一种无刷直流电动机控制系统设计
无刷直流电动机控制系统
目录简介错误!未定义书签。
第一章直流无刷电机的工作原理71.根本工作原理72.无刷直流电动机的组成10第二章无刷直流电机的控制121.无刷直流电机的控制原理122.转子的控制143.速度的控制15第三章电机的反应151.电流测量152. RPM转速测量16第四章硬件设计161. LPC2141的使用方法16小结17电气与信息工程系课程设计评分表错误!未定义书签。
简介直流无刷电机:又称"无换向器电机交一直一交系统〞或"直交系统〞。
是将交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。
无刷直流电动机Brushless Direct CurrentMotor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控制,是当今最理想的调速电机。
无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最正确选择。
目前,在微小功率畴直流无刷电动机是开展较快的新型电机。
由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多。
大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机构造,小型通风机用外转子电机构造,家电用多极磁场构造及装式构造,电动自行车用多极、外转子构造等等。
上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大。
为了满足大批量、低本钱的市场需要,直流无刷电动机的生产必须要形成规模经济。
因此,直流无刷电动机是一种高投入、高产出的行业。
无刷直流电动机及驱动系统设计
无刷直流电动机及驱动系统设计无刷直流电动机是一种能够将电能转化为机械能的电机,它不仅具有高效率、高功率密度、大扭矩和高转速等优点,同时还能在宽范围内调整转速和控制扭矩。
因此,无刷直流电动机及其驱动系统设计成为了工业应用和个人消费电子产品中常见的一种电机类型。
无刷直流电动机驱动系统由电机本体、功率器件、传感器、微控制器和控制算法等组成。
首先,电机本体是电机的核心部分,包括转子、定子、磁铁和绕组等。
转子是电机的运动部分,由永磁体和轴承支撑。
定子是电机的静止部分,由铁芯和绕组组成。
磁铁是电机的永磁体,产生磁场以与永磁体上的磁场相互作用。
绕组是由导线绕制的线圈,通过流过电流产生磁场。
其次,功率器件是驱动系统的关键部分,用于将电能从电源转化为机械能。
一般采用MOSFET或IGBT等功率器件,以实现高速开关和较高电流能力。
它们能够承受高电压和大电流,并快速切换,使得电机能够根据控制信号调整转速和扭矩。
传感器是驱动系统中用于检测电机位置和转速的重要组成部分。
常见的传感器有霍尔传感器、反电动势传感器和编码器等。
霍尔传感器通过检测磁场强度变化来确定转子的位置,反电动势传感器通过测量绕组中电流变化产生的反电动势来确定电机的转速,编码器则能够提供更准确的位置和速度信息。
微控制器是驱动系统中负责控制电机运行的核心部件。
它包含了控制算法、控制逻辑和通信接口等功能,通过与传感器和功率器件进行交互来实现对电机转速、扭矩和方向的精确控制。
微控制器能够根据输入的控制信号,通过调节电流和电压来控制电机的运行状态。
最后,控制算法是驱动系统的重要组成部分,在实际应用中起到至关重要的作用。
常见的控制算法包括PID控制、电流环控制、速度环控制和位置环控制等。
PID控制通过调整比例、积分和微分控制器的系数来达到稳定控制的效果。
电流环控制通过直接或间接测量电机电流,以控制电机的转矩和速度。
速度环控制通过测量电机转速,并根据所需转速和实际转速之间的差异来调整控制信号。
无刷直流电机自适应调速控制系统的设计
犇犲狊犻犵狀狅犳犅狉狌狊犺犾犲狊狊犇犆 犕狅狋狅狉犃犱犪狆狋犻狏犲犛狆犲犲犱犆狅狀狋狉狅犾犛狔狊狋犲犿
LuJun1,ChengShiqing1,Huang Haibo1,ChenYufeng1,GaoYun2,WangZhihu2
收 稿 日 期 :2018 12 24; 修 回 日 期 :2019 05 28。 基 金 项 目:湖 北 省 中 央 引 导 地 方 科 技 发 展 专 项 (2018ZYYD007),湖 北 省 科 技 支 撑 计 划 项 目(2015BAA049)。 作 者 简 介 :卢 军(1989 ),男 ,安 徽 宿 州 人 ,硕 士 ,讲 师 ,主 要 从 事汽车电子控制技术方向的研究。 黄 海 波(1974 ),男 ,湖 北 十 堰 人 ,博 士 ,教 授 ,主 要 从 事 汽 车 电 子控制技术方向的研究。
为了使得三相直流无刷电机在各控制系统中得到更好 的运用,设 计 生 产 一 款 稳 定 的、控 制 性 能 优 越、成 本 低 廉 的驱动控制器将成为直 流 无 刷 电 机 发 展 的 重 要 需 求[46]。 本 系统设计的是 基 于 SPANSION MB9BF121K 单 片 机 的 三 相 直流无刷电机控制系统,系统采用上位机实现电机转速设
犓犲狔狑狅狉犱狊:DCbrushlessmotor; MB9BF121K;mixedspeed measurement;adaptivespeedcontrol
0 引 言
直流电动机具有运行效率高、调速性能好等诸多优点 而得以广 泛 的 运 用。 但 传 统 的 直 流 电 动 机 大 都 采 用 电 刷, 以机械换相方式进行换相即有刷电机,由于摩擦等物理因 素进而存在噪声、火 花、无 线 电 干 扰 以 及 寿 命 短 等 弱 点 。 [1] 随着半导体行业的飞跃发展发展,借助位置传感器和电子 换 相 线 路 来 替 代 机 械 换 相 的 直 流 无 刷 电 机 应 运 而 生 [2 3]。
基于单片机的无刷直流电机的控制系统设计
【基于单片机的无刷直流电机的控制系统设计】1. 引言无刷直流电机(BLDC),作为一种高效、低噪音、长寿命的电动机,被广泛应用于各种领域。
而采用单片机进行控制,实现对BLDC的精准控制,则成为现代工业中的热门技术。
本文将围绕基于单片机的无刷直流电机控制系统设计展开探讨,深入剖析其原理和实现过程。
2. 无刷直流电机的工作原理无刷直流电机是一种采用电子换相技术的电机,其工作原理与传统的直流电机有所不同。
它不需要使用碳刷和电刷环来实现换向,而是通过内置的电子控制器来精确控制转子上的永磁体和定子上的电磁线圈的相互作用,实现转子的旋转运动。
3. 单片机在无刷直流电机控制中的作用单片机在无刷直流电机的控制系统中扮演着核心角色,它通过内置的PWM模块生成PWM波形,用于控制电机驱动器中的功率器件,同时监测电机的运行状态,并根据需要进行调整和反馈控制,实现对电机的精准控制。
