高中数学竞赛解题策略几何分册勃罗卡定理
全国高中数学联赛竞赛大纲及全部定理内容
全国高中数学联赛竞赛大纲(修订稿)及全部定理内容(共4页)-本页仅作为预览文档封面,使用时请删除本页-全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理
第32章勃罗卡定理1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.5图321FOL G NEDCBA6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-.7 22EG GN BG GD R OG ⋅=⋅=-.8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-.11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥.13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥.16同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥.18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠23 90(180)90BCD BCD =︒-︒-∠=∠-︒24 11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭,25 即知点M 在OBD △的外接圆上.26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合.35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC36与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 37 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,38 AC 与BD 交于点G ,则G 为OEF △的垂心.39 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,40 22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证.41 下面给出定理及推论的应用实例.42 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,43 Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.44 事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心. 45 例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交46 于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.47图322F48 证明由勃罗卡定理知,OP EF ⊥于点G .49 延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,50 GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.51 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得52 BGP DGP ∠=∠.53故AGB CGD ∠=∠.54 例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上55 一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与56 AB 交于点M .57 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.58图32359 证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交60 于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,61 知OK PQ ⊥.62 由题设,OK MN ⊥,从而知PQ MN ∥. 63 即有AQ APQN PM=.① 64 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 65 有1NB DE AQBD EA QN⋅⋅= 66 及1MC DE APCD EA PM⋅⋅=. 67 由①,②得NB MCBD CD=. 68再应用分比定理,有ND MDBD DC=, 69 从而DMN DCB △∽△.70 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知71 矛盾.故A ,B ,D ,C 四点共圆.72 例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 73 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 74 证:P ,E ,F 三点共线.75 证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定76 理,知OG PQ ⊥.77A图32478 设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、79 Q 、D 、C 四点共圆.80 又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上.81 此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由82 根心定理,知MQ 、CD 、EF 三条直线共点于P .83故P ,E ,F 三点共线.84 例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 85 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:86 ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .87 证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、88 C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心.89HB'QCEMNBC 'PA图32590 设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,91 知MH AQ ⊥.92 设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密93 克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的94 公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥. 95 下证点P 在ADE △的外接圆上.96 延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 97 由DBH ECH △∽△, 98 有BD CEBH CH=. 99由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅, 100 并注意BN CN =,NC BH =, 101 于是由*,有BD BH NC BPCE CH BN CP===, 102 即BD CEBP CP=. 103 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 104 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上. 105 故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 106 下面看定理的演变及应用107 将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有108 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交109 于点F ,AC 与BD 交于点G .则OG EF ⊥.110图326AS DFRCG OM BEN111 证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、112 BD 、MR 、NS 四线共点于G .113 注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅.114同理,22FG FS SG GN =-⋅. 115 由上述两式相减,得116 2222EG FG EM FS MG GR SG GN -=--⋅+⋅.117 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,118 222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.119 于是,2222EG FG EO FO -=-. 120 由定差幂线定理,知OG EF ⊥.121 由此例及勃罗卡定理,则可简捷处理如下问题:122 例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四123 边形指既有外接圆,又有内切圆的四边形).124 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点125 G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.126图327ADFCOI G BE127 当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,128 联结EF .129 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 130 故O ,I ,G 三点共线.131将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对132 角线交点在完全四边形另一条对角线上的射影,则有133 例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线134 分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.135图328A DFOEP CB136 事实上,可类似于前面例2的证法即证得结论成立.137 将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有138 例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 139 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .140图329AE CNMDBF OH141 求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. 142 证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 143 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠,144即90OBD BDF ∠=︒-∠,故OB DF ⊥. 145 同理,OC DE ⊥.146 (2)要证OH MN ⊥,由定差幂线定理知,只要证明 147 有222MO MH NO NH -=-即可.148 注意到CH MA ⊥,有2222MC MH AC AH -=-,①149 BH NA ⊥,有2222NB NH AB AH -=-.② 150 DA BC ⊥,有2222BD CD BA AC -=-,③ 151 OB DN ⊥,有2222BN BD DN OD -=-,④152 OC DM ⊥,有2222CM CD DM OD -=-.⑤153 由①-②+③+④-⑤得2222NH MH ON OM -=-. 154 即有2222MO MH NO NH -=-. 155 故OH MN ⊥.156 将例9中的外心O 演变为一般的点,则有157 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,158 交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥.15911 图3210AE C ND HO Q FB MP160证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 161注意到HN OB ⊥,HM OC ⊥,分别有 1622222OH ON BH BN -=-,2222OH OM CH CM -=-. 163从而得222222OM ON CM BN BH CH -=-+-.① 164由BH AN ⊥,有2222BA BN HA HN -=-, 165CH AM ⊥,有2222CA CM HA HM -=-, 166AH BC ⊥,有2222AB AC HB HC -=-. 167从而得222222HM HN CM BN BH CH -=-+-.② 168由①,②得2222OM ON HM HN -=-.故OH MN ⊥. 169170。
