中考数学压轴题解题指导及案例分析
中考数学旋转压轴题解题方法(详解答案)
中考数学旋转压轴题解题方法一、图形旋转知识与方法1、图形的变换是新课标中“空间与图形”领域的一个主要内容,体现运动变换的理念与思想,是教材中的一大亮点.初中数学所学的图形变换包括平移、轴对称、旋转、位似。
2、旋转,它是一种数学变换.生活中的旋转也是随处可见,汽车的轮子,钟表的指针,游乐园里的摩天轮,都是旋转现象.3、图形的旋转有三个要素:①旋转中心;②旋转方向;③旋转角度.三要素中只要任意改变一个,图形就会不一样.4、旋转具有以下性质:①对应点到旋转中心的距离相等,即边相等。
②对应点与旋转中心所连线段的夹角等于旋转角,即角相等③旋转前、后的图形全等。
5、旋转是近几年中考数学的热点题型,对旋转的特例“中心对称”的考查多以选择题或填空题的形式出现,题目比较简单,大多数属于送分题;利用旋转作图,是格点作图题中的重点。
利用旋转构造复杂几何图形,通常将旋转融合在综合题中,题目难度中等,在选择题、填空题、解答题中都有出现。
有旋转点的,有旋转线段的,更多的是旋转图形的。
旋转三角形,旋转平行四边形,旋转矩形,旋转正方形,其中,近两年的各地中考试题中,旋转矩形出现的最频繁,深受出题老师的青睐。
其实旋转的题目还有一个好听的名字就是“手拉手问题”,本文将对这一类问题分类汇总,以这三个性质为突破口,就能快速解决问题。
二、典例精讲典例.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC 交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.思路点拨:(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=∠C=90°,进而可得由等角对等边可得DF=DB,由旋转可得:∠ADF=∠EDB,DA=DE,继而可知△ADF≌△EDB,继而即可知AF=BE;②由全等三角形的性质可知∠DAF=∠E,继而由三角形内角和定理即可求解;(2)由平行线的性质可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等边对等角可得∠ABC=∠CAB,进而根据等角对等边可得DB=DF,再根据全等三角形的判定方法证得△ADF≌△EDB,进而可得求证AF=BE,∠ABE=∠FDB=α;(3)分两种情况考虑:①如图(3)中,当点D在BC上时,②如图(4)中,当点D在BC的延长线上时,由平行线分线段成比例定理可得1==4AF CDAB CB、1==2AF CDAB CB,代入数据求解即可;满分解答:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:①AF=BE,②90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴1==4 AF CDAB CB,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴1==2 AF CDAB CB,∵AB=8,∴BE=AF=4,故BE的长为2或4.名师点评:(1)本题考查等腰直角三角形的判定和性质、平行线的性质、等边对等角的性质和等角对等边的性质、旋转的性质、相似三角形的判定及其性质、三角形内角和定理、平行线分线段成比例定理,涉及到的知识点较多,解题的关键是综合运用所学知识.(2)旋转问题三步走:。
初中数学常见解题模型及思路(中考数学难题破解自有定理)
初中数学压轴题常见解题模型及套路(自有定理)A . 代数篇:1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。
例.把0.108108108⋅⋅⋅化为分数。
设S=0.108108108⋅⋅⋅ (1) 两边同乘1000得:1000S=108.108108⋅⋅⋅(2) (2)-(1)得:999S=108 从而:S=108999余例仿此—— 2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ;22x y + 中,知二求二。
222222()2()2x y x y xy x y x y xy +=++⇒+=+- 2222()2()4x y x y xy x y xy -=+-=+- 加减配合,灵活变型。
3.特殊公式22112x x x x ±=+±2()的变型几应用。
4.立方差公式:3322a b a b a ab b ±=±+()()5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。
例.求:1+2+3+···+2017的和。
三种方法举例:略6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+···2n 令S=1+2+4+8+16+32+···+2n (1)两边同乘2得: 2S=2+4+8+32+64+···+2n +12n + (2) (2)-(1)得:2S-S=12n +- 1 从而求得S 。
7.11n m m n --=mn 的灵活应用:如:111162323==-⨯等。
8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。
9.韦达定理求关于两根的代数式值的套路:⑴.对称式:变和积。
22221111x y x y x y+++22;;;xy +x y 等(x 、y 为一元二次方程方程的两根)⑵.非对称式:根的定义—降次—变和积(一代二韦)。
中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用
(2)证明:BE=AH+DF.
