的性质,然后利用同底数幂的乘法的性质,即可求解.【解答】解:原式=﹣a3•a2=﹣a5.应选B.【点评】此题考查了同底数幂的乘法,积的乘方,理清指数的转变是解题的关键.4.tan30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】依照30°角的正切值,可得答案.【解答】解:tan30°=,应选:B.【点评】此题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.一次数学测试,某小组五名同窗的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,【考点】方差;算术平均数.【分析】依照平均数的计算公式先求出丙的得分,再依照方差公式进行计算即可得出答案.【解答】解:依照题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.应选C.【点评】此题考查了平均数与方差,把握平均数和方差的计算公式是解题的关键,一样地设n个数据,x1,x2,…x n的平均数为,那么方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.以下四个命题中,真命题是()A.对角线相互垂直平分的四边形是正方形B.对角线相等且相互平分的四边形是矩形C.对角线垂直相等的四边形是菱形D.四边都相等的四边形是正方形【考点】命题与定理.【分析】利用正方形的判定定理、矩形的判定定理、菱形的判定定理别离判定后即可确信正确的选项.【解答】解:A、对角线相互垂直平分的平行四边形是正方形,故错误,是假命题;B、对角线相等且相互平分的四边形是矩形,正确,是真命题;C、对角线垂直平分的四边形是菱形,故错误,是假命题,D、四边都相等的四边形是菱形,故错误,是假命题,应选B.【点评】此题考查了命题与定理的知识,解题的关键是了解正方形的判定定理、矩形的判定定理、菱形的判定定理,属于基础题,难度不大.7.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,那么DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先依照平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再依照S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出 DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.应选B.【点评】此题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.8.如图,△ABC中,∠C=90°,∠B=60°,AC=2,点D在AC上,以CD为直径作⊙O与BA相切于点E,那么BE的长为()A.B.C.2 D.3【考点】切线的性质.【分析】由∠C=90°,∠B=60°,AC=2,取得BC===2,由于CD为⊙O直径,取得BC是⊙O的切线,依照切线长定理即可取得结论.【解答】解:∵∠C=90°,∠B=60°,AC=2,∴BC===2,∵CD为⊙O直径,∴BC是⊙O的切线,∴BE=BC=2,应选C.【点评】此题考查了切线的判定和性质,锐角三角函数,熟记定理是解题的关键.9.图1是一个正六面体,把它按图2中所示方式切割,能够取得一个正六边形的截面,那么以下展开图中正确画出所有的切割线的是()A.B.C.D.【考点】截一个几何体;几何体的展开图.【分析】依照正六面体和截面的特点,可动手操作取得答案.【解答】解:动手操作可知,画出所有的切割线的是图形C.应选C.【点评】考查了截一个几何体和几何体的展开图,观看试探与动手操作结合,取得相应的规律是解决此题的关键.10.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E别离是AC、BC上的一点,且DE=3.假设以DE为直径的圆与斜边AB相交于M、N,那么MN的最大值为()A.B.2 C.D.【考点】直线与圆的位置关系.【分析】依照题意有C、O、G三点在一条直线上OG最小,MN最大,依照勾股定理求得AB,依照三角形面积求得CF,然后依照垂径定理和勾股定理即可求得MN的最大值.【解答】解:过O作OG垂于G,连接OC,∵OC=,只有C、O、G三点在一条直线上OE最小,连接OM,∴OM=,∴只有OG最小,GM才能最大,从而MN有最大值,作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,应选C.【点评】此题考查了垂线段最短,垂径定理,勾股定理,过O作OG垂于E,得出C、O、G 三点在一条直线上OE最小是解题的关键.二、填空题(本大题共8小题,每题3分,共16分.不需写出解答进程,只需把答案直接填写在答题卡上相应的位置)11.分解因式:3x2﹣3y2= 3(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣y2)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)【点评】此题考查了提公因式法与公式法的综合运用,熟练把握因式分解的方式是解此题的关键.12.已知方程组,那么x+y= 2 .【考点】解二元一次方程组.【分析】两方程相加,变形即可求出x+y的值.【解答】解:两方程相加得:4(x+y)=8,那么x+y=2.故答案为:2.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方式有:加减消元法与代入消元法.13.假设反比例函数的图象通过第一、三象限,那么 k的取值范围是k<.【考点】反比例函数的性质.【分析】先依照反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数的图象通过第一、三象限,∴1﹣3k≥0,解得k<.故答案为:k<.【点评】此题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支别离位于第一、第三象限是解答此题的关键.14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,那个圆锥的底面圆的半径是 2 .【考点】圆锥的计算.【分析】易患扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.已知关于x的方程的解是负数,那么m的取值范围为m>﹣8且m≠﹣4 .【考点】分式方程的解.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,依照分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】此题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有必然的代表性,可是有必然的难度.16.如图,△ABC中,∠ABC=70°,∠BAC的外角平分线与∠ACB的外角平分线交于点O,那么∠ABO= 35 度.【考点】三角形内角和定理;三角形的外角性质.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F,OG⊥AC于点G,由于点O是∠BAC的外角平分线与∠ACB的外角平分线的交点,故OE=OG=OF,因此OB是∠ABC的平分线,由此即可得出结论.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F,OG⊥AC于点G,∵点O是∠BAC的外角平分线与∠ACB的外角平分线的交点,∴OE=OG,OF=OG,∴OE=OG=OF,∴OB是∠ABC的平分线,∴∠ABO=∠ABC=×70°=35°.故答案为:35.【点评】此题考查的是三角形内角和定理,依照题意作出辅助线,利用角平分线的性质进行解答即可.17.一张矩形纸片通过折叠取得一个三角形(如图),那么矩形的长与宽的比为2:.【考点】翻折变换(折叠问题);直角三角形的性质;矩形的性质.【分析】第一由折叠的性质与矩形的性质求得:∠ABC′=30°,BC′=BC,然后在Rt△ABC′中,利用三角函数的知识即可求得答案.【解答】解:依照折叠的性质得:BC′=BC,∠ABC′=∠C′BE=∠EBC,∵四边形ABCD是矩形,∴∠ABC=∠A=90°,∴∠ABC′=∠ABC=30°,∴在Rt△ABC′中,cos∠ABC′==cos30°=,∴矩形的长与宽的比为:2:.故答案为:2:.【点评】此题考查了折叠的性质,矩形的性质和三角函数等知识.解题的关键是找到折叠中的对应关系,还要注意数形结合思想的应用.18.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=,有一只蚂蚁从A动身,先以1单位/s的速度爬到线段BE上的点D处,再以单位/s 的速度沿着DE爬到E点处觅食,那么蚂蚁从A到E的最短时刻是s.【考点】抛物线与x轴的交点.【分析】过点E作y轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图,利用平行线的性质和三角函数的概念取得tan∠HED=tan∠EBA==,设DH=4m,EH=3m,那么DE=5m,那么可判定蚂蚁从D爬到E点所用的时刻等于从D爬到H点所用的时刻相等,于是取得蚂蚁从A动身,先以1单位/s的速度爬到线段BE上的点D处,再以单位/s的速度沿着DE爬到E点所历时刻等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s速度爬到H点的时刻,利用两点之间线段最短取得AD+DH的最小值为AQ的长,接着求出A点和B 点坐标,再利用待定系数法求出BE的解析式,然后解由直线解析式和抛物线解析式所组成的方程组确信E点坐标,从而取得AQ的长,然后计算爬行的时刻.【解答】解:过点E作y轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图,∵EH∥AB,∴∠HEB=∠ABE,∴tan∠HED=tan∠EBA==,设DH=4m,EH=3m,那么DE=5m,∴蚂蚁从D爬到E点的时刻==4(s)假设设蚂蚁从D爬到H点的速度为1单位/s,那么蚂蚁从D爬到H点的时刻==4(s),∴蚂蚁从D爬到E点所用的时刻等于从D爬到H点所用的时刻相等,∴蚂蚁从A动身,先以1单位/s的速度爬到线段BE上的点D处,再以单位/s的速度沿着DE爬到E点所历时刻等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s速度爬到H点的时刻,作AG⊥EH于G,那么AD+DH≥AH≥AG,∴AD+DH的最小值为AQ的长,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,那么A(﹣1,0),B(3,0),直线BE交y轴于C点,如图,在Rt△OBC中,∵tan∠CBO==,∴OC=4,那么C(0,4),设直线BE的解析式为y=kx+b,把B(3,0),C(0,4)代入得,解得,∴直线BE的解析式为y=﹣x+4,解方程组得或,那么E点坐标为(﹣,),∴AQ=,∴蚂蚁从A爬到G点的时刻==(s),即蚂蚁从A到E的最短时刻为s.故答案为.【点评】此题考查了二次函数与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标化为解关于x的一元二次方程.解决此题的关键是确信蚂蚁在DH 和DE上爬行的时刻相等.三、解答题19.(1)2cos30°+()﹣1+|1﹣|﹣(3﹣π)0;(2)÷﹣1,再选取一个适合的a的值代入求值.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)别离依照0指数幂及负整数指数幂的计算法那么、特殊角的三角函数值及绝对值的性质别离计算出各数,再依如实数混合运算的法那么进行计算即可;(2)先依照分式混合运算的法那么把原式进行化简,再选取适合的a的值代入进行计算即可.【解答】解:(1)原式=2×+3+﹣1﹣1=+3+﹣1﹣1=2+1;(2)原式=•﹣1=﹣1=﹣.当a=﹣1时,原式=﹣1.【点评】此题考查的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键.20.(1)解方程:x2+4x﹣1=0;(2)解不等式组.【考点】解一元一次不等式组;解一元二次方程-配方式.【分析】(1)用配方式解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左侧配成一个完全平方式,右边化为一个常数;⑤若是右边是非负数,就能够够进一步通过直接开平方式来求出它的解,若是右边是一个负数,那么判定此方程无实数解.(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部份即可得解.【解答】解:(1)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,(x+2)2=5,x+2=±,x=﹣2±;(2)解不等式①得:x≥﹣1,解不等式②得:x<3.因此,不等式组的解集是:﹣1≤x<3.【点评】考查了一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一样先求出其中各不等式的解集,再求出这些解集的公共部份,利用数轴能够直观地表示不等式组的解集.方式与步骤:①求不等式组中每一个不等式的解集;②利用数轴求公共部份.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.同时考查了解一元二次方程﹣配方式.21.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,而且△CDE可由△ABC 逆时针旋转而取得.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是90°.【考点】作图-旋转变换.【分析】别离作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如下图:旋转角度是90°.故答案为:90°.【点评】此题要紧考查了旋转变换,得出旋转中心的位置是解题关键.22.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上别离标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就能够够在箱子里前后摸出两个球(第一次摸出后不放回),商场依照两小球所标金额的和返还相应价钱的购物券,能够从头在本商场消费,某顾客恰好消费200元.(1)该顾客至少可取得10 元购物券,最多可取得50 元购物券;(2)请你用画树状图或列表的方式,求出该顾客所取得购物券的金额不低于30元的概率.【考点】列表法与树状图法.【分析】(1)若是摸到0元和10元的时候,取得的购物券是最少,一共10元.若是摸到20元和30元的时候,取得的购物券最多,一共是50元;(2)列表法或画树状图法能够不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【解答】解:(1)10,50;(2)解法一(树状图):从上图能够看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):第二次0 10 20 30第一次0 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣(以下进程同“解法一”)【点评】此题要紧考查概率知识.解决此题的关键是弄清题意,满200元能够摸两次,但摸出一个后不放回,概率在转变.用到的知识点为:概率=所求情形数与总情形数之比.23.为了解某校九年级男生的体能情形,体育教师从中随机抽取部份男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,依照图形信息回答以下问题:(1)本次抽测的男生有25 人,抽测成绩的众数是6次;(2)请将条形图补充完整;(3)假设规定引体向上6次以上(含6次)为体能达标,那么该校125名九年级男生中估量有多少人体能达标?【考点】条形统计图;用样本估量整体;扇形统计图.【分析】(1)用7次的人数除以7次所占的百分比即可求得总人数,然后求得6次的人数即可确信众数;(2)补齐6次小组的小长方形即可.(2)用总人数乘以达标率即可.【解答】解:(1)观看统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(4分)(2)(3)(人).答:该校125名九年级男生约有90人体能达标.…(3分)【点评】此题考查了条形统计图的知识,解题的关键是从统计图中整理出进一步解题的有关信息.24.(10分)(2016•宜兴市一模)如图,在平面直角坐标中,点D在y轴上,以D为圆心,作⊙D交x轴于点E、F,交y轴于点B、G,点A在⊙D上,连接AB交x轴于点H,连接AF 并延长到点C,使∠FBC=∠A.(1)判定直线BC与⊙D的位置关系,并说明理由;(2)求证:BE2=BH•AB;(3)假设点E坐标为(﹣4,0),点B的坐标为(0,﹣2),AB=8,求F与A两点的坐标.【考点】圆的综合题.【分析】(1)第连续接GF,由BG是⊙D直径,可得∠GFB=90°,然后由圆周角定理,求得∠FBC+∠GBF=90°,继而证得结论;(2)第连续接AE,由垂径定理可得=,继而证得△BEH∽△BAE,然后由相似三角形的对应边成比例,证得结论;(3)第一过点A作AQ⊥GB于点Q,由垂径定理即可求得OE与OF的长,然后由勾股定理求得BH的长,再利用△BOH∽△BQA,求得答案.【解答】解:(1)直线BC与⊙D相切.证明:如图,连接GF,∵BG是⊙D直径,∴∠GFB=90°,∴∠BGF+∠GBF=90°,∵∠BAF=∠BGF,∠FBC=∠A,∴∠BGF=∠FBC,∴∠FBC+∠GBF=90°,即∠GBC=90°,∴直线BC与⊙D相切;(2)如图,连接AE,∵BG⊥EF,BG是⊙D直径,∴=,∴∠BEH=∠BAE,∵∠BAE=∠EAH,∴△BEH∽△BAE,∴=,∴BE2=BH•AB;(3)过点A作AQ⊥GB于点Q,∵E(﹣4,0),依照垂径定理得OE=OF=4,∴F(4,0),∵BE2=BH•AB,BE2=OE2+OB2=16+4=20,AB=8,∴BH=,得OH=,由△BOH∽△BQA得:,∴AQ=,BQ=,∴OQ=,∴A(﹣,).【点评】此题属于圆的综合题.考查了切线的判定与性质、圆周角定理、垂径定理和相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.25.小米电话愈来愈受到公共的喜爱,各类样式接踵投放市场,某店经营的A款电话去年销售总额为50000元,今年每部销售价比去年降低400元,假设卖出的数量相同,销售总额将比去年减少20%.(1)今年A款电话每部售价多少元?(2)该店打算新进一批A款电话和B款电话共60部,且B款电话的进货数量不超过A款电话数量的两倍,应如何进货才能使这批电话获利最多?A,B两款电话的进货和销售价钱如下表:A款手机B款手机进货价格(元)1100 1400销售价格(元)今年的销售价格2000【考点】一次函数的应用;分式方程的应用.【分析】(1)设今年A款电话的每部售价x元,那么去年售价每部为(x+400)元,由卖出的数量相同成立方程求出其解即可;(2)设今年新进A款电话a部,那么B款电话(60﹣a)部,获利y元,由条件表示出y 与a之间的关系式,由a的取值范围就能够够求出y的最大值【解答】解:(1)设今年A款电话每部售价x元,那么去年售价每部为(x+400)元,由题意,得, =解得:x=1600.经查验,x=1600是原方程的根.答:今年A款电话每部售价1600元;(2)设今年新进A款电话a部,那么B款电话(60﹣a)部,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a)=﹣100a+36000.∵B款电话的进货数量不超过A款电话数量的两倍,∴60﹣a≤2a,∴a≥20,∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B款电话的数量为:60﹣20=40部.答:当新进A款电话20部,B款电话40部时,这批电话获利最大.【点评】此题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关健.26.(10分)(2016•宜兴市一模)甲乙两台智能机械人从同一地址动身,沿着笔直的线路行走了450cm.甲比乙先动身,乙动身一段时刻后速度提高为原先的2倍.两机械人行走的路程y(cm)与时刻x(s)之间的函数图象如下图.依照图象所提供的信息解答以下问题:(1)乙比甲晚动身15 秒,乙提速前的速度是每秒15 cm,t= 31 ;(2)己知甲匀速走完了全程,请补全甲的图象;(3)当x为何值时,乙追上了甲?。