高中数学竞赛解题策略组合分册
高中数学竞赛解题策略组合分册第一章:数学竞赛的意义与挑战1. 数学竞赛不仅仅是一项学科竞赛,更是思维训练的过程。
在参加数学竞赛的过程中,学生不仅仅是在解决问题,更是在培养逻辑思维、数学推理和数学建模的能力。
2. 数学竞赛的题目难度较高,需要学生具备扎实的数学基础、优秀的逻辑思维能力和丰富的解题经验。
参加数学竞赛对学生来说是一项挑战,也是一次提高自身数学能力的机会。
3. 通过参加数学竞赛,学生可以在解题过程中积累经验,提高解题速度和准确度,更好地理解数学知识,并培养良好的数学思维习惯。
第二章:数学竞赛解题的策略与方法1. 熟练掌握数学基础知识是参加数学竞赛的基础。
学生要熟练掌握数学基础知识,包括代数、几何、数论等各个方面的知识点,才能在竞赛题目中灵活运用。
2. 多做历年数学竞赛试题,尤其是一些经典的难题。
通过做历年试题,学生可以了解数学竞赛的出题规律和题型,积累解题经验,发现自身在某些知识点上的不足之处,及时进行补充和强化。
3. 注重解题过程中的思维方法和策略。
在解题过程中,学生要注意用多种方法进行思考和解决问题,可以尝试逆向思维、分析归纳、构造反证等不同的思维方法,找到问题的突破口。
4. 多与同学或老师讨论,参加数学竞赛的学生可以多与同学或老师讨论解题思路,交流解题经验,互相学习、互相提高。
5. 树立信心,面对数学竞赛中的难题,学生要树立信心,保持心态平和,不要惧怕困难,要相信自己的能力,努力克服困难。
第三章:高中数学竞赛解题策略的实例分析通过对一些经典的数学竞赛试题进行分析,我们可以看到一些解题的策略和方法在实际题目中是如何运用的。
1. 策略一:分类讨论法对于一些复杂的题目,可以采用分类讨论的方法进行解题。
对于一个几何问题,可以将几何图形进行分类讨论,找到不同情况下的规律,从而解决问题。
2. 策略二:构造法在数学竞赛中,应用构造法解题是比较常见的策略。
通过构造一些特殊的数据或图形,可以发现问题的规律,从而得到解题的线索。
最新-高中数学竞赛平面几何基本定理1 精品
高中数学竞赛平面几何基本定理篇一:高中数学竞赛平面几何基本定理平面几何基础知识(基本定理、基本性质)1.勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍.(2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2.射影定理(欧几里得定理)3.中线定理(巴布斯定理)设△的边的中点为,则有中线长:?222?2?2(2?2);?222?2.?24.垂线定理:??高线长:?22?2?2.(?)(?)(?)???.5.角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△中,平分∠,则2??2?;(外角平分线定理).2角平分线长:?6.正弦定理:7.余弦定理:2(?)?2?(其中为周长一半).?(其中为三角形外接圆半径).?2,??2?2.???8.张角定理:??.9.斯特瓦尔特()定理:设已知△及其底边上、两点间的一点,则有2·+2·-2·=··.10.圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11.弦切角定理:弦切角等于夹弧所对的圆周角.12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13.布拉美古塔()定理:在圆内接四边形中,⊥,自对角线的交点向一边作垂线,其延长线必平分对边.14.点到圆的幂:设为⊙所在平面上任意一点,=,⊙的半径为,则2-2就是点对于⊙的幂.过任作一直线与⊙交于点、,则·=|2-2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密()定理:圆内接四边形对角线之积等于两组对边乘积之和,即·=·+·,(逆命题成立).(广义托勒密定理)·+·≥·.16.蝴蝶定理:是⊙的弦,是其中点,弦、经过点,、交于、,求证:=.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,。
高中数学竞赛解题策略几何分册勃罗卡定理
高中数学竞赛解题策略几何分册勃罗卡定理 This model paper was revised by LINDA on December 15, 2012.第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-.同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-.于是,由定差幂线定理,知OG EF ⊥.证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥.同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥.于是,知G 为OEF △的垂心,故OG EF ⊥.证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭, 即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥.该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点.事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠. 证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠. 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠.故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M .求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥.由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ AP QN PM=.① 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQ BD EA QN ⋅⋅= 及1MC DE AP CD EA PM⋅⋅=. 由①,②得NB MC BD CD=. 再应用分比定理,有ND MD BD DC =, 从而DMN DCB △∽△.于是,DMN DCB⊥,得到K为BC的中点,这与已知矛∠=∠.即有BC MN∥,从而OK BC盾.故A,B,D,C四点共圆.例4(1997年CMO试题)设四边形ABCD内接于圆,边AB与DC的延长线交于点P,AD 与BC的延长线交于点Q.由点Q作该圆的两条切线QE,QF,切点分别为E,F.求证:P,E,F三点共线.证明如图324-,设ABCD的圆心为O,AC与BD交于点G,联结PQ,则由勃罗卡定理,知OG PQ⊥.设直线OG交PQ于点M,则由推论1,知M为完全四边形ABPCQD的密克尔点,即知M、Q、D、C四点共圆.又O、E、Q、F四点共圆,且OQ为其直径,注意到OM MQ⊥,知点M也在OEQF 上.此时,MQ,CD,EF分别为MQDC,OEMQF,ABCD两两相交的三条公共弦.由根心定理,知MQ、CD、EF三条直线共点于P.故P,E,F三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC△的垂心,M△中,AB AC≠,H为ABC为BC的中点,D、E分别为AB,AC上的点,且AD AE=,D、H、E三点共线.求证:ABC△的外接圆与ADE△的外接圆的公共弦垂直于HM.证明如图325-,分别延长BH,CH交AC、AB于点B'、C',则知A、C'、H、B'及''的直径,点M为BCB C''的圆心.B、C、B'、C'分别四点共圆,且AH为AC HB设直线BC与直线C B''交于点Q,联结AQ,则在完全四边形BCQB AC''中,由勃罗卡定理,知MH AQ⊥.设直线MH交AQ于点P,则由推论1,2知HP AQ''的密克⊥,且P为完全四边形BCQB AC尔点,由此,即知P为ABC与AC HB''的公''的另一个交点,亦即AP为ABC与AC HB共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥.下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 由DBH ECH △∽△, 有BD CE BH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅,并注意BN CN =,NC BH =,于是由*,有BD BH NC BP CE CH BN CP ===, 即BD CE BP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠.于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM .下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅.由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅.联结MO、EO、FO、SO,设O的半径为r,则由勾股定理,有222=-,FM OE r 222FS OF r=-.又显然,有MG GR SG GN⋅=⋅.于是,2222-=-.EG FG EO FO由定差幂线定理,知OG EF⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形).证明如图327-,设O,I分别为四边形ABCD的外接圆、内切圆圆心,AC与BD交于点G.当ABCD为梯形时,结论显然成立,O,I,G共线于上、下底中点的联线.当ABCD不为梯形时,可设直线AD与直线DC交于点E,直线BC与直线AD交于点F,联结EF.由勃罗卡定理,知OG EF⊥;由例6的结论,知IG EF⊥.故O,I,G三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD的两组对边所在直线分别交于E,F两点,两对角线的交点为P,过P作PO EF⊥于点O.求证:∠=∠.BOC AOD事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有例9(2001年全国高中联赛题)如图329△中,O为外心,三条高AD、BE、-,ABCCF交于点H,直线ED和AB交于点M,FD和AC交于点N.求证:(1)OB DF⊥.⊥;(2)OH MN⊥,OC DE证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥. 同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤ 由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-.故OH MN ⊥.将例9中的外心O 演变为一般的点,则有 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥. 证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-,AH BC ⊥,有2222AB AC HB HC -=-. 从而得222222HM HN CM BN BH CH -=-+-.② 由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。
高中数学竞赛大纲
高中数学竞赛大纲【高中数学竞赛应该掌握的内容和知识点(共17大点,101小点,244小小点)】1.**(set)5.1.3不动点法,迭代法1.1**的阶,**之间的关系。