4. 基于单片机的无刷直流电机控制系统设计(1)硬件设计在设计基于单片机的无刷直流电机控制系统时,需要考虑到电机的功率和控制要求,选择合适的单片机和电机驱动器,设计电机驱动电路以及检测装置,确保系统能够稳定可靠地工作。
(2)软件设计利用单片机的PWM模块生成PWM波形,采用适当的控制算法(如PID控制算法),编写控制程序,实现对无刷直流电机的精准控制。
考虑到系统的实时性和稳定性,需要进行充分的软件优化和调试。
5. 个人观点和理解在基于单片机的无刷直流电机控制系统设计中,充分理解无刷直流电机的工作原理和单片机的控制特点,合理选择硬件和编写软件,是至关重要的。
只有系统全面、深刻地理解,才能设计出高质量、稳定可靠的控制系统。
6. 总结本文围绕基于单片机的无刷直流电机控制系统设计展开了探讨,从无刷直流电机的工作原理、单片机在控制系统中的作用,到具体的硬件设计和软件设计,全面、深入地阐述了相关内容。
希望通过本文的阐述,读者能够对基于单片机的无刷直流电机控制系统设计有更深入的理解和应用。
基于Proteus的无刷直流电机控制系统设计
17作者简介:高珮文(1996— ),女,硕士研究生,研究方向为电力系统自动化。
高文,李乾坤,刘圣荇,王皓,吴旭鑫(西安工程大学 电子信息学院,陕西 西安 710089)摘 要:基于STM32F103C6芯片控制的双闭环控制系统的整体电路图,设计出了无刷直流电动机驱动电路、逆变电路、速度检测电路和电流检测电路;利用PID 算法,通过双闭环调速,能够使得无刷直流电机平稳运行,并在转速发生变化时,快速达到准确值。
通过对双闭环检测算法的优化,使得调速更加精确。
利用Proteus 软件对整体系统进行了仿真验证,实验结果表明,系统结构设计合理,硬件设计方案可行,控制算法正确。
关键词:无刷直流电机控制;Proteus 仿真;双闭环控制;数字式PID 调速中图分类号:TM36+1 文献标识码:A 文章编号:1007-3175(2021)05-0017-05 Abstract: Based on the overall circuit diagram of double closed-loop control system controlled by the STM32F103C6 chip, this paper makes designs of drive circuit, inverter circuit, speed detection circuit and current detection circuit of the brushless DC motor. The brushless DC motor can run smoothly and quickly reach an accurate value when the speed changes through applying PID algorithm and the double closed-loop speed regulation. In addition, the double closed-loop detection algorithm can be optimized to make the speed regulation more ac-curate. The whole system has been simulated in the Proteus, and the experimental results show that the system structure design is reasonable, the hardware design scheme is feasible, and the control algorithm is correct.Key words: brushless DC motor control; Proteus simulation; double closed-loop control; digital PID speed regulationGAO Pei-wen, LI Qian-kun, LIU Sheng-xing, WANG Hao, WU Xu-xin(School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710089, China )Design of Brushless DC Motor Control System Based on Proteus基于Proteus的无刷直流电机控制系统设计0 引言随着工业的不断发展,电机的控制也涌现出越来越多的方式,而伴随着微处理器与电力电子技术的诞生与发展,用微处理器控制电机也成为一项值得研究的技术;随着我国工业化生产发展,对于电机的要求也越来越高[1],而无刷直流电机作为一种结构简单、调速性能好、启动转矩大、寿命长、噪音小的电机有了非常广泛的应用[2];伴随着电力电子技术、计算机技术和传感器技术的迅速发展,无刷直流电机的控制也有了突破性的发展[3],目前我国对永磁无刷直流电机的应用起步较晚,在民用方面仍然存在一些缺陷[4]。
直流无刷电机的控制系统设计方案
直流无刷电机的控制系统设计方案1 引言1.1 题目综述直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。
与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。
基于这么多的优点无刷直流电机有了广泛的应用。
比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。
1.2 国内外研究状况目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。
外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。
当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。
近些年来,计算机和控制技术快速发展。
单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。
经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。
所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。
1.3 课题设计的主要内容本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。