江苏省无锡市宜兴外国语学校2016届九年级数学上学期第三次月考试题(含解析) 苏科版

江苏省无锡市宜兴外国语学校2016届九年级数学上学期第三次月考试题(含解析) 苏科版

江苏省无锡市宜兴外国语学校2016届九年级数学上学期第三次月考试题一、选择题1.方程mx2﹣3x=x2﹣mx+2是关于x的一元二次方程,则m的取值范围为()A.m≠1 B.m≠0 C.m≠﹣1 D.m≠±12.若两圆的半径分别是2和4,圆心距为2,则两圆的位置关系为()A.相交 B.内切 C.外切 D.外离3.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.方程x2=x的解为x=1C.若x2+2x+k=0有一根为2,则k=﹣8D.若分式值为零,则x=1,24.一个圆锥的母线长是底面半径的2倍,则侧面展开图扇形的圆心角是()A.60° B.90° C.120°D.180°5.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=06.如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20° B.25° C.30° D.35°7.如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°且DC=2AB,分别以DA、AB、BC为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的关系是()A.S1+S3=S2B.2S1+S3=S2C.2S3﹣S2=S1D.4S1﹣S3=S28.如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE ②四边形CDFE不可能是正方形③△DFE是等腰直角三角形④S四边形CDFE=S△ABC,上述结论中始终正确的有()A.①②③B.②③④C.①③④D.①②④9.数学兴趣小组活动时,小明将一块等腰直角三角板(其中斜边上带有刻度)的直角顶点C放在⊙O上的任意一点,转动三角板,使其一条直角边AC经过圆心O,此时小明发现三角板的斜边AB在⊙O上截得的线段(DE)长为2厘米,已知三角板的直角边长为7厘米,则⊙O的半径为()A.3厘米B.厘米C.厘米 D.厘米二、填空题10.已知x=﹣1是关于x的方程2x2+ax﹣a=0的一个根,则a= .11.若一个扇形的半径为3cm,圆心角为60°,现将此扇形围成一个圆锥的侧面,则这个圆锥的底面积为cm2.12.已知一个直角三角形的两条边长分别为3cm和4cm,则这个直角三角形的内切圆的半径为cm.13.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,AB=5,AC=4,则BD= .14.如图,∠ACB=60°,半径为1cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是cm.15.如图,在矩形ABCD中,AB=8,将矩形绕点A逆时针旋转90°,到达AB′C′D′的位置,则在旋转过程中,边CD扫过的面积是.16.如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,连接AC,则图中阴影部分的面积为.17.已知⊙O的半径为r,弦AB=r,则AB所对圆周角的度数为.18.如图,⊙O的直径AB与弦CD相交于点E,若AE=5,BE=1,∠AED=30°,则CD的长为.19.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<6),连接EF,当△BEF是直角三角形时,t的值为.三、解答题20.解方程:(1)x2+6x+1=0(2)x2﹣6x+9=(5﹣2x)221.如图所示,某校在一块长40m,宽24m的土地上修一个矩形游泳池,并在四边各筑一条宽度相等的路,若游泳池的面积为720m2,求小路的宽.22.如图,每个小方格都是边长为1个单位的小正方形,B,C,D三点都是格点(每个小方格的顶点叫格点).(1)找出格点A,连接AB,AD使得四边形ABCD为菱形;(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求点C旋转到点C1所经过的路线长.23.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.24.如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°.求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.25.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.26.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;(2)若AD=6,AE=6,求BC的长.27.如图,矩形AOBC,A(0,3)、B(6,0),点E在OB上,∠AEO=30°,点P从点Q(﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.(1)求点E的坐标;(2)当∠PAE=15°时,求t的值;(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC的边(或边所在的直线)相切时,求t的值.2015-2016学年江苏省无锡市宜兴外国语学校九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题1.方程mx2﹣3x=x2﹣mx+2是关于x的一元二次方程,则m的取值范围为()A.m≠1 B.m≠0 C.m≠﹣1 D.m≠±1【考点】一元二次方程的定义.【分析】先整理成一元二次方程的一般形式,再根据一元二次方程的定义列式求解即可.【解答】解:方程mx2﹣3x=x2﹣mx+2可化为(m﹣1)x2+(m﹣3)x﹣2=0,∵方程是关于x的一元二次方程,∴m﹣1≠0,解得m≠1.故选A.2.若两圆的半径分别是2和4,圆心距为2,则两圆的位置关系为()A.相交 B.内切 C.外切 D.外离【考点】圆与圆的位置关系.【分析】由两圆的半径分别是2和4,圆心距为2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵两圆的半径分别是2和4,∴两圆的半径差为:4﹣2=2,∵圆心距为2,∴两圆的位置关系为:内切.故选B.3.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.方程x2=x的解为x=1C.若x2+2x+k=0有一根为2,则k=﹣8D.若分式值为零,则x=1,2【考点】解一元二次方程-因式分解法;分式的值为零的条件;一元二次方程的解;解一元二次方程-直接开平方法.【分析】利用直接开平方法解方程可对A进行判断;利用因式分解法解方程可对B进行判断;根据一元二次方程解的定义把x=2代入方程可求出k,则可对C进行判断;根据分式有意义的条件可对D进行判断.【解答】解:A、若x2=4,则x1=2,x2=﹣2,所以A选项错误;B、x2=x,则x(x﹣1)=0,所以x1=0,x2=1,所以B选项错误;C、若x2+2x+k=0有一根为2,则4+4+k=0,所以k=﹣8,所以C选项错误;D、分式值为零,x2﹣3x+2=0且x﹣1≠0,则x=2,所以D选项错误.故选C.4.一个圆锥的母线长是底面半径的2倍,则侧面展开图扇形的圆心角是()A.60° B.90° C.120°D.180°【考点】圆锥的计算.【分析】设底面圆的半径为r,则母线长为2r,利用底面圆的周长等于扇形的弧长列出等式求得圆心角即可.【解答】解:设底面圆的半径为r,则母线长为2r,∴2πr=解得:n=180,故选D.5.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程-因式分解法.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.6.如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20° B.25° C.30° D.35°【考点】切线的性质;圆周角定理.【分析】根据切线性质得AB⊥AP,再根据圆周角定理即可求出.【解答】解:连接AC,根据切线的性质定理得AB⊥AP,∴∠AOP=70°,∵OA=OC,∴∠OAC=∠OCA=55°;∵AB是直径,∴∠ACB=90°,∴∠B=35°.故选D.7.如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°且DC=2AB,分别以DA、AB、BC为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的关系是()A.S1+S3=S2B.2S1+S3=S2C.2S3﹣S2=S1D.4S1﹣S3=S2【考点】勾股定理.【分析】过点A作AE∥BC交CD于点E,得到平行四边形ABCE和Rt△ADE,根据平行四边形的性质和勾股定理,不难证明三个正方形的边长对应等于所得直角三角形的边.【解答】解:过点A作AE∥BC交CD于点E,∵AB∥DC,∴四边形AECB是平行四边形,∴AB=CE,BC=AE,∠BCD=∠AED,∵∠ADC+∠BCD=90°,DC=2AB,∴AB=DE,∠ADC+∠AED=90°,∴∠DAE=90°那么AD2+AE2=DE2,∵S1=AD2,S2=AB2=DE2,S3=BC2=AE2,∴S2=S1+S3.故选A.8.如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE ②四边形CDFE不可能是正方形③△DFE是等腰直角三角形④S四边形CDFE=S△ABC,上述结论中始终正确的有()A.①②③B.②③④C.①③④D.①②④【考点】旋转的性质;三角形的面积;等腰直角三角形;正方形的判定.【分析】首先连接CF,由等腰直角三角形的性质可得:∴∠A=∠B=45°,CF⊥AB,∠ACF=∠ACB=45°,CF=AF=BF=AB,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC,问题得解.【解答】解:连接CF,∵AC=BC,∠ACB=90°,点F是AB中点,∴∠A=∠B=45°,CF⊥AB,∠ACF=∠ACB=45°,CF=AF=BF=AB,∴∠DCF=∠B=45°,∵∠DFE=90°,∴∠DFC+∠CFE=∠CFE+∠EFB=90°,∴∠DFC=∠EFB,∴△DCF≌△EBF,∴CD=BE,故①正确;∴DF=EF,∴△DFE是等腰直角三角形,故③正确;∴S△DCF=S△BEF,∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC,故④正确.若EF⊥BC时,则可得:四边形CDFE是矩形,∵DF=EF,∴四边形CDFE是正方形,故②错误.∴结论中始终正确的有①③④.故选C.9.数学兴趣小组活动时,小明将一块等腰直角三角板(其中斜边上带有刻度)的直角顶点C放在⊙O上的任意一点,转动三角板,使其一条直角边AC经过圆心O,此时小明发现三角板的斜边AB在⊙O上截得的线段(DE)长为2厘米,已知三角板的直角边长为7厘米,则⊙O的半径为()A.3厘米B.厘米C.厘米 D.厘米【考点】垂径定理的应用;勾股定理.【分析】利用垂径定理得ME=DM=1,利用勾股定理和等腰三角形的性质得OM与DO的关系式,解得结果.【解答】解:过O点作OM⊥AB,∴ME=DM=1cm,设MO=h,CO=DO=x,∵△ABC为等腰直角三角形,AC=BC,∴∠MAO=45°,∴AO=h∵AO=7﹣x,∴,在Rt△DMO中,h2=x2﹣1,∴2x2﹣2=49﹣14x+x2,解得:x=﹣17(舍去)或x=3,故选A二、填空题10.已知x=﹣1是关于x的方程2x2+ax﹣a=0的一个根,则a= 1 .【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义把x=﹣1代入方程2x2+ax﹣a=0,然后解关于a的一元一次方程即可.【解答】解:∵x=﹣1是关于x的方程2x2+ax﹣a=0的一个根,∴2×(﹣1)2﹣a﹣a=0,∴a=1.故答案为:1.11.若一个扇形的半径为3cm,圆心角为60°,现将此扇形围成一个圆锥的侧面,则这个圆锥的底面积为πcm2.【考点】圆锥的计算.【分析】易得圆锥的侧面弧长,那么根据圆锥侧面展开图的弧长=底面周长得到圆锥底面半径,进而可求得圆锥的底面积.【解答】解:圆锥的侧面展开是扇形,母线是扇形的半径,则扇形弧长==πcm.那么圆锥的底面半径为:π÷2π=,这个圆锥的底面积为=πcm2.故答案为:π.12.已知一个直角三角形的两条边长分别为3cm和4cm,则这个直角三角形的内切圆的半径为 1 cm.【考点】三角形的内切圆与内心.【分析】先用勾股定理求出斜边,再利用直角三角形的内切圆半径等于两直角边的和与斜边之差的一半,计算出内切圆的半径.