5.1.4数学归纳法,递归法1.2**的分划1.3子集,子集族1.4容斥原理6(不等式(inequality)6.1解不等式2.函数(function)6.2重要不等式2.1函数的定义域、值域6.2.1均值不等式2.2函数的性质6.2.2柯西不等式2.2.1单调性6.2.3排序不等式2.2.2奇偶性6.2.4契比雪夫不等式2.2.3周期性6.2.5赫尔德不等式2.2.4凹凸性6.2.6权方和不等式2.2.5连续性6.2.7幕平均不等式2.2.6可导性6.2.8琴生不等式2.2.7有界性6.2.9Schur不等式2.2.8收敛性6.2.10嵌入不等式2.3初等函数6.2.11卡尔松不等式2.3.1一次、二次、三次函数6.3证明不等式的常用方法2.3.2幕函数6.3.1利用重要不等式2.3.3双勾函数6.3.2调整法2.3.4指数、对数函数6.3.3归纳法2.4函数的迭代6.3.4切线法2.5函数方程6.3.5展开法6.3.6局部法3.三角函数(trigonometricfunction)6.3.7反证法3.1三角函数图像与性质6.3.8其他3.2三角函数运算3.3三角恒等式、不等式、最值7.解析几何(analyticgeometry)3.4正弦、余弦定理7.1直线与二次曲线方程3.5反三角函数7.2直线与二次曲线性质3.64.向量(vector)4.1向量的运算8(立体几何(solidgeometry)4.2向量的坐标表示,数量积8.1空间中元素位置关系8.2空间中距离和角的计算5.数列(sequence)8.3棱柱,棱锥,四面体性质5.1数列通项公式求解8.4体积,表面积5.1.1换元法8.5球,球面5.1.2特征根法8.6三面角8.7空间向量10.5偏导数9.排歹U,组合,概率(permutations,11.复数(complexnumbers)combinatorics,probability)11.1复数概念及基本运算9.1排列组合的基本公式11.2复数的几个形式9.1.1加法、乘法原理11.2.1复数的代数形式9.1.2无重复的排列组合11.2.2复数的三角形式9.1.3可重复的排列组合11.2.3复数的指数形式9.1.4圆排列、项链排列11.2.4复数的几何形式9.1.5一类不定方程非负整数解的个数11.3复数的几何意义,复平面9.1.6错位排列数11.4复数与三角,复数与方程9.1.7Fibonacci数11.5单位根及应用9.1.8Catalan数9.2计数方法12.平面几何(planegeometry)9.2.1映射法12.1几个重要的平面几何定理9.2.2容斥原理12.1.1梅勒劳斯定理9.2.3递推法12.1.2塞瓦定理9.2.4折线法12.1.3托勒密定理9.2.5算两次法12.1.4西姆松定理9.2.6母函数法12.1.5斯特瓦尔特定理9.3证明组合恒等式的方法12.1.6张角定理9.3.1Abel法12.1.7欧拉定理9.3.2算子方法12.1.8九点圆定理9.3.3组合模型法12.2圆幕,根轴9.3.4归纳与递推方法12.3三角形的巧合点9.3.5母函数法12.3.1内心9.3.6组合互逆公式12.3.2外心12.3.3重心9.4二项式定理12.3.6费马点9.5.2互逆事件概率12.4调和点列9.5.3条件概率9.5.4全概率公式,贝叶斯公式12.5圆内接调和四边形9.5.5现代概率,几何概率12.6几何变换12.6.1平移变换9.6数学期望12.6.2旋转变换10.极限,导数(lim让s,derivatives)12.6.3位似变换10.1极限定义,求法12.6.4对称变换(反射变换)10.2导数定义,求法12.6.5反演变换10.3导数的应用12.6.6配极变换10.3.1判断单调性12.7几何不等式12.8平面几何常用方法10.3.2求最值12.8.1纯几何方法10.3.3判断凹凸性10.4洛比达法则12.8.2三角法12.8.3解析法15.13.1.3无穷递降法12.8.4复数法15.13.1.4反证法12.8.5向量法15.13.1.5不等式估计法12.8.6面积法15.13.1.6配方法,因式分解法15.13.2重要不定方程13.多项式(polynomials)15.13.2.1一次不定方程(组)15.13.2.2勾股方程13.1多项式恒等定理13.2多项式的根及应用15.13.2.3Pell方程13.2.1韦达定理15.14p进制进位制,p进制表示16.组合问题(combinatorics)13.2.2虚根成对原理13.3多项式的整除,互质16.1组合计数问题(参见9.1,9.2)13.4拉格朗日插值多项式16.2组合恒等式,不等式(参见9.3)13.7单位根16.5操作变换,对策问题13.8不可约多项式,最简多项式16.6组合几何16.6.1凸包14.数学归纳法(mathematicalinduction)16.6.2覆盖14.1第一数学归纳法14.2第二数学归纳法16.6.3分割16.6.4整点14.3螺旋归纳法16.7图论14.4跳跃归纳法14.5反向归纳法16.7.1图的定义,性质14.6最小数原理16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图7.初等数论(elementarynumbertheory)15.1整数,整除16.7.5托兰定理15.2同余16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题15.3素数,合数15.4算术基本定理16.7.8有向图,竞赛图15.5费马小定理,欧拉定理16.8组合方法16.8.1映射法,对应法,枚举法15.6拉格朗日定理,威尔逊定理16.8.2算两次法15.7裴蜀定理15.8平方数16.8.3递推法15.9中国剩余定理16.8.4抽屉原理16.8.5极端原理15.10高斯函数16.8.6容斥原理15.11指数,阶,原根15.12二次剩余理论16.8.7平均值原理15.12.1二次剩余定理及性质16.8.8介值原理15.12.2Legendre符号16.8.9母函数法15.12.3Gauss二次互反律16.8.13反证法15.13.1.1同余法15.13.1.2构造法16.8.14构造法16.8.15数学归纳法17.1微积分,泰勒展开17.2矩阵,行列式16.8.16调整法17.3空间解析几何16.8.17最小数原理16.8.18组合计数法17.4连分数17.5级数,p级数,调和级数,幕级数17.其他(others)(了解即可,不作要求)17.6其他1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
高中数学联赛中常见的几何定理
高中数学联赛中常见的几何定理第一篇:高中数学联赛中常见的几何定理梅涅劳斯定理:梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。
他指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
证明:过点A作AG‖BC交DF的延长线于GAF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。
利用这个逆定理,可以判断三点共线。
塞瓦定理:在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1证法简介(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴(CB/BD)*(DO/OA)*(AE/EC)=1 ①而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]= 1,所以三条高CD、AE、BF交于一点。
高中数学竞赛解题策略-几何分册第32章勃罗卡定理
第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.图321MFOL G NEDCBA分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠ 90(180)90BCD BCD =︒-︒-∠=∠-︒11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭,即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥.由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M .推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.图322FA证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠. 故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M . 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.图323证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥. 由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ APQN PM=.①对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQBD EA QN⋅⋅= 及1MC DE APCD EA PM⋅⋅=. 由①,②得NB MCBD CD=. 再应用分比定理,有ND MDBD DC=, 从而DMN DCB △∽△. 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知矛盾.故A ,B ,D ,C 四点共圆.例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 证:P ,E ,F 三点共线.证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定理,知OG PQ ⊥.A图324设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、Q 、D 、C 四点共圆.又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上.此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由根心定理,知MQ 、CD 、EF 三条直线共点于P .故P ,E ,F 三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心.HB'QCEMNBC 'P图325设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,知MH AQ ⊥.设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥. 下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上.由DBH ECH △∽△, 有BD CEBH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅, 并注意BN CN =,NC BH =, 于是由*,有BD BH NC BPCE CH BN CP===, 即BD CEBP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.图326S DFRCG OM BEN证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅. 由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅. 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.于是,2222EG FG EO FO -=-. 由定差幂线定理,知OG EF ⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形). 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.图327ADFCO I G BE当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,联结EF . 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 故O ,I ,G 三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.图328DFOEP CB事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .图329AE CNMDBF OH求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥.证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠.又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥. 同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-. 故OH MN ⊥.将例9中的外心O 演变为一般的点,则有例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥.图3210E C ND H O QF BMP证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-, AH BC ⊥,有2222AB AC HB HC -=-.从而得222222HM HN CM BN BH CH -=-+-.②由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。
数学竞赛中解析几何问题的解法(一)-最新教育资料
数学竞赛中解析几何问题的解法(一)
解析几何是各种考试中的重点和难点内容,解析几何题的运算量往往较大,所以很多同学简易出错或者做着做着就做不下去了.所以减少运算量、降低难度常常是解析几何题能否顺利做出来的关键.本文就选了近年的部分考题,来说明解好解析几何题的一些方法.
一、抓住定义解题――要烂熟掌握圆锥曲线的两个定义,很多考题都是从定义出发求解的
二、用好韦达定理――韦达定理是解题的严重工具,圆锥曲线问题中恰当运用韦达定理可以减少不必要的运算
三、结合向量――近年解析几何题常常安一个向量的外壳,所以烂熟运用向量知识在解这类题中至关严重
例6对于两条互相垂直的直线和一个椭圆,已知椭圆无论如何滑动都与两条直线相切,求椭圆中心轨迹.(上海交大自主招生考试)
解以两条直线的交点为原点,两条直线为坐标轴建立直角坐标系.设椭圆的长轴长与短轴长分别为2a,2b(a>b>0).中心为P(x,y),两个焦点分别为F1,F2.