选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。
本课题涉及的技术概括如下:(1)学习直流无刷电机的基本结构、工作原理、数学模型等是学习电机的前提和首要内容。
基于R5F212L4的无刷直流电动机控制系统设计
De s i g n o f Br u s h l e s s DC Mo t o r Co n t r o l S y s t e m Ba s e d o n R 5 F 2 1 2 I A
吴 军, 钟 名宏 , 杜 泽华
( 江西理工大学 , 江西赣州 3 4 1 0 0 0 )
摘
要: 针对有霍尔无刷直流 电动机 , 提出一种 以 R 5 F 2 1 2 L 4为 核心 , 基于速度 反馈 P I 控制 、 位置 反馈及相 电
流相位反馈三 闭环 S V P WM 的驱动系统。提出系统的控制策略及硬 件实现 ; 分析传感器 安装误差对转 子角度测量 的影响 , 提 出可以减小测量 误差的计算方法 ; 设计 并实 现系统硬件电路及 程序调试 。实验证 明系统性能稳 定 , 噪声 小, 实现无级 调速等优点 , 同时可 以方便地添加所需 功能模块 , 在中小功 率无刷 直流 电动机应用 , 如 空调 、 冰箱 、 风 扇等高端家用 电器 中有 明显优势 。 关键词 : 三闭环 ; 无刷直流 电动机 ; S V P WM; 霍尔传感器
t e m. I t c a n b e wi d e l y u s e d i n s ma l l a n d me d i u m-s i z e d p o w e r a p p l i nc a e s , s u c h a s f o r a i r c o n d i t i o n e r , r e f r i g e r a t o r , v e n t i l a t o r ,
永磁无刷直流电机控制系统设计
永磁无刷直流电机控制系统设计1.电机模型的建立:建立电机的数学模型是进行控制系统设计的第一步。
永磁无刷直流电机可以使用动态数学模型来描述其动态特性,常用的模型包括简化的转子动态模型和电动机状态空间模型。
简化的转子动态模型以电机的电磁转矩方程为基础,通过建立电机的电流-转速模型来描述电机的动态响应。
这个模型通常用于低频控制和电机启动阶段的设计。
电动机状态空间模型则是通过将电机的状态变量表示为电流和转速变量,用微分方程的形式描述电机的动态特性。
这个模型适用于高频控制和电机稳态响应分析。
2.控制器设计:经典的控制方法包括比例积分控制器(PI)和比例积分微分控制器(PID)。
比例积分控制器是最简单的控制器,通过调节电流的比例增益和积分时间来控制电机的速度。
这种控制器适用于低精度控制和对动态响应要求不高的应用。
比例积分微分控制器在比例积分控制器的基础上增加了微分项,通过调节微分时间来控制系统的阻尼比,提高系统的稳定性和动态响应。
3.参数调节:在控制器设计中,参数调节和整定是非常重要的环节,主要包括根据系统的要求选择合适的控制器参数,并进行优化。
参数调节可以通过试探法、经验法和优化算法等方法进行。
其中,试探法和经验法是相对简单的方法,通过调整控制器的参数值来达到稳定运行或者较好的控制性能。
优化算法可以通过数学模型和计算机仿真的方式进行,通过优化目标函数和约束条件,得到最合适的控制器参数。
总结起来,永磁无刷直流电机控制系统设计主要包括电机模型的建立、控制器设计和参数调节。
在设计过程中,需要根据系统的要求选择合适的控制器,通过参数调节和优化算法来提高系统的稳定性和动态性能。
无刷直流电动机的设计
无刷直流电动机的设计无刷直流电动机(BLDC)是一种基于电子换向器和磁传感器的新型电机,具有高效率、高功率密度、高可靠性、无摩擦等优点,广泛应用于工业、农业、家电和汽车等领域。
本文将介绍无刷直流电动机的设计原理、设计流程和一些关键技术。
一、设计原理无刷直流电动机的工作原理是利用永磁体和电流产生的磁场相互作用,从而产生转矩。
它的转子由一个或多个永磁体组成,通过电流换向器控制电流的方向,从而实现转子的旋转。
无刷直流电动机通常采用三相设计,每相之间的换向角为120度。
二、设计流程1.确定电机的额定功率和转速。
根据设计要求,确定电机的额定功率和转速。
这些参数将决定电机的尺寸、材料和冷却方式等。
2.选择永磁材料和磁路设计。
根据电机的运行环境和功率需求,选择合适的永磁材料。
同时,设计磁路以确保磁通密度的均匀分布和最小的磁路损耗。
3.设计定子绕组和绝缘系统。
根据电机的功率和电压要求,设计定子绕组。
同时,设计合适的绝缘系统以确保电机的安全性和可靠性。
4.确定电流换向器的拓扑和控制策略。
选择合适的电流换向器拓扑(如半桥、全桥等)以及控制策略(如PWM控制、电流环控制等),以实现电机的换向操作。
5.进行磁场分析和电磁设计。
通过磁场分析软件,进行电磁设计。
通过磁场分析,可以得到电机的特性曲线、转矩和功率密度等指标。
6.进行结构设计和热分析。
根据电机的尺寸和电机的工作环境,进行结构设计和热分析。
结构设计要考虑机械强度、制造成本等因素,热分析要考虑散热方式和绝缘系统。
7.制造和测试。
根据设计图纸进行电机的制造。
制造完成后,进行测试,通过测试结果对电机的设计进行修正和优化。
三、关键技术1.电磁设计技术。
电磁设计是无刷直流电动机设计的核心技术,它涉及到永磁体选材、磁路参数计算、磁场分析等方面。
2.电流换向器设计技术。
电流换向器是控制无刷直流电动机运行的关键部件,它的设计直接影响到电机的性能。
目前常用的换向器有半桥、全桥等拓扑,选择合适的拓扑和控制策略对电机的效率和稳定性有重要影响。
无刷直流电机控制器的设计
无刷直流电机控制器的设计3.1 无刷直流电机控制器的概述无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。
在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。
目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。
这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。
另一种是以微处理器为控制核心构成硬件系统。
这种方案可以编程控制,应用范围广,且灵活方便。
电机控制器是无刷直流电动机正常运行并实现各种调速伺服功能的指挥中心,它主要完成以下功能:对各种信号进行逻辑综合,以给驱动电路提供各种控制信号;产生PWM调制信号,实现电机的调速;对电机进行速度环和电流环调节,使系统具有较好的动态和静态性能;实现短路、过流、欠压、堵转等故障保护功能。
现代控制技术的发展与微处理器的发展息息相关,可以说,每一次微处理器的进步都推动了控制技术的一次飞跃。