【解答】解:斜边=cm,则此直角三角形的内切圆半径==1cm.故答案为:113.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,AB=5,AC=4,则BD= .【考点】垂径定理.【分析】利用垂径定理和勾股定理求解.【解答】解:利用垂径定理可得CD=2,利用勾股定理可得BC=3.所以再利用勾股定理可得BD=.14.如图,∠ACB=60°,半径为1cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是cm.【考点】切线的性质.【分析】根据题意画图,当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,则四边形OWC是矩形;构造直角三角形利用直角三角形中的30°角的三角函数值,可求得点O移动的距离为OW=CF=WF•cot∠WCF=WF•cot30°=.【解答】解:如图,当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F;连接WE,WF,CW,OC,OW,则OW=CF,WF=1,∠WCF=∠ACB=30°,所以点O移动的距离为OW=CF=WF•cot∠WCF=WF•cot30°=.15.如图,在矩形ABCD中,AB=8,将矩形绕点A逆时针旋转90°,到达AB′C′D′的位置,则在旋转过程中,边CD扫过的面积是16π.【考点】扇形面积的计算;矩形的性质;旋转的性质.【分析】边CD扫过的(阴影部分)面积就是两个扇形的面积之差,利用扇形的面积公式即可求得.【解答】解:S扇形AC′C=,S扇形AD′D=,S阴影=﹣==16π.故答案为16π.16.如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,连接AC,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】△ABC、△OBC是等底同高的三角形,所以这两个三角形面积相等;所以阴影部分的面积与扇形OBC的面积相等.在Rt△OBA中又可知,∠AOB=60°,所以△OBC是正三角形,所以扇形的面积==.【解答】解:∵AB是⊙O的切线,∴∠OBA=90°;Rt△OAB中,OA=4,OB=2,∴cos∠AOB==,∴∠AOB=60°;∴∠CBO=∠AOB=60°;∴△OBC是等边三角形,∴∠COB=60°;S阴影=S△ABC+S弓形BC=S△OBC+S弓形BC=S扇形OBC==.17.已知⊙O的半径为r,弦AB=r,则AB所对圆周角的度数为45°或135°.【考点】圆周角定理;等腰直角三角形.【分析】根据题意画出相应的图形,过O作OC⊥AB,D、E为圆周上的点,连接AD,BD,AE,BE,∠AEB与∠ADB为弦AB所对的圆周角,由垂径定理得到C为AB的中点,表示出AC与BC,由半径为r,得到三角形AOC与三角形BOC都为等腰直角三角形,可得出∠AOC与∠BOC 为45度,求出∠AOB为90度,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出AB 所对圆周角的度数.【解答】解:根据题意画出相应的图形,过O作OC⊥AB,D、E为圆周上的点,连接AD,BD,AE,BE,可得C为AB的中点,即AC=BC=AB=r,∵OA=OB=r,AC=BC=r,∴△AOC与△BOC都为等腰直角三角形,∴∠AOC=∠BOC=45°,∴∠AOB=90°,∴∠AEB=45°,∠ADB=135°,则AB所对的圆周角的度数为45°或135°.故答案为:45°或135°18.如图,⊙O的直径AB与弦CD相交于点E,若AE=5,BE=1,∠AED=30°,则CD的长为4.【考点】垂径定理;含30度角的直角三角形;勾股定理.【分析】因为∠AED=30°,可过点O作OF⊥CD于F,构成直角三角形,先求得⊙O的半径为3cm,进而求得OE=3﹣1=2,根据30°角所对的直角边等于斜边的一半,得出OF=OE=1,再根据勾股定理求得DF的长,然后由垂径定理求出CD的长.【解答】解:过点O作OF⊥CD于F,连接DO,∵AE=5,BE=1,∴AB=6,∴⊙O的半径为3,∴OE=3﹣1=2.∵∠AED=30°,∴OF=1,∴DF==2,∴CD=2DF=4.故答案为:4.19.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<6),连接EF,当△BEF是直角三角形时,t的值为2,.【考点】圆周角定理;含30度角的直角三角形;勾股定理;垂径定理.【分析】求出E移动的路程是0≤s<12,求出∠C=90°,求出AB,分为三种情况:画出图形,根据图形求出移动的距离即可.【解答】解:∵0≤t<6,动点E以2cm/s的速度从A点出发沿着A→B→A的方向运动,∴当t=6时,运动的路程是2×6=12(cm),即E运动的距离小于12cm,设E运动的距离是scm,则0≤s<12,∵AB是⊙O直径,∴∠C=90°,∵F为BC中点,BC=4cm,∴BF=CF=2cm,∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC=8cm,分为三种情况:①当∠EFB=90°时,∵∠C=90°,∴∠EFB=∠C,∴AC∥EF,∵FC=BF,∴AE=BE,即E和O重合,AE=4,t=4÷2=2(s);②当∠FEB=90°时,∵∠ABC=60°,∴∠BFE=30°,∴BE=BF=1,AE=8﹣1=7,t=7÷2=(s);③当到达B后再返回到E时,∠FEB=90°,此时移动的距离是8+1=9,t=9÷2=(s);故答案为:2,,.三、解答题20.解方程:(1)x2+6x+1=0(2)x2﹣6x+9=(5﹣2x)2【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)方程是一元二次方程的一般形式,先确定a,b,c的值,计算出△的值,然后用一元二次方程的求根公式可以求出方程的两个根;(2)方程的左边可以化为(x﹣3)2的形式,把右边的项移到左边,满足平方差公式的形式,用平方差公式因式分解,可以求出方程的两个根.【解答】解:(1)x2+6x+1=0,a=1,b=6,c=1,△=36﹣4=32,x==﹣3±2,∴x1=﹣3+2,x2=﹣3﹣2;(2)(x﹣3)2﹣(5﹣2x)2=0,(x﹣3+5﹣2x)(x﹣3﹣5+2x)=0,(2﹣x)(3x﹣8)=0,2﹣x=0或3x﹣8=0,∴x1=2,x2=.21.如图所示,某校在一块长40m,宽24m的土地上修一个矩形游泳池,并在四边各筑一条宽度相等的路,若游泳池的面积为720m2,求小路的宽.【考点】一元二次方程的应用.【分析】设小路的宽为x米,表示出游泳池的长为(40﹣2x)米,游泳池的宽为(24﹣2x)米,由长方形的面积列方程解答即可.【解答】解:设小路的宽为x米,游泳池的长为(40﹣2x)米,游泳池的宽为(24﹣2x)米,根据题意列方程得,(40﹣2x)(24﹣2x)=720,解得x1=2,x2=30(不合题意,舍去).答:小路的宽为2米.22.如图,每个小方格都是边长为1个单位的小正方形,B,C,D三点都是格点(每个小方格的顶点叫格点).(1)找出格点A,连接AB,AD使得四边形ABCD为菱形;(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求点C旋转到点C1所经过的路线长.【考点】弧长的计算;作图-旋转变换.【分析】在网格中画旋转90°的图形,要充分运用网格里的垂足关系,画完以后,要会判断,是否符合题意.【解答】(1)画图如右图.(2)AC==4;C旋转到C1所经过的路线长==2π.23.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【考点】垂径定理;勾股定理.【分析】(1)根据两平行弦所夹的弧相等,得到=,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴ =,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r2=(r﹣8)2+122,解方程得:r=13.所以⊙O的直径为26.24.如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°.求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.【解答】(1)证明:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°﹣90°﹣60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°﹣30°﹣30°﹣30°=90°,即OA⊥AP,∵OA为半径,∴A P是⊙O切线.(2)解:连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC==2,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴=,∴BE•AB=BD•BD=2×2=8.25.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.【考点】垂径定理;等边三角形的判定与性质;含30度角的直角三角形.【分析】延长AO交BC于D,过O作OE⊥BC于E,根据垂径定理求出BC=2BE,根据等边三角形的性质和判定求出AD=BD=AB=12,求出OD的长,根据含30度角的直角三角形性质求出DE即可【解答】解:延长AO交BC于D,过O作OE⊥BC于E,∵OE过圆心O,OE⊥BC,∴BC=2CE=2BE(垂径定理),∵∠A=∠B=60°,∴DA=DB,∴△DAB是等边三角形(有一个角等于60°的等腰三角形是等边三角形),∴AD=BD=AB=12,∠ADB=60°,∴OD=AD﹣OA=12﹣7=5,∵∠OED=90°,∠ODE=60°,∴∠DOE=30°,∴DE=OD=(在直角三角形中,如果有一个角是30°,那么它所对的直角边等于斜边的一半),∴BE=12﹣=,∴BC=2BE=19(根据垂径定理已推出,在第三行).26.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;(2)若AD=6,AE=6,求BC的长.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)取BD的中点O,连接OE,证明∠OEB=∠CBE后可得OE⊥AC;(2)设OD=OE=OB=x,利用勾股定理求出x的值,再证明△AOE∽△ABC,利用线段比求解.【解答】解:(1)直线AC与△DBE外接圆相切.理由:∵DE⊥BE∴BD为△DBE外接圆的直径取BD的中点O(即△DBE外接圆的圆心),连接OE∴OE=OB∴∠OEB=∠OBE∵BE平分∠ABC∴∠OBE=∠CBE∴∠OEB=∠CBE∵∠CBE+∠CEB=90°∴∠OEB+∠CEB=90°,即OE⊥AC∴直线AC与△DBE外接圆相切;(2)设OD=OE=OB=x∵OE⊥AC∴(x+6)2﹣(6)2=x2∴x=3∴AB=AD+OD+OB=12∵OE⊥AC∴△AOE∽△ABC∴即∴BC=4.27.如图,矩形AOBC,A(0,3)、B(6,0),点E在OB上,∠AEO=30°,点P从点Q(﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.(1)求点E的坐标;(2)当∠PAE=15°时,求t的值;(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC的边(或边所在的直线)相切时,求t的值.【考点】圆的综合题.【分析】(1)在Rt△AOE中求出OE,即可得出点E的坐标;(2)如图1所示,当∠PAE=15°时,可得∠APO=45°,从而可求出AO=3,求出QP,即可得出t的值;(3)以点P为圆心,PA为半径的⊙P与四边形AEBC的边(或边所在的直线)相切时,只有一种情况,也就是⊙P与AE边相切,且切点为点A,如图2所示,求出PE,得出QP,继而可得t的值.【解答】解:(1)在Rt△A OE中,OA=3,∠AEO=30°,∴OE==3,∴点E的坐标为(3,0);(2)如图1所示:∵∠PAE=15°,∠AEO=30°,∴∠APO=∠PAE+∠AEO=45°,∴OP=OA=3,∴QP=7,∴t=7秒;如图,∵∠AEO=30°,∠PAE=15°,∴∠APE=15°=∠PAE,∴AE=PE,∵AE==6,∴t=QP=OQ+OE+PE=10+3;∴t=7或10+3s.(3)∵PA是⊙P的半径,且⊙P与AE相切,∴点A为切点,如图2所示:∵AE=6,∠AEO=30°,∴PE==4,∴QP=QE﹣PE=(4+3)﹣4=4﹣,∴t=(4﹣)秒.当点P与O重合时,⊙P与AC相切,∴t=4秒;当PA=PB时,⊙P与BC相切,设OP=x,则PB=PA=6﹣x,在Rt△OAP中,x2+32=(6﹣x)2,解得:x=,∴t=4+=(秒);∴t=4﹣或4或秒.。