1/ 1。
高中数学竞赛-平面几何讲义(很详细)
HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=
则
S AMDN
1 2
AM
AD sin
1 2
AD
AN sin(
)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF
故
S△ABA’=
1 2
sin
AFE
AB
A'
F
=
1 2
s
in
A
EF
A
C
A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。
2021年全国高中数学联赛竞赛大纲(修订稿)及全部定理内容
全国高中数学联赛竞赛大纲及全部定理内容欧阳光明(2021.03.07)一、平面几何1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
4、圆锥曲线的切线和法线。
5、圆的幂和根轴。
五、其它抽屉原理。
个人精心高中数学联赛竞赛平面几何四大定理及考纲
个人精心高中数学联赛竞赛平面几何四大定理及考纲Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#1、数学竞赛考纲二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、、、。
几个重要的极值:到三角形三顶点距离之和最小的点--。
到三角形三顶点距离的平方和最小的点--。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
方法、方法。
平面、及应用。
2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带的函数的图像。
,三角形的一些简单的恒等式,三角不等式。
,一阶、二阶递归,法。
函数,求n次迭代,简单的函数方程。
n个变元的平均不等式,,及应用。
复数的指数形式,欧拉公式,,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括,,欧几里得除法,非负最小完全剩余类,,,,,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的式,直线的,直线束及其应用。
二元一次不等式表示的区域。
三角形的。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它。
集合的划分。
覆盖。
西姆松线的存在性及性质()。
及其逆定理。
一、平面几何1. 梅涅劳斯定理(Menelaus)定理(简称梅氏定理)是由数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
山西省太原市高中数学竞赛解题策略-几何分册第5章--直角三角形中直角边所在直线上的点
第5章 直角三角形中直角边所在直线上的点直角三角形中直角边所在直线上的点有如下的结论,作为其性质介绍如下:性质 设D 是直角ABC △(90C ∠=︒)的直角边BC 所在直线上一点(异于B ),则2222222AB DB DA DB DC DB DA DB DC =+⋅=+-⋅.DCAB ABCD(1) (2)图5-1证明 对于图51-(1),当点D 在BC 的延长线上时,由勾股定理,有 222AB BC CA =+ 222BC DA DC =+-2222(2)22BC DC BC DC DA DC BC DC =++⋅+--⋅ 22()2()BC DC DA DC BC DC =++-+⋅ 222BD DA DB DC =+-⋅.当点D 在CB 的延长线上时,类似地有 2222AB BC DA DC =+-2222(2)22BC DC BC DC DA DC BC DC =+-⋅+-+⋅ 22()2()DC BC DA DC BC DC =-+--222BD DA DB DC =+-⋅. 对于图51-(2),当D 在边BC 上时,类似地有 2222AB BC DA DC =+-2222(2)22BC DC BC DC DA DC BC DC =+-⋅+-+⋅ 22()2()BC DC DA BC DC DC =-++-⋅222BD DA DB DC =++⋅.显然,在图51-中,若点D 与点C 重合,则0DC =,有222AB BC CA =+,此即为勾股定理.因此,我们可把上述性质称为广勾股定理. 由上述性质,还可得如下推论:注:也可运用余弦定理证:222222cos 2cos AB DB DA DB DA ADB BD DA DB DA ADC =+-⋅⋅∠=+⋅⋅∠222DB DA DB DC =+⋅.推论1 三角形一边的平方等于、小于或大于其他两边的平方和,视其该边所对的角是直角、锐角或钝角而定.推论2 三角形的一角是直角、锐角或钝角,视其该角所对的边的平方等于、小于或大于其他两边的平方和而定.下面给出三角形的广勾股定理应用的例子. 1.直接在直角三角形中用例1 (三角形的中线长公式)三角形一边上的中线长的平方,等于其他两条边长的平方和之半减去该边长平方的四分之一.证明 如图52-,O 为ABC △的边AB 的中点,作CD AB ⊥于D .分别在AOC △和OBC △中应用广勾股定理(即(51-)式),有图5-2CAO DB2222AC OC AO OA OD =++⋅2214OC AB AB OD =++⋅,2222BC OC OB OB OD =+-⋅2214OC AB AB OD =+-⋅.由上述两式相加,得222211()24OC AC BC AB =+-.例2 (平行四边形边长与对角线长关系)平行四边形各边的平方和等于两对角线的平方和.事实上,在图52-中,将CO 延长至E ,使OE OC =,则四边形AEBC 为平行四边形,由三角形中线长公式,即得22222()AC BC AB CE +=+.例3 (定差幂线定理)设MN ,PQ 是两条线段,则MN PQ ⊥的充要条件为2222PM PN QM QN -=-. 证明 必要性.如图53-,若MN PQ ⊥,则可设MN PQ ⊥于D .PMNQD PMNQ D图5-3分别在MQP △,PQN △中应用广勾股定理,有 2222PM QM PQ QP QD =+-⋅,2222PN QN PQ QP QD =+-⋅.上述两式相减,得2222PM PN QM QN -=-. 充分性.当2222PM PN QM QN -=-时,如图54-.QRNS KM PTFE NFRS EQ KMTP 图5-4设R ,S ,T ,K ,E ,F 分别为ON ,NP ,PM ,MQ .PQ ,MN 的中点,将这些中点联结如图,则KRST ,RFTE ,KFSE 均为平行四边形.由例2的结论,有22222()KF KE EF KS +=+,222()ER RF +22EF RT =+.由题设有2222PM QN PN QM +=+,即有22224444KE KF ER RF +=+. 上述三式整理得22KS RT =,即KS RT =,从而KRST 为矩形,有KT KR ⊥. 而KT PQ ∥,KR MN ∥, 故MN PQ ⊥.例4 如图55-,在Rt ABC △中,90ACB ∠=︒,点D 在边CA 上,使得1CD =,3DA =,且3BDC BAC ∠=∠.求BC 的长.BC D Ex A图5-5解 由3BDC BAC ∠=∠,知2ABD BAC ∠=∠.过点B 作ABD ∠的平分线交DA 于E ,则AEB △为等腰三角形.令AE x =,则BE x =,且3DE x =-. 分别对EBC △,ABC △应用广勾股定理,有 22222x BE BD DE DE DC ==++⋅22(3)2(3)BD x x =+-+-,即2815BD x =-.22228159238AB BD DA DA DC x x =++⋅=-++⋅=.又由角平分线性质,有BD DE BA EA =,即22815(3)8x x x x --=,解得2411x =.从而BC = 2.作出垂线,构造新直角三角形例5 如图56-,已知在ABC △中,90ACB ∠=︒.ADEBC图5-6(1)如图所示,当点D 在斜边AB 上(不含端点)时,求证:222CD BD AD BDBC AB--=; (2)当点D 与点A 重合时,(1)中的等式是否成立?请说明理由; (3)当点D 在BA 的延长线上时,(1)中的等号是否成立?请说明理由.解 (1)过C 作CE BD ⊥于E ,则由射影定理(或直角三角形相似)有2BC BA BE =⋅. 对Rt CBE △的直角边BE 上的点D 应用广勾股定理,有2222CD BC BD BD BE =+-⋅, 即2222CD BD BC BD BE -=-⋅.于是, 222222CD BD BC BD BEBC BC --⋅=2BA BE BD BEBA BE ⋅-⋅=⋅ ()BA BD BD AD BDBA AB---==. (2)当点D 与A 重合时,(1)中等式仍然成立. 此时,0AD =,CD AC =,BD AB =.于是222222221CD BD AC AB BC BC BC BC ---===-,1AD BD ABAB AB--==-, 故 222CD BD AD BDBC AB--=. (3)当点D 在BA 的延长线上时,(1)中的等式不成立.此时,同(1)作辅助线,应用广勾股定理,有2222CD BC BD BD BE =+-⋅,即222CD BD BC -=-2BD BE ⋅.从而222CD BD AD BD AD BDBC AB AB----=≠. 例6 如图57-,已知四边形ABCD 为正方形,O 过正方形的顶点A 和对角线的交点P ,并分别交AB ,AD 于点F ,E .(1)求证:DE AF =;(2)若O,1AB =,求AEED的值. 解 显然EF 为O 的直径,即O 点在EF 上.联结EP ,FP ,则45EFP EAP FAP FEP ∠=∠=︒=∠=∠,即知EPF △为等腰直角三角形,于是EP .图5-7D(1)由DP AP =,45EDP FAP ∠=︒=∠,DEP AFP ∠=∠,知DEP △≌AFP △.从而DE AF =.(2)过P 作PM AD ⊥于M ,则M 为AD 的中点,11)2AM =,12)2AP =.令AEx =,则11)2EM x =-.对Rt APM △的直角边AM 上的点E 应用广勾股定理,有2222AP AE EP EA EM =++⋅.即222112)21)22x x x ⎡⎤⎡⎤=++⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭, 亦即21)0x x -+=.解得1AE x ==AEED=. 例7 如图58-,在ABC △中,75A ∠=︒,35B ∠=︒,D 是边BC 上一点,2BD CD =.求证:2()()AD AC BD AC CD =+-.C ABFDME图5-8证明 如图,延长BC 至E ,使CE AC =.由题设70C ∠=︒,则35E B ∠=︒=∠,即知ABE △为等腰三角形.过点A 作AM BE ⊥于M ,则M 为BE 的中点.取BD 的中点F ,则BF FD DC ==,联结AF .对Rt ABM △的直角边BM 所在直线上的点C 应用广勾股定理,有2222AB AC BC CB CM =+-⋅2()AC BC BC CM CM =+-- 2()AC BC BM CM =+- 2()AC BC EM CM =+- 2AC BC CE =+⋅2AC BC AC =+⋅①又在Rt AFM △,Rt ACM △中分别对点D 应用广勾股定理,有2222AF FD AD DF DM =++⋅, 2222AC CD AD DC DM =+-⋅.此两式相加得222222AF AC CD AD +=+. ②同理,在Rt ABM △,Rt ADM △中分别对点F 应用广勾股定理,有2222AB AF BF FB FM =++⋅, 2222AD AF DF FD FM =+-⋅,此两式相加,得222222AB AD AF CD +=+. ③由②,③得2222263AC AB CD AD +=+,将①代入并注意3BC CD =,得 2222AC AC CD CD AD +⋅=+.故2222(2)()()()AD AC AC CD CD AC CD AC CD AC BD AC CD =+⋅-=+-=+-.3.作出特殊线,证明是垂线 例8 (《中等数学》2008(4)数学奥林匹克问题222号)如图59-,O 在矩形ABCD 内,讨顶点A ,B ,C ,D 分别作O 的切线,切点分别为1A ,1B ,1C ,1D .