(4)2007-2008高等代数A卷
2007-2008春季高数A试题(A卷)解答
(2) 证明
∑
n =1
∞
n = 1. ( n + 1)!
解: (1) 设 s ( x ) =
d ⎛ ex −1 ⎞ ⎜ ⎟ ,由于 dx ⎝ x ⎠
xn ∑ − 1 ∞ x n−1 e x − 1 n=0 n ! = =∑ x x n =1 n !
∞
( − ∞ < x < +∞ )
因此,
d ⎛ e x − 1 ⎞ d ⎡ ∞ x n −1 ⎤ s ( x) = ⎜ ⎟ = ⎢∑ ⎥ dx ⎝ x ⎠ dx ⎣ n =1 n ! ⎦
=∑ n − 1 n−2 ∞ n x =∑ x n −1 n=2 n ! n =1 ( n + 1) !
∞
(2)
又
s ( x) =
d ⎛ ex −1 ⎞ x ex − ex + 1 ⎜ ⎟= dx ⎝ x ⎠ x2
所以, 当 x = 1 时,
x ex − ex + 1 ∞ n =∑ x n −1 2 x n =1 ( n + 1) !
要使切平面与三个坐标面所围体积最小,只需 最小,其中 x0 , y0 , z0 满足 z0 = 4 − x0 2 − y0 2 . 构造拉格朗日函数 F ( x, y, z , λ ) =
1 3 (8 − z ) + λ ( x2 + y 2 + z − 4) xy
求解方程组
1 3 ⎧ ′ ⎪ Fx = − x 2 y ( 8 − z ) + 2λ x = 0 ⎪ 1 3 ⎪ ′ F = − 8 − z ) + 2λ y = 0 y 2 ( ⎪ xy ⎨ ⎪ 3 2 ⎪ Fz′ = − ( 8 − z ) + λ = 0 xy ⎪ ⎪ 2 2 ⎩ Fλ ′ = x + y + z − 4 = 0
2007-2008第二学期线代试卷A及答案)
武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共12分)1、 2;2、 1;3、 21t ≠;4、k >二、选择题(每小题3分,共12分)1、 A ;2、 C ;3、 B ;4、 D 三、解答题(每小题9分,共36分)1、11(2,,)(2,,)1100011111100100020012000200011i in i n i n r r r r n nn n n D n nn n nn n==+++---=-------…..…(4分)()(1)(2)(1)1122000001(1)1(1)(1)()(1)1222000n n n n n n n n n n n n n n nn n n n -------+++=⋅=⋅⋅-⋅-=⋅⋅---...….(9分)2、记 121624,1713A A ---⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,则121,1A A =-=;…..…………………………………..…..……...(4分)又1112767637,111112A A -----⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以1760011000037012A --⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭-。
………………………...(9分)3、由题意有010100001A B ⎛⎫⎪= ⎪ ⎪⎝⎭,100011001B C ⎛⎫⎪= ⎪ ⎪⎝⎭,……………..…………………………………………...(4分) 于是 010100100011001001A C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以011100001X ⎛⎫⎪= ⎪ ⎪⎝⎭。
……….……………………………………...(9分)4、()123403481011,,,21043211αααα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭~1011034801220244-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭~10110122002200-⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭~10000104001100⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭………...(4分) 则()1234,,,3R αααα=,且123,,ααα线性无关,所以123,,ααα即为1234,,,αααα的一个极大无关组,(7分) 且412304αααα=+-;…………………………………………………………………………………..………...(9分) 或者取124,,ααα,312404αααα=+-;还可以取134,,ααα,2341144ααα=+四、解()2111,1111tA b t t tt -⎛⎫⎪=-- ⎪ ⎪-⎝⎭~2223110110111t tt t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪+-++⎝⎭~ 22321101100(1)(2)1t tt t t t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪-+---+⎝⎭…………………………….…………..………...(4分) 所以当12t t ≠-≠且时,方程组有唯一解;…………………………………..…………………………….……...(6分) 当2t =时,(),A b ~112403360001-⎛⎫⎪-- ⎪ ⎪⎝⎭()(),32R A b R A =≠=,所以方程组无解。
2007-2008上学期高数I试A卷答案
暨 南 大 学 考 试 试 卷一、填空题(共5小题,每小题3分,共15分)1. 设)(x y y =是由方程0sin 21=+-y y x 所确定,则=dy dx ycos 22-. 2. 数列的极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 12111lim = __1____________________. 3. 函数xxe y =的带有佩亚诺余项的三阶麦克劳林公式为).(21332x o x x x +++4. 函数xe x y ++=4)1(的凹区间为),(+∞-∞.5. 抛物线22y x x y ==和围成的面积为____1/3________________________.二、选择题(共5小题,每小题3分,共15分)1. 当时, 不为等价无穷小量的是 (D) (A) 22sin x x 和; (B)nx x n和11-+;(C) x x 和)1ln(+; (D) 2cos 1x x 和-.2.设]1,0[上0)(">x f ,则)1()0()0()1(),1('),0('f f f f f f --或几个数的大小顺序为(B)(A) );0()1()0(')1('f f f f ->> (B) );0(')0()1()1('f f f f >-> (C) );0(')1(')0()1(•f f f f >>- (D) ).0(')1()0()1('f f f f >-> 3. 以下函数有可去间断点的是 (B )(A) ⎩⎨⎧>-≤-=;0,3,0,1)(x x x x x f (B) ;39)(2--=x x x f(C) ⎪⎩⎪⎨⎧=≠=;0,0,0,1sin )(x x xx f (D) .|sin |)(x x x f = 4. 摆线⎩⎨⎧-=-=)cos 1(),sin (θθθa y a x 的一摆)20(πθ≤≤的长度为 (D)(A) a 2; (B) a 4; (C) a 6; (D) a 8.5. 函数],[)(b a x f 在区间上连续是],[)(b a x f 在可积的 (A) (A) 充分条件; (B) 必要条件;(D) 即不是充分条件也不是必要条件.三、计算题(共7小题,每小题7分,共49分)1. 求定积分⎰210arcsin xdx ;解: 原式⎰--=21022101|arcsin dx xx x x ----------------------------------4⎰--+=21022)1(112112x d x π----------------------------------5 2102112x -+=π--------------------------------------------6.12312-+=π----------------------------------------------7 2. 求极限3sin 1tan 1limx xx x +-+→;解: 原式)sin 1tan 1()sin 1(tan 1lim3x x x x x x ++++-+=→-------------------------------------------------230sin tan lim21x xx x -=→ )21~cos 1,~sin ,0(cos )cos 1(sin lim 21230x x x x x xx x x x -→-=→时当 --------5.4121lim 21320=⋅=→x x x x -----------------------------------------------------------------73. 设)(x y y =由参数方程⎪⎩⎪⎨⎧==te y t e x ttsin ,cos 所确定,求22dx y d ; 解:)sin (cos t t e dt dx t -=, )cos (sin t t e dtdyt +=,-------------------------------------2,s in c o s c o s s in t t t t dtdx dt dy dx dy -+==-------------------------------------------------------4dx dtt t t t dt d dx dy dx d dx y d ⋅-+==)sin cos cos sin ()(22------------------------------------------------6 )sin (cos 1)sin (cos )cos (sin )cos (sin 222t t e t t t t t t t -⋅-++-=.)s i n (c o s 23t t e t -=--------------------------------------------------------------------74. 求不定积分⎰+x x xdxcos sin cos ;解: 原式⎰+-++=dx x x x x x x cos sin )sin (cos )sin (cos 21-------------- -- ----------------------3⎰⎰+++=x x x x d dx cos sin )cos (sin 2121----------------------------------------------------5C x x x +++=|cos sin |ln 2121.---------------------------------------------------75. 求极限2020222)1(limxdte t x x tx ⎰-→+;解: 原式22222)1(limxdt e t ex t x x ⎰+=-→------------- ---------------------------------------222022)1(limx dt e t x t x ⎰+=→-----------------------------------------------------------4xxe x x x 22)1(lim 440⋅+=→------------------------------------------------------------61)1(lim 440=+=→x x e x .-------------------------------------------------------------76. 求过点)0,23(与曲线21xy =相切的直线方程; 解: 设切点为)1,(20x x , 32'xy -=, 所以切线方程为-----------------------------1 )(21032x x x x y --=-.-----------------------4因)0,23(过切线, 所以)23(210032x x x --=-.-----------------------6 解得.10=x 因此切线方程为 .032=-+x y --------------------------------------7 7. 讨论瑕积分⎰10q x dx(q >0)的收敛性,如果收敛则计算其值.解: 对任意)1,0(∈ε,⎪⎪⎩⎪⎪⎨⎧≠--=-=-==--⎰.1),1(1111,1,ln |ln 11111q q x q q x x dx q q q εεεεε------------------------------------------3因此⎪⎩⎪⎨⎧≥∞+<-=⎰+→.1,,1,11lim10q q q x dx qεε--------------------------------------------------------------------6即1≥q 发散,当1<q 时收敛,其值为q-11.----------------------------------------------------------7四、应用题(共2小题,每小题8分,共16分)h m, 底面半径为r m , 桶内盛满了某种液体. 试问要把桶内的液体全部吸出需要作多少功? 已知这种液体的密度为ρ.解: 建立如图所示的坐标. 在任一小区间 上的一薄液体的 O的重力为dx r g 2ρπ(KN)----------------------------------3这薄层液体吸出桶外所做的功(功元素)为 xdx r g dW 2ρπ=----------------------------5所求的功为 hh x r g xdx r g W 02202|21ρπρπ==⎰2221h r g ρπ=(KN).---------------------8 2. 要做一个容积为V 的圆柱形罐头筒, 怎样设计才能使所用的材料最省? 解: 设底面半径为r , 则高为2r Vπ,表面积为 .0,2222222>+=⋅+=r r Vr rV r r S ππππ------------------------------------3令022'2=-=rV r S π得3πV r =,--------------------------------------------------------------------------5 又0|)42(|'333>+===πππV r Vr r V S , 因此当3πV r =时S 取最--------------------------------------7 即当底面半径为3πV,高为3πV时所用的材料最少.--------------------------------------------------8五、证明题(共1小题,每小题5分,共5分)1. 设)(x f 在区间],[b a 上连续,且0)(>x f ,⎰⎰∈+=x bx ab a x t f dtdt t f x F ],[,)()()(. 证明: (1) 2)('≥x F ; (2) 方程0)(=x F 在),(b a 内有且仅有一个根.证明: (1) .2)(1)(2)(1)()('=⋅≥+=x f x f x f x f x F ---------------------------------------------2 (2) )(x F 在],[b a 上连续, 且]d ,[x x x +0)()()()()()()(<-===⋅⎰⎰⎰⎰b a b a baa bdt t f t f dt •dt t f t f dt x F b F a F ,因此由介值定理)(x F 在),(b a 至少有一根, ----------------------------------------------------------4 又0)('>x F , 所以)(x F 在],[b a 上单调增, 因此)(x F 在),(b a 是只有一根.----------------5。