江苏省无锡市宜兴市丁蜀学区2016届九年级上第三次月考数学试卷含答案解析

江苏省无锡市宜兴市丁蜀学区2016届九年级上第三次月考数学试卷含答案解析

2015-2016学年江苏省无锡市宜兴市丁蜀学区九年级(上)第三次月考数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.方程x2=4的解为( )A.x=2 B.x=﹣2 C.x1=4,x2=﹣4 D.x1=2,x2=﹣22.把抛物线y=x2向左平移1个单位,所得的新抛物线的函数表达式为( )A.y=x2+1 B.y=(x+1)2C.y=x2﹣1 D.y=(x﹣1)23.若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为( ) A.1:3 B.1:9 C.3:1 D.1:4.若=,则的值为( )A.B.C.D.5.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为( )A.60 B.48 C.60πD.48π6.关于x的一元二次方程方程x2﹣2x+k=0有两个不相等的实数解,则k的范围是( ) A.k>0 B.k>1 C.k<1 D.k≤17.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC=∠OAC,则∠AOC的大小是( )A.90°B.45°C.70°D.60°8.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=( )A.1:3 B.1:4 C.2:3 D.1:29.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为( )A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<010.如图,△ABC中AB=AC=5,BC=6,点P在边AB上,以P为圆心的⊙P分别与边AC、BC相切于点E、F,则⊙P的半径PE的长为( )A.B.2 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.抛物线y=(x﹣3)2+5的顶点坐标是__________.12.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=__________.13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有__________个.14.将抛物线y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为__________.15.如图,在△ABC中,E、F分别是AB、AC的中点,△CEF的面积为2.5,则△ABC的面积为__________.16.如图,⊙O直径AB垂直于弦CD,垂足E是OB的中点,CD=6cm,则直径AB=__________cm.17.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则线段CD扫过部分的面积(图中阴影部分)是__________.18.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D 出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,则线段DP的最小值为__________.三、解答题(解答时应写出文字说明、证明过程或演算步骤)19.解方程:(1)x2﹣6=5x(2)2(x﹣3)=3x(x﹣3)(3)x2+4x﹣2=0.20.九年级(1)班数学活动选出甲、乙两组各10名学生,进行趣味数学答题比赛,共10题,答对题数统计如表一:(表一)答对题数 5 6 7 8 9 10甲组 1 0 1 5 2 1乙组0 0 4 3 2 1(表二)平均数众数中位数方差甲组8 8 8 1.6乙8 __________ ____________________(1)根据表一中统计的数据,完成表二;(2)请你从平均数和方差的角度分析,哪组的成绩更好些?21.一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,绿球1个.(1)求从袋中任意摸出一个球是红球的概率;(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率(两个红球分别记作红1、红2).22.如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)若D(2,3),请在网格图中画一个格点△DEF,使△DEF∽△ABC,且相似比为2:1;(2)求∠D的正弦值;(3)若△ABC外接圆的圆心为P,则点P的坐标为__________.23.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.24.如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有__________块,白色瓷砖有__________块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?25.如图1,已知二次函数y=ax2﹣8ax+12(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点P在抛物线的对称轴上,且四边形ABPC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的解析式;(2)点M为x轴下方抛物线上一点,若△OMP的面积为36,求点M的坐标.26.如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB项点B移动,设P、Q两点移动t秒(0<t<5)后,三角形CPQ的面积为S米2.(1)求面积S与时间t的关系式;(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.(3)t为何值时,三角形CPQ为直角三角形.2015-2016学年江苏省无锡市宜兴市丁蜀学区九年级(上)第三次月考数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.方程x2=4的解为( )A.x=2 B.x=﹣2 C.x1=4,x2=﹣4 D.x1=2,x2=﹣2【考点】解一元二次方程-直接开平方法.【分析】两边开方,即可得出方程的解.【解答】解:x2=4,x1=2,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.2.把抛物线y=x2向左平移1个单位,所得的新抛物线的函数表达式为( )A.y=x2+1 B.y=(x+1)2C.y=x2﹣1 D.y=(x﹣1)2【考点】二次函数图象与几何变换.【分析】抛物线y=x2的顶点坐标为(0,0),向左平移1个单位后顶点坐标为(﹣1,0),根据抛物线的顶点式可求解析式.【解答】解:∵抛物线y=x2的顶点坐标为(0,0),向左平移1个单位后顶点坐标为(﹣1,0),∴所求抛物线解析式为y=(x+1)2.故选:B.【点评】本题考查了抛物线解析式与抛物线平移的关系.关键是抓住顶点的平移,根据顶点式求抛物线解析式.3.若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为( ) A.1:3 B.1:9 C.3:1 D.1:【考点】相似三角形的性质.【专题】计算题.【分析】由相似△ABC与△DEF的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.【解答】解:∵相似△ABC与△DEF的相似比为1:3,∴△ABC与△DEF的面积比为1:9.故选B.【点评】本题考查对相似三角形性质.注意相似三角形面积的比等于相似比的平方.4.若=,则的值为( )A.B.C.D.【考点】比例的性质.【分析】根据两內项之积等于两外项之积整理即可得解.【解答】解:∵=,∴3a﹣3b=b,∴3a=4b,∴=.故选D.【点评】本题考查了比例的性质,主要利用了两內项之积等于两外项之积的性质,熟记性质是解题的关键.5.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为( )A.60 B.48 C.60πD.48π【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的侧面积=•2π•6•8=48π.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.关于x的一元二次方程方程x2﹣2x+k=0有两个不相等的实数解,则k的范围是( ) A.k>0 B.k>1 C.k<1 D.k≤1【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣2)2﹣4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴△=(﹣2)2﹣4k>0,解得k<1.故选:C.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC=∠OAC,则∠AOC的大小是( )A.90°B.45°C.70°D.60°【考点】圆周角定理.【分析】由圆周角定理可得∠AOC=2∠ABC,又由∠ABC=∠OAC,可得∠AOC=2∠OAC,然后由OA=OC,得到∠OAC=∠OCA,则可求得∠AOC的度数.【解答】解:∵∠AOC=2∠ABC,∠ABC=∠OAC,∴∠AOC=2∠OAC,∵OA=OC,∴∠OAC=∠OCA,∴∠AOC=2∠OAC=2∠OCA,∴∠AOC=90°.故选A.【点评】此题考查了圆周角定理以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.8.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=( )A.1:3 B.1:4 C.2:3 D.1:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】首先证明△DFE∽△BAE,然后利用对应边成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.【解答】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为( )A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0【考点】二次函数的性质.【专题】压轴题.【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【解答】解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.【点评】本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.10.如图,△ABC中AB=AC=5,BC=6,点P在边AB上,以P为圆心的⊙P分别与边AC、BC相切于点E、F,则⊙P的半径PE的长为( )A.B.2 C.D.【考点】切线的性质.【专题】计算题.【分析】连结CP,作AH⊥BC于H,如图,设⊙P的半径为r,根据等腰三角形的性质得BH=BC=3,则利用勾股定理可计算出AH=4,再根据切线的性质得PE⊥BC,PF⊥AC,利用S△ABC=S△PAC+S△PBC得到BC×AH=BC×PE+AC×PF,即6×4=6r+5r,然后解方程即可.【解答】解:连结CP,作AH⊥BC于H,如图,设⊙P的半径为r,∵AB=AC=5,∴BH=CH=BC=3,∴AH==4,∵以P为圆心的⊙P分别与边AC、BC相切于点E、F,∴PE⊥BC,PF⊥AC,∵S△ABC=S△PAC+S△PBC,∴BC×AH=BC×PE+AC×PF,即6×4=6r+5r,∴r=.故选A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的性质和三角形面积公式.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.抛物线y=(x﹣3)2+5的顶点坐标是(3,5).【考点】二次函数的性质.【分析】根据二次函数的顶点式容易得出其顶点坐标.【解答】解:∵y=(x﹣3)2+5,∴其顶点坐标为(3,5),故答案为:(3,5).【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.12.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=﹣2.【考点】根与系数的关系.【专题】计算题;压轴题.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:设方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=即可得到答案.【解答】解:∵一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,∴x1•x2==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:设方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有12个.【考点】概率公式.【分析】根据红球的概率公式列出方程求解即可.【解答】解:设袋中的球共有m个,其中有4个红球,则摸出红球的概率为,根据题意有=,解得:m=12.故本题答案为:12.【点评】本题考查的是随机事件概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.将抛物线y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为y=(x﹣1)2+2.【考点】二次函数的三种形式.【分析】由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣2x+3=(x2﹣2x+1)﹣1+3=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.【点评】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).15.