(2)证明:将△ABH绕着点B顺时针旋转90° 得到△BCM,∵四边形ABCD是正方形, ∴AD=BC,∠ADC=∠C=90°,∴∠ADF=∠C, ∵AF∥BE,∴∠F=∠BEC,∴△ADF≌△BCE(AAS), ∴DF=CE.又由旋转可知AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°, ∵∠BCD=90°,∴∠BCD+∠BCM=180°, ∴点E,C,M在同一直线.∴AH+DF=EC+CM=EM.
类型六:旋转在几何综合 题中的应用
模型一:旋转构造基本图形 【解题方法模型构建】 若题干中出现“共顶点、等线段(相邻等线段)”这一特征.常考虑构造 旋转,通过旋转可以将线段转移,将已知条件集中,从而解决问题.
1.遇60°旋转60°,构造等边三角形(等边三角形旋转模型).
通过旋转可将线段AP,BP,CP转移在同一个三角形中(△CPP′). 注:根据“旋转的相互性”也可绕A点旋转△APC,或绕B,C点旋转相应 三角形(还有5种构造方法).
模型二:旋转构造模型 【解题方法模型构建】 1.如图,在△OAB中,OA=OB,在△OCD中,OC=OD,∠AOB=∠COD=
α,将△OCD绕点O旋转一定角度后,连接AC,BD,相交于点E.简记 为:双等腰,共顶点,顶角相等,旋转得全等.
【结论】(1)△AOC≌△BOD(SAS); (2)AC=BD; (3)两条拉手线AC,BD所在直线的夹角与∠AOB相等或互补.
【结论】△ABD≌△AEC;△ABE∽△ADC.
2.请阅读下列材料: 问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB= 3 ,PC= 1,求∠BPC度数的大小和等边三角形ABC的边长. 李明同学的思路:将△BPC绕点B逆时针旋转60°,画出旋转后的图形 (如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角 三角形(由勾股定理的逆定理可证),∴∠AP′B=150°,而∠BPC=∠ AP′B=150°,进而求出等边角形ABC的边长为 7,问题得到解决.
中考数学解答题压轴题突破 重难点突破八 几何综合题 类型七:求几何图形中最值的方法
25.★如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC 上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C 落在点P处,则点P到边AB距离的最小值为_1_1..22__.
26.★如图,等边三角形ABC的边长为4,⊙C的半径为 3 ,P为AB边上 一动点,过点P作⊙C的切线PQ,切点为Q,则PQ的最小值为__33__.
d+r
2r
d+r
连接DO并延长交⊙O于点E
r-d
0
d-r
连接OD并延长交⊙O 点E与点D 连接OD交
于点E
重合 ⊙O于点E
21.★如图,在Rt△ABC中,∠ABC=90°,D是边BC的中点,以点D为圆 心,BD长为半径作⊙D,E是⊙D上一点,若AB=8,BC=6,则线段AE 长的最小值为__73--3 3__.
3.★如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的
一个动点,连接ED并延长至点F,使得DF=
1 4
DE,以EC,EF为邻边构
造▱EFGC,连接EG,则EG的最小值为
( A)
A.9 3
B.8 3 C.10 3 D.12
4.★如图,菱形ABCD的边长为2,∠ABC=60°,点E,F分别在边AB, AD上运动,且∠ECF=60°,则△ECF周长的最小值为__33_3 __.
15.★如图,在菱形ABCD中,AC=6 2 ,BD=6,点E是BC边的中点, P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是 _2_2_6 .
16.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F 分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,求 ∠EAF的度数.
中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题
Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.