福州大学2008年高等代数考研试题A卷及解答 (1)
福州大学2008年招收硕士研究生入学考试试卷招生学院_______________招生专业________________考试科目________________科目编号________________本卷共十题,每题15分一、填空题(每小题4分,满分20分)1、多项式32()61514f x x x x =-+-的有理根是_________;【答案解析】:22、矩阵012114210A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭的逆矩阵1A -=_________;【答案解析】:124211221232⎛⎫- ⎪⎪ ⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭3、设P 为数域,在线性空间[]n P x 中,多项式()f x 在基1{1,(),...,()}n x a x a ---下的坐标是_________;【答案解析】:(1)()()((),(),,...,)2!(1)!n f a f a f a f a n -'''-4、在欧式空间4R 中,向量1(1,2,2,3)α=,2(3,1,5,1)α=的夹角为________;【答案解析】:455、已知1101A ⎛⎫=⎪⎝⎭,则nA =________;【答案解析】:101n ⎛⎫⎪⎝⎭二、简答题(每小题5分,满分25分)6、求非齐次线性方程组1231234123412344212357375822268x x x x x x x x x x x x x x x -+=-⎧⎪-+++=⎪⎨-+-=-⎪⎪---=-⎩的通解;【考察重点】:求非齐次线性方程组的通解,属于简单计算题,掌握知识点即可。
【答案解析】:解:142011420110245231570555501111371580555500000222680666600000A -------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---⎪ ⎪ ⎪=== ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭可知原方程组与下面方程组同解1342342451x x x x x x --=-⎧⎨-++=⎩令340x x ==,得原方程组的一个特解()5100--且原方程组的两个基础解系为()()123010,1001αα=-=-所以原方程组的通解为()()()12510030101001x k k =--+-+-其中1k ,2k 为任意常数。
高等代数习题及答案
高等代数习题及答案亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档高等代数习题及答案,这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
高等代数习题及答案篇一:高等代数试题及答案中国海洋大学2007-2008学年第2学期期末考试试卷共2页第2页五(10分)证明:设A为n级矩阵,g(x)是矩阵A的最小多项式,则多项式f(x)以A为根的充要条件是g(x)|f(x).六(10分)设V是数域P上的n维线性空间,A,B是V上的线性变换,且ABBA.证明:B的值域与核都是A的不变子空间.a七(10分)设2n阶矩阵Ababbab,ab,求A的最小多项式.a八(10分)设f是数域P上线性空间V上的线性变换,多项式px,qx互素,且满足pfqf0(零变换),Skerqf求证:VWS,Wkerpf中国海洋大学2007-2008学年第2学期期末考试学院(A卷)答案一.判断题1.×2.×3.×4.√5.√二.解:1A=11111111111113,|EA|(4),所以特征值为0,4(3重).将特征值代入,求解线性方程组(EA)x0,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量:1=(12,12,112,2)',2=(-0,0)',3=(-0)',4=(-6662'.126111所以正交阵T2641而T'AT0206122三.证:(1)A,BM.验证AB,kAM即可.01 1(2)令D0En110,D为循环阵,E1Dk0EnkEk0,(Ek为k阶单位阵)则D,D2,,Dn1,DnE在P上线性无关..0且Aa1Ea2Dan1Dn2anDn1,令f(x)a1a2xanxn1,有Af(D).BM,必P上n1次多项式g(x),使Bg(D),反之亦真.ABf(D)g(D)g(D)f(D)BA(3)由上可知:E,D,D2,,Dn1是M的一组基,且dimMn.四.解:A 的行列式因子为D3()(2)3,D2()D1()1.所以,不变因子为d3()(2)3,d2()d1()1,初等因子为(2)3,2因而A的Jordan标准形为J1221五.证:"":f(x)g(x)q(x)"":f(A)0,g(A)0f(A)g(A)q(A)0设f(x)g(x)q(x)r(x),r(x)0或(r(x))(g(x)).所以0=f(A)g(A)q(A)r(A),因而r(A)0.因为g(x)为最小多项式,所以r(x)0.g(x)|f(x).六.证:在B 的核V0中任取一向量,则()A(BB(A)BA)AB(A)0所以A在B下的像是零,即AV0.即证明了V0是A的不变子空间.在B的值域BV中任取一向量B,则A(B)B(A)BV.因此,BV也是A的不变子空间.综上,B的值域与核都是A的不变子空间.七.解:EA(a)b22n篇二:高等代数习题及答案(1)高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、p(x)若是数域F上的不可约多项式,那么p(x)在F中必定没有根。
2007年-2008年-自考-线性代数-经管类-真题详细答案
全国2007年4月高等教育自学考试线性代数(经管类)参考答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .—4 B .—1 C .1D .44218||2|2|131=⨯==--A A . 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫ ⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABCC .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A)()()(T T T T T T T A A A A A A A A --=-=-=-,所以A -A T 为反对称矩阵.4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a,则A *=( A ) A .⎪⎪⎭⎫ ⎝⎛--a cb dB .⎪⎪⎭⎫ ⎝⎛--a bc d C .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫ ⎝⎛--a bc d5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C )A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫ ⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--500043200101,则A 中( D )A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关Ax =0有非零解⇔n A r <)(⇔ A 的列向量组线性相关.8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r (A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T +k 2(1,-1,3)T B .(1,0,2)T +k (1,—1,3)T C .(1,0,2)T +k (0,1,-1)TD .(1,0,2)T +k (2,-1,5)TT )2,0,1(=α是Ax=b 的特解,T )1,1,0(-=-βα是Ax =0的基础解系,所以Ax=b 的通解可表为=-+)(βααk (1,0,2)T +k (0,1,—1)T .9.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111111111的非零特征值为( B )A .4B .3C .2D .1111111111)3(111111333111111111||-------=---------=---------=-λλλλλλλλλλλλA E )3(0000111)3(2-=-=λλλλλ,非零特征值为3=λ.10.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4 B .3 C .2 D .1⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000001110000100000000000111100001000100011111A ,秩为2. 二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零.12.设矩阵A =⎪⎪⎭⎫ ⎝⎛4321,则行列式|A TA |=__4__.4)2(4321||||||||222=-====A A A A A TT.13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__.E A B -==⎪⎪⎪⎭⎫ ⎝⎛000010100,r(B )=2.15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__.18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫ ⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__.0=a 时,2)(=A r ,3)(=A r .19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+. 秩3=r ,正惯性指数2=k ,则负惯性指数123=-=-k r .规范形是232221y y y -+.20.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a .011>=∆,0121112>-=-=∆a a,0)1(33000210113>-=-=∆a a ⇒1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123.解:0760300940200320100767367949249323123==.22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A .解: ⎪⎪⎪⎭⎫ ⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---127012002200210202→ ⎪⎪⎪⎭⎫ ⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5100010001, =-1A ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000330044400321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000110011100321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110000103001.(1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫ ⎝⎛-=111000*********A →⎪⎪⎪⎭⎫ ⎝⎛--111001010010011→⎪⎪⎪⎭⎫⎝⎛--010001010010011→⎪⎪⎪⎭⎫ ⎝⎛010001010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为T T k k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫ ⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵.解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ. 对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫⎝⎛→⎪⎪⎭⎫⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为⎪⎪⎭⎫⎝⎛-=111α,单位化为⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为⎪⎪⎭⎫⎝⎛=112α,单位化为⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ. 令⎪⎪⎪⎪⎭⎫ ⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫ ⎝⎛-=-30011AP P . 26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,00002213=-=a A ,00121123=-=a aA , 所以⎪⎪⎪⎭⎫⎝⎛=-3332223121111||1A A A A A A A A 是上三角矩阵.全国2007年7月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A ) A .—2B .21- C .21D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C ) A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T ,则必有( A ) A .B T =BB .B =2AC .B B T -=D .B =0B A A A A A A A A B T T T T T T T T =+=+=+=+=)()(.4.矩阵A =⎪⎪⎭⎫ ⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫ ⎝⎛--1111 B .⎪⎪⎭⎫ ⎝⎛--1111 C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.下列矩阵中,是初等矩阵的为( C )A .⎪⎪⎭⎫⎝⎛0001 B .⎪⎪⎪⎭⎫ ⎝⎛--100101110 C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .30)1)(1(2111)1(100021011222=-+=++=++t t t t t t ⇒1=t .7.设A 是4×5矩阵,秩(A )=3,则( D ) A .A 中的4阶子式都不为0 B .A 中存在不为0的4阶子式 C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0 B .1 C .2 D .3A 相似于⎪⎪⎪⎭⎫⎝⎛=200000000D ,秩(A )= 秩(D )=1.9.设A 为n 阶正交矩阵,则行列式=||2A ( C )A .-2B .-1C .1D .2A 为正交矩阵,则E A A T =,==22||||A A 1||||||==A A A A T T . 10.二次型2.2),,(y x z y x f -=的正惯性指数p 为(B )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎭⎫ ⎝⎛1121,则行列式=||TAA __1__. 1)1(1121||||||||22=-====A A A AA T T .12.行列式1694432111中)2,3(元素的代数余子式=32A __—2__.2421132-=-=A . 13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__. 521)2,1(=⎪⎪⎭⎫⎝⎛=B A T .14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1.⎪⎭⎫ ⎝⎛-=-=+---=211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213α 15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__.⎪⎪⎪⎭⎫ ⎝⎛-613101→⎪⎪⎪⎭⎫ ⎝⎛-603001→⎪⎪⎪⎭⎫⎝⎛-003001,秩=2. 16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.设332211αααβx x x ++=,即)0,0,3()0,2,1()1,1,1()3,7,8(321x x x ++=,得⎪⎩⎪⎨⎧==+=++37283121321x x x x x x ,解得⎪⎩⎪⎨⎧===123321x x x . 17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.02211=-=--t t,2=t .18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛x 01010101的一个特征值为0,则x =__1__.0|0|=-A E ,所以0||=A ,即0111101010101=-==x xx,1=x .20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫ ⎝⎛--541431112. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=210121012的值.解:4)26(2123210121230210121012=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛=252610022501101220016101210013512),(E A⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X . 23.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2.解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--900000003121a →⎪⎪⎪⎭⎫ ⎝⎛--000090003121a . (1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--000014202611, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫ ⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛000032203421→⎪⎪⎪⎭⎫⎝⎛000032200201→⎪⎪⎪⎭⎫ ⎝⎛00002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1.解:2)1)(2(31104)1(1630310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α.令⎪⎪⎪⎭⎫ ⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1.四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.全国2007年10月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D ) A .—3B .-1C .1D .3222111c b a c b a ++=2211b a b a +2211c a c a =1+2=3.2.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .41-C .41 D .12|2|=-A ,2||)2(3=-A ,41||-=A .3.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D )A .2⎪⎪⎭⎫⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛ ⎪⎪⎭⎫ ⎝⎛=-4321)2(1A ,143212-⎪⎪⎭⎫ ⎝⎛=A ,1432121-⎪⎪⎭⎫⎝⎛=A . 5.设向量组s ααα,,,21 线性相关,则必可推出( C ) A .s ααα,,,21 中至少有一个向量为零向量 B .s ααα,,,21 中至少有两个向量成比例C .s ααα,,,21 中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21 中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关Ax=0仅有零解⇔n A r =)(⇔ A 的列向量组线性无关.7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++ B .)()(212121121ααC αC ββ+++-C .)()(212121121ββC αC ββ-+++ D .)()(212121121ββC αC ββ+++- )(2121ββ+是Ax =b 的特解,211,ααα+是Ax =0的基础解系. 8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A )A .121 B .71 C .7 D .12B 相似于⎪⎪⎪⎭⎫⎝⎛300020002,12300020002||==B ,121||||11==--B B .9.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B )A .23-B .32-C .32 D .23 0|23|=+E A ⇒032=--A E ⇒A 必有一个特征值为32-. 10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C ) A .⎪⎪⎪⎭⎫⎝⎛104012421B .⎪⎪⎪⎭⎫⎝⎛100010421C .⎪⎪⎪⎭⎫⎝⎛102011211D .⎪⎪⎪⎭⎫⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023.12.设3阶矩阵A =⎪⎪⎪⎭⎫ ⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250.→),(E A T⎪⎪⎪⎭⎫⎝⎛100010001053021200→⎪⎪⎪⎭⎫⎝⎛001100010200053021→⎪⎪⎪⎭⎫⎝⎛--001130010200010021 →⎪⎪⎪⎭⎫⎝⎛---001130250200010001→⎪⎪⎪⎭⎫ ⎝⎛--002/1130250100010001,=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫ ⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫⎝⎛600060006.==*E A A A ||⎪⎪⎪⎭⎫⎝⎛==6000600066333022001E E .14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. B =AC ,其中C 可逆,则A 经过有限次初等变换得到B ,它们的秩相等.15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31.16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.设332211αααβk k k ++=,即⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001011111110321k k k ,⎪⎩⎪⎨⎧==+=++110121321k k k k k k ,⎪⎩⎪⎨⎧-===101321k k k .17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.02412141121200132132111=-=+=+=-a a a a ,2=a .18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41. 2=λ是A 的特征值,则41)2(1=-λ是1)2(-A 的特征值.19.若实对称矩阵A =⎪⎪⎪⎭⎫ ⎝⎛a a a 000103为正定矩阵,则a 的取值应满足30<<a .031>=∆,031322>-==∆a a a,0)3(00010323>-==∆a a aa a ⇒30<<a . 20.二次型2221212122),(x x x x x x f -+=的秩为__2__.⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=301112111112A ,秩为2.三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:6300102010011000100010011020130011111112113114111===.22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫ ⎝⎛=10211P ,⎪⎪⎭⎫ ⎝⎛=01102P ,令21AP P B =,求1-B . 