如图,在△ABC中,E、F分别是AB、AC的中点,△CEF的面积为2.5,则△ABC的面积为10.【考点】三角形的面积.【分析】由于E、F分别是AB、AC的中点,可知EF是△ABC的中位线,利用中位线的性质可知EF∥BC,且=,根据△AEF和△CEF是同底等高,△BCE和△CEF是同高,求得△AEF的面积为2.5,△BCE的面积为2.5×2=5,进而求得∴△ABC的面积等于10.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF∥BC,=,∵△CEF的面积为2.5,∵△AEF和△CEF是同底等高,△BCE和△CEF是同高,∴△AEF的面积为2.5,△BCE的面积为2.5×2=5,∴△ABC的面积等于10.故答案为10.【点评】本题考查了中位线的判定和性质以及三角形面积,求得△AEF和△CEF,△BCE 和△CEF的关系是解题的关键.16.如图,⊙O直径AB垂直于弦CD,垂足E是OB的中点,CD=6cm,则直径AB=4cm.【考点】垂径定理;勾股定理.【分析】连接OC,先根据垂径定理求出CE的长,设⊙O的半径为r,则OC=r,OE=,在Rt△OCE中根据勾股定理即可求出r的值,故可得出结论.【解答】解:连接OC,∵AB⊥CD,CD=6cm,∴CE=CD=3cm,设⊙O的半径为r,则OC=r,OE=,在Rt△OCE中,OC2=OE2+CE2,即r2=32+()2,解得r=2,∴AB=2r=4.故答案为:4.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则线段CD扫过部分的面积(图中阴影部分)是.【考点】扇形面积的计算;旋转的性质.【分析】根据图示知,S阴影=S扇形ACC′﹣S△AEC′+(S矩形ABCD﹣S扇形ADD′﹣S△AD′E).根据图形的面积公式、旋转的性质以及勾股定理求得相关数据代入即可求得阴影部分的面积.【解答】解:如图,连接AC.在矩形ABCD中,AB=CD=,AD=1,则AC==2.根据旋转的性质得到:∠DAD′=∠CAC′=α,AD=AD′=1,C′D′=CD=.所以S阴影=S扇形ACC′﹣S△AEC′+(S矩形ABCD﹣S扇形ADD′﹣S△AD′E)=S扇形ACC′﹣S△AC′D′+S矩形ABCD﹣S扇形ADD′,=﹣×1×+×1×﹣=.∵α=∠CAC'=30°,∴=.故答案是:.【点评】此题主要考查了矩形的性质以及旋转的性质以及扇形面积公式等知识,此题利用了“分割法”对不规则图形进行面积的计算.18.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D 出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,则线段DP的最小值为﹣1.【考点】轨迹;圆周角定理;点与圆的位置关系.【分析】首先判断出△ABE≌△DAF,即可判断出∠DAF=∠ABE,再根据∠ABE+∠BEA=90°,可得∠FAD+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△AGD中,根据勾股定理,求出DG的长度,再求出PG的长度,即可求出线段DP的最小值为多少.【解答】解:如图:,∵动点F,E的速度相同,∴DF=AE,又∵正方形ABCD中,AB=2,∴AD=AB,在△ABE和△DAF中,,∴△ABE≌△DAF,∴∠ABE=∠DAF.∵∠ABE+∠BEA=90°,∴∠FAD+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,AG=BG=AB=1.在Rt△BCG中,DG===,∵PG=AG=1,∴DP=DG﹣PG=﹣1即线段DP的最小值为﹣1,故答案为:﹣1.【点评】本题考查了轨迹,解答此题的关键是判断出什么情况下,DP的长度最小,利用了了全等三角形的判定和性质的应用,正方形的性质和应用,以及勾股定理的应用,要熟练掌握.三、解答题(解答时应写出文字说明、证明过程或演算步骤)19.解方程:(1)x2﹣6=5x(2)2(x﹣3)=3x(x﹣3)(3)x2+4x﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题;一次方程(组)及应用.【分析】(1)方程整理后,利用因式分解法求出解即可;(2)方程移项后,利用因式分解法求出解即可;(3)方程变形后,利用配方法求出解即可.【解答】解:(1)方程整理得:x2﹣5x﹣6=0,分解因式得:(x﹣6)(x+1)=0,解得:x1=6,x2=﹣1;(2)方程移项得:2(x﹣3)﹣3x(x﹣3)=0,分解因式得:(2﹣3x)(x﹣3)=0,解得:x1=3,x2=;(3)方程移项得:x2+4x=2,配方得:x2+4x+4=6,即(x+2)2=6,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.【点评】此题考查了解一元二次方程﹣因式分解法,配方法,熟练掌握各种解法是解本题的关键.20.九年级(1)班数学活动选出甲、乙两组各10名学生,进行趣味数学答题比赛,共10题,答对题数统计如表一:(表一)答对题数 5 6 7 8 9 10甲组 1 0 1 5 2 1乙组0 0 4 3 2 1(表二)平均数众数中位数方差甲组8 8 8 1.6乙8 7 8 1(1)根据表一中统计的数据,完成表二;(2)请你从平均数和方差的角度分析,哪组的成绩更好些?【考点】方差;加权平均数;中位数;众数.【分析】(1)分别根据平均数以及众数、中位数和方差的定义求出即可;(2)根据平均数以及方差的意义分析得出即可.【解答】解:(1)乙的众数为:7,中位数为:8,方差为:[4×(7﹣8)2+3×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.表二如下:平均数众数中位数方差甲组8 8 8 1.6乙8 7 8 1(2)两组的平均数相同,乙组的方差小,说明乙组的成绩更稳定.故答案为7,8,1.【点评】此题主要考查了平均数以及众数、中位数和方差的定义,牢固掌握定义是解题的关键.21.一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,绿球1个.(1)求从袋中任意摸出一个球是红球的概率;(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率(两个红球分别记作红1、红2).【考点】列表法与树状图法.【分析】(1)由一个不透明的布袋里装有红球2个,黄球1个,绿球1个,利用概率公式求解即可求得答案;(2)首先根据题意画出树形图,然后由树形图求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式求解即可求得答案.【解答】解:(1)从袋中任意摸出一个球是红球的概率P==.(2)画树状图得:∴在上述16种等可能结果中,两次都摸到红球的情况有4种,∴P(两次都摸到红球)==.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)若D(2,3),请在网格图中画一个格点△DEF,使△DEF∽△ABC,且相似比为2:1;(2)求∠D的正弦值;(3)若△ABC外接圆的圆心为P,则点P的坐标为(2,6).【考点】作图—相似变换;三角形的外接圆与外心.【分析】(1)根据网格结构,作出DE=2AB,EF=2BC,DF=2AC的三角形即可;(2)作FG⊥DE于G,在Rt△DFG中利用正弦函数的定义即可求解;(3)设点P的坐标为(x,y),根据“三角形外接圆的圆心到三角形三个顶点的距离相等”列出等式,化简即可得出点P的坐标.【解答】解:(1)如下图所示,△DEF即为所求;(2)如图,作FG⊥DE于G,∵在Rt△DFG中,FG=2,DG=6,∴DF===2,∴sin∠D===;(3)设点P的坐标为(x,y);∵△ABC外接圆的圆心为P,∴PA=PB=PC,∵A(1,8),B(3,8),C(4,7),∴(1﹣x)2+(8﹣y)2=(3﹣x)2+(8﹣y)2=(4﹣x)2+(7﹣y)2,化简后得x=2,y=6,因此点P的坐标为(2,6).故答案为(2,6).【点评】本题考查了作图﹣相似变换,锐角三角函数的定义,勾股定理,三角形的外接圆与外心,两点间的距离公式,难度适中.23.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OE,证得OE⊥AC即可确定AC是切线;(2)根据OE∥BC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.【解答】解:(1)证明:连接OE,∵OB=OE,∴∠OBE=∠OEB,∵∠ACB=90°,∴∠CBE+∠BEC=90°,∵BD为⊙O的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OE∥BC,∴∠OEA=∠ACB=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵OE∥BC,∴△AOE∽△ABC,∴,∵,∴,∴,∵OE∥BC,∴△OEF∽△CBF,∴.【点评】本题考查了切线的性质及判断,在解决切线问题时,常常连接圆心和切点,证明垂直或根据切线得到垂直.24.如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有28块,白色瓷砖有42块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)通过观察发现规律得出黑色瓷砖的块数可用含n的代数式表示为4(n+1),白瓷砖的块数可用含n的代数式表示为n(n+1),然后将n=6代入计算即可;(2)设白色瓷砖的行数为n,根据总费用为15180元为等量关系列出方程求解即可.【解答】解:(1)通过观察图形可知,当n=1时,黑色瓷砖有8块,白瓷砖2块;当n=2时,黑色瓷砖有12块,白瓷砖6块;当n=3时,黑色瓷砖有块,用白瓷砖12块;则在第n个图形中,黑色瓷砖的块数可用含n的代数式表示为4(n+1),白瓷砖的块数可用含n的代数式表示为n(n+1),当n=6时,黑色瓷砖的块数有4×(6+1)=28块,白色瓷砖有6×(6+1)=42块;故答案为:28,42;(2)设白色瓷砖的行数为n,根据题意,得:100n(n+1)+50×4(n+1)+15(n+1)(n+2)=15180,化简得:m2+3n﹣130=0,解得n1=10,n2=﹣13(不合题意,舍去),白色瓷砖块数为n(n+1)=110,黑色瓷砖块数为4(n+1)=44.答:白色瓷砖需买110块,黑色瓷砖需买44块.【点评】此题主要考查了一元二次方程的应用,解答此题的关键是通过观察和分析,找出其中的规律.25.如图1,已知二次函数y=ax2﹣8ax+12(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点P在抛物线的对称轴上,且四边形ABPC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的解析式;(2)点M为x轴下方抛物线上一点,若△OMP的面积为36,求点M的坐标.【考点】待定系数法求二次函数解析式;二次函数图象上点的坐标特征;平行四边形的性质.【专题】计算题.【分析】(1)利用二次函数的性质可得对称轴为直线x=4,则PC=4,再根据平行四边形的性质得PC=AB=4,然后利用抛物线的对称性可得A(2,0),B(6,0),然后把把点A(2,0)代入得y=ax2﹣8ax+12求出a=1,所以二次函数解析式为y=x2﹣8x+12;(2)根据二次函数图象上点的坐标特征,设M(m,x2﹣8x+12),其中2<m<6,作MN⊥y﹣S△OCP﹣S△OMN=S△OPM得到(4+m)(12﹣m2+8m﹣12)轴于N,如图2,利用S梯形CPMN﹣×4×12﹣m(﹣m2+8m﹣12)=36,化简得:m2﹣11m+30=0,然后解方程求出m即可得到点M的坐标.【解答】解:(1)对称轴为直线x=﹣=4,则PC=4,∵四边形ABPC为平行四边形,∴PC∥AB,PC=AB,∴PC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+12=0,解得a=1,∴二次函数解析式为y=x2﹣8x+12;(2)设M(m,x2﹣8x+12),其中2<m<6,作MN⊥y轴于N,如图2,∵S﹣S△OCP﹣S△OMN=S△OPM,梯形CPMN∴(4+m)(12﹣m2+8m﹣12)﹣×4×12﹣m(﹣m2+8m﹣12)=36,化简得:m2﹣11m+30=0,解得m1=5,m2=6,∴点M的坐标为(5,﹣3).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB项点B移动,设P、Q两点移动t秒(0<t<5)后,三角形CPQ的面积为S米2.(1)求面积S与时间t的关系式;(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.(3)t为何值时,三角形CPQ为直角三角形.【考点】四边形综合题.【分析】(1)过点P作PE⊥BC于E,利用勾股定理求出AC的长,AP=2t,CQ=t,则PC=10﹣2t,又PE∥AB,根据平行线分线段成比例列出比例式即可得出PE的长,再由三角形的面积公式即可得出结论;(2)假设四边形ABQP与△CPQ的面积相等,则S△PCQ=S△ABC,再判断出方程根的情况即可;(3)分∠PQC=90°与∠CPQ=90°两种情况进行讨论即可.【解答】解:(1)如图1,过点P作PE⊥BC于E,Rt△ABC中,AC===10(m).由题意知:AP=2t,CQ=t,则PC=10﹣2t.由AB⊥BC,PE⊥BC,得PE∥AB,∴=,即=∴PE=(10﹣2t)=﹣t+6,∴S△PCQ=CQ•PE=t•(﹣t+6)=﹣t2+3t(0<t<5);(2)不能.理由:∵假设四边形ABQP与△CPQ的面积相等,∴S△PCQ=S△ABC,即﹣t2+3t=×6×8,整理得,t2﹣5t+40=0.∵△=(﹣5)2﹣160=﹣135<0,∴t无解,∴边形ABQP与△CPQ的面积不能相等;(3)如图2,当∠PQC=90°时,PQ⊥BC,∵AB⊥BC,AB=6,BC=8,QC=t,PC=10﹣2t,∴△PQC∽△ABC,∴=,即=,解得t=(秒);如图3,当∠CPQ=90°时,PQ⊥AC,∵∠ACB=∠QCP,∠B=∠QPC,∴△CPQ∽△CBA,∴=,即=,解得t=(秒).综上所述,t为秒与秒时,△CPQ为直角三角形.【点评】本题考查的是四边形综合题,涉及到矩形的性质、勾股定理、根的判别式、三角形的面积公式及平行线分线段成比例等知识,解题关键是对这些知识的熟练掌握及灵活运用,在解答(3)时要注意分类讨论.。