在微处理器出现之前,控制器只能由模拟系统构成。
由模拟器件构成的控制器只能实现简单的控制,功能单一、升级换代困难,而且由分立器件构成的系统控制精度不高,温度漂移,器件老化严重,使得维护成本增高,限制了它的发展和应用范围。
随着微处理器的迅速发展和推广,控制器由模拟式转换成了数模混合式,并进一步发展到全数字式,技术的进步使得许多模拟器件难以实现的功能都可以方便地用软件实现,使系统的可靠性和智能化水平大大提高。
在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。
目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。
这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。
另一种是以微处理器为控制核心构成硬件系统。
这种方案可以编程控制,应用范围广,且灵活方便[9][10]。
控制器是电动自行车的驱动系统,它是电动自行车的大脑。
其主要作用是在保证电动自行车正常工作的前提下,提高电机和蓄电池的效率、节省能源、保护电机及蓄电池,以及降低电动自行车在受到破坏时的损伤程度。
无刷直流电动机控制系统课件
针对电机在实验中表现出的稳 定性不足的问题,可以增强系 统的稳定性以提高其运行可靠 性。例如,增加保护电路或改 进散热设计等。
06 无刷直流电动机控制系统 的发展趋势与展望
技术创新与进步
数字化控制
采用先进的数字信号处理器和控制器,实现无刷直流电动机的高 性能控制,提高系统精度和稳定性。
智能传感技术
航空航天
无刷直流电动机控制系统在航空航 天领域中也得到了广泛的应用,如 无人机、直升机、卫星等。
汽车电子
无刷直流电动机控制系统在汽车电 子领域中也有广泛的应用,如汽车 空调、电动车窗、电动座椅等。
02 无刷直流电动机控制系统 的工作原理
无刷直流电动机的工作原理
结构特点
无刷直流电动机主要由电机本体、位置传感器和电子换向器 组成。电机本体具有多个线圈,电子换向器通过晶体管控制 电流的流向,实现电机的旋转。
通信协议调试
对通信协议进行调试,确保通信的稳定性和可靠性。
调试与优化
系统调试
对整个无刷直流电动机控制系统进行调试,包括 硬件电路、软件程序和通信等。
性能测试
对控制系统的性能进行测试,包括响应时间、稳 态误差等指标。
优化建议
根据调试和性能测试的结果,提出优化建议,进 一步提高控制系统的性能。
05 无刷直流电动机控制系统 的性能测试与评估
应用磁编码器、光电编码器等传感器,实现对无刷直流电动机的精 确速度和位置控制。
容错控制技术
引入多种传感器和算法,提高系统的容错能力,确保无刷直流电动 机在故障情况下的安全运行。
应用领域拓展
工业自动化
随着工业自动化水平的提高,无刷直流电动机控制系统在 机器人、数控机床等领域的应用不断扩大。
无刷直流电机控制系统的设计——毕业设计
无刷直流电机控制系统的设计——毕业设计学号:1008421057本科毕业论文(设计)(2014届)直流无刷电机控制系统的设计院系电子信息工程学院专业电子信息工程姓名胡杰指导教师陆俊峰陈兵兵高工助教2014年4月摘要无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。
现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。
自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。
现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。
本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。
关键词:控制系统;DSPIC30F2010芯片;无刷直流电机AbstractBrushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention.Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth.The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop.Keywords: Control system; dspic30f2010 chip; brushless DC motor目录摘要 (I)Abstract (III)目录 (IV)1 引言 01.1 研究背景及意义 01.2 国内外研究现状 (1)1.3 设计任务与要求 (1)2 基本理论 (1)2.1 无刷直流电机的结构以及基本原理 (1)2.2 无刷直流电机的运行特性 (4)2.3 无刷直流电机的应用 (5)3 直流无刷直流电机控制系统的设计 (6)3.1 无刷直流电动机系统的组成部分 (6)3.2 无刷直流电机控制系统的设计 (8)4 直流无刷电机的电路设计 (9)4.1 开关电路的设计 (9)4.2 保护电路的设计 (9)4.3 驱动电路的设计 (10)4.4 反馈电路的设计 (10)4.5 电源电路的设计 (11)5 直流无刷电机控制系统的软件设计 (11)5.1 系统功能的实现 (12)5.2 软件流程图 (12)6 实物成果及展望 (13)致谢 (16)参考文献 (16)附录 (19)1 引言近年来随着微电子技术自动控制技术和新型永磁材料的发展,无刷直流电机的应用越来越广泛。
无刷直流电机控制系统的设计及仿真
目录1 前言............................................................................................................... - 0 -1.1 无刷直流电机的开展......................................................................... - 0 -1.2 无刷直流电机的优越性..................................................................... - 0 -1.3 无刷直流电机的应用......................................................................... - 1 -1.4 无刷直流电机调速系统的研究现状和未来开展............................. - 1 -2 无刷直流电机的原理................................................................................... -3 -2.1 三相无刷直流电动机的根本组成..................................................... - 3 -2.2 无刷直流电机的根本工作过程......................................................... - 4 -2.3 无刷直流电动机本体......................................................................... - 5 -2.3.1 电动机定子............................................................................... - 5 -2.3.2 电动机转子............................................................................... - 6 -2.3.3 有关电机本体设计的问题....................................................... - 7 -3 转子位置检测............................................................................................... - 8 -3.1 位置传感器检测法............................................................................. - 8 -3.2 无位置传感器检测法......................................................................... - 9 -4 系统方案设计............................................................................................. - 11 -4.1 系统设计要求................................................................................... - 11 -4.1.1 系统总体框架......................................................................... - 11 -4.2 主电路供电方案选择....................................................................... - 11 -4.3 无刷直流电机电子换相器............................................................... - 13 -4.3.1 三相半控电路......................................................................... - 13 -4.3.2 三相全控电路......................................................................... - 14 -4.4 无刷直流电机的根本方程............................................................... - 15 -4.5 逆变电路的选择............................................................................... - 17 -4.6 基于MC33035的无刷直流电动机调速系统................................... - 18 -4.6.1 MC33035无刷直流电动机控制芯片...................................... - 18 -4.6.2 基于MC33035的无刷直流电动机调速系统设计 ................ - 19 -5 无刷直流电机调速系统的MATLAB仿真................................................... - 22 -5.1 电源、逆变桥和无刷直流电机模型............................................... - 23 -5.2 换相逻辑控制模块........................................................................... - 24 -5.3 PWM调制技术.................................................................................... - 29 -5.3.1 等脉宽PWM法......................................................................... - 31 -5.3.2 SPWM(Sinusoidal PWM)法..................................................... - 31 -5.4 控制器和控制电平转换及PWM发生环节设计............................... - 31 -5.5 系统的仿真、仿真结果的输出及结果分析................................... - 33 -5.5.1 起动,阶跃负载仿真............................................................. - 33 -5.5.2 可逆调速仿真......................................................................... - 35 -6 总结和体会................................................................................................. - 37 -无刷直流电机调速控制系统设计1前言直流无刷电机,无机械刷和换向器的直流电机,也被称为无换向器直流电动机。
电动摩托车用无刷直流电机控制系统的设计
( 武汉科技 大学 湖 北 武汉 4 3 0 0 8 1 )
