闵行区2009学年第二学期高三年级质量调研考试数学试卷答案
2009年上海闵行区高三数学质量监控考试试卷(文科)及答案
2008学年第一学期闵行区高三质量监控考试数 学 试 卷(文科)考生注意:1.答卷前,考生务必在答题纸上将学校、班级、学号、姓名等填写清楚. 2.本试卷共有21道题,满分150分,考试时间120分钟.一. 填空题(本大题满分60分)本大题共有12题,考生应在答题纸上相应编号的空格内 直接填写结果,每个空格填对得5分,否则一律得零分.1.设全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}2,3,4B =,则()U AB =ð .2.在等比数列{}n a 中,28a =,164a =,则公比q 为 . 3.不等式|32|1x -<的解是 . 4.已知点Z 是复数21iz i-=+在复平面内对应的点,则点Z 在第 象限. 5.函数2()log (1)f x x =-的反函数是1()f x -= . 6.在6(1)x -的二项展开式中,中间项的系数是 .7.已知圆锥的底面积为π,母线长为2,则该圆锥的母线与底面所成的角的大小是 .8.根据右面的框图,打印的最后一个数据是 . 9.已知数列{}n a 是以13为首项,以2-为公差的等差数列,n S 是其前n 项和,则n S 的最大值是 .10.四位同学各自制作了一张贺卡,分别装入4个空白信封内,这四位同学每人随机地抽取一封,则恰好有一人 抽取到的贺卡是其本人制作的概率是 . 11.已知x 是1、2、x 、4、5这五个数据的中位数,又知1-、5、1x-、y 这四个数据的平均数为3,则x y +最小值为 .12.若关于x 的不等式211()022n x x +-≥对任意n *∈N 在(,]x λ∈-∞恒成立,则实常数λ的取值范围是 .二. 选择题(本大题满分16分)本大题共有4题,每题只有一个正确答案,选对得4分,答案必须涂在答题纸上.考生应将代表答案的小方格用铅笔涂黑,注意试题题号与答题纸上相应编号一一对应,不能错位.13.某人在超市一次性购买了20斤大米和10斤食用油,大米的价格是1.9元/斤,食用油的价格是15元/斤,则购买这两种商品的总花费可以用下列各式计算得到的是[答]( )(A)201510 1.9. (B) 20 1.91015. (C) ()1.9201015⎛⎫ ⎪⎝⎭. (D) ()1.9201015⎛⎫⎪⎝⎭.14.如图为函数log n y m x =+的图像,其中m 、n 为常数,则下列结论正确的是)(A) 0m <,1n >. (B) 0m >,1n >. (C) 0m >,01n <<. (D) 0m <,01n <<.15.给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是 “直线l 与平面α垂直”的 [答]( ) (A) 充分非必要条件. (B) 必要非充分条件. (C) 充要条件. (D) 既非充分也非必要条件.16.如图,一质点A 从原点O 出发沿向量1(2,0)OA =到达点1A ,再沿y 轴正方向从点1A 前进11||2OA 到达点2A ,再沿1OA 的方向从点2A 前进121||2OA 到达点3A ,再沿y 轴正方向从点3A 前进131||2OA 到达点4A ,,这样无限前进下去, 则质点A 最终到达的点的坐标是 [答]( ) (A) 42(4,2)22n n--. (B) (4,2). (C) 8844(,)334334n n--⋅⋅. (D) 84(,)33.三. 解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸上与题号对应的区域内写出必要的步骤. 17.(本题满分12分)如图,直四棱柱1111ABCD A BC D -中,底面ABCD 是直角梯形,//AB DC ,AD AB ⊥,且2AD DC ==,3AB =,求异面直线11D C 与DB 所成角的大小(结果用反三角函数值表示).18.(本题满分14分)某医药研究所开发一种新药,据监测:服药后每毫升血液中的含药量()f x 与时间x 之间满足如图所示曲线.当[0,4]x ∈时,所示的曲线是二次函数图像的一部分,满足21()(4)44f x x =--+,当(4,19]x ∈时,所示的曲线是函数12log (3)4y x =-+的图像的一部分.据测定:每毫升血液中含药量不少于1微克时治疗疾病有效.请你算一下,服用这种药一次大概能维持多长的有效时间?(精确到0.1小时)19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点(P -.