上海十年中考数学压轴题与答案解析
上海十年中考数学压轴题与答案解析学然教育学然教育培训中心LearnWell Education and Training Center上海十年中考数学压轴题解析2001 年上海市数学中考27.已知在梯形ABCD中,AD∥ BC, AD< BC,且 AD=5,AB=DC=2.( 1)如图 8,P为AD上的一点,满足∠BPC=∠ A.图 8①求证;△ ABP∽△ DPC②求 AP 的长.( 2)如果点P 在 AD 边上移动(点P 与点 A、 D 不重合),且满足∠ BPE=∠ A, PE交直线 BC于点 E,同时交直线DC于点 Q,那么①当点Q在线段DC的延长线上时,设AP x CQ y,求y关于x的函数解析式,并写出函数的定义域;=,=②当 CE=1时,写出 AP 的长(不必写出解题过程).27.( 1)①证明:∵∠ ABP=180°-∠ A-∠ APB,∠ DPC=180°-∠ BPC-∠ APB,∠ BPC=∠ A,∴∠ ABP=∠ DPC.∵在梯形ABCD 中,AD∥ BC,AB= CD,∴∠ A=∠ D.∴△ ABP∽△ DPC.②解:设 AP= x,则 DP=5- x,由△ ABP∽△ DPC,得ABPD,即25 x,解得1=1,x2= 4,则AP的长AP DC x2x为1或4.( 2)①解:类似( 1)①,易得△ABP∽△DPQ,∴ABAP .即2x,得y125 2 ,<<.PD DQ 5 x2yx x1x422AP AP5②=2或=3-.(题 27 是一道涉及动量与变量的考题,其中( 1)可看作( 2)的特例,故( 2)的推断与证明均可借鉴( 1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)学然教育上海市 2002 年中等学校高中阶段招生文化考试学然教育培训中心LearnWell Education and Training Center27.操作:将一把三角尺放在边长为1 的正方形 ABCDP在对角线 AC上滑动,直角的一边始终上,并使它的直角顶点经过点 B ,另一边与射线DC 相交于点 Q .图1图2 图3探究:设 A 、 P 两点间的距离为 x .( 1)当点 Q 在边 CD 上时,线段 PQ 与线段 PB 之间有怎样的大小关系?试证明你观察得到结论;( 2)当点 Q 在边 CD 上时,设四边形 PBCQ 的面积为 y ,求 y 与 x 之间的函数解析式,并写出函数的定义域;(3)当点P在线段 AC上滑动时,△PCQPCQ是否可能成为等腰三角形?如果可能,指出所有能使△成为等腰三角形的点 Q 的位置,并求出相应的 x 的值;如果不可能,试说明理由.五、(本大题只有 1 题,满分 12 分,( 1)、( 2)、( 3)题均为 4 分)27.图 1图 2图 3( 1)解: PQ = PB( 1 分)证明如下:过点P作 MN BCAB 于点 M ,交 CD 于点NAMND和四边形 BCNM都是矩形,∥ ,分别交,那么四边形△ AMP 和△ CNP 都是等腰直角三角形(如图1).NP NC MB.( 1 分)∴==∵ ∠ BPQ =90°,∴ ∠QPN +∠ BPM =90°.而∠ BPMPBM°,∴ ∠QPNPBM( 1 分)+∠= 90 =∠.又∵QNPPMBQNPPMB( 1 分)∠=∠=90°,∴△≌△.∴PQ = PB .(2)解法一由( 1)△≌△.得= MP .QNPPMBNQ∵=,∴AM = MP ===2 x , BM ===1- 2 x , AP xNQDN2 PNCN2∴=-=1-2·2 x = 1- 2x . CQ CD DQ2得S △=1BC · BM =1×1×( 1-2x )= 1- 2 x .( 1 分)PBC22224S △=1CQ ·PN = 1 ×( 1-2 x )(1-2x )= 1-3 2x + 1x 2(1 分)PCQ222242=S △+S △= 122x +1 .x -S四边形PBCQPBC PCQ 222 x + 1(0≤ x < 2). 1 分,1 分)即 y = 1x -(22解法二作PT ⊥ BC , T 为垂足(如图 2),那么四边形 PTCN 为正方形.∴PT = CB = PN .又∠ PNQ =∠ PTB =90°, PB =PQ ,∴△ PBT ≌△ PQN .S=S △+ S = S+S △= S( 2 分)四边形PBCQ四边形PBT四边形PTCQ四边形PTCQPQN正方形PTCN22 21 2=CN =( 1-2 x )= 2x - 2 x + 122 x + 1(0≤ x <2).1 分)( 3)△ PCQ 可能成为等腰三角∴y = 1 x -(22形①当点P与点 A重合,点 Q与点 D重合,这时PQ QCPCQ=,△是等腰三角形,此时 x = 0( 1 分)②当点 Q 在边 DC 的延长线上,且CP =CQ 时,△ PCQ 是等腰三角形(如图 3)(1 分)解法一此时,== 2 x ,= 2 -,=2 2 .CP=1-xQN PM2 CPxCN22∴ =-=2 x -( 1- 2 x )= 2x - 1. CQ QN CN2 2当 2 - x = 2x - 1 时,得 x = 1.( 1 分)解法二此时∠ CPQ 1 ∠ PCN °,∠ APB°=67.5 °,== 22.5 =90°- 22.52∠ABP =180°-(45°+67.5 °)=67.5 °,得∠ APB =∠ ABP ,AP ABx( 1 分)∴==1,∴= 1.上海市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD 中, AB = 1,弧AC 是点B 为圆心,AB 长为半径的圆的一段弧。
中考数学压轴题解题技巧超详细
2012年中考数学压轴题解题技巧解说数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。
综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。
压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。