解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫ ⎝⎛=-011012P ,111121----=P A P B=⎪⎪⎭⎫⎝⎛0110⎪⎪⎭⎫ ⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------0700070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫ ⎝⎛---=2112113111a a a A →⎪⎪⎪⎭⎫ ⎝⎛-----a a a a a 110010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫ ⎝⎛-000000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫ ⎝⎛------011101110的全部特征值及对应的全部特征向量.解:100010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-000330211330330211112121211211121112A E λ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数). 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.16全国2008年1月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为三阶方阵且2||-=A 则=|3|A A T ( D ) A .—108B .—12C .12D .108108)2(27||3|3|223=-⨯==A A A T .2.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k =( B )A .-2B .—1C .1D .20)1(1241434014013=+=-=--k kkk ,1-=k .3.设A 、B 为同阶方阵,下列等式中恒正确的是( D ) A .BA AB =B .111)(---+=+B A B AC .||||||B A B A +=+D .T T T B A B A +=+)(4.设A 为四阶矩阵,且2||=A ,则=*||A ( C ) A .2B .4C .8D .12=*||A 82||||331===-A A n .5.设β可由向量)0,0,1(1=α,)1,0,0(2=α线性表示,则下列向量中β只能是( B )A .)1,1,2(B .)2,0,3(-C .)0,1,1(D .)0,1,0(-),0,(212211k k k k =+=ααβ.6.向量组s ααα,,,21 的秩不为s (2≥s )的充分必要条件是( C ) A .s ααα,,,21 全是非零向量 B .s ααα,,,21 全是零向量C .s ααα,,,21 中至少有一个向量可由其它向量线性表出D .s ααα,,,21 中至少有一个零向量s ααα,,,21 的秩不为s ⇔s ααα,,,21 线性相关.177.设A 为m n ⨯矩阵,方程AX =0仅有零解的充分必要条件是( C ) A .A 的行向量组线性无关 B .A 的行向量组线性相关 C .A 的列向量组线性无关D .A 的列向量组线性相关AX =0仅有零解⇔n A r =)(⇔A 的列向量组线性无关.8.设A 与B 是两个相似n 阶矩阵,则下列说法错误..的是( D ) A .||||B A =B .秩(A )=秩(B)C .存在可逆阵P ,使B AP P =-1D .BE A E -=-λλ9.与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( A )A .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001B .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011C .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001D .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101有相同特征值的同阶对称矩阵一定(正交)相似.10.设有二次型232221321),,(x x x x x x f +-=,则),,(321x x x f ( C )A .正定B .负定C .不定D .半正定当0,0,1321===x x x 时,0>f ;当0,1,0321===x x x 时0<f .总之,f 有正有负. 二、填空题(本大题共10小题,每小题2分,共20分) 11.若0211=k ,则k =21. 012211=-=k k ,21=k . 12.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B =⎢⎣⎡⎥⎦⎤010201,则AB =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623. AB =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023⎢⎣⎡⎥⎦⎤010201=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623.1813.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤220010002,则=-1A ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1. ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001220010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-120010001200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1100010001. 14.设A 为33⨯矩阵,且方程组Ax =0的基础解系含有两个解向量,则秩(A )= __1__.秩(A )=123=-=-r n .15.已知A 有一个特征值2-,则E A B 22+=必有一个特征值__6__.2-=λ是A 的特征值,则62)2(222=+-=+λ是E A B 22+=的特征值.16.方程组0321=-+x x x 的通解是T T k k )1,0,1()0,1,1(21+-.⎪⎩⎪⎨⎧==+-=3322321x x x x x x x ,通解是⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-10101121k k . 17.向量组)0,0,1(1=α,)0,1,1(2=α,)0,2,5(3-=α的秩是__2__.⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-000010001025011001,秩是2. 18.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200020002的全部特征向量是T T T k k k )1,0,0()0,1,0()0,0,1(321++不全为零)(321,,k k k .2321===λλλ,⎪⎪⎪⎭⎫ ⎝⎛=-000000000A E λ,⎪⎩⎪⎨⎧===332211x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛001,⎪⎪⎪⎭⎫ ⎝⎛010,⎪⎪⎪⎭⎫⎝⎛100. 19.设三阶方阵A 的特征值分别为1,1,2-,且B 与A 相似,则=|2|B __—16__. =|2|B 16)2(810001000223-=-⨯=-.1920.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是3121232221321243),,(x x x x x x x x x x f +++-=. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式1002210002100021的值.解:151500021000210002118002100021000211040210021000211002210002100021-=-==-=.22.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤101111123,求1-A .解:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001101111123→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤001010100123111101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---301110100220010101 →⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110100200010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110200200010202→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----121110121200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1100010001,1-A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1.23.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011,B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A ,B ,X 满足E X B A B E T T =--)(1,求X ,1-X . 解:由E X B A B E T T =--)(1,得E X A B E B T =--)]([1,即E X A BB BE T =--)(1,20E X A B T =-)(,=-1X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100020002100020002)(TT A B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10002/10002/1X . 24.求向量组)4,2,1,1(1-=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)6,5,1,2(4=α,)0,2,1,1(5-=α 的一个极大线性无关组.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--021165121470321304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4002130213021304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4004000000021304211→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0004000000021304211, 421,,ααα是一个极大线性无关组.25.求非齐次方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=+++-=-+++=++++12334523622232375432154325432154321x x x x x x x x x x x x x x x x x x x 的通解.解:=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12133452362210231123711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------236281023622102362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0006000000002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0000000006002362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362010711011→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---00000000010023620101651001, ⎪⎪⎪⎩⎪⎪⎪⎨⎧===--=++-=5544354254106223516x x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1006501021000231621k k .2126.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----020212022,求P 使AP P 1-为对角矩阵.解:λλλλλλλλλ4)2(4)2)(1(2021222||-----=--=-A E 86323+--=λλλ )2(3)42)(2()2(3)8(23+-+-+=+-+=λλλλλλλλ)4)(1)(2()45)(2(2--+=+-+=λλλλλλ,特征值21-=λ,12=λ,43=λ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-220220012220232012220232024A E λ→⎪⎪⎪⎭⎫⎝⎛--000220012 →⎪⎪⎪⎭⎫ ⎝⎛--000110012→⎪⎪⎪⎭⎫ ⎝⎛--000110102→⎪⎪⎪⎭⎫ ⎝⎛--0001102/101,⎪⎪⎩⎪⎪⎨⎧===33323121x x x x xx ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛=112/11α;对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-=-120120021120101021120202021A E λ→⎪⎪⎪⎭⎫ ⎝⎛-000120021→⎪⎪⎪⎭⎫⎝⎛--000120101→⎪⎪⎪⎭⎫ ⎝⎛0002/110101,⎪⎪⎩⎪⎪⎨⎧=-=-=33323121x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛--=12/112α;对于43=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000210022420210022420232022A E λ→⎪⎪⎪⎭⎫ ⎝⎛000210011→⎪⎪⎪⎭⎫ ⎝⎛-000210201,22⎪⎩⎪⎨⎧=-==33323122xx x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛-=1223α. 