江苏省无锡市宜兴市宜城中考数学一模试卷(含解析)

江苏省无锡市宜兴市宜城中考数学一模试卷(含解析)

2017年江苏省无锡市宜兴市宜城环科园教学联盟中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.2的相反数是()A.2 B.﹣2 C.﹣ D.2.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤53.某市今年预计建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.0.14×1064.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.无解5.已知圆锥的底面半径为2cm,母线长为6cm,则圆锥的侧面积是()A.24cm2B.24πcm2C.12cm2D.12πcm26.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等7.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.正六边形 C.正方形D.圆8.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是()A.极差是195000 B.中位数是15000C.众数是15000 D.平均数是150009.关于二次函数y=2x2+3,下列说法中正确的是()A.它的开口方向是向下B.当x<﹣1时,y随x的增大而减小C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是310.矩形OABC有两边在坐标轴的正半轴上,如图所示,双曲线y=与边AB、BC分别交于D、E两点,OE交双曲线y=于点G,若DG∥OA,OA=3,则CE的长为()A.B.1.5 C.D.2二、填空题(本大题共8小题,每小题2分,共16分.)11.计算: = .12.分解因式:x2﹣25= .13.方程2x﹣3=0的解是.14.一个正多边形的每个外角都是36°,这个正多边形的边数是.15.如图,AB、BC是⊙O的弦,OM∥BC交AB于M,若∠AOC=100°,则∠AMO= °.16.如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是cm2.17.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B= .18.如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD 内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG 的面积为cm2.三、解答题(本大题共10小题,共84分.)19.计算:(1)(﹣3)2﹣|﹣2|+(﹣1)0+2cos30°(2)﹣(a﹣2)20.(1)解方程:;(2)解不等式组:.21.如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.22.一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.23.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?24.如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.(1)判断直线CA与⊙O的位置关系,并说明理由;(2)若AB=,求图中阴影部分的面积(结果保留π).25.在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C 岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y 与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a= ;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?26.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?27.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)在点Q从B到A的运动过程中,①当t= 时,PQ⊥AC;②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(2)伴随着P、Q两点的运动,线段PQ的垂直平分线为l.①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.28.如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.2017年江苏省无锡市宜兴市宜城环科园教学联盟中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.2的相反数是()A.2 B.﹣2 C.﹣ D.【考点】相反数.【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:B.2.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.3.某市今年预计建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.0.14×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:140000=1.4×105,故选:B.4.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.无解【考点】解一元一次不等式组.【分析】根据一元一次不等式组的解法即可求出x的解集【解答】解:①﹣2x<6x>﹣3②x﹣2>0x>2∴不等式组的解集为:x>2故选(C)5.已知圆锥的底面半径为2cm,母线长为6cm,则圆锥的侧面积是()A.24cm2B.24πcm2C.12cm2D.12πcm2【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×2×6÷2=12πcm2.故选D.6.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【考点】矩形的性质;平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.7.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.正六边形 C.正方形D.圆【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形与轴对称图形的概念判断即可.【解答】解:等边三角形是轴对称图形但不是中心对称图形,A正确;正六边形是轴对称图形,也是中心对称图形,B错误;正方形是轴对称图形,也是中心对称图形,C错误;圆是轴对称图形,也是中心对称图形,D错误;故选:A.8.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是()A.极差是195000 B.中位数是15000C.众数是15000 D.平均数是15000【考点】极差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数和极差的概念分别求得这组数据的中位数、众数、平均数和极差,再分别对每一项进行判断即可.【解答】解:A.由题意可知,极差为200000﹣5000=195000(元),故本选项正确,B.总人数为1+3+5+70+10+8+3=100(人),则中位数为第50、51个数的平均数,即中位数为15000,故本选项正确,C.15000出现了70次,出现的次数最多,则众数是15000,故本选项正确,D.平均数=×=22790,故本选项错误,故选D.9.关于二次函数y=2x2+3,下列说法中正确的是()A.它的开口方向是向下B.当x<﹣1时,y随x的增大而减小C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是3【考点】二次函数的性质.【分析】分别利用二次函数的性质分析得出即可.【解答】解:A、∵a=2>0,故它的开口方向是向上,故此选项错误;B、在y轴左侧,y随x的增大而减小,故当x<﹣1时,y随x的增大而减小,正确;C、它的顶点坐标是(0,3),故此选项错误;D、当x=0时,y有最小值是3,故此选项错误;故选:B.10.矩形OABC有两边在坐标轴的正半轴上,如图所示,双曲线y=与边AB、BC分别交于D、E两点,OE交双曲线y=于点G,若DG∥OA,OA=3,则CE的长为()A.B.1.5 C.D.2【考点】反比例函数图象上点的坐标特征;矩形的性质.【分析】先根据OA=3得出直线AB的解析式为x=3,把x=3代入反比例函数y=即可求出D 点坐标,由DG∥OA可得出直线DG的解析式,进而得出G点坐标,用待定系数法求出直线OE的解析式,进而可得出E点坐标,求出CE的长即可.【解答】解:∵矩形OABC中,OA=3,∴直线AB的解析式为x=3,∴,解得,∴D(3,2),∵DG∥OA,∴直线DG的解析式为y=2,∴解得,∴G(1,2),设直线OE的解析式为y=kx(k≠0),把点G(1,2)代入得2=k,即直线OE的解析式为y=2x,解得,∴E(,2),∴CE=.故选C.二、填空题(本大题共8小题,每小题2分,共16分.)11.计算: = .【考点】算术平方根.【分析】原式利用算术平方根定义计算即可得到结果.【解答】解:原式==,故答案为:12.分解因式:x2﹣25= (x+5)(x﹣5).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).13.方程2x﹣3=0的解是.【考点】解一元一次方程.【分析】先移项,再系数化为1,从而得到方程的解.【解答】解:移项得:2x=3,化系数为1得:x=,故答案为:.14.一个正多边形的每个外角都是36°,这个正多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.15.如图,AB、BC是⊙O的弦,OM∥BC交AB于M,若∠AOC=100°,则∠AMO= 50 °.【考点】圆周角定理.【分析】先根据同弧所对的圆心角是圆周角的2倍,求∠B的度数,再由平行线的性质得出结论.【解答】解:∵∠AOC=2∠B,∠AOC=100°,∴∠B=50°,∵OM∥BC,∴∠AMO=∠B=50°,故答案为:50.16.如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是 2 cm2.【考点】中心对称.【分析】由弧OA与弧OC关于点O中心对称,根据中心对称的定义,如果连接AC,则点O 为AC的中点,则题中所求面积等于△BAC的面积.【解答】解:连接AC.∵与关于点O中心对称,∴点O为AC的中点,∴AB、BC、弧CO、弧OA所围成的面积=△BAC的面积==2cm2.故答案为:2.17.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B= 18°.【考点】圆周角定理.【分析】连接DE、CE,则∠2=θ,∠5=∠6=2θ,∠5+∠6+∠1=180°,在△ACE中,∠3=∠CAE=63°,∠4=180°﹣∠3﹣∠CAE,进而1可得出∠θ的度数.【解答】解:连接DE、CE,则∠2=θ,∠5=∠6=2θ,∵∠6是△BDE的外角,∴∠6=∠2+∠ABC=2θ,∵∠5+∠6+∠1=180°,∴4θ+∠1=180°①,在△ACE中,∵AE=CE,∴∠3=∠CAE=63°,∴∠4=180°﹣∠3﹣∠CAE=180°﹣63°﹣63°=54°,∵∠4+∠1+∠2=180°,即54°+∠1+θ=180°②,①②联立得,θ=18°.故答案为:18°.18.如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD 内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG 的面积为8 cm2.【考点】矩形的性质.【分析】首先连接AP,CP.把该四边形分解为三角形进行解答.设△AHP在AH边上的高为x,△AEP在AE边上的高为y.得出AH=CF,AE=CG.然后得出S四边形AEPH=S△AHP+S△AEP.根据题意可求解.【解答】解:连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y.则△CFP在CF边上的高为4﹣x,△CGP在CG边上的高为6﹣y.∵AH=CF=2cm,AE=CG=3cm,∴S四边形AEPH=S△AHP+S△AEP.=AH×x×+AE×y×=2x×+3y×=5cm22x+3y=10S四边形PFCG=S△CGP+S△CFP=CF×(4﹣x)×+CG×(6﹣y)×=2(4﹣x)×+3(6﹣y)×=(26﹣2x﹣3y)×=(26﹣10)×=8cm2.故答案为8.三、解答题(本大题共10小题,共84分.)19.计算:(1)(﹣3)2﹣|﹣2|+(﹣1)0+2cos30°(2)﹣(a﹣2)【考点】分式的加减法;实数的运算;零指数幂;特殊角的三角函数值.【分析】根据实数的运算的法则,分式的加减法的法计算即可.【解答】解:(1)(﹣3)2﹣|﹣2|+(﹣1)0+2cos30°;.=9﹣2+1+=8+;(2)﹣(a﹣2)=a﹣1﹣(a﹣2)=1.20.(1)解方程:;(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)本题的最简公分母是x(x+3),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.(2)首先求出每个不等式的解集,再运用口诀:“大小小大中间找”求出这些不等式解集的公共部分.【解答】解:(1)方程两边都乘x(x+3),得2(x+3)=3x,解得x=6.检验:当x=6时,x(x+3)≠0.∴x=6是原方程的解.(2)解不等式①,得x>3,解不等式②,得x≤10.∴这个不等式组的解集为3<x≤10.21.如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先由平行四边形的性质得出AB=CD,∠ABE=∠CDF,再加上已知BE=DF可推出△ABE ≌△DCF,得证.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠BAE=∠DCF.22.一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出所得两位数为奇数的情况数,即可求出所求的概率.【解答】解:列表如下:所组成的两位数的共有16种,所组成的两位数是奇数有8种,则P奇数=.23.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54 度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).24.如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.(1)判断直线CA与⊙O的位置关系,并说明理由;(2)若AB=,求图中阴影部分的面积(结果保留π).【考点】切线的判定;扇形面积的计算.【分析】(1)连接OA,由AB=AC,则∠C=∠B=30°,∠AOC=60°,从而得出∠OAC=90°,则直线CA与⊙O相切;(2)连接AD,过点D作DE⊥AC,过点O作OF⊥AB,可求得AD和DE,即可得出△ABC的面积,再减去扇形AOD和△AOB的面积即可.【解答】解:(1)连接OA,∵AB=AC,∴∠C=∠B,∵∠B=30°,∴∠C=30°,∴∠AOC=60°,∴∠OAC=90°,∴直线CA与⊙O相切;(2)连接AD,过点D作DE⊥AC,过点O作OF⊥AB,∵AB=,∴AD=OA=OB=OD=4,∵∠DAE=30°,∴DE=2,∴△ABC面积12,扇形AOD面积,△ABO面积4,∴阴影面积﹣.25.在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C 岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y 与x的函数关系如图所示.(1)填空:A、C两港口间的距离为85 km,a= 1.7h ;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?【考点】一次函数的应用.【分析】(1)把A到B、B到C间的距离相加即可得到A、C两个港口间的距离,再求出海巡船的速度,然后根据时间=路程÷速度,计算即可求出a值;(2)分0<x≤0.5和0.5<x≤1.7两段,利用待定系数法求一次函数解析式求解即可;(3)根据函数解析式求出距离为15km时的时间,然后相减即可得解.【解答】解:(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60,所以,A、C港口间的距离为:25+60=85km,海巡船的速度为:25÷0.5=50km/h,∴a=85÷50=1.7h.故答案为:85,1.7h;(2)当0<x≤0.5时,设y与x的函数关系式为:y=kx+b,∵函数图象经过点(0,25),(0.5,0),∴,解得.所以,y=﹣50x+25;当0.5<x≤1.7时,设y与x的函数关系式为:y=mx+n,∵函数图象经过点(0.5,0),(1.7,60),∴,解得.所以,y=50x﹣25;(3)由﹣50x+25=15,解得x=0.2,由50x﹣25=15,解得x=0.8.所以,该海巡船能接受到该信号的时间为:0.6h.26.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?【考点】一次函数的应用.【分析】设A款式服装分配到甲店铺为x件,则分配到乙店铺为(36﹣x)件;B款式分配到甲店铺为(30﹣x)件,分配到乙店铺为(x﹣6)件,总利润为y元,依题意可得到一个等式和一个不等式,可求解.【解答】解:(1)设A款式服装分配到甲店铺为x件,则分配到乙店铺为(36﹣x)件;B款式分配到甲店铺为(30﹣x)件,分配到乙店铺为(x﹣6)件.根据题意得:30x+35×(30﹣x)=26×(36﹣x)+36(x﹣6),解得x=22.所以36﹣x=14(件),30﹣x=8(件),x﹣6=16(件),故A款式服装分配到甲店铺为22件,则分配到乙店铺为14件;B款式分配到甲店铺为8件,分配到乙店铺为16件,能使两个店铺在销售完这批服装后所获利润相同;(2)设总利润为w元,根据题意得:30x+35×(30﹣x)≥950,解得x≤20.解得6≤x≤20.w=30x+35×(30﹣x)+26×(36﹣x)+36(x﹣6)=5x+1770,∵k=5>0,∴w随x的增大而增大,∴当x=20时,w有最大值1870.∴A款式服装分配给甲、乙两店铺分别为20件和16件,B款式服装分配给甲、乙两店铺分别为10件和14件,最大的总利润是1870元.27.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)在点Q从B到A的运动过程中,①当t= 时,PQ⊥AC;②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(2)伴随着P、Q两点的运动,线段PQ的垂直平分线为l.①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.【考点】四边形综合题.【分析】(1)①由勾股定理求出AC,再证明△APQ∽△ABC,得出对应边成比例,即可得出结果;②过点P作PH⊥AB于点H,AP=t,AQ=3﹣t,证△AHP∽△ABC,求出PH=t,根据三角形面积公式求出即可;(2)①根据线段的垂直平分线的性质求出AP=AQ,得出3﹣t=t,求出即可,延长QP交AD 于点E,过点Q作QO∥AD交AC于点O,证△AQO∽△ABC,求出AO,QO,PO=1,证△APE∽△OPQ求出AE即可;②(ⅰ)当点Q从B向A运动时l经过点B,求出CP=AP=AC=2.5,即可求出t;(ⅱ)当点Q从A向B运动时l经过点B,求出BP=BQ=6﹣t,AP=t,PC=5﹣t,过点P作PG⊥CB于点G,证△PGC∽△ABC,求出PG=(5﹣t),CG=(5﹣t),BG=t,由勾股定理得出方程,求出方程的解即可.【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=90°,∴AC===5,∵PQ⊥AC,∴∠APQ=90°=∠B,又∵∠PAQ=∠BAC,∴△APQ∽△ABC,∴,即,解得:t=,即t=时,PQ⊥AC,故答案为:;②如图1所示,过点P作PH⊥AB于点H,AP=t,AQ=3﹣t,则∠AHP=∠ABC=90°,∵∠PAH=∠CAB,∴△AHP∽△ABC,∴,∵AP=t,AC=5,BC=4,∴PH=t,∴S=•(3﹣t)•t,即S=﹣t2+t,t的取值范围是:0<t<3.(2)①如图2,线段PQ的垂直平分线为l经过点A,则AP=AQ,即3﹣t=t,∴t=1.5,∴AP=AQ=1.5;延长QP交AD于点E,过点Q作QO∥AD交AC于点O,则△AQO∽△ABC,∴,∴AO=•AC=,QO=•BC=2,∴PO=AO﹣AP=1.∵OQ∥BC∥AD,∴△APE∽△OPQ∴,∴AE=•QO=3.②(ⅰ)如图3,当点Q从B向A运动时l经过点B,BQ=CP=AP=t,∠QBP=∠QAP∵∠QBP+∠PBC=90°,∠QAP+∠PCB=90°∴∠PBC=∠PCB CP=BP=AP=t∴CP=AP=AC=×5=2.5∴t=2.5.(ⅱ)如图4,当点Q从A向B运动时l经过点B;BP=BQ=3﹣(t﹣3)=6﹣t,AP=t,PC=5﹣t,过点P作PG⊥CB于点G,则PG∥AB,∴△PGC∽△ABC,∴,∴PG=•AB=(5﹣t),CG=•BC=(5﹣t),∴BG=4﹣(5﹣t)=t,由勾股定理得:BP2=BG2+PG2,即(6﹣t)2=(t)2+[(5﹣t)]2,解得:t=;综上所述:存在t的值,使得直线l经过点B,t的值是2.5或.28.如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.【考点】反比例函数综合题.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D(1,t),由DC∥AB,可知C(2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=,再由点P在双曲线上,点Q在y轴上,设Q(0,y),P(x,),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT 由此即可得出结论.【解答】解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示;若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示;当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,∵,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴=.。