下面谈谈中考数学压轴题的解题技巧。
如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE⊥AB 交AC 于点E.①过点E 作EF⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.解:(1)点A 的坐标为(4,8) …………………1分将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a+4b得0=64a+8b解 得a=-12,b=4∴抛物线的解析式为:y=-12x 2+4x …………………3分(2)①在Rt△APE 和Rt△ABC 中,tan∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止 “捡芝麻丢西瓜”。
上海中考数学压轴题解题方法总结
上海中考数学压轴题解题方法总结上海中考数学压轴题各题型解题方法总结18题题型一:翻折问题;性质:翻折前后两个图形全等:边相等,角相等折痕垂直平分对应点的连线学会找等腰画图:已知折痕:过对应点做折痕的垂线并延长已知对应点:做对应点连线的垂直平分线【解题策略分析】解决动态问题需要我们运用运动与变化的观点去观察与研究图形,把握图形运动与变化的全过程,在动中找出不变的因素,利用不变的因素来解决变化的问题。
1)通过翻折后与原图形全等找出等量关系;2)联结原点和翻折后的点,必定关于折痕对称(或者用折痕是对称点的垂直平分线);3)跟其他线段中点结合构造中位线;4)做垂线运用“双勾股”。
图形翻折之“翻折边长”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻觅翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件找到隐含条件;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类讨论。
图形翻折之“翻折角度”题型解题办法与战略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题(比如平行、垂直等);5.利用好三角形的内角和、外角性质。
图形翻折之“翻折面积”题型解题办法与战略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻觅翻折相等的线段和角度;4.利用翻折并结合题目中的特殊条件(比如平行、垂直)解题;5.利用好勾股定理、相似、等高三角形面积干系等转化成线段干系。
运题型二:旋转问题;旋转三要素旋转中心旋转偏向:顺时针;逆时针旋转角度性质:旋转前后两个图形全等:边相等,角相等会找新的相似:以旋转角为顶角的两个等腰三角形相似,相似后对应角相等注意题目中的暗示:画图:点的旋转图形的旋转:可以把图形的旋转转化为点的旋转,从而画圆旋转后点落在边上、直线上、射线上1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.挖掘题目中的特殊条件:题目中有哪些角相等?哪些边相等?4.准确画出旋转后的图形是解题的关键.图形旋转之“旋转边长”题型解题方法与策略:1.寻找旋转中心;2.寻觅旋转的偏向,“逆时针”和“顺时针”,如果没有申明则分类会商;3.寻觅旋转前后相等的线段或角度,根据题意准确画图;4.利用旋转并结合题目中的特殊条件解题;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类会商;图形旋转之“旋转面积”题型解题方法与策略:1.寻觅旋转中心;2.寻觅旋转的偏向,“逆时针”和“顺时针”,如果没有申明则分类会商;3.寻觅旋转前后相等的线段或角度,根据题意准确画图;4.观察所求图形面积形状,结合面积公式、相似、等高模型求解;5.部分题目注意分类讨论;图形旋转之“旋转角度”题型解题方法与策略:1.寻觅旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻觅旋转旋转角、旋转前后相等的线段、相等的角度,根据题意准确画图;4.利用内角和、外角性质并结合题目中的特殊条件解题;5.部分题目注意分类讨论;题型三:平移问题平移图形的特征1.平移前后的图形全等2.图形上每一个点平移的距离和偏向都是相同的平移之“函数中的图象平移”题型解题办法与战略:1.寻找平移方法和距离;2.化简原函数解析式,并在坐标系中画出原函数大致图象;3.根据请求画出平移后函数的图象;4.结合平移前后对应点坐标以及二次函数对称轴和举行相关计算和求解;5.部分题目注意分类讨论。
中考数学解答题压轴题突破 重难点突破八 几何综合探究题 类型二:操作型探究问题
5.(2022·嘉兴)小东在做九上课本 123 页习题:“1∶ 2 也是一个很有 趣的比.已知线段 AB(如图①),用直尺和圆规作 AB 上的一点 P,使 AP∶ AB=1∶ 2.”小东的作法是:如图②,以 AB 为斜边作等腰直角三角形 ABC,再以点 A 为圆心,AC 长为半径作弧,交线段 AB 于点 P,点 P 即为 所求作的点.小东称点 P 为线段 AB 的“趣点”.
(1)【阅读理解】我国是最早了解勾股定理的国家之一,它被记载于我国 古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理, 创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”. 根据“赵爽弦图”写出勾股定理和推理过程;
解: a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方). 推理如下: ∵如图①,4 个△ADE 的面积和+正方形 EFGH 的面积=正方形 ABCD 的面 积, 即 4×12ab+(b-a)2=c2, 整理得 a2+b2=c2.
解:∵在正方形 PQMN 中,PN=PQ=DE,PN∥BC,∴△APN∽△ABC,AE=
PN AE AD-DE=AD-PN,∴BC=AD,
PN h-PN
ah
ah
∴ a = h ,∴PN=a+h,∴正方形 PQMN 的边长为a+h.