令⎪⎪⎪⎭⎫ ⎝⎛---=11122/11212/1P ,则P 是可逆矩阵,使=-AP P 1⎪⎪⎪⎭⎫ ⎝⎛-400010002.四、证明题(本大题6分)27.设321,,ααα是齐次方程组Ax =0的基础解系,证明1α,21αα+,321ααα++也是Ax =0的基础解系. 证:(1)Ax =0的基础解系由3个线性无关的解向量组成.(2)321,,ααα是Ax =0的解向量,则1α,21αα+,321ααα++也是Ax =0的解向量. (3)设0)()(321321211=+++++ααααααk k k ,则0)()(332321321=+++++αααk k k k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,系数行列式01100110111≠=,只有零解0321===k k k ,所以1α,21αα+,321ααα++线性无关.由(1)(2)(3)可知,1α,21αα+,321ααα++也是Ax =0的基础解系.23全国2008年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式D =333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( C ) A .—15B .-6C .6D .15D 1=620222555333231232221131211333131232121131111=+=+D a a a a a a a a a a a a a a a a a a . 2.设矩阵⎪⎪⎭⎫ ⎝⎛+d b a 04=⎪⎪⎭⎫⎝⎛-32c b a ,则( C ) A .3,1,1,3==-==d c b a B .3,1,3,1===-=d c b a C .3,0,1,3==-==d c b aD .3,0,3,1===-=d c b a3,0,4,2===-=+d c b a b a ⇒3,0,1,3==-==d c b a .3.设3阶方阵A 的秩为2,则与A 等价的矩阵为( B )A .⎪⎪⎪⎭⎫⎝⎛000000111B .⎪⎪⎪⎭⎫⎝⎛000110111C .⎪⎪⎪⎭⎫⎝⎛000222111D .⎪⎪⎪⎭⎫⎝⎛3332221114.设A 为n 阶方阵,2≥n ,则=-|5|A ( A ) A .||)5(A n -B .||5A -C .||5AD .||5A n5.设A =⎪⎪⎭⎫ ⎝⎛4321,则=*||A ( B )A .-4B .—2C .2D .424321||||||121-====--*A A A n . 6.向量组s ααα,,,21 (2>s )线性无关的充分必要条件是( D ) A .s ααα,,,21 均不为零向量B .s ααα,,,21 中任意两个向量不成比例C .s ααα,,,21 中任意1-s 个向量线性无关D .s ααα,,,21 中任意一个向量均不能由其余1-s 个向量线性表示247.设3元线性方程组b Ax =,A 的秩为2,1η,2η,3η为方程组的解,T )4,0,2(21=+ηη,T )1,2,1(31-=+ηη,则对任意常数k ,方程组b Ax =的通解为( D )A .T T k )1,2,1()2,0,1(-+B .T T k )4,0,2()1,2,1(+-C .T T k )1,2,1()4,0,2(-+D .T T k )3,2,1()2,0,1(+取b Ax =的特解:T )2,0,1()(2121=+=ηηη; 0=Ax 的基础解系含一个解向量:T )3,2,1()()(312132=+-+=-=ηηηηηηα.8.设3阶方阵A 的特征值为2,1,1-,则下列矩阵中为可逆矩阵的是( D ) A .A E -B .A E --C .A E -2D .AE --22-不是A 的特征值,所以0|2|≠--A E ,A E --2可逆.9.设λ=2是可逆矩阵A 的一个特征值,则矩阵12)(-A 必有一个特征值等于( A ) A .41 B .21 C .2 D .42=λ是A 的特征值,则41)(12=-λ是12)(-A 的特征值.10.二次型432423222143212),,,(x x x x x x x x x x f ++++=的秩为( C ) A .1 B .2 C .3 D .4⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00001100001000011100110000100001A ,秩为3. 二、填空题(本大题共10小题,每小题2分,共20分)11.行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零.12.设矩阵A =⎪⎪⎭⎫ ⎝⎛4321,P =⎪⎪⎭⎫ ⎝⎛1011,则=T AP ⎪⎪⎭⎫ ⎝⎛4723. =TAP ⎪⎪⎭⎫ ⎝⎛4321⎪⎪⎭⎫ ⎝⎛1101=⎪⎪⎭⎫⎝⎛4723.2513.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111110100,则=-1A ⎪⎪⎪⎭⎫ ⎝⎛--001011110.⎪⎪⎪⎭⎫⎝⎛100010001111110100→⎪⎪⎪⎭⎫ ⎝⎛001010100100110111→⎪⎪⎪⎭⎫ ⎝⎛--001011101100010011→⎪⎪⎪⎭⎫ ⎝⎛--001011110100010001. 14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax =0有非零解,则数t =__2__. 02121412014022154332221||=-=----=----==t t t t A ,2=t .15.已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=2111α,⎪⎪⎪⎭⎫ ⎝⎛-=1212α,⎪⎪⎪⎭⎫⎝⎛=113t α的秩为2,则数t =__-2__.⎪⎪⎪⎭⎫ ⎝⎛--11212111t →⎪⎪⎪⎭⎫ ⎝⎛+--123013011t t t →⎪⎪⎪⎭⎫ ⎝⎛+--20013011t t t ,秩为2,则2-=t . 16.已知向量T )3,0,1,2(=α,T k ),1,2,1(-=β,α与β的内积为2,则数k =32.2),(=βα,即23022=++-k ,3/2=k .17.设向量Tb ⎪⎪⎭⎫⎝⎛=21,21,α为单位向量,则数b =__0__. 112121||22=+=++=b b α,0=b . 18.已知λ=0为矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-----222222220的2重特征值,则A 的另一特征值为__4__.021==λλ,220321++=++λλλ,所以43=λ.19.二次型32212322213212452),,(x x x x x x x x x x f +--+=的矩阵为⎪⎪⎪⎭⎫⎝⎛---510122021.2620.已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为2>k .⎪⎩⎪⎨⎧>->->+020101k k k ,⎪⎩⎪⎨⎧>>->211k k k ,2>k . 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D =4001030100211111的值.解:2202100111011112200210111011113110121011111114001030100211111-=----=----=------=.22.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103,(1)求A 的逆矩阵1-A ;(2)解矩阵方程B AX =.解:(1)⎪⎪⎪⎭⎫ ⎝⎛-100010001210011101→⎪⎪⎪⎭⎫ ⎝⎛---100011001210110101→⎪⎪⎪⎭⎫ ⎝⎛----111011001100110101→⎪⎪⎪⎭⎫ ⎝⎛-----111122112100010001→⎪⎪⎪⎭⎫ ⎝⎛-----111122112100010001,1-A =⎪⎪⎪⎭⎫ ⎝⎛-----111122112; (2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛-----111122112⎪⎪⎪⎭⎫ ⎝⎛410011103=⎪⎪⎪⎭⎫⎝⎛-----322234225.23.设向量)1,1,1,1(--=α,)1,1,1,1(--=β,求(1)矩阵βαT A =;(2)2A .27解:(1)βαT A ===--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--)1,1,1,1(1111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------111111*********1; (2)2A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--------111111*********1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------111111*********1=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------4444444444444444. 24.设向量组T )4,2,1,1(1-=α,T )2,1,3,0(2=α,T )14,7,0,3(3=α,T )0,2,1,1(4-=α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--=01424271210311301),,,(4321αααα→⎪⎪⎪⎪⎪⎭⎫⎝⎛-4220011003301301→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2110011001101301→⎪⎪⎪⎪⎪⎭⎫⎝⎛-2000000001101301→⎪⎪⎪⎪⎪⎭⎫⎝⎛1000000001101301→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101301, 向量组的秩为3,421,,ααα是一个极大线性无关组,=3α42103ααα++.25.已知线性方程组⎪⎩⎪⎨⎧=+-=-+--=+ax x x x x x x x 32132131522312 ,(1)求当a 为何值时,方程组无解、有解;(2)当方程组有解时,求出其全部解(要求用其一个特解和导出组的基础解系表示).解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛----a 51223111201→⎪⎪⎪⎭⎫ ⎝⎛+---211011101201a →⎪⎪⎪⎭⎫ ⎝⎛+--300011101201a . (1)3-≠a 时,方程组无解,3-=a 时,方程组有解;(2)3-=a 时,),(b A →⎪⎪⎪⎭⎫ ⎝⎛--000011101201,⎪⎩⎪⎨⎧=+=--=333231121x x x x x x ,全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-112011k .2826.设矩阵A =⎪⎪⎭⎫⎝⎛2178,(1)求矩阵A 的特征值与对应的全部特征向量;(2)判定A 是否可以与对角阵相似,若可以,求可逆阵P 和对角阵Λ,使得Λ=-AP P 1. 解:)9)(1(9102178||2--=+-=----=-λλλλλλλA E ,特征值11=λ,92=λ. 对于11=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛----=-00111177A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,对应的全部特征向量为11αk (1k 是任意非零常数);对于92=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫⎝⎛--=-00717171A E λ,⎩⎨⎧==22217x x x x ,基础解系为 ⎪⎪⎭⎫ ⎝⎛=172α,对应的全部特征向量为22αk (2k 是任意非零常数).令⎪⎪⎭⎫ ⎝⎛-=1171P ,⎪⎪⎭⎫ ⎝⎛=Λ9001,则P 是可逆矩阵,使得Λ=-AP P 1.四、证明题(本题6分)27.设n 阶矩阵A 满足A A =2,证明A E 2-可逆,且A E A E 2)2(1-=--.证:由A A =2,得E A A E A A E A E A E =+-=+-=--4444)2)(2(2,所以A E 2-可逆,且A E A E 2)2(1-=--.29全国2008年7月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵],,[321ααα=A ,其中i α(3,2,1=i )为A 的列向量,且2||=A ,则=+=|],,3[|||3221ααααB ( C )A .-2B .0C .2D .6333231232221131211||a a a a a a a a a A =,2||333||333232312322222113121211==+++=A a a a a a a a a a a a a B . 2.若方程组⎩⎨⎧=-=+002121x kx x x 有非零解,则k =( A )A .—1B .0C .1D .201111||=--=-=k k A ,1-=k .3.设A ,B 为同阶可逆方阵,则下列等式中错误的是( C ) A .||||||B A AB =B .111)(---=A B ABC .111)(---+=+B A B AD .T T T A B AB =)(反例:⎪⎪⎭⎫ ⎝⎛=1001A ,⎪⎪⎭⎫⎝⎛--=1001B . 4.设A 为三阶矩阵,且2||=A ,则=-*|)(|1A ( A ) A .41 B .1 C .2 D .441||1||1||1|)(|211====-*-*A A A A n . 5.已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .43,αα线性无关部分相关⇒全体相关.。