若13AA =,14BB =,15CC =,求1DD 的长.A E DCC 1BB 1D 1FOA 1图5-9解 联结AO ,BO ,CO ,DO ,1A O ,1B O ,1C O ,1D O ,则11OA AA ⊥,11OB BB ⊥,11OC CC ⊥,11OD DD ⊥. 设O 的半径为r ,则由勾股定理,知2221AO AA r =+,2221BO BB r =+, 2221CO CC r =+,2221DO DD r =+.过点O 作EF AD ∥分别交DC ,AB 于F ,E ,则由题设知OE AB ⊥,OF DC ⊥,且BE CF =. 在Rt AOE △中,对点B ,在Rt ODF △中,对点C 分别应用广勾股定理,有2222AO OB AB BA =+-⋅ BE ,2222DO OC CD CD CF =+-⋅.此两式相减得2222AO DO OB OC -=-,即2222AO OC OB OD +=+.(*) 于是,22221111AA CC BB DD +=+.故1DD = 注:(*)式表明:矩形内一点到两双对顶点的距离的平方和相等.例9 (第31届俄罗斯数学奥林匹克(第4轮)题)已知非等腰ABC △,1AA ,1BB 是它的两条高,又线段11A B 与平行于AB 的中位线相交于点C '.证明:经过ABC △的外心和垂心的直线与直线CC '垂直. 证明 如图510-,设O ,H 分别为ABC △的外心和垂心,EF 是与AB 平行的中位线,交AC 于E ,交BC 于F .联结CO 交11B A 于点L ,联结CH 交EF 于点K .CTF A 1B 1ABHC ′E O K L图5-10注意到CH AB ⊥,EF AB ∥,则知CH EF ⊥,即KF CH ⊥.过点C 作ABC △外接圆的切线CT ,则CO CT ⊥,且11TCB CAB B AC ∠=∠=∠,即知11B A CT ∥,于是知11CO B A ⊥,即C L CO '⊥.联结C H ',C O '.在Rt C HK '△,Rt C OL '△中,分别对点C 应用广勾股定理,有2222C H C C CH CK CH ''=+-⋅, 2222C O C C CO CL CO ''=+-⋅.上述两式相减得222222C H C O CH C O CK CH CL CO '''-=--⋅+⋅. ① 由于1OE EB ⊥,1OL B L ⊥知1B ,E ,O ,L 四点共圆;由11EFC ABC A B C ∠=∠=∠,知1A ,F ,1B ,E 四点共圆;由11HA A F ⊥,HK KF ⊥知K ,H ,1A ,F 四点共圆,于是,CL ,1CO CE CB =⋅= 1CF CA CK CH ⋅=⋅.②将②式代入①式,得2222C H C O CH CO ''-=-. 于是,由定差幂线定理,知CC OH '⊥. 4.综合应用例10 (2009年福建省竞赛题)如图511-,O 与线段AB 切于点M ,且与以AB 为直径的半圆切于点E ,CD AB ⊥于点D ,CD 与以AB 为直径的半圆交于点C ,且与O 切于点F ,联结AC ,CM .求证:(1)A ,F ,E 三点共线;(2)AC AM =;(3)22MC MD MA =⋅.图5-11证明 (1)设AB 的中点为O ',由于O '与O 内切于点E ,则知O ',O ,E 三点共线. 联结FO ,则FO CD ⊥.又AB CD ⊥,知FO AB ∥. 于是,EOF EO A '∠=∠.从而,两等腰EOF △,EO A '△的底角相等,即有OEF O EA '∠=∠.由此即知A ,F ,E 三点共线.(2)在O 中,由切割线定理,有2AM AF AE =⋅.联结EB ,则AE EB ⊥,知E ,F ,D ,B 四点共圆,即有AF AE AD AB ⋅=⋅.联结BC ,则由勾股定理有222BC AB AC =-.在ABC △中,应用广勾股定理,有222AC BC AB =+- 22222BA BD AB AC BA BD ⋅=--⋅,即有*22()AC AB BA BD AB AB BD AB AD AF AE =-⋅=-===⋅=⋅=()2AM ,故AC AM =.(3)在AMC △中应用广勾股定理,有2222MC AM AC AM AD =+-⋅,而AM AC =,故22222MC AM AM AD AM DM =-⋅=⋅. 注:(*)处亦即直角三角形的射影定理2AC AB AD =⋅.这说明可用广勾股定理推导直角三角形射影定理. 例11 (《中等数学》2009(7)数学奥林匹问题高251)凸四边形ABCD 外切于O ,两组对边所在的直线分别交于点E ,F ,对角线交于点G .求证:OG EF ⊥.FE 图5-12证明 设O 与边AB ,BC ,CD ,DA 的切点分别为M ,N ,R ,S ,则由牛顿定理知(参见第29章)AC ,BD ,MR ,NS 四线共点于G .联结OE 交MG 于H ,联结OF 交SG 于H ',则GH OE ⊥,GH OF '⊥.在OEG △和OFG △中分别应用广勾股定理,有2222EG OE EO OE OH =+-⋅, 2222FG OF OF OF OH '=+-⋅.注意到直角三角形的射影定理,有22OE OH OM OS OF OH '⋅===⋅. 从而22222222EG EO OG OE OH OG OF OH FG FO '-=-⋅=-⋅=-. 由例3的结论,知OG EF ⊥. 练习五1.设P 为ABC △的边AB 上一点,求证:222PB APCP AC BC AP PB AB AB=⋅+⋅-⋅. 2.已知O 内的弦CD 平行于直径AB ,P 为AB 上的一点,求证:2222PC PD PA PB +=+.3.设P 为正ABC △的外接圆劣弧BC 上任一点.求证:PB PC PA +=.4.设H 为锐角ABC △的垂心,P 是ABC △所在平面内任一点,作HM PB ⊥于点M 交AC 的延长线于点J ,作HN PC ⊥于点N 交AB 的延长线于点I .求证:PH IJ ⊥.5.圆O 与圆D 相交于点A ,B ,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上;(2)设ABC △的面积为S ,求圆D 的半径r 的最小值. 6.(2005年国家队集训题)已知E ,F 是ABC △的边AB ,AC 的中点,CM ,BN 是边AB ,AC 上的高.联结EF ,MN 交于点P .又设O ,H 分别是ABC △的外心,垂心,联结AP ,OH .求证:AP OH ⊥.。
数学高中二年级第四节课优质课数学竞赛中的技巧与策略
数学高中二年级第四节课优质课数学竞赛中的技巧与策略数学竞赛一直以来都是考验学生数学能力和思维能力的重要途径。
在高中二年级的数学竞赛中,学生们需要通过掌握一些技巧和策略来提升自己的竞赛成绩。
本文将介绍一些在数学竞赛中的常用技巧和策略,帮助学生们在竞赛中取得好成绩。
一、巧用数学公式和定理在竞赛中,数学公式和定理是解题的基础。
对于高中二年级的学生来说,熟悉基本的数学公式和定理十分重要。
在竞赛中,学生们应该灵活运用数学公式和定理,很好地掌握它们的应用方法。
例如,在解决几何问题时,学生们可以灵活运用平行线相交定理、角平分线定理、相似三角形定理等,这些定理和公式能够帮助他们快速解题,提高解题效率。
二、观察和辨别问题的类型在数学竞赛中,学生们需要能够准确地辨别问题的类型,从而采取相应的解题策略。
在解决数学问题时,学生们应该始终保持头脑清晰,仔细观察问题中给出的条件和要求,判断问题属于何种类型。
例如,在解决代数问题时,如果问题具有多项式相乘的形式,学生们可以尝试使用因式分解的方法,化简问题求解过程。
因此,观察和辨别问题的类型是解决数学竞赛问题的关键一步。
三、善于灵活运用数学运算法则数学运算法则是每个学生在学习数学过程中都会接触到的内容,善于灵活运用数学运算法则是解决数学竞赛问题的重要技巧之一。
高中二年级的学生可以运用数学运算法则解决各类数学计算问题,比如运用分配律、结合律、交换律等规则化简计算过程。
灵活运用这些法则,能够帮助学生们快速准确地解决各类数学计算问题,提升解题效率。
四、善于推理和归纳在解决数学竞赛问题时,学生们需要运用推理和归纳的能力,从已知条件出发,推导出未知结果。
学生们应该注重培养自己的思维能力,提高推理和归纳的能力。
通过大量的练习和思考,学生们可以逐渐培养出良好的推理和归纳能力,从而在竞赛中获得更好的成绩。
五、合理利用解题技巧在数学竞赛中,学生们可以积累一些常用的解题技巧,合理利用解题技巧可以帮助他们更好地解决复杂的数学问题。
山西省太原市高中数学竞赛解题策略几何分册第26章帕斯卡定理
第26章帕斯卡定理帕斯卡(Pascal )定理设ABCDEF 内接于圆(与顶点次序无关,即ABCDEF 无需为凸六边形),直线AB 与DE 交于点X ,直线CD 与FA 交于点Z ,直线EF 与BC 交于点Y ,则X 、Y 、Z 三点共线.①证法l 设直线AB 与EF 交于点K ,直线AB 与CD 交于点M .直线CD 与EF 交于点N . 对KMN △及截线XED 、ZFA 、YBC 分别应用梅涅劳斯定理, 有1KX MD NEXM DN EK⋅⋅=, 1MZ NF KAZN FK AM⋅⋅=, 1NY KB MCYK BM CN⋅⋅=. 将上述三式相乘,并运用圆幂定理,有MA MB MD MC ⋅=⋅,ND NC NE NF ⋅=⋅. KA KB KE KF ⋅=⋅.从而1KX MZ NYXM ZN YK⋅⋅=,其中X 、Y 、Z 分别在直线KM 、NK 、MN 上. 对KMN △应用梅涅劳斯定理的逆定理,知X 、Y 、Z 三点共线. 图261(2)(1)AK CP 2PE XT NL DZMYQ 2BX T N Q 1Y Q M L ZKFEDC BF Q 1P 3P 2P 1证法2设过A 、D 、X 的圆交直线AZ 于点T ,交直线CD 于点L . 连接TL 、FC ,则DAT ∠与DLT ∠相补(或相等).又DAT ∠与DCF ∠相等,从而DLT ∠与DCF ∠相补或相等,即知CF LT ∥. 飘理,TX FY ∥,LX CY ∥.于是,TLX △与FCY △为位似图形.由于位似三角形三对对应顶点的连线共点(共点于位似中点),这里,直线TF 与LC 交于点Z ,则另一对对应的点X 、Y 的连线XY 也应过点Z ,故X ,Y 、Z 三点共线.证法3连XZ 、YZ ,过X 分别作1XP DC ⊥上于P 1,作2XP AF ⊥于2P ,作3XP AD ⊥于3P ,过Y 分别作1YQ DC ⊥于1Q ,作2YQ AF ⊥于2Q .则41sin sin sin sin sin sin XZP EDZ DAXXZP ADE XAZ ∠∠∠⋅⋅∠∠∠ 321132///1///XP XA XP XZ XP XD XP XZ XP XD XP XA =⋅⋅=. 同理,1sin sin sin 1sin sin sin I YZQ ZCB CFYYZQ YCF YFZ∠∠∠⋅⋅=∠∠∠.注意到EDZ YFC ∠=∠,ADE YFZ ∠=∠, DAX ZCB ∠=∠,XAZ YCF ∠=∠.所以2211sin sin sin sin XZP YZQ XZP YZQ ∠∠=∠∠, 即sin sin sin sin XZA YZFXZD YZC∠∠=∠∠, 于是有1122XP YQXP YQ =.连12P P 、12Q Q ,则Z 、1P 、X 、2P 及Z 、1Q 、Y 、2Q 分别四点共圆,从而1212XPP YQ Q △∽△,亦即有22XZP YZQ ∠=∠,故X 、Z 、Y 三点共线.证法4如图262-,连AC 、CE 、AE .在圆内接四边形ACEF 中,有YEC ∠与ZAC ∠相等;在圆内接四边形ABCE 中,有YCE ∠与XAE ∠相等或相补;在圆内接四边形ACDE 中,ACZ ∠与AEX ∠相补或相补.故可以在ACE △的边CE 上或其延长线上取一点P ,使YPC AEX ∠=∠,YPE ACZ ∠=∠.从而PYE CZA △∽△,CYP AEX △∽△.FFABDX ZQYCP EEPCY QZXDBA(1)(2)图262设AEX 与ACZ 相交于另一点Q ,则AQX AEX CPY ∠=∠=∠,AQZ ACZ EPY ∠=∠=∠.所以AQX ∠与AQZ ∠相等或相补.故Z 、Q 、X 三点共线.又EQC AQE CQA AXE CZA PYC PYE EYC ∠=∠+∠=∠+∠=∠+∠=∠ 于是,知C 、Y 、Q 、E 四点共圆.所以,CQY CEY PEY ∠=∠=∠ (或180180PEY CAZ CQZ ︒-∠=∠=︒-∠ (或CQZ ∠).从而Y 、Q 、Z 三点共线.故X 、Y 、Z 三点共线. 