(2)【操作推理】如何画出这个正方形 PQMN 呢? 如图②,小杰画出了图①的△ABC,然后又进行以下操作:先在 AB 边上 任取一点 P′,画正方形 P′Q′M′N′,使点 Q′,M′在 BC 边上,点 N ′在△ABC 内,然后连接 BN′,并延长交 AC 于点 N,作 NM⊥BC 于点 M, NP⊥NM 交 AB 于点 P,PQ⊥BC 于点 Q,得到四边形 PQMN.证明:图②中的 四边形 PQMN 是正方形; 【分层分析】先推出四边形 PQMN 是矩形,再根据 P′N′∥PN,M′N′∥ MN,可得P′PNN′=N′NMM′,结合 M′N′=P′N′,推得 MN=PN 进而得证;
中考数学 精讲篇 压轴题重难点突破二 分析、判断函数图象题
11.已知抛物线
y=x2+2x-m-2
与
x
轴没有交点,则函数
m y=x的大致
图象是
( C)
k (2021·荆门)在同一平面直角坐标系中,函数 y=kx-k 与 y=|x|(k
≠0)的大致图象是
( B)
A.①②
B.②③
C.②④
D.③④
【思路点拨】根据 k 的取值范围,分别讨论 k>0 和 k<0 时的情况,然后 根据一次函数和反比例函数图象的特点选择正确答案.
同一坐标系中不同函数图象的分析与判断 (1)若题目中未给出任何一个函数的图象,则要根据题目中给出的条件, 判断函数图象所在象限,再分情况讨论函数解析式中未知系数与 0 的大 小,或根据已知条件得出函数解析式中未知系数的值或取值范围; (2)若题目中明确给出一个函数的图象,则根据函数图象及函数图象上的 点得出函数解析式中未知系数的取值范围,进而可判断出所求函数的大 致图象;
1.一段笔直的公路 AC 长 20 千米,途中有一处休息点 B,AB 长 15 千米, 甲、乙两名长跑爱好者同时从点 A 出发,甲以 15 千米/时的速度匀速跑 至点 B,原地休息半小时后,再以 10 千米/时的速度匀速跑至终点 C;乙 以 12 千米/时的速度匀速跑至终点 C,下列选项中
能正确反映甲、乙两人出发后 2 小时内运动路程 y(千米)与时间 x(小时) 函数关系的图象是
5.(2021·通辽)如图,在矩形 ABCD 中,AB=4,BC=3,动点 P,Q 同时
从点 A 出发,点 P 沿 A→B→C 的路径运动,点 Q 沿 A→D→C
的路径运动,点 P,Q 的运动速度相同,当点 P 到达点 C 时,
点 Q 也随之停止运动,连接 PQ.设点 P 的运动路程为 x,PQ2
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路在中考数学考试中,压轴题通常是考察学生对于数学知识的综合运用能力和解决问题的能力。
为了顺利应对中考数学压轴题,学生需要熟悉并掌握一些常见类型的题目及其解题思路。
接下来,我们将介绍一些中考数学压轴题的常见类型及其解题思路。
一、解析几何题解析几何题是中考数学压轴题中的常见类型。
解析几何题通常考察学生的逻辑推理能力和空间想象能力。
解析几何题主要包括平面几何和空间几何两个部分。
对于平面几何题,学生需要掌握几何图形的性质和运用几何定理进行证明的方法。
在解析平面几何题时,学生需要先画图,然后根据已知条件和问题要求进行运用相关几何定理进行论证。
解析几何题的解题思路主要是明确已知条件和问题要求,画图,应用几何定理进行论证。
二、代数方程题代数方程题是中考数学压轴题中的重点考察内容。
代数方程题主要考察学生对代数方程的建立和求解能力。
在解析代数方程题时,学生需要根据问题条件建立代数方程,然后根据方程的性质和解题的目的进行求解。
在此过程中,学生需要运用代数方程的基本性质和解方程的基本方法进行推导和计算。
解析代数方程题的解题思路主要是建立方程,根据方程性质进行推导和求解。
三、概率统计题概率统计题是中考数学压轴题中的常见类型。
概率统计题主要考察学生对概率与统计知识的理解和运用能力。
解析概率统计题的解题思路主要是确定事件的概率计算方法和统计图表的分析方法,进行数据的处理和分析。
四、数量关系题在解析数量关系题时,学生需要根据数量关系进行推导和计算。
在此过程中,学生需要通过分析数量关系进行数据的整合和运算,最终得出结论。
五、综合题综合题是中考数学压轴题中的综合性考察内容。
综合题通常涉及多个知识点并需要综合运用多种解题方法进行推导。
解析综合题的解题思路主要是整体分析问题,综合运用相关知识点和解题方法进行推导和计算。
中考数学压轴题的解题思路主要是明确已知条件和问题要求,运用相关知识点和解题方法进行推导和计算,最终得出结论。
中考数学压轴题解题技巧
关于中考数学压轴题的思考思考一:中考数学压轴题如何攻克对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。
控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。
如果以为这是构造压轴题的唯一方式那就错了。
方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。
在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。
总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
如果(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
浅谈中考数学压轴题的发展趋势及解题策略
浅谈中考数学压轴题的发展趋势及解题策略1. 引言1.1 中考数学压轴题的重要性中考数学压轴题作为中考数学考试中的重要组成部分,承载着选拔优秀学生、检验学生数学综合能力的重要任务。
其重要性主要体现在以下几个方面:一、检验学生对知识的掌握程度。
中考数学压轴题通常涵盖了整个学期所学的知识点,要求学生在解题时能够综合运用知识,考察学生是否真正掌握了各个知识点。
二、考察学生的逻辑思维能力。
中考数学压轴题往往具有一定的难度和复杂性,要求学生能够运用逻辑推理和分析问题的能力来解题,从而培养学生的逻辑思维能力。
三、培养学生的解决问题的能力。
中考数学压轴题常常是一些较为综合性的问题,需要学生具备较强的解决问题的能力,包括分析问题、提出解决方案和合理推断的能力。
四、激励学生学习数学的兴趣。
通过解决中考数学压轴题,学生可以感受到数学的魅力和趣味,从而激发学习数学的兴趣,促使他们更加努力地钻研数学知识。