宜兴初三数学模拟试卷答案

宜兴初三数学模拟试卷答案

一、选择题(每题3分,共30分)1. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 28cmC. 30cmD. 32cm答案:C2. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 1,3,6,10C. 2,4,8,16D. 3,6,12,24答案:D3. 已知函数f(x) = x^2 - 4x + 3,那么f(2)的值是()A. -1B. 0C. 1D. 3答案:A4. 在直角坐标系中,点A(2,3),点B(-3,1),则AB的中点坐标是()A. (-1,2)B. (-1,1)C. (1,2)D. (1,1)答案:A5. 已知等边三角形ABC的边长为6cm,那么其内切圆的半径是()A. 1cmB. 2cmC. 3cmD. 4cm答案:B6. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = 1/x答案:C7. 已知一次函数y = kx + b的图象经过点P(1,2),且与y轴的交点为Q(0,3),那么k的值是()A. -1B. -2C. 1D. 2答案:D8. 在三角形ABC中,角A、角B、角C的对边分别为a、b、c,且a^2 + b^2 =c^2,那么三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形答案:A9. 下列图形中,不是全等图形的是()A. 两个等腰三角形B. 两个等边三角形C. 两个正方形D. 两个矩形答案:D10. 已知二次函数y = ax^2 + bx + c(a≠0),若a>0,那么该函数的图象()A. 在y轴上单调递增B. 在y轴上单调递减C. 在x轴上单调递增D. 在x轴上单调递减答案:B二、填空题(每题5分,共25分)11. 已知等差数列的首项为2,公差为3,那么第10项是______。

答案:2 + (10 - 1) × 3 = 2 + 27 = 2912. 若函数f(x) = 2x - 3,那么f(-1)的值是______。

宜兴初三模拟试卷数学答案

宜兴初三模拟试卷数学答案

一、选择题1. 下列各数中,属于有理数的是()A. √2B. πC. 3.14D. √-1答案:C解析:有理数包括整数和分数,其中3.14是一个有限小数,可以表示为分数,因此是有理数。

2. 已知等差数列{an}的公差为2,且a1=3,则第10项an的值为()A. 19B. 20C. 21D. 22答案:C解析:等差数列的通项公式为an = a1 + (n-1)d,代入a1=3,d=2,n=10,得到an = 3 + (10-1)×2 = 21。

3. 下列函数中,定义域为实数集R的是()A. y = √(x-1)B. y = 1/xC. y = log2xD. y = x²答案:D解析:A选项中x-1必须大于等于0,B选项中x不能为0,C选项中x必须大于0,只有D选项的定义域为实数集R。

4. 在△ABC中,若∠A=60°,∠B=45°,则sinC的值为()A. √3/2B. 1/2C. √2/2D. √6/2答案:C解析:由三角形内角和定理,∠C=180°-∠A-∠B=180°-60°-45°=75°,因此sinC=sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=√2/2×√3/2+√2/2×1/2=√6/4+√2/4=√2/2。