注:此定理中,当内接于圆的六边形ABCDEF 的六顶点改变其宇序,两两取对边AB 、DE 、BC 、EF 、CD 、AF 共有60种不同情形,相应有60条帕斯卡()Pascal 直线.六个取定的点,有15条连线,相交产生另外45个点,这些点中每一点有4条帕斯卡线.这些帕斯卡线,每3条共点,产生20个其他的点,称为斯坦纳()Steiner 点,每条线上一个,而且这些帕斯卡线,每3条共点,还产生其他60个点,称为寇克曼()Kirkman 点,每3个在一条直线上.20个斯坦纳点在15条其他直线上,每条线上4个点.60个寇克曼点在20条其他直线上,每条线上3个. 1当六边形中有两顶点重合,即对于内接于圆的五边形,亦有结论成立;圆内接五边形()A B CDEF 中A (与B 重合)处的切线与DE 的交点X 、BC 与FE 的交点Y 、CD 与AF 的交点Z 三点共线,如图263- (1).(F )E B (C )DYE (F )(C )B (B )A E (F )(D )ZY XZXZXYAAC DF EA (B )YXZDC (2)(4)图263(3)(1)当六边形变为四边形()()AB C DE F 或()()A B C D EF 等时,如图263- (2)、(3),结论仍成立.当六边形变为三角形()()()A B C D E F 时,三组边AB 、CD 、EF 变为点,如图263- (4), 仍有结论成立.此时三点所共的线也称为莱莫恩()lemoine 线(参见第10章性质19). 下面从四个方面看一些应用的例子. 1.指出在圆上的六点应用帕斯卡定理例1如图264-,过ABC △的顶点A 、B 、C 各作一直线使之交于一点P 而交外接圆于A '、B '、C '.又在外接圆上任取一点Q ,则QA '、QB '、QC '与BC 、CA 、AB 对应的交点X 、Z 、Y 三点共线.证明在圆内接六边形BCAA QB ''中,其三双对边BC 与A Q '、CA 与QB '、AA '与B B '的交点分别为1 单墫译.[美]R A ⋅⋅约翰逊.近代欧式几何学{]M .上海:上海教育出版社,2000;208.X 、Z 、P ,由帕斯卡定理知P 、X 、Z 三点共线.LY XPQC 'B'A'B A图264在圆内接六边形CBAA QC ''中,其三双对边CB 与A Q '、BA 与QC '、AA '与C C '的交点务别为X 、Y 、P ,由帕斯卡定理知Y 、P 、X 三点共线. 故X 、Z 、Y 三点共线.例2(IMO48预选题)已知ABC △为确定的三角形,1A ,1B ,1C 分别为边BC 、CA 、AB 的中点.P 为ABC △外接圆上的动点,1PA 、1PB 、1PC 分别与ABC △的外接圆交于另外的点A '、B '、C '.若A 、B 、C 、A '、B '、C '是不同的点,则直线AA '、BB '、CC '交出一个三角形.证明:这个三角形的面积不依赖于点P .证明如图265-,设0A 、0B 、0C 是直线AA '、BB '、CC '交出的三角形的三个顶点.B 0B'D 0A 'C ''A 1B 1C 1AB C P图26-5下面,我们证明有00012A B C ABC S S =△△,这便可说明000A B C △的面积不依赖于点P 的选取.注意到图中的圆内接六边形ABCC PA '',由帕斯卡定理,知三双对边AB 与C P '、BC 与PA '、CC '与A A '的交点1C 、1A 、0B 三点共线,即知点0B 在ABC △的中位线11A C 上.类似地,可证点0A 、0C 分别在直线11B C 、11A B 上. 由11AC C A ∥,得00101B C A AC B △∽△,有0010010B C A C AC B C =. 同理,由11BC C B ∥,有1001000AC BC B C A C =.从而000000B C BC AC A C =,于是00B B AA ∥.故000012A B C ABC ABC S S S ==△△△. 2.作出一些点构成圆上六点应用帕斯卡定理例3(2004年国家队培训题)设与ABC △的外接圆内切并与边AB 、AC 相切的圆为a C ,记a r 为圆a C 的半径,类似地定义b r 、c r ,r 是ABC △的内切圆半径,证明:4a b c r r r r ++≥. 证明如图266-,设圆a C 与AB 、AC 、ABC △的外接圆分别切于点D 、E 、F ,设M 、N 分别为AB 、AC 中点,I 为ABC △的内心.E C aO a ID CBFM N A图26-6这时,F 为圆a C 与ABC 的位似中心,且过M 的切线平行于BA ,因而M 、D 为一双对应点,于是F 、D 、M 三点共线.(也可设直线FD 交ABC 于M ,则证得M 为BA 的中点.) 同理,F 、E 、N 三点共线.而BN 、CM 分别为ABC ∠、BCA ∠的平分线,则知其交点为I .注意到圆内接六边形ABNFMC ,由帕斯卡定理知D 、I 、E 三点共线. 记圆a C 的圆心为a O ,由DE AI ⊥, 有21cos 2a a a r AO AO AD A r AI AD AI ==⋅=.同理,21cos 2b r B r =,21cos 2c r Cr =. 由1tantan122tan 2tan tan tan222B CA B C B C -⋅==++有tan tan tan tan tan tan 1222222A B B C C A⋅+⋅+⋅=. 因此222111cos cos cos 222a b c r r r A B Cr r r ++=++ 2223tan tan tan 222A B C=+++ 3tan tan tan tan tan tan 222222A B B C C A =+⋅⋅+⋅+⋅2221tan tan tan tan tan tan 42222222A B B C C A ⎡⎤⎛⎫⎛⎫⎛⎫+-+-+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦≥. 故4a b c r r r r ++≥.例4(2007年国家集训队测试题)凸四边形ABCD 内接于圆Γ,与边BC 相交的一个圆与圆Γ内切,且分别与BD 、AC 相切于点P ,Q .求证:ABC △的内心与DBC △的内心皆在直线PQ 上.证明如图267-,设圆Γ的圆心为O ,与BC 相交且与Γ相内切的圆的圆心为1O ,切点为T ,显然O 、1O 、T 三点共线.设DB 与CA 交于点H ,直线PQ 交CD 于R ,直线TR 交O 于F ,CT 交1O 于M ,直线TP 交O 于E .图26-7这时,存在一个以点T 为位似中心的位似变换使得1O 变为O ,因此M C →,N D →,P E →,直线BD 变为过点E 且平行于BD 的O 的切线,所以E 为BD 的中点.由=TM TCTN TD, 有2222DP DN DT DT CQ CM CT CT =⋅=,即DP DTCQ CT=.① 又CDH △及截线RQP 应用梅涅劳斯定理,有1CR DP HQRD PH QC⋅⋅=, 即CR CQRD DP=.② 又DFT S CR CF CT RD S DF DT==⋅△CFT △. 又①、②、③知1CFDF=,即知F 是弧CD 的中点. 显然,BCD △的内心I 为CE 与BF 的交点.注意到圆内接六边形ETFBDC ,由帕斯卡定理,知P 、I 、R 三点共线.所以BDC △的内心I 在PQ 上. 同理,ABC △的内心I '也在PQ 上. 3.证明六点共圆应用帕斯卡定理例5(2005年国家集训队测试题)如图268-,点P 在ABC △内部,点P 在边BC 、CA 、AB 上的射影分别为D 、E 、F ,过点A 分别作直线BP 、CP 的蚕线,垂足分别为M 、N .求证:ME 、NF 、BC 三线共点.BAMEPC DQFN 图26-8证明由题设,有90AEP AFP AMP ANP ∠=∠=∠=∠=︒,从而,A 、N 、F 、P 、E 、M 六点都在以AP 为直径的圆上.于是,对于圆内接六边形AFNPME ,它的三组对边AF 与PM 、FN 与ME 、NP 与EA 的交点分别为B 、Q 、C ,由帕斯卡定理,知B 、Q 、C 三点共线,从而点Q 在BC 上.故ME 、NF 、BC 三线共点.例6(2002年澳大利亚国家数学竞赛题)已知ABC △为锐角三角形,以AB 为直径的K 分别交AC 、BC 于点P 、Q .分别过A 和Q 作K 的两条切线交于点R ,分别过B 和P 作K 的两条切线交于点S .证明:点C 在线段RS 上.证明如图269-,设RQ 与PS 、AC 与RK 、BC 与KS 分别交于W 、Y 、N ,连接PK 、WK 、QK 、WN 、WY 、BP .则Y PSQ N WC B KAR图26-9()1118022YKW YKQ WKQ AKQ PKQ AKP ABP APS YPW ∠=∠-∠=∠-∠=∠=∠=︒-∠=∠,由此知Y 、P 、K 、W 四点共圆.又PS 是K 的切线,于是90KYW WPK ∠=∠=︒. 同理,90KNW KQW ∠=∠=︒.因此,P 、Y 、N 、Q 在以KW 为直径的圆上,即W 、Y 、P 、K 、Q 、N 六点共圆.在这个圆内接六边形中,应用帕斯卡定理,三双对边KP 与QW 、PY 与QN 、PW 与KN 的交点R 、C 、S 共线.故点C 在线段RS 上. 4.注意特殊情形时帕斯卡定理的应用例7(2005年第18届韩国数学奥林匹克题)在Rt ABC △中,90A ∠=︒,B C ∠>∠.O 是ABC △的外接圆的圆心,A l 、B l 是O 的两条切线,切点分别为A 、B .设{}A S BC l =∩,{}B D AC l =∩,{}E AB DS =∩,{}A T CE l =∩,又设P 是A l 上的点,且使得A EP l ⊥,()Q Q C ≠是CP 与O 的交点,R 是QT 与O 的交点,令{}A U BR l =∩.证明22SU SP SA TU TP TA⋅=⋅.证明如图2610-,设BA 的延长线与过点C 的O 的切线交于点E ',对ABC △应用帕斯卡定理,知S 、D 、E '三点共线,从而E '与E 重合.I BI A XT PE'S UQR ED C BA图26-10因此,点R 、Q 的位置如图10所示.由切割线定理,有2TA TR TQ =⋅,2SA SB SC =⋅,即 22SA SB SCTA TR TQ⋅=⋅. 设TQ 与BC 交于点X ,对TXS △及截线RBU 、PCQ 分别应用梅涅劳斯定理,有1XR TU SB RT US BX ⋅⋅=, 1XQ TR SCQT PS CX⋅⋅=. 由上述三式并注意相交弦定理:XR XO XB XC ⋅=⋅,则有 CU CP XR SB XQ SCTU TP RT BX QT CX ⋅=⋅⋅⋅22SB SC XR XQ SA TR TQ XB XC TA ⋅⋅=⋅=⋅⋅. 练习题二十六1.点M 在ABC △的外接圆上,R 是任意一点,直线AR ,BR ,CR 分别交外接圆于点1A ,1B ,1 C 证明:直线1MA 和BC ,1MB 和CA ,1MC 和AB 的交点在过点R 的一条直线上.2.已知ABC △和某个点T ,设P 和Q 是由点T 分别向直线AB 和AC 引垂线的垂足,而R 和S 是由点A 分别向直线TC 和TB 引垂线的垂足.证明:直线PR 和QS 的交点在直线BC 上. 3.四边形ABCD 内接于圆Γ中,X 是任意一点,M 和N 是直线XA 和XD 与圆Γ的第二个交点.直线DC 和AX ,AB 和DX 相交于点E 和F .证明:直线MN 和EF 的交点在直线BC 上.4.四边形ABCD 内接于O ,点X 使得90BAX CDX ∠=∠=︒.证明:四边形ABCD 对角线的交点在直线XO 上.5.点A 和1A 在O 的内部,且关于O 对称,射线AP 和11A P 共线,射线AQ 和11A Q 也共线(其中点P ,1P ,Q ,1Q 均在O 上).证明:直线1PQ 和1PQ 的交点在直线AA 1上.6.点1A ,2A ,⋯,6A 在圆Γ上,而点K ,L ,M ,N 分别在直线12A A ,34A A ,16A A ,45A A 上,且满足23KL A A ∥,36LM A A ∥,61MN A A ∥.证明:52NK A A ∥.7.(IMO20试题,去掉了AB AC =条件)设在ABC △中,有一圆内切于ABC △的外接圆,且与AB 和AC 分别切于点P 和Q .证明:点P 和Q 连线的中点是ABC △的内切圆圆心. 8.(2005年捷克—波兰—斯洛伐克竞赛题)设凸四边形ABCD 的外接圆和内切圆的圆心分别为O 、I ,对角线AC 、BD 相交于点P .证明:O 、I 、P 三点共线.9.(2006年第9届香港数学奥林匹克题)凸四边形ABCD 的外接圆的圆心为O ,已知AC BD ≠,AC 与BD 交于点E .若P 为四边形ABCD 内部一点,使得PAB PCB ∠+∠90PBC PDC =∠+∠=︒,求证:O 、P 、E 三点共线. 10.(2003年国家集训队培训题)在等腰直角ABC △中,90A ∠=︒,1AB =,D 为BC 的中点,E 、F 为BC 上另两点,M 为ADE △的外接圆和ABF △的外接圆的另一个交点;N 为直线AF 与ACE △的外接圆的另一个交点;P 为直线AD 与AMN △的外接圆的另一个交点,求AP 的长度.11.(2009年国家集训队测试题)在凸四边形ABCD 中,DCA ∠与CDB ∠的外角平分线分别是边CB 与DA ,E ,F 分别为AC ,BD 的延长线上的点,且C ,E ,F ,D 四点共圆.平面上的一点P 使得DA 是PDE ∠的外角平分线,CB 是PCF ∠的外角平分线.边AD 与BC 所在直线交于点Q .求证:点P 在边AB 上的充分必要条件是点Q 在线段EF 上.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