中考数学压轴题在中考数学考试中具有举足轻重的地位,对学生的学习和成长起着至关重要的作用。
在备考中,学生应当重视中考数学压轴题的练习和掌握,以确保在考试中取得理想的成绩。
1.2 中考数学压轴题的历史演变中考数学压轴题的历史演变源远流长,可以追溯到我国古代科举制度时期。
在科举考试中,对于数学能力的考察也是不可或缺的部分。
随着时间的推移,数学考题的形式和内容也在不断变化和发展。
从过去几十年的中考数学压轴题历年真题来看,最初的数学考题更加注重基础知识和题型的应用。
简单的计算题、几何题和代数题等都是考生必须掌握的内容。
随着教育教学理念的更新和数学教育的发展,中考数学压轴题的内容逐渐趋向于注重思维能力和综合运用能力的考察。
在解题时需要考生灵活应用所学知识,进行逻辑推理和综合分析,而不仅仅是死记硬背基础知识。
随着科技的发展和教育改革的深化,中考数学压轴题也逐渐倾向于注重学生的实际运用能力和创新思维。
涉及到实际问题的数学模型、数学证明题等成为中考数学压轴题中的重要内容。
中考数学压轴题思路与技巧
关于中考数学压轴题的思考思考一:中考数学压轴题如何攻克对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。
控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。
如果以为这是构造压轴题的唯一方式那就错了。
方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。
在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。
总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
如果(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
中考数学压轴题解题技巧及训练(附解析)
中考数学压轴题解题技巧中考数学压轴题解题技巧数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
中考数学压轴题解题技巧解说
目录一、动态:动点、动线 (2)二、圆 (2)因动点产生的直角三角形问题突破与提升策略 (7)第一步寻找分类标准; (7)第二步列方程; (7)第三步解方程并验根 (8)中考压轴题专项训练 (15)一、知识点睛 (21)二、精讲精练 (21)三、二次函数与几何综合 (22)一、知识点睛 (22)二、精讲精练 (22)三、二次函数与几何综合 (29)中考压轴题专项训练 (34)C xxy yA OBED AC B CD G图1 图2中考数学压轴题解题技巧解说一、 动态:动点、动线4.(浙江嘉兴)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?二、 圆5.(青海) 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l.(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .C(第24题)6.(湖南张家界)在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D .(1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.7.(潍坊市)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.四、比例比值取值范围8.(怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.9. (湖南长沙)如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;图9图1(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.五、探究型10.(内江)如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.11.(福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,ABCED xyo题图26BA PxCQ O y 第26题图求出所有符合条件的点P 坐标;不存在,请说明理由.六、最值类12.(恩施) 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C ,那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在 请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.中考数学压轴题突破因动点产生的直角三角形问题突破与提升策略问题导入:我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4, 0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.解直角三角形的存在性问题,一般分三步走:第一步寻找分类标准;第二步列方程;第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.图4如图4,已知A(3, 0), B(1, -4),如果直角三角形ABC的直角顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么=.这个方程有两个解,分别对应图中圆与y轴的两个交点.练习反馈:1.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.思路:1.根据题意作出合适的辅助线;2.证明△ADC和△AOB的关系,即可建立y与x的函数关系;3.可以得到哪个选项是正确的.2. 如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)思路:1.根据一次函数解析式求出点A、B的坐标;2.由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式;3.