2007—2008年第一学期A卷
2007-2008年第一学期※※※※※※高等数学(180学时)试题A 卷※※※※※※一.试解下列各题(每小题7分,共56分) 1.计算.3lim ⎪⎭⎫ ⎝⎛--+∞→n n n n n解:=⎪⎭⎫ ⎝⎛--+∞→n n n n n 3lim nn n n n n -++∞→34lim.224111314lim==-++=∞→nn n 2.计算().1cos 1ln lim0--+→x xx x解:()=--+→1cos 1ln lim0x x x x xx x sin 111lim 0--+→().1cos 11lim 20=-+-=→x xx 3.计算.arctan ⎰xdx x解:.arctan ⎰xdx x ⎰⎪⎪⎭⎫ ⎝⎛=2arctan 2x xd ⎰+-=dx x x x x 222121arctan .2⎰⎰++-=dx x dx x x 22112121arctan .2.arctan 2121arctan .22c x x x x ++-= 4.计算.14⎰+dx xx解:令x t =,即.2t x =则.2tdt dx =dt t t dx x x⎰⎰+=+20240121()dt tt t t ⎰++--+=2021112 dt t ⎰=202⎰⎰++-20201122dt t dt =.3ln 21ln 222.2|||20|20202=++-=t t t 5.计算.0⎰+∞-dx xe x解:=⎰+∞-0dx xe x ()⎥⎦⎤⎢⎣⎡--=-⎰⎰+∞-∞=-+∞-000|dx e xe e xd x x x .1|00=-==+∞-+∞-⎰x x e dx e6.设曲线方程为⎩⎨⎧==.2cos ,sin t y t x 求此曲线在点4π=t 处的切线方程.解:t dt dy 2sin 2-=,.cos t dt dx =故.sin 4cos 2sin 2t ttdt dx dtdydx dy -=-== 所以,.22|0-===t dx dy k 切, 又,0=t 时,.0,22==y x , 所以,切点为⎪⎪⎭⎫ ⎝⎛0,22,因此切线方程为:⎪⎪⎭⎫⎝⎛--=-22220x y . 7.已知⎰⎰=yx t tdt dt e 022cos ,求.dxdy解:⎰⎰=yx t tdt dt e 022cos 两边关于x 求导得:x x dxdye y 2.cos .22= 所以 ..cos 222y e x x dxdy-= 8.设,11x xy +-=求().n y 解:()().112111.21121-+=-+=++-=-x xx x y ()()212.1-+-='x y ; ()()()312.2.1-+--=''x y ;……… 归纳可得()()()()()()()111!.1.212.2.1+---+-=+---=n nn n x n x n y二.(15分)已知函数()(),123-=x x x f 求(1)函数()x f 的单调增加、单调减少区间,极大、极小值; (2)函数图形的凸性区间、拐点、渐进线. 解: ()()+∞∞-=,11, D ; 1.因为()()32lim lim1x x x f x x →∞→∞==∞-,所以无水平渐进线;(具体地讲()()32lim lim1x x x f x x →-∞→-∞==-∞-;()()32lim lim1x x x f x x →+∞→+∞==+∞-.);因为函数在1=x 处无定义,且()()3211lim lim1x x x f x x →→==+∞-,故有垂直渐进线1=x ;因为()()22lim lim 1,1x x f x x a x x →∞→∞===-,()()()32222lim lim lim 211x x x x x x b f x ax x x x →∞→∞→∞⎡⎤-=-=-==⎡⎤⎢⎥⎣⎦--⎢⎥⎣⎦均存在, 所以,有斜渐进线2+=x y . 2.令()()()2123300, 3.1x x f x x x x -'==⇒==-;3.令()()4600.1xf x x x ''==⇒=-可得下表:()0,∞- 0 ()1,0 1 ()3,1 3 ()+∞,3()f x ' + 0 + 不存在 — 0 + ()f x '' — 0 + 不存在 + + + ()x f 升 拐点 升 间断 降 升 三.(10分)设()x g 是[]2,1上的连续函数,()().1dt t g x f x⎰= (1)证明在()2,1内可导. (2)证明()x f 在1=x 处右连续. 解:(1)任取点()2,1∈x ,()()()().11dt t g dt t g x f x x f f xxx ⎰⎰-=-∆==∆∆+ ①其中 ()()()dt t g dt t g dt t g xx xxxx ⎰⎰⎰∆+∆++=11故 ()dt t g f x x x⎰∆+=∆(积分中值定理)()x g ∆=.ξ(ξ介于x 与x x ∆+之间)②所以 x f x ∆∆→∆0lim(因为②)()xxg x ∆∆=→.limξξ()().lim x g g x ==→ξξ 因此 ()x f 在()2,1内可导,且()()..x g x f =' (2)记()()=-∆+=∆11f x f f ()()x g dt t g x∆=-⎰∆+.011ξ (ξ介于1与x ∆+1之间)则 f x ∆+→∆0lim ()0.lim `=∆=+→x g ξξ,故()x f 在1=x 处右连续. 四.(10分)(1)设平面图形A 由抛物线2x y =,直线8=x 及x 轴所围成,求平面图形A 绕x 轴旋转一周所形成的立体积.(2)在抛物线2x y =求一点,使得过此点所作切线与直线8=x 及x 轴所围图形面积最大. 解:(1)()..58558052802|πππ===⎰x dx xV(2)任取抛物线2x y =上一点()2,t t ,则抛物线2x y =在点()2,t t 处切线方程为 ()t x t t y L -=-2:2 即 .22t tx y -=设由L 与直线8=x 及x 轴所围图形面积为()()216.2821t t t t S -⎪⎭⎫ ⎝⎛-=()80<<t 令 ()()()0216281621212=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-+--='t t t t t S ,得驻点 316=t 或.16=t (舍) 又因为 ()()40321-=''t t S ,012316<-=⎪⎭⎫ ⎝⎛''S ,所以当316=t 时,()t S 取到极大值,所求之点为.9256,316⎪⎭⎫⎝⎛五.(9分)当0≥x 时,对在[]b ,0上应用拉格朗日中值定理,有()()()b f f b f .0ξ'=-. ()b ,0∈ξ.对于函数()x x f arcsin = ,求.lim 0bb ξ→证明:对()x x f arcsin =在[]b ,0上应用拉格朗日中值定理,有 ()0.110arcsin arcsin 2--=-b b ξ,().,0b ∈ξ所以22arcsin 1⎪⎭⎫⎝⎛-=b b ξ因此 ()⎥⎦⎤⎢⎣⎡-=→→220220arcsin 11lim lim b b b b b ξ()22220)(arcsin arcsin lim b b b b b -=→(等价) ()422)(arcsin arcsin lim b b b b -=→(令)arcsin b t =4220sin lim ttt t -=→ (洛必达)3042sin 2lim t t t t -=→(洛必达)()20122cos 12lim t t t -=→(等价)().3112221.2lim 220==→tt t 故 .31lim=→bb ξ。
2007-2008a(参考答案)
华东政法大学2007-2008学年第一学期期末考试商学院07级各专业《高等数学》A 卷参考答案一、填空题(每题2分,共20分)(1) e(2) 0(3) -2(4) 0(5) 3(6) C x F +-)(c o s(7) xdy x dx yxy y ln 1+- (8) ⎰⎰ee y dx y xf dy ),(10(9 ) 1/2 (10) 222-。
二、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题2分,共20分)(1) C (2) B (3) D (4) A (5) A (6) B (7) C (8)A (9)C (10)A三、计算题(每小题6分,共30分)1、解:x x xf x x dt t tf x x x x F 2)(0)(00lim lim )(lim 20→→→=⎰= (3分)2/)(lim 0x f x →= 02/)0(==f (5分)所以当0=x 时,F (x )在x=0处连续。
(6分)2、解:)111111(1lim )21111(lim 1nn n n n n n n n +++++=++++∞→∞→ n n i n i n 111lim 1∑=∞→+= (2分) ⎰+=1011dx x (4分)2ln |)1ln(10=+=x (6分)3、解:323552x x y -= 0)'52(332351310'=令x x x x y -=-=,所以x=1是函数的稳定点。
X=0是函数的不可导的点,这两点是可能的极值点。
在0)('),0,(>-∞x f ,0)('),1,0(<x f ,0)('),,1(>∞x f所以函数的单调区间增区间为)0,(-∞),1(∞,单调递减区间为)1,0(在点x=0处,函数取得极大值0; 在点x=1处,函数取得极小值-3。
(3分))12()'(''3239101310+==--x x y x x 令,0''=y 则x=-1/2,则在0)(''),,(21<--∞x y ,0)(''),,(21>+∞-x y ,因此,函数在区间),(21--∞内凸,在),(21+∞-内凹。
厦门大学2007至2008第二学期高等代数期末考试试题A
厦门大学2007至2008学年第二学期高等代数期末考试试题 AA.(2向二坷為+曲勾B.C.(30 二 +方也D.设%勺是欧氏空间V 的子空间, *用分别是(2沟二竝+业+1叙述中错误的是___亠厦门大学《高等代数》课程试卷数学科学学院 所有系2007年级 距专业 主孝教师:社規,林鹫试卷类型:(A 春)2BD8.7J2注意:所有答案请写在答题纸上选择题(8题X 4 分)1.设/是n 阶对称正定阵,贝U 虫+川一弘是___ _A. /的所有k 阶子式非负()B.存在n 阶非零矩阵5,使得C.对元素全不为零的向量X ,总有 仏丸D.存在非零向量X ,使得3.设& =(知对后 傀对)是二维行空间W 中的任意两个向量,则W 对以 为规定的内积构成欧氏空间。
B.半正定阵C.负定阵 A.正定阵负定阵2.设卫是n 阶非零实对称阵,则/是半正定阵的充要条件是D.半4. %勺的正交补空间,则下列C.若“耳矶,则哄叶5 .设儿5是n 阶矩阵,贝U 下列叙述中错误的是 _____ 。
A.若AS 是正交阵,则45也是正交阵B.若AS 是正定阵,则A+B 也是正定阵C.若虫』是正交阵,则B'^AB 也是正交阵D.若扎5是正定阵,则沪療也 是正定阵6.设 儿5■是 n 阶实对称阵,则下列说法正确的有___ _个。
扎5相似 ②虫』的特征值相同的充要条件是AB 正交相似件是4,5相抵7.设是n 阶实对称阵,则』/满足 ____________ 寸,必相似。
A. 蚀U )二旳⑷,其中讪分别为虫』B. 加)=加),其中加)=加)分别为几』的特征多项式C. F (虫)二他,且乂的正惯性指数等于刃的正惯性指数D. |/冃引,且丄的正惯性指数等于5的正惯性指数8 .设卩是n 维欧氏空间V 上的自伴随算子,贝U 下列说法正确的有 ___ _个。
①卩在V 的任意一组基下的表示矩阵是实对称阵 ②卩在V 的任意一组标准正交基下的表示矩阵是实对称阵 ③卩在V 的某组基下的表示矩阵是对角阵④卩在V 的某组标准正交基下的表示矩阵是对角阵D.若EuV],则Wc 盼①虫』的特征值相同的充要条件是 ③的特征值相同的充要条件是虫』合同 ④的特征值相同的充要条A. 1B. 2C. 3D.的极小多项式二填空题(8题X 4分)设/是实对称阵,且川机,则/= __________ 0 写出实对称阵丄是正定的三个充要条件充要条件是用Gram-Schmit 正交化方法求由厶=(1丄1,1)占=(-144广1)占二(4,-2厂2』)所张成的子空间的一组标准正交基(取标准内积)设坷吗角 是三维欧氏空间V 的一组基,其度量矩阵为 量,则 ||0||二设Y1用是n 维欧氏空间V 的子空间,且V&E ,则dimVi+dimVf (选择 <,<>,>)0设虫』是n 阶正交阵,若MI + I 月4° 设乂是2阶正交阵,则乂必形如(8分)于1的两个特征向量。
2007-2008(2)期末考试试卷(A)(高等数学)
学号:
武汉工业学院 2007 –2008 学年第 2 学期 期末考试试卷(A 卷)
课程名称 高等数学 2
注:1、考生必须在答题纸的指定位置答题,主观题要有必要的步骤。
2、考生必须在答题纸的密封线内填写姓名、班级、学号。
3、考试结束后只交答题纸。
------------------------------------------------------------------------------------------------------------------------------------一、填空题(每小题 2 分, 共 14 分)
7. x2dS=
其中∑是柱面 x 2 y 2 4 在0 z 1之间的部分曲面.
二、解答下列各题(每小题 7 分,,总计 70 分)
1.