5. 若不等式x²-4x+3<0的解集为A,则A的补集为()A. x>3或x<1B. x>1或x<3C. x≥3或x≤1D. x≤3或x≥1答案:A解析:将不等式x²-4x+3<0分解因式得(x-1)(x-3)<0,解得1<x<3,因此解集A 为(1,3),补集为x≤1或x≥3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年江苏省无锡市宜兴实验中学中考数学模拟试卷(3月份)一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)1.|﹣8|的相反数是()A.8 B.﹣8 C.D.2.下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(y+x)(﹣y+x)=y2﹣x2C.(a3)2•a4=a9D.3+4=73.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°4.如图所示,△ABC中,DE∥BC,AE:EB=2:3,若△AED的面积是4m2,则四边形DEBC的面积为()A.6m2B.21m2 C.3m2D.5m25.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.下面一组数据是10名学生测试跳绳项目的成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178 B.180,178,178C.180,178,176.8 D.178,180,176.87.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切 B.相交 C.相离 D.无法确定8.当a>0,x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+≥2(当x=取等号).记函数y=x+(a>0,x>0).由上述结论可知:当x=时,该函数有最小值为2.已知函数y1=x ﹣2(x>2)与函数y2=(x﹣2)2+4(x>2),则的最小值为()A.2 B.3 C.4 D.59.若一个圆锥的侧面展开图是一个半径为10cm,圆心角为252°的扇形,则该圆锥的底面半径为()A.6cm B.7cm C.8cm D.10cm10.如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P在直线OB上运动且满足∠APQ=90°,PQ交x轴于点C.点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,则PA:PC=()A. B. C.或D.以上都不对二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.函数中,自变量x的取值范围是.12.分解因式:4x2﹣16=.13.在一次函数y=﹣2x+3中,一组自变量x1、x2、…x n的平均数为a,则这组自变量对应的函数值y1、y2、…y n的平均数为.14.某省去年底森林面积为2801700公顷,将2801700用科学记数法表示应为.15.如图是石景山当代商场地下广场到地面广场的手扶电梯示意图.其中AB、CD分别表示地下广场、地面广场电梯口处的水平线.已知∠ABC=135°,BC的长约是m,则乘电梯从点B到点C 上升的高度h是m.16.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,则∠B的度数为.17.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB 上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,线段CP 的最小值是.18.小慧把边长为1的正方形纸片0ABC放在直线l2上,0A边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B2处,小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,….正方形纸片OABC按上述方法经过次旋转,顶点0经过的路程是.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.计算:(1);(2)+.20.(1)解方程:﹣x2﹣2x=2x+1;(2)解不等式组:.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:ME⊥BC.22.宜兴市2010~2014年成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2010到2014年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2015年成年国民年人均阅读图书的数量约为本;(3)2014年某小区倾向图书阅读的成年国民有990人,若该小区2015年与2014年成年国民的人数基本持平,估算2015年该小区成年国民阅读图书的总数量约为本.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.24.九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.25.去年七八月份我市受到严重的酷热天气的影响,8月份我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出8月份y与x 的函数关系式;(2)进入9月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从9月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出9月份y与x的函数关系式;(3)若8月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,9月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问8月份与9月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(4)若9月份的第2周共销售100吨此种蔬菜.从9月份第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)26.如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)在平面直角坐标系中,是否存在点P使P、C、D为顶点、CD为底边的三角形为等腰直角三角形?若存在,求出所有符合条件的P点的坐标.27.抛物线y=ax2+bx(a≠0)与双曲线y=相交于点A、B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内且纵坐标为4.过点A作直线AC∥x轴,交抛物线于另一点C.在x轴上D(4,0),连CD交y轴点M,一动点P从C点出发以每秒1个单位长度的速度沿C﹣A﹣D运动(1)求双曲线和抛物线的解析式;(2)过P作直线PQ∥AM交CD于点Q,设PQ扫过△ACD的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;(3)在线段CD上还有一动点R问是否存在某一时刻AR+RP为4?若存在直接写出时间t;不存在,说明理由.28.在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).问题:(1)求∠ABC的度数;(2)求证:△AEB≌△ADC;(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′,使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.2016年江苏省无锡市宜兴实验中学中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)1.|﹣8|的相反数是()A.8 B.﹣8 C.D.【考点】绝对值;相反数.【分析】先根据绝对值的意义化简|﹣8|,再由相反数的意义求出结果.【解答】解:∵|﹣8|=8,8的相反数是﹣8,∴|﹣8|的相反数是﹣8.故选B.【点评】本题考查了绝对值、相反数的意义.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(y+x)(﹣y+x)=y2﹣x2C.(a3)2•a4=a9D.3+4=7【考点】幂的乘方与积的乘方;同底数幂的乘法;平方差公式;二次根式的加减法.【分析】根据积的乘方,幂的乘方,同底数幂的乘法,平方差公式,即可解答.【解答】解:A、(﹣2a2)3=﹣8a6,故错误;B、(y+x)(﹣y+x)=x2﹣y2,故错误;C、(a3)2•a4=a6•a4=a10,故错误;D、正确;故选:D.【点评】本题考查了积的乘方,幂的乘方,同底数幂的乘法,平方差公式,解决本题的关键是熟记相关定义.3.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°【考点】平行线的性质;余角和补角.【专题】计算题.【分析】根据平行线的性质,可得∠2=∠3,又根据互为余角的定义,可得∠1+∠3=90°,解答出即可.【解答】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=90°﹣∠1=90°﹣35°=55°,又∵直尺的两边平行,∴∠2=∠3,∴∠2=55°.故选C.【点评】本题主要考查了平行线的性质和余角,熟练掌握两直线平行,同位角相等.4.如图所示,△ABC中,DE∥BC,AE:EB=2:3,若△AED的面积是4m2,则四边形DEBC的面积为()A.6m2B.21m2 C.3m2D.5m2【考点】相似三角形的判定与性质.【分析】DE∥BC可以得出△ADE∽△ACB,可以得出=,:由=,可以得到=.进而可以求出△ABC的面积.从而得出四边形DEBC的面积.【解答】解:∵=,∴=.∵DE∥BC,∴△ADE∽△ACB,∴=,∵△AED的面积是4m2,∴,=,∴S△ACB=25,∴四边形DEBC的面积为:25﹣4=21.故答案为:21.故选B.【点评】本题考查了相似三角形的判定及性质,比例的基本性质的运用,相似三角形的面积与相似比的关系.5.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【考点】多边形内角与外角.【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和的3倍可得方程180°(n﹣2)=360°×3,再解方程即可.【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).6.下面一组数据是10名学生测试跳绳项目的成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178 B.180,178,178C.180,178,176.8 D.178,180,176.8【考点】众数;加权平均数;中位数.【分析】根据众数的定义找出出现次数最多的数,根据中位数的定义把这组数据从小到大排列,求出最中间两个数的平均数,根据平均数的计算公式列式计算即可.【解答】解:∵180出现了3次,出现的次数最多,∴众数是180;把这组数据从小到大排列为:164,170,172,176,176,180,180,180,184,186,最中间两个数的平均数是(176+180)÷2=178,则中位数是178;这组数据的平均数是(176+180+184+180+170+176+172+164+186+180)÷10=176.8;故选C.【点评】此题考查了众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数,注意众数不止一个.7.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切 B.相交 C.相离 D.无法确定【考点】直线与圆的位置关系.【分析】首先过点A作AM⊥BC,根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.【解答】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==,∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2,∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选B.【点评】本题考查了直线和圆的位置关系,利用中位线定理比较出BC到圆心的距离与半径的关系是解题的关键.8.当a>0,x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+≥2(当x=取等号).记函数y=x+(a>0,x>0).由上述结论可知:当x=时,该函数有最小值为2.已知函数y1=x ﹣2(x>2)与函数y2=(x﹣2)2+4(x>2),则的最小值为()A.2 B.3 C.4 D.5【考点】二次函数的最值;一次函数的性质.【专题】新定义.【分析】根据题意首先得出得出=x﹣2+,当x﹣2=2时,最小,进而求出即可.【解答】解:∵函数y1=x﹣2(x>2)与函数y2=(x﹣2)2+4(x>2),∴==x﹣2+,由题意可得:当x﹣2=2时,最小,故的最小值为:4.故选:C.【点评】此题主要考查了函数最值,根据题意得出当x﹣2=2时,最小是解题关键.9.若一个圆锥的侧面展开图是一个半径为10cm,圆心角为252°的扇形,则该圆锥的底面半径为()A.6cm B.7cm C.8cm D.10cm【考点】圆锥的计算.【分析】把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=7cm.故选B.【点评】主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.10.如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P在直线OB上运动且满足∠APQ=90°,PQ交x轴于点C.点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,则PA:PC=()A. B. C.或D.以上都不对【考点】相似形综合题.【分析】可分点P在线段OB的延长线上及其反向延长线上两种情况进行讨论.易证PA:PC=PN:PM,设OA=x,只需用含x的代数式表示出PN、PM的长,即可求出PA:PC的值.【解答】解:①若点P在线段OB的延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图1所示.∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴.∵∠ACE=∠AEC,∴AC=AE.∵AP⊥PC,∴EP=CP.∵PM∥y轴,∴AF=CF,OM=CM.∴FM=OA.设OA=x,∵PF∥OA,∴△PDF∽△ODA.∴,∵PD=2OD,∴PF=2OA=2x,FM=x.∴PM=x.∵∠APC=90°,AF=CF,∴AC=2PF=4x.∵∠AOC=90°,∴OC=x.∵∠PNO=∠NOM=∠OMP=90°,∴四边形PMON是矩形.∴PN=OM=x.∴PA:PC=PN:PM=:x=.②若点P在线段OB的反向延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图2所示.同理可得:PM=x,CA=2PF=4x,OC=x.∴PN=OM=OC=x.∴PA:PC=PN:PM=x:x=.综上所述:PA:PC的值为或;故选:C.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、勾股定理等知识,熟练运用相似判定与性质是关键.二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.函数中,自变量x的取值范围是x≤5.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由有意义,得5﹣x≥0.解得x≤5,故答案为:x≤5.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12.分解因式:4x2﹣16=4(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.13.在一次函数y=﹣2x+3中,一组自变量x1、x2、…x n的平均数为a,则这组自变量对应的函数值y1、y2、…y n的平均数为﹣2a+3.【考点】算术平均数.【分析】先表示出原数据的平均数,然后表示新数据的平均数,通过代数式的变形即可求得新数据的平均数.【解答】解:∵x1、x2…x n的平均数是a,∴(x1+x2+…+x n)÷n=a,∴(x1+x2+…+x n)=na,∴[(﹣2x1+3)+(﹣2x2+3)+…+(﹣2x n+3)]÷n=﹣2×a+3=﹣2a+3.答案为:﹣2a+3.【点评】本题考查平均数变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数.14.某省去年底森林面积为2801700公顷,将2801700用科学记数法表示应为 2.8017×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2801700有7位,所以可以确定n=7﹣1=6.【解答】解:2 801 700=2.8017×106.故答案为:2.8017×106.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.如图是石景山当代商场地下广场到地面广场的手扶电梯示意图.其中AB、CD分别表示地下广场、地面广场电梯口处的水平线.已知∠ABC=135°,BC的长约是m,则乘电梯从点B到点C 上升的高度h是6m.【考点】解直角三角形的应用-坡度坡角问题.【分析】作CF⊥AB的延长线于F,求出∠CBF=45°,然后利用三角函数求出CF的长即可.【解答】解:作CF⊥AB的延长线于F,∵∠ABC=135°,∴∠CBF=180°﹣135°=45°,∴CF=BC•sin45°=6×=6.故答案为6.【点评】本题考查了解直角三角形的应用﹣﹣坡度坡角问题,熟悉三角函数是解题的关键.16.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,则∠B的度数为50°.【考点】平行线的性质.【分析】先根据补角的定义求出∠CDE的度数,由平行线的性质求出∠C的度数,根据三角形内角和定理即可得出结论.【解答】解:∵∠1=140°,∴∠CDE=40°.∵DE∥BC,∴∠C=∠CDE=40°.∵∠A=90°,∴∠B=90°﹣40°=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.17.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB 上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,线段CP 的最小值是﹣1.【考点】轨迹;勾股定理;正方形的性质;圆周角定理.【分析】先证得点P在运动中保持∠APD=90°,从而得出点P的路径是一段以AD为直径的弧,连接AD的中点和C的连线交弧于点P,此时CP的长度最小,然后根据勾股定理求得QC,即可求得CP的长.【解答】解:如图:在△ADE和△DCF中,,∴∠DAE=∠CDF(SAS),∵∠DAE+∠AED=90°,∴∠CDF+∠AED=90°,∴∠DPE=∠APD=90°,由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.故答案为﹣1.【点评】本题考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质和判定,能综合运用性质进行推理是解此题的关键.18.小慧把边长为1的正方形纸片0ABC放在直线l2上,0A边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B2处,小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,….正方形纸片OABC按上述方法经过81次旋转,顶点0经过的路程是.【考点】弧长的计算;旋转的性质.【分析】第一次以A为圆心OA为半径的弧长,旋转了90°,第二次以B1为圆心,正方形的对角线为半径,旋转角为90°,第三次以B1为圆心,OA长为半径,旋转90°,第四次以O为旋转中心,此时O点没有运动,四次后O点又回到初始状态的相对位置,四次一循环,再利用弧长的计算公式分别计算即可.【解答】解:正方形纸片OABC经过3次旋转,顶点O在此过程中经过的路程为:∵×2+=(1+)π,根据第四次正方形旋转时O点不动,也就是此时也是正方形纸片OABC经过4次旋转的路程;∴=20(1+)π+,∴正方形纸片OABC经过了:20×4+1=81次旋转.故答案为81.【点评】此题主要考查了图形的旋转以及扇形面积公式和弧长计算公式,确定出前四次O点经过的路线是解题的关键,注意规律的寻找.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.计算:(1);(2)+.【考点】实数的运算;分式的加减法;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式通分并利用同分母分式的加法法则计算即可得到结果,【解答】解:(1)原式=2﹣3×+1﹣=+;(2)原式=﹣=﹣==.【点评】此题考查了实数的运算,以及分式的加减法,熟练掌握运算法则是解本题的关键.20.(1)解方程:﹣x2﹣2x=2x+1;(2)解不等式组:.【考点】解一元二次方程-公式法;解一元一次不等式组.【专题】计算题.【分析】(1)方程整理后,利用公式法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)方程整理得:x2+4x+1=0,这里a=1,b=4,c=1,∵△=16﹣4=12,∴x==﹣2±;(2),由①得:x>﹣2,由②得:x<3,则不等式组的解集为﹣2<x<3.【点评】此题考查了解一元二次方程﹣公式法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:ME⊥BC.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【专题】证明题.【分析】(1)首先根据∠BAC=90°,AF⊥AE可得∠1=∠2,然后根据FC⊥BC,得出∠B=∠FCA=45°,根据条件利用ASA证明△ABE≌△ACF,继而可得BE=CF;(2)过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.【解答】证明:(1)∵∠BAC=90°,AF⊥AE,∴∠1+∠EAC=90°∠2+∠EAC=90°∴∠1=∠2,又∵AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠FCA=90°﹣∠ACB=90°﹣45°=45°,∴∠B=∠FCA,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键.22.宜兴市2010~2014年成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m66的值;(2)从2010到2014年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2015年成年国民年人均阅读图书的数量约为5本;(3)2014年某小区倾向图书阅读的成年国民有990人,若该小区2015年与2014年成年国民的人数基本持平,估算2015年该小区成年国民阅读图书的总数量约为7500本.【考点】扇形统计图;统计表.【分析】(1)利用100减去其它各组百分比的100倍即可求得;(2)求得2013到2014年的增长率,然后求得2015年阅读的本书;(3)利用总人数1000乘以(3)中得到的本书即可求得.【解答】解:(1)m=100﹣1﹣15.6﹣2.4﹣15=66;(2)年增长率是:×100%≈4.8%,则2015年的阅读数量是:4.78×(1+4.8%)≈5(本);(3)990÷66%=1500(人),1500×5=7500(本).故2015年该小区成年国民阅读图书的总数量约为7500本.故答案为:66;5;7500.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【专题】图表型.【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,则小宇与小强两名男同学分在同一组的概率是.【点评】本题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.。

相关文档
最新文档