高中数学联赛常用定理
常用定理1、费马点(I)基本概念定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。
(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。
所以三角形的费马点也称为三角形的等角中心。
(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。
(II)证明我们要如何证明费马点呢:费马点证明图形(1)费马点对边的张角为120度。
△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB 为等边三角形,所以∠BPD=60度又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。
(3)PA+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1<A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。
平面四边形费马点平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。
(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。
费马点(2)在凹四边形ABCD中,费马点为凹顶点D(P)。
经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。
高中数学联赛平面几何常用定理
(高中)平面几何常用基本定理1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abc c p b p a p p ah a sin sin sin ))()((2===---=.5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则ACAB DCBD=;(外角平分线定理).角平分线长:2cos 2)(2Ac b bc a p bcp cb t a +=-+=(其中p 为周长一半). 6. 张角定理:ABDAC ACBAD ADBAC ∠+∠=∠sin sin sin .7. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .8. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 9. 弦切角定理:弦切角等于夹弧所对的圆周角. 10. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 11. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.12. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 13. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 14. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .15. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.16. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C1 、⊙A1 、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1 、⊙A1 、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C2 、⊙A2 、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2 、⊙A2 、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.17. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;18. (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.19. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.20. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d2=R2-2Rr .21. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.22. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(CB AC B A y y y x x x G ++++23. 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;24.(2)设G 为△ABC 的重心,则ABCAC G BC G ABG S S S S ∆∆∆∆===31;25. (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KHCA FP BC DE AB KH CA FP BC DE ;26. (4)设G 为△ABC 的重心,则27.①222222333GC AB GB CA GA BC +=+=+;28. ②)(31222222CA BC AB GC GB GA ++=++;29.③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);30.④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;31. ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).32. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (C cB b A a yC cy B b y A a C c B b A a x C c x B b x A a H CB AC B A ++++++++33.垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍; 34. (2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;35. (3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆; 36. (4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.37. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;38. ),(c b a cy by ay c b a cx bx ax I CB AC B A ++++++++39. 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然; 40.(2)设I 为△ABC 的内心,则CAIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;41.(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;42.(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC外接圆于点K ,则a cb KD IK KI AK ID AI +===; 43.(5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.44. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; 45.)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O CB AC B A ++++++++46. 外心性质:(1)外心到三角形各顶点距离相等;47. (2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;48. (3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.49.旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R . 50. 三角形面积公式:C B A R R a b cC ab ah S a ABCsin sin sin 24sin 21212====∆)c o tc o t (c o t4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=.51.三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++===52. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立)53. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.54. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.55.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.56.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.57.塞瓦定理的逆定理:(略)58.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.59.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.60.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).61.西摩松定理的逆定理:(略)62.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.63.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.64.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P 的西摩松线通过线段PH的中心.65.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC的镜象线.66.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.67.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.68.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.69.