令y=0即可求出x的值,从而得出点P的坐标.3.如图,在矩形ABCO中,点O为坐标原点,点B的坐标为(4, 3),点A、C在坐标轴上,点P在BC 边上,直线l1: y=2x+3,直线l2: y=2x-3.(1) 分别求直线l1与x轴、直线l2与AB的交点坐标;(2) 已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3) 我们把直线l1和直线l2上的点所组成的图形称为图形F.已知矩形ANPQ的顶点N在图形F 上,Q是坐标平面内的点,且点N的横坐标为x,请直接写出x的取值范围(不用说明理由).思路:1.第(2)题:设M(x, 2x-3),擦去两条直线,在BC上取点P.2.以AP为斜边构造等腰Rt△APM,再以MA和MP为斜边构造直角三角形全等.3.以AP为直角边构造等腰Rt△APM,再以AP和PM为斜边构造直角三角形全等.4.第(3)题与(2)题相同的是∠AMP=∠ANP.求x关于m的关系式.4.如图1,点A的坐标为(2, 0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A的右侧,连结BC,以BC为边在第一象限内作等边△BCD,连结AD交BC于点E.(1) ①直接回答:△OBC与△ABD全等吗?②试说明:无论点C如何移动, AD始终与OB平行;(2) 当点C运动到使AC2=AE·AD时,如图2,经过O、B、C三点的抛物线y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P的坐标;若不存在,请说明理由;(3) 在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.图1 图2思路:1.△CBO绕着点B逆时针旋转60°与△DBA重合,把图形中60°的角都标记出来.2.第(2)题要分三步完成:先确定点C,再求抛物线的解析式,最后分两种情况讨论点P,共有3个符合条件的点P.3.第(3)题采用数形结合思想,当直线与抛物线相切时,联立方程组消去y,那么Δ=0.5.如图,已知☉O的半径长为1, AB、AC是☉O的两条弦,且AB=AC, BO的延长线交AC于点D,连结OA、OC.(1) 求证:△OAD∽△ABD;(2) 当△OCD是直角三角形时,求B、C两点的距离;(3) 记△AOB、△AOD、△COD的面积为S1、S2、S3,若S2是S1和S3的比例中项,求OD的长.思路:1.把相等的弦所对的圆心角标记出来,由此得到的等腰三角形的底角都相等.2.直角三角形OCD存在两种情况,不存在∠OCD为直角的可能.3.第(3)题中的三个三角形都是等高三角形,把面积比转化为对应底边的比.6.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P 与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.思路:1.由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;2.由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;3.若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.7.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.思路:1.由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;2.作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;3.画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.8.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB 边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.思路:1.连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;2.连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;3.由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.中考压轴题专项训练训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。
初中数学解题方法实例解析与压轴题答题技巧
初中数学解题方法实例解析与压轴题答题技巧配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
例:用因式分解法解一元二次方程换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
例:换元法化简整式(x+2y)2 -(x-2y) 2换元法1令a= x+2y,b= x-2y原式=a 2 -b 2=(a+b)(a-b)a+b=2x,a-b=4y∴原式=2x•4y=8xy换元法2令a=x,b=2y原式=(a+b)2 -(a-b) 2=(a 2 +2ab+b 2 )-(a 2 -2ab+b 2 )=4ab=8xy判别式&韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019中考数学压轴题解题指导及案例分析2019年中考数学压轴题专题
中考日渐临近,在数学总复习的最后阶段,如何有效应对“容易题”和“综合题”,提高复习的质量和效率呢?针对当前中考复习中普遍存在的倾向性问题,再提出一些看法和建议,供初三毕业班师生参考。
基础题要重理解
在数学考卷中,“容易题”占80%,一般分布在第一、二大题(除第18题)和第三大题第19~23题。
在中考复习最后阶段,适当进行“容易题”的操练,对提高中考成绩是有益的。
但绝不要陷入“多多益善,盲目傻练”的误区,而要精选一些针对自己薄弱环节的题目进行有目的地练习。