求过直线l
:
3x 2y z 1 0 2x 3y 2z 2 0
且垂直于平面
:
x
2y
3z
5
0 的平面方程。
2.
已知平面
: 3x
y 2z 5 0 与直线l :
与路径无关,
其中 L 为上半平面内的任意曲线,并计算从点(3, 2) 沿曲线 L 到达点(1,2) 时该曲线积分之值。 3
A 卷第 1 页(共 1 页)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
线性代数2007-2008第二学期试卷A答案
n 4, 有唯一解 III)a 2且a 1时,r r
综上,a 2且b 1时,方程组无解。
1 0 (2)a 2, b 1时,A 0 0
1 0 a 1时,A 0 0 0 0 1 1 0 0 1 0 0 2 0 0
3、 设 A, B 均为 3 阶方阵, 且满足 A 2, B 3 , 则 ( AB ) 6 ; ( AB ) = 36 。
1 1 1 1 1 1 2 3 的秩为 4、矩阵 3 1 5 1 1 3 4 2
4
1 0 ,它的行最简形是 0 0
1
1 3 6 0 0 1 和 2 。 3 6 1 1 3 6
6,3,2
8、 设三阶方阵 A 、B 相似,A 的特征值为 1、 2、 3, 则 B* 的特征值为
。
二、单项选择题(每小题 2 分,共 12 分) 得 分
1 3 0
2 3 2 ( 1) 3
3 1 2 1 0 1 1 0 1 A E 5 2 3 0 1 1 0 1 1 1 0 1 0 2 2 0 0 0 1 ( A E ) x 0的基础解系为 1 , 1 A只有一个线性无关的特征向量,因此A不能对角化。
3310分分设为一向量组12341131151?21893??????317?????????????????????????????????????????????????????????????????1
浙 江 工 业 大 学
《线 性 代 数》试 卷 (A)
2007-2008第一学期线代试卷A及标答
武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、23-; 2、E ; 3、-15; 4、5t ≠; 5、 2 二、选择题(每小题3分,共15分)1、C2、A3、B4、C 5 、D 三、解答题(每小题8分,共32分)1、 121000121000(1)2121000121121n n n x xn x n xn n D x x n n x x n nn n-+-++⎡⎤==+⎢⎥⎣⎦+-+--………………(4分) (1)12(1)(1)2n n n n n x x --+⎡⎤=-+⎢⎥⎣⎦………………………………………………………………(8分) 2、 由题意(1,2)B AE = ……………………………………………………………………………………(4分)又BX A =,即(1,2)A E X A =,所以1(1,2)X E -=(1,2)E =……………………………………………(8分) 3、 记1200A A A ⎛⎫=⎪⎝⎭,则1111200A A A ---⎛⎫= ⎪⎝⎭, ……………………………………………………………(2分) 又*11211,10A A ⎛⎫== ⎪-⎝⎭,故112110A -⎛⎫= ⎪-⎝⎭ …………………………………………………………(4分)*21211,31A A -⎛⎫=-= ⎪-⎝⎭,故122131A --⎛⎫= ⎪-⎝⎭………………………………………………………(6分)所以12100100000210031A -⎛⎫⎪-⎪= ⎪- ⎪-⎝⎭。
…………………………………………………………………(8分) 4、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:1211241012213631A -⎛⎫ ⎪-⎪= ⎪--- ⎪-⎝⎭~1211003200320064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~121100320000000-⎛⎫⎪- ⎪ ⎪⎪⎝⎭~11203201300000000⎛⎫-⎪⎪⎪-⎪ ⎪⎪ ⎪⎝⎭…………………(4分)()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(6分)且212αα=,4131233ααα=--。
07-2008高等数学试题(A)解答
广州大学2007-2008学年第一学期考试卷高等数学A 卷(90学时)参考解答一.填空题(每小题3分,本大题满分15分)1.设{1,01()1,12x f x x ≤≤=-<≤, 则(3)f x +的定义域为]1,3[--.2.设1s i n ,0(),01s i n ,x x x f x a x x b x x ⎧<⎪⎪==⎨⎪⎪+>⎩, 当a =1, b =1时, ()f x 在0x =处连续.3.曲线22sin y x x =+上横坐标为0x =处的法线方程为12y x=-.4.设()f x 可导, 2()y f x =, 则y '=)(22x f x '.5.曲线xy xe -=在区间)2,(-∞内是凸的, 拐点为)2,2(2e.二.选择题 (每小题3分, 本大题满分15分)1. 函数lnsin y x =在区间5[,]66ππ上满足罗尔定理的ξ=( C ).A. 0;B. 6π;C. 2π; D. 56π.2. 当0x →时, 123(1)1ax +-与cos 1x -是等价无穷小, 则a =( C ). A. 1; B.23; C. 32-; D. 0.3. 若()f x 在x a =处可导, 则0()()lim x f a x f a x x→+--=( B ).A. ()f a ';B. 2()f a ';C. 0;D. (2)f a '.4. 曲线1siny x x=有一条( A ). A. 水平渐近线1y =; B. 水平渐近线0y =; C. 铅直渐近线1x =; D. 铅直渐近线0x =. 5. 若2()f x dx x C =+⎰,则2()xf x dx -=⎰ ( B ).A. 412x C +;B. 412x C -+; C. 4x C +; D. 4x C -+.三.解答下列各题(每小题6分,本大题满分12分) 1.设22tan (12)y x =+,求d y . 解 ])1[t a n ()1t a n (222'+⋅+='x x y 。
DA2007-2008学年第二学期高数试卷A参考答案
2007-2008学年第二学期高数试卷A 参考答案试卷号:A20080630一、1. 0 ;2. 0)2(2)1(4=+-+-z y x ;3. =I ⎰⎰101),(xdy y x f dx ;4. 32a π, ;5、R = 2 。
6、(4)0y y -=。
二、1、 B ; 2、 A ;3、B ;4、 C ;5、 A ;6、(化工、食工做) D ;6、(物理、机电、电气、计算机做) D三.1、令,12t x =+则 212-=t x ,,tdt dx =当0=x 时1=t 。
4=x 时3=t⎰++40122dx x x =⎰⎰+=+-312312)3(21221dt t tdt t t =3221333213=⎥⎦⎤⎢⎣⎡+t t2、)cos()sin(y x e y x e xzx x -+-=∂∂ ,)cos(y x e y z x --=∂∂ ))cos())cos()((sin(dy y x dx y x y x e dz x---+-=3、令1sin )1(11+-=++n u n n n ππ,111sin)1(2sin )1(lim lim11221<=+-+-=++++∞→+∞→πππππn n u u n n n n n nn n所以原级数收敛且是绝对收敛的。
4、原式=⎰⎰⎰--++-∂+∂-∂-∂aa D dy x y dx y x dxdy yy x x x y )2()())()2((22 =⎰⎰⎰---D aaxdx dxdy )3(=32ab π-5、设长方体得长、宽、高分别为z y x ,,,则)(2xz yz xy S ++=,3a xyz = 令)(),,(3a xyz xz yz xy z y x F --++=λ 则00=-+==-+==-+=xy y x F xz z x F yz z y F z y x λλλ,解得z y x ==,代入3a xyz =得a z y x === , 2min 6a S =四 )(),(),(2x y y x Q xy y x P ϕ==。
山东建筑大学07-08代数A+答案
2007-2008学年第二学期线性代数试题(A 卷)一、单项选择题(每小题4分,本大题共20分)1.如果将n 阶行列式中所有元素都变号,该行列式的值的变化情况为( ) (A) 不变; (B)变号;(C)若n 为奇数,行列式变号;若n 为偶数,行列式不变; (D)若n 为奇数,行列式不变;若n 为偶数,行列式变号. 2.设0λ是可逆矩阵A 的一个特征值,则( ) (A)0λ可以是任意一个数; (B)00>λ;(C)00≠λ; (D) 00<λ.3.设Ax=b 是一非齐次线性方程组,1η和2η是其任意2个解,则下列结论错误的是( ) (A) 12ηη+是Ax=0的一个解; (B)121122ηη+是Ax=b 的一个解; (C) 12ηη-是Ax=0的一个解;(D) 122ηη-是Ax=b 的一个解.4. 若1112α=-(,,), 2764α=(,,),3000α=(,,),则向量组123,,ααα是( )(A) 线性相关; (B) 线性无关; (C) 可能线性相关,可能线性无关; (D) 秩123(,,)3ααα=.5.设100020004A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值为 ( )(A) 1,1,2 ; (B) 1,2,2 ; (C) 1,2,4 ; (D) 2,4,4.二、填空题(每小题4分,本大题共20分) 1. 排列32514的逆序数为 .2. 已知矩阵⎪⎪⎭⎫ ⎝⎛=1111A ,则矩阵=3A .3. 设3阶方阵A 的元素全为1,则秩(A )为 . 4.二次型12(,)f x x =22112264x x x x ++的矩阵是 .5.实对称矩阵A 为正定矩阵的充分必要条件是A 的所有特征值全是 .三、(本题10分)计算行列式efcfbfde cd bd ae ac ab---.四、(本题10分)求方阵⎪⎪⎪⎪⎪⎭⎫⎝⎛2500380000120025的逆矩阵.五、(本题12分) 求线性方程组 ⎪⎩⎪⎨⎧=++-=++-=++-211117847246373542432143214321x x x x x x x x x x x x 的通解.六、(本题12分)求三阶方阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的特征值及特征向量,并判断A 是否与对角形矩阵相似?