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A 和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.70.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC 交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .71.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R 关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.72.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.73.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.74.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.75.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.76.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC 的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.77.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.78.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)79.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.80.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.81.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.82.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.83.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.84.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L 两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.85.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.86.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.87.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.88.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C 和F,则这三线共点.89. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.90. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆. 91. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.92. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.93. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.94. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.斯特瓦尔特定理斯特瓦尔特(stewart)定理设已知△ABC 及其底边上B 、C 两点间的一点D ,则有 AB^2·DC+AC^2·BD-AD^2·BC =BC·DC·BD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.分别注意到点E 、G 对O e 的幂,O e 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-.同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-.于是,由定差幂线定理,知OG EF ⊥.证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O e 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥.证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭, 即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD e 与OAC e 的公共弦.由于三圆O e ,OBD e ,OAC e 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥.该定理有如下推论推论1凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M .推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证.下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O e ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠. 故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M . 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O e 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥. 由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ AP QN PM=.① 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQ BD EA QN ⋅⋅= 及1MC DE AP CD EA PM⋅⋅=. 由①,②得NB MC BD CD =. 再应用分比定理,有ND MD BD DC=, 从而DMN DCB △∽△.于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知矛盾.故A ,B ,D ,C 四点共圆.例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 证:P ,E ,F 三点共线.证明如图324-,设ABCD e 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定理,知OG PQ ⊥.设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、Q 、D 、C 四点共圆.又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF e 上. 此时,MQ ,CD ,EF 分别为MQDC e ,OEMQF e ,ABCD e 两两相交的三条公共弦.由根心定理,知MQ 、CD 、EF 三条直线共点于P .故P ,E ,F 三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、C 、B '、C '分别四点共圆,且AH 为AC HB ''e 的直径,点M 为BCB C ''e 的圆心.设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,知MH AQ ⊥.设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密克尔点,由此,即知P 为ABC e 与AC HB ''e 的另一个交点,亦即AP 为ABC e 与AC HB ''e 的公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥.下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC e 上. 由DBH ECH △∽△, 有BD CE BH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅,并注意BN CN =,NC BH =,于是由*,有BD BH NC BP CE CH BN CP ===, 即BD CE BP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠.于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM .下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有例6如图326-,凸四边形ABCD 外切于O e ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.证明设O e 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅.同理,22FG FS SG GN =-⋅.由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅.联结MO 、EO 、FO 、SO ,设O e 的半径为r ,则由勾股定理,有222FM OE r =-,222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.于是,2222EG FG EO FO -=-.由定差幂线定理,知OG EF ⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形).证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,联结EF . 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥.故O ,I ,G 三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有 例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥.证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥.同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,①BH NA ⊥,有2222NB NH AB AH -=-.②DA BC ⊥,有2222BD CD BA AC -=-,③OB DN ⊥,有2222BN BD DN OD -=-,④OC DM ⊥,有2222CM CD DM OD -=-.⑤由①-②+③+④-⑤得2222NH MH ON OM -=-.即有2222MO MH NO NH -=-.故OH MN ⊥.将例9中的外心O 演变为一般的点,则有例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥. 证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-.从而得222222OM ON CM BN BH CH -=-+-.①由BH AN ⊥,有2222BA BN HA HN -=-,CH AM ⊥,有2222CA CM HA HM -=-,AH BC ⊥,有2222AB AC HB HC -=-.从而得222222HM HN CM BN BH CH -=-+-.②由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。