摘要 : 根 据 无 刷 直 流 电机 的 工作 原 理 , 设 计 了一 种 以 P I C1 6 F 7 3 7单 片机 为控 制 核 心 的 电动 摩 托 车 用 无 刷 直 流 电机 控
制 系统 , 给 出 了 系统 详 细 的硬 件 电路 和 软件 设 计 方 法 , 实现 了电 动摩 托 车 定 速 和 调 速 两种 工 作 模 式的 选 择 。 实验 证 明 该 设 计 方案 控 制 电路 简 洁 , 器件 少 , 成本低 , 保 护措 施 可 靠 , 提 高 了 系统 的控 制 精 度 。 对 无 刷 直 流 电 机 在 其 他 领 域 的应 用 有 一 定 的 帮助 和借 鉴 。 具 有 广 泛 的现 实 意 义
电动 摩 托 车 必 将 成 为 人 类 的 主 要 代 步 工 具 之 一 I l I 。 采 用 无 刷
直 流 电机 的 电 动 摩 托 车作 为 绿 色 环 保 交 通 工 具 。 具 有 操 作 简 单、 骑乘舒 适 、 维护方便 、 污染小和噪声低等优点 。 P I C系列 单 片机 是 采 用精 简 指 令 集 R I S C技 术 、 哈佛 总 线 和 两 级 指 令 流 水 线 结 构 的 高性 能 价 格 比 的 8 位 嵌 入 式 控 制 器
第2 1卷 第 6期
V0 1 . 21 No . 6
电子 设计 工程
El e c t r o n i c De s i g n E n g i n e e r i n g
2 0 1 3年 3月
Ma r . 2 0 1 3
电动摩 托 车 用无刷 直 流 电机 控制 系统 的设计
无刷直流电机控制器的设计
无刷直流电机控制器的设计
无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便。
★工作电压、功耗:
单片机的工作电压最低可以达到,最高为6V,常见的是3V和5V
单片机的功耗参数主要是指正常模式、空闲模式、掉电模式下的工作电流,用电池供电的系统要选用电流小的产品,同时要考虑是否要用到单片机的掉电模式,如果要用的话必须选择有相应功能的单片机。
★其他方面:
在单片机的性能上还有很多要考虑的因素,比如中断源的数量和优先级、工作温度范围、有没有低电压检测功能、单片机内部有无时钟振荡器、有无上电复位功能等等。
毕业论文--无刷直流电动机控制系统设计方案
无刷直流电动机控制系统设计方案摘要无刷直流电动机是在有刷直流电动机的基础上发展起来的。
现阶段,虽然各种交流电动机和直流电动机在传动应用中占主导地位,但无刷直流电动机正受到普遍的关注。
自20世纪90年代以来,随着人们生活水平的提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都越来越趋向于高效率化、小型化及高智能化,作为执行元件的重要组成部分,电机必须具有精度高、速度快、效率高等特点,无刷直流电机的应用也因此而迅速增长。
本设计是把无刷直流电动机作为电动自行车控制系统的驱动电机,以PIC16F72单片机为控制电路,单片机采集比较电平及电机霍尔反馈信号,通过软件编程控制无刷直流电动机。
关键词无刷直流电动机单片机霍尔位置传感器AbstractBrushless DC motor in a brush DC motor developed on the basis of. At this stage, although exchanges of all kinds of DC motors and motor drive in the application of the dominant, but brushless DC motor is under common concern。
Since the 1990s,as people's living standards improve and modernize production, the development of office automation, household appliances, industrial robots and other equipment are increasingly tend to be high efficiency,small size and high intelligence, as the implementation of components An important component of the motor must have a high accuracy, speed, high efficiency, brushless DC motor and therefore the application is also growing rapidly.This design is the brushless DC motor as the electric bicycle motor—driven control system, PIC16F72 microcontroller for control circuit, SCM collection and comparison—level electrical signal Hall feedback, software programming through brushless DC motor control . Key words bldcm the single chip processor hall position sensor 摘要 (I)Abstract (II)第1章概述 (1)1。
无刷直流电机控制系统设计
无刷直流电机控制系统设计随着科技的发展,越来越多的机械设备需要使用电机来驱动其运转。
而在众多电机中,无刷直流电机因为其高效、高精度、低功耗等优点而备受瞩目。
无刷直流电机的使用范围越来越广泛,从工业控制,到航模、改装等领域都可以见到无刷直流电机的身影。
本文将围绕无刷直流电机控制系统设计展开分析和探讨。
一、无刷电机的结构和工作原理无刷直流电机(Brushless DC motor)是一种将交流电转化为直流电供给电机使用的设备。
无刷电机的核心部分是转子和定子。
转子由永磁体构成,定子上则包覆着三个交替排布的电枢,能够使电流依次通过A、B、C三路,控制转子的运转。
工作原理是,当电流通过A电极的时候,将产生一个磁场,这个磁场是与转子上的永磁体相互作用的。
这样,便会使转子转动,那么电流经过B、C电极的时候,也是如此。
在三种电极依次通过电流之后,便完成了一次转子的旋转。
从工作原理上看,无刷直流电机控制主要就是控制三路电流,以便控制电机输出功率。
二、无刷电机控制模式1. 直流切换模式这种控制模式是将DC电压用硅控整流器进行整流后,施加到电机上的模式。