七、(本题8分)设321,,ααα线性无关,证明3213221,,ααααααα++++也线性无关.八、(本题8分)证明:若A 为n n ⨯阶非零矩阵,则秩(A )=1的充分必要条件是A 可写为一列向量与一行向量的积.2007-2008学年第二学期线性代数试卷A 参考答案和评分标准一、单项选择题(每小题4分,本大题共20分) 1.C ; 2.C ; 3. A ; 4. A ; 5. C 二、填空题(每小题4分,本大题共20分)1. 5 ;2、4444⎛⎫⎪⎝⎭;3. 1 ;4.⎥⎦⎤⎢⎣⎡4331 ;5.正数. 三、(本题10分)计算行列式efcfbfde cd bd ae ac ab ---.解:efcfbfde cd bd ae ac ab---=ecb ec b e c b adf---……….…….…..…………(3分)=111111111---adfbce……………………………………………………………………………….(6分)=abcdef 4……….………………………………………………………....……(10分)四、(本题10分)求方阵⎪⎪⎪⎪⎪⎭⎫⎝⎛2500380000120025 的逆矩阵.解:,21⎪⎪⎭⎫⎝⎛=A O O A A ,112251==A ,125382==A .……….……..……..(3分) ,5221111⎪⎪⎭⎫⎝⎛--==*-A A .……….……………………………………………(5分),8532212⎪⎪⎭⎫ ⎝⎛--==*-A A .…………………………………………..……..…(7分)⎪⎪⎪⎪⎪⎭⎫⎝⎛-=- 85-003-2000000 2- 1 521A .……….…………………………………….…(10分) 五、(本题12分) 求线性方程组 ⎪⎩⎪⎨⎧=++-=++-=++-211117847246373542432143214321x x x x x x x x x x x x 通解.解.对方程组的增广矩阵作初等行变换⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---=00000175100172021211117847246373542A ………………………..(4分) 于是方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧-=++=434217517221x x x x x ,42,x x 为自由未知量……………………..………..(8分)所以方程组的通解为:21432117507200120101k k x x x x ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ . …………….…..….(12分) 六、(本题12分)解:A 的特征方程为2134011||----+=-λλλλA E =0)1)(2(2=--λλ,……………..………....(2分)故A 的特征值为21=λ,132==λλ. ……………..………………….……..(5分)(1) 对于特征值21=λ,得到齐次线性方程组⎪⎩⎪⎨⎧=-=-=-0040312121x x x x x ,它的基础解系是 ⎪⎪⎪⎭⎫⎝⎛100, 所以属于特征值2的全部特征向量为,100⎪⎪⎪⎭⎫⎝⎛k (0≠k ).………..…….(7分)(2) 对于特征值132==λλ,得到齐次线性方程组⎪⎩⎪⎨⎧=--=-=-002402312121x x x x x x ,它的基础解系是⎪⎪⎪⎭⎫⎝⎛-121,所以属于特征值1的全部特征向量为,121⎪⎪⎪⎭⎫⎝⎛-k (0≠k ).………...(9分)因此A 不与对角形矩阵相似. .…………….…………………………….(12分)七、(本题8分)设321,,ααα线性无关,证明3213221,,ααααααα++++也线性无关.证明:设0)()()(3213322211=++++++αααααααk k k ,………..…….(2分)则有0)()()(3322321131=++++++αααk k k k k k k , ……………….(4分)321,,ααα 线性无关,⎪⎩⎪⎨⎧=+=++=+∴0003232131k k k k k k k ,0321===∴k k k ……….….(6分)所以3213221,,ααααααα++++线性无关. …………………………..….(8分)八、(本题8分) 证明:若A 为n n ⨯阶非零矩阵,则秩(A )=1的充分必要条件是A 可写为一列向量与一行向量的积.证明:必要性:因为秩(A )=1,所以存在可逆矩阵P 和Q ,使得10010000(100)0000PAQ ⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,.……………………..….(2分) 得到11)001(001--⎪⎪⎪⎪⎪⎭⎫⎝⎛=Q P A =)(2121n n b b b a a a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛,这里⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 21=⎪⎪⎪⎪⎪⎭⎫⎝⎛-0011 P ,)(21n b b b =1)001(-Q 。
华南农业大学2007高等代数(上)考试卷(A)
华南农业大学期末考试试卷(A 卷)2007学年第一学期 考试科目: 高等代数(上)考试类型:(闭卷) 考试时间: 120 分钟一、填空题(2⨯5=10分)1、设()()()()1f x u x g x v x +=,则()()()(),f x f x g x +=2、设121111,212A =--则112131A A A -+=3、若方程组 123123123000ax x x x ax x x x ax ++=⎧⎪++=⎨⎪++=⎩ 只有零解,则a。
4、设()()()1231,1,2,1,1,0,0,1,1,2,,1k ααα===的一极大无关组是它本身,则k。
5、若二次型()()11212211,,22x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则二次型的秩是:二、单项选择题(2⨯5=10分)1、设非零多项式()f x 不整除()g x ,则必有( )()()()()()()()()()()()()(),1A g x f x B f x g x g x C D f x g x f x =也不整除不是多项式与没有公共根2、设,A B 均为n 阶方阵,则220002000n nA B ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( )()()()()2222nnA A BB ABC A BD A B3、设有矩阵方程:2AX E A X+=+,其中A E -可逆,则( ) ()()()()A X AB X EC X A ED X A E===-=+4、设三元非齐次线性方程组AX B =的系数矩阵每一行的元素之和都为零,则( )()()1,1,1A '是0AX =的解向量 ()()1,1,1B '是A X B =的解向量()()()()13C R A D R A ==5、设二次型()12,,...n f x x x 经非退化线性变换后化为标准形:2221122...r r a y a y a y +++,当且仅当( )时,二次型是正定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题(10个小题,每小题2分,共20分)
1.))()((x g x f +∂ ≤ )))(()),((max(x g x f ∂∂;
2.设)0)()((≠x g x g 除)(x f 所得的商和余式分别为)(x q 和)(x r ,)(x h 为任意非零多项式,则
)()(x h x g 除)()(x h x f 所得的商和余式分别是 q(x) 和 r(x)h(x) ;
3.设)0)()((≠x g x g 除)(x f 所得的商和余式分别为)(x q 和)(x r , 则 =))(),((x r x g
(f(x),g(x)) ;
4.设)
()()()(2121x p x p x ap x f t k t
k k =是)(x f 的标准分解式,则=))('),((x f x f ;
5.排列523146879的逆序数是 7 ;
6.当=i 3 ,=k 1 时,k i a a a a 424312在四阶行列式中取正号;
7.矩阵的秩是指 矩阵行(列)向量组的极大线性无关组所含向量的个数;
8.齐次线性方程组有非零解的充要条件是 其系数矩阵的秩小于未知量的个数 ;
9.如果矩阵A 可逆,且0≠λ,则=-1)(A λ ;
10.如果A 可逆,则A 的伴随矩阵*A 的行列式等于 ;
二.判断题(10个小题,每小题2分,共20分)
1.( × )两个数域Q P ,的并集Q P 还是一个数域;
2.( √ )若)(|)(x f x h ,)(|)(x g x h /
,则))()((|)(x g x f x h +/;
3.( √ )若)(|)(x f x g ,)(|)(x f x h ,且1))(),((=x h x g ,则)(|)()(x f x h x g
4.( √ )复系数多项式)(x f 没有重因式的充分必要条件是)(x f 没有重根;
5.( × )有理系数多项式)(x f 如果有重因式,则一定有重根;
6.( × )若n 阶行列式D 中所有元素都不等于零,则0≠D ;
7.( × )若矩阵A 有一个k 级子式不为零,则k A R >)(;
8.(√ )若 1α,2α, …r α线性无关, 则r α不能由1α,2α, …1-r α线性表出;
9.( × )设A 和B 是同型矩阵,则)()()(B R A R B A R +=+;
10.( √ )初等变换不改变矩阵的秩;
三.计算题(4个小题,每小题10分,共40分)
1.设386)(24---=x x x x f ,在实数域上求)(x f 的重因式和重根.
2. 计算行列式
n
A n
32133212221
1111
=(降阶,展开)
3.解方程组
⎪⎩⎪⎨⎧-=+-=+-=+-1424524132321
321321x x x x x x x x x (增广矩阵,有无穷解)
4.求解矩阵方程X A E AX +=+2,其中⎪⎪⎪⎭
⎫ ⎝⎛=161620101A .
(A-E)X=A*A-E →(A-E )X=(A-E )(A+E )→︱(A-E )︴≠0,∴(A-E )可逆 ∴X=A+E
四.证明题(2个小题,每小题10分,共20分)
1.证明:如果1))(),((=x g x f 且1))(),((=x h x f ,则1))()(),((=x h x g x f .
2.已知r αααβ+++= 321,r αααβ+++= 312,…,121-+++=r r αααβ ,证明向量组r βββ,,, 21与r ααα,,, 21有相同的秩.。