据笔者了解,不少学校在复习中存在忽视过程的倾向,解客观题,即使解其中较难的题时也都只要求写出结果,不要求写出过程,一些同学甚至错了也不去反思错在哪里,这样做,是非常有害的。
笔者认为,即使是题解简单的填空题也应当注重理解,反思解题方法,掌握解题过程。
解选择题也一样,不要只看选对还是选错,要反问自己选择的依据和理由是什么。
当然,我们要求注重理解,并不意味着不要记忆,记忆水平的考查在历年中考命题中均占有一定的比重。
所以必要的记忆是必须的,如代数中重要的法则、公式、特殊角的三角比
的值以及几何中常见图形的定义、性质和常用的重要定理等都是应当记住的。
在复习的最后阶段,笔者建议同学们适当多做一些考查基础的“容易题”,这样做,虽然花的时间不多,但能及时发现知识缺陷,有利于查漏补缺,亡羊补牢。
如果你能真正把这些“容易题”做对、做好,使得分率达到0.9甚至达到0.95以上,那么在中考中取得高分并非难事。
压轴题要重分析
中考要取得高分,攻克最后两道综合题是关键。
很多年来,中考都是以函数和几何图形的综合作为压轴题的主要形式,用到三角形、四边形、和圆的有关知识。
如果以为这是构造压轴题的唯一方式那就错了。
方程式与图形的综合也是常见的综合方式。
这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题又是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起。
在这类问题中,往往把锐角三角比作为几何计算的一种工具。
它的重要作用有可能在压轴题中初露头角。
总之,应对压轴题,决不能靠猜题、押题。
解压轴题,要注意分析它的逻辑结构,搞清楚它的各个小题之间的关系是“并列”的还是“递进”的,这一点非常重要。
一般说来,如果综合题(1)、(2)、(3)小题是并列关系,它们分
别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,同样(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
如果是“递进”关系,(1)的结论又是解(2)所必要的条件之一,(3)与(2)也是同样的关系。
在有些较难的综合题里,这两种关系经常是兼而有之。
说实在,现在流行的“压轴题”,真是难为我们的学生了。
从今年各区的统考试卷看,有的压轴题的综合度太大,以至命题者自己在“参考答案”中表达解题过程都要用去一页A4纸还多,为了应付中考压轴题,有的题任意拔高了对数学思想方法的考查要求,如有些综合题第(2)、(3)两小题都要分好几种情况进行“分类讨论”,太过分了。
课程标准规定,在初中阶段只要求学生初步领会基本的数学思想方法。
所以它在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已。
希望命题者手下留情,不要以考查数学思想方法为名出难题,也不要再打“擦边球”,搞“深挖洞”了。
笔者希望世博之年的中考数学卷能够将压轴题的难度从0.37、0.39基础上再下降一点,朝着得分率0.5左右靠拢,千万不要再“双压轴”了。
对一些在区统考的“压轴题”面前打了“败仗”的同学,我劝大家一定要振奋起精神,不要因为这次统考的压轴题不会做或得分过低而垂头丧气,在临考前应当把提高信心和勇气放在首位。
笔者建议在总复习最后阶段,不要花过多的精力做大
量的综合题,只要精选二十道左右(至多不超过三十道),不同类型、不同结构的综合题进行分析和思考就足够了,如果没有思路,时间又不多,那么看一遍别人的解答也好。
教师对不同的学生,不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。
盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,其结果必然是得不偿失。
事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上。
应当把功夫花在夯实基础、总结归纳、打通思路、总结规律、提高分析能力上。
笔者建议,同学们可以试着把一些中考压轴题分解为若干个“合题”,进行剪裁和组合,或把一些较难的“填空题”,升格为“简答题”,把一些“熟题”变式为“陌生题”让学生进行练习。
这样做,花的时间不多,却能取得比较理想的效果,并且还能使学生的思路“活”起来,逐步达到遇到问题会分析,碰到沟坎,会灵活运用已经学过的知识去解决这样的较高水平。
总之,笔者以为在总复习阶段,对大部分学生而言,要有所为又要有所不为,有时放弃一些难题和大题,多做一些中档的变式题和小题,反而能使自己得益。
当然,我们强调变式,不是乱变花样。
其目的是促进对标准形式和基本图形的进一步认识和掌握。
解答题在中考中占有相当大的比重,主要由综合性问题构
成,就题型而言,包括计算题、证明题和应用题等.它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性.一般地,解题设计要因题定法,无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等.
(一)解答综合、压轴题,要把握好以下各个环节:
1.审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.
审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达.
2.寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻
时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃.
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
(二)题型解析
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
类型1 直线型几何综合题
图1
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
这类题常见考查形式为推理与计算.对于推理,基本思路为分析与综合,即从需要证明的结论出发逆推,寻找使其成立的条件,同时从已知条件出发来推导一些结论,再设法将它们联系起来.对于计算,基本思路是利用几何元素(比如边、角)之间的数量关系结合方程思想来处理.。