主要存在一个问题,就是每转过一定角度,电流就会进行交替。
这就需要对控制进行改进。
因此,直流切换模式下,最多只能适用于控制力矩较小的场合,如四轮小车、飞行器等。
2. 方波控制模式(交错控制模式)方波控制模式下,电机的控制通过利用切换模式中交替电流的配合,进行控制。
方波控制模式的特点是,控制方法简单易操作,是广泛使用的控制方式。
同时适用于各种正反转、调速等控制模式。
只不过转速误差较大,适用于中小功率的无刷电机。
3. 正弦波控制模式正弦波控制模式是通过推导正弦函数来进行控制。
这种控制方式非常适用于BEMF(反电势)功能模块。
当转子转动的时候,会产生“反电动势”(BEMF),这个反电动势正好可以反向控制电流。
所以使用正弦波控制模式的话,能够更加精确的掌控转速和力矩。
到这里,我们已经讲述了无刷电机的控制模式。
直流无刷电机控制实验系统设计与实现
直流无刷电机控制实验系统设计与实现摘要:伴随着社会和科技的发展,在产业的制造与使用中,永磁材料、电力电子技术、传感器技术、现代控制理论以及微型计算机技术都取得了巨大的进展。
基于上述相关材料、技术的研发与集成,使得其在直流无刷电动机的应用技术更为完备与成熟,并具有高效率、长寿命、低噪声等优良的速度-转矩性能等优点。
在新时期、新情况下,直流无刷电动机以其众多的优势和特点,在工业、家电等行业得到了越来越多的应用,这就对电动机的控制提出了越来越高的要求。
本文在已有的科研成果的前提下,针对当前我国在直流无刷电机方面的研发现状,提出了直流无刷电机的发展方向。
关键词:直流无刷电机;发展;现状分析由于其具有高效率、低噪声、结构紧凑、可靠性高、维修费用低等优点,在各类新能源汽车和各类家用电子产品中得到了广泛应用。
本文所设计的 BLDCM控制试验系统是以EV汽车为原型,具有EV汽车的基础性能;并对电动式汽车控制系统中的每一个功能进行了分区、分区的划分,方便了详细的试验方案的实施;同时,本试验所使用的24V的电压,使整个试验系统的直流母线电流不超过2A,从而避免了因大功率而造成的安全隐患和设备的损坏。
在软件设计方面,对程序的流程图进行了细致的设计,将各种控制功能以不同的形式包装起来,方便了软硬件的协作调试。
该实验平台可以应用于课堂实验,可以应用于课程设计,可以进行创新实验。
一、直流无刷电机(一)直流无刷电机基本结构直流无刷电机是同步电机的一种,即电机转子的转速主要受电机定子旋转磁场的速度和周边相应转子极数的影响直流无刷电机是21世纪发展起来的一种新型的机电一体化装备,它的主要组成是由电机本体、传动机构等组成,尤其是在工业生产中,被越来越多的人所采用。
至于直流无刷电机,则是将新老两代直流电机的优势相结合,不仅保留了传统直流电机的优势,而且在具体的结构设计上,基本上去掉了碳刷和滑环,达到了无级调速,而且速度范围也相对较宽,这样的话,在使用过程中,其过载能力会得到极大的提高,而且可靠性、稳定性和适应性也会得到很好的改善,最主要的是,在维护和维护过程中,可以方便地进行操作和维护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种无刷直流电动机控制系统设计————————————————————————————————作者:————————————————————————————————日期:一种无刷直流电动机控制系统设计摘要:介绍了MOTORALA公司专门用于无刷直流电机控制的芯片MC33035和MC33039的特点及其工作原理,系统设计分为控制电路与功率驱动电路两大部分,控制电路以MC33035/33039为核心,接收反馈的位置信号,与速度给定量合成,判断通电绕组并给出开关信号。
在驱动电路设计中,采用三相Y联结全控电路,使用六支高速MOSFET 开关管组成。
通过实验,电机运行稳定。
关键词:无刷直流电机;MC33035/33039;控制电路;驱动电路Design of control system for Brushless DC MotorsSUN GuanQun;SHI Ming;TONG LinYi;XU YiPingAbstract:It introduces the MOTORALA company used for the characteristics o f the chip MC33035 and MC33039 which control the brushless direct current motor exclusively and its work principle. The system design divides into two major parts: the control circuit and the power driver circuit, the control circ uit take MC33035/33039 as the core, receive feedback position signal, with th e speed to the quota synthesis, the judgment circular telegram winding and p roduces the switching signal. In the actuation circuit design, uses the three-p hase Y joint all to control the electric circuit, uses six high speed MOSFET swit ching valve to compose. Through the experiment, the electric motor moveme nt stable is reliable.Keywords:Brushless DC motor;MC33035/33039;control circuit;drive circuit 1.引言永磁直流无刷电机是近年来迅速成熟起来的一种新型机电一体化电机。
该电机由定子、转子和转子位置检测元件霍尔传感器等组成,由于没有励磁装置,效率高、结构简单、工作特性优良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便等优点,使无刷电机的研究具有重大意义。
本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实现。
本设计采用无刷直流电机专用控制芯片MC33035,它能够对霍尔传感器检测出的位置信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需外围电路简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试相当复杂,而且要占用很大面积的电路板。
MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。
利用专用集成芯片构成的无刷直流电机控制系统,具有集成度高、速度快及完善的保护功能等特点。
驱动电路结构简单,因而整个线路外围元件少、走线简单,可大大减小逆变器体积。
2.系统原理该闭环速度控制系统用三个霍尔集成电路作为转子位置传感器。
用MC33035的8脚参考电压(6.24V)作为它们的电源,霍尔集成电路输出信号送至MC33035和MC3303 9。
系统控制结构框图如图1所示,MC33039的输出经低通滤波器平滑,引入MC33035的误差放入器的反相输入端,而转速给定信号经积分环节输入MC33035的误差放大器的同相输入端,从而构成系统的转速闭环控制。
图1 系统控制原理3.控制电路设计MC33035的工作电源电压范围很宽,在10V-30V之间,芯片内含有基准电压6.25 V。
MC33035内部的转子位置译码器主要用于监控三个传感器输入,以便系统能够正确提供高端和低端驱动输入的正确时序。
传感器输入可直接与集电极开路型霍尔效应开关或者光电耦合器相连接。
此外,该电路还内含上拉电阻,其输入与门限典型值为2.2V的TTL电平兼容。
用MC33035系列产品控制的三相电机可在最常见的四种传感器相位下工作。
MC33035所提供的60°/120°选择可使MC33035很方便地控制具有60°、120°、240°或300°的传感器相位电机。
其三个传感器输入有八种可能的输入编码组合,其中六种是有效的转子位置,另外两种编码组合无效,通过六个有效输入编码可使译码器在使用60°电气相位的窗口内分辨出电机转子的位置。
MC33035直流无刷电机控制器的正向/反向输出可通过翻转定子绕组上的电压来改变电机转向。
当输入状态改变时,指定的传感器输入编码将从高电平变为低电平,从而改变整流时序,以使电机改变旋转方向。
电机通/断控制可由输出使能来实现,当该管脚开路时,连接到正电源的内置上拉电阻将会启动顶部和底部驱动输出时序。
而当该脚接地时,顶端驱动输出将关闭,并将底部驱动强制为低,从而使电动机停转。
MC33035中的误差放大器、振荡器、脉冲宽度调制、电流限制电路、片内电压参考、欠压锁定电路、驱动输出电路以及热关断等电路的工作原理及操作方法与其它同类芯片的方法基本类似。
M C33035外围电路如图2。
图2 MC33035外围电路如图所示,我们给电压为24V的电源,F/R控制电机转向,正向/反向输出可通过翻转定子绕组上的电压来改变电机转向。
当输入状态改变时,指定的传感器输入编码将从高电平变为低电平,从而改变整流时序,以使电机改变旋转方向。
电机通/断控制可由输出使能7管脚来实现,当该管脚开路时,连接到正电源的内置上拉电阻将会启动顶部和底部驱动输出时序。
而当该脚接地时,顶端驱动输出将关闭,并将底部驱动强制为低,从而使电动机停转。
由于MC33035的8管脚提供6.25V标准电压输出,因此可以用此电压给霍尔元器件以及其他器件供电,在这个系统中PWM信号的产生是很容易的,而且PWM信号的频率可以由外部电路调节, 其频率由公式决定, R5是一个可变电阻,通过调节R5,即可改变PWM信号的频率。
只需要在MC33035的外围加一个电容、一个电阻及一个可调电位器即可产生我们所需要的脉宽调制信号。
因MC33035的8管脚输出为6.25V标准电压,由R6、C1组成了一个RC振荡器,所以10管脚的输入近似一三角波,其频率由决定。
R5为控制无刷电机转速的电位器,通过该电位器改变11管脚对地的电压,从而来改变电机的转速。
运算放大器1由外部接成一个跟随器的形式,所以11管脚的对地电压即为比较器2的反相输入电压,通过电位器R5改变11脚的对地电压从而改变比较器2的输出方波的占空比,即比较器2的输出为我们所需的PWM信号。
14管脚是故障输出端,L1用作故障指示,当出现无效的传感器输入码、过流、欠压、芯片内部过热、使能端为低电平时,LED发光报警,同时自动封锁系统,只有故障排除后,经系统复位才能恢复正常工作。
R6及C1决定了内部振荡器频率(也即PWM的调制频率),转速给定电位计W的输出经过积分环节输入MC33035的误差放大器的同相输入端,其反向输入端与输出端相连,这样,误差放大器便构成了一个单位增益电压跟随器,从而完成系统的转速控制。
8管脚接一NPN的三极管,当8脚电压为高电平时,三极管导通,为MC33039和霍耳传感器提供电压。
电解电容C2是滤波作用,防止电流回流。
MC33035的17管脚的输入电压低于9.1V时,由于17脚的输入连接内部一比较器的同相输入端,该比较器的反相输入为内部一9.1V标准电压,此时MC33035通过与门将驱动下桥的三路输出全部封锁,下桥的三个功率三极管全部关断,电机停止运行,起欠压保护作用。
过热保护等功能是芯片内部的电路,无需设计外围电路。
该系统的无刷直流电机内置有3个霍尔效应传感器用来检测转子位置,一旦决定电机的换相,并可以根据该信号来计算电机的转速。
传感器的输出端直接接MC33035的4、5、6管脚。
当电机正常运行时,通过霍尔传感器可得到3个脉宽为180度电角度的互相重叠的信号,这样就得到6个强制换相点,MC33035对3个霍尔信号进行译码,使得电机正确换相。
当MC33035的11脚接地时,电机转速为0,即可实现刹车制动。
MC330399是Motorola公司配合MC33035专门设计的无刷电机闭环速度控制器,这是一个8脚的双列直插窄式集成电路块。
MC33039对输入的转子位置信号码进行有关的处理,产生一个与电机实际转速成正比的转速电压信号。
从电机转子位置检测器送来的三相位置检测信号(SA、SB、SC)一方面送入MC330 35,经芯片内部译码电路结合正反转控制端、起停控制端、制动控制端、电流检测端等控制逻辑信号状态,经过运算后,产生逆变器三相上、下桥臂开关器件的六路原始控制信号,其中,三相下桥开关信号还要按无刷直流电机调速机理进行脉宽调制处理。
处理后的三相下桥PWM控制信号(AB、BB、CB)及三相上桥控制信号(AT、BT、CT)经过驱动放大后,施加到逆变器的六个开关管上,使其产生出供电机正常运行所需的三相方波交流电流。
另一方面,转子位置检测信号还送入MC33039,经F/V转换,得到一个频率与电机转速成正比的脉冲信号FOUT,其通过简单的阻容网络滤波后形成转速反馈信号,利用MC33035中的误差放大器即可构成一个简单的P调节器,实现电机转速的闭环控制。
实际应用中,还可用外接各种PI、PID调节电路实现复杂的闭环调节控制,如图3所示。
图3 MC33039构成的闭环控制系统电路图从MC33039的5脚输出的脉冲数是电动机每一转输出12个脉冲。
按电动机最高转速来选择定时元件。
设最高转速是3500r/min,即58r/s。