(1)求行列式sin tan 1cos ααα的值;(2)若函数()cos()cos sin()sin f x x x αααα=+++(x ∈R ),求函数2(2)2()2y x f x π=-+的最大值,并指出取到最大值时x 的值.)ABCD 1A 1B 1C 1D20.(本题满分16分)本题共有3个小题,第1、2小题满分各4分,第3小题满分8分.已知向量2(1,2)a x p =++,(3,)b x =,()f x a b =⋅,p 是实数. (1)若存在唯一实数x ,使a b +与(1,2)c =平行,试求p 的值; (2)若函数()y f x =是偶函数,试求函数()f x 在区间[1,3]-上的值域; (3)已知α:函数()f x 在区间1[,)2-+∞上是增函数,β:方程()f x p =有小于2-的实根.试问:α是β的什么条件(指出充分性和必要性)?请说明 理由.21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分.第3小题根据不同思维层次予以不同评分.对于函数()y f x =,定义:若存在非零常数M 、T ,使函数()f x 对定义域内的任意实数x ,都满足()()f x T f x M +-=,则称函数()y f x =是准周期函数,常数T 称为函数()y f x =的一个准周期.如函数()(1)()x f x x x =+-∈Z 是以2T =为一个准周期且2M =的准周期函数.(1) 试判断2π是否是函数()sin f x x =的准周期,说明理由;(2) 证明函数()2sin f x x x =+是准周期函数,并求出它的一个准周期和相应的M 的值;(3) 请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像.2008学年第一学期闵行区高三质量监控考试 数学试卷(文科)参考答案和评分标准一、填空题:(每题5分) 1. {}1,4,5; 2.18; 3. 1(,1)3;4. 四;5. 1()21x f x -=+;6. 20-;7. 60;8. 63;9. 49; 10.13; 11. 1102; 12.(]1-∞-,. 二、选择题:(每题4分)13. C ; 14. D ; 15. B ; 16. D . 三、解答题: 17.(本题满分12分) 解法一:直四棱柱1111ABCD A BC D -中,11////DC DC AB , (3分)∴ABD ∠的大小即为异面直线11D C 与DB 所成的角的大小, (6分) 在Rt ABD ∆中,2AD =,3AB = ∴ 2tan 3AD ABD AB ∠== (10分) ∴2arctan 3BDC ∠=,即异面直线11D C 与DB 所成的角的大小为2arctan 3. (12分) 解法二:直四棱柱1111ABCD A BC D -中,11//D C DC , (3分)∴BDC ∠的大小即为异面直线11D C 与DB 所成的角的大小, (6分) 作CE AB ⊥于E ,由已知条件及平面几何知识,得:2DC =,BD =BC =,在BDC ∆中,由余弦定理得:cos BDC ∠== (10分)∴BDC ∠=即异面直线11D C 与DB 所成的角的大小为 (12分)18.(本题满分14分)由2041(4)414x x ≤≤⎧⎪⎨--+≥⎪⎩,解得:44x -≤≤ ① (4分) 由12419log (3)41x x <≤⎧⎪⎨-+≥⎪⎩,解得:411x <≤ ② (8分)由①、②知:411x -≤≤, (10分)11(410.5--≈, (12分) ∴服用这种药一次大概能维持的有效时间为10.5小时. (14分) 19.(本体满分14分)(1)角α终边经过点(P -,∴1sin 2α=,cos α=,tan α=. (3分)sin tan sin cos tan 1cos 4312αααααα∴=-=-+=(6分) (2)()cos()cos sin()sin cos f x x x x αααα=+++=(x ∈R ), (2分)∴函数2cos(2)2cos ()2y x x π=-+21cos2x x =++2sin(2)16x π=++(x ∈R ), (4分)∴max 3y =, (6分) 此时()6x k k ππ=+∈Z . (8分)20.(本题满分16分)(1) 2(1a x =+,2)p +,(3b =,)x ,∴2(4,2)a b x x p +=+++,又a b +与(1,2)c =平行,∴22(4)2x x p +=++,即2260x x p --+=, (2分) 由题意知方程2260x x p --+=有两个相等的实根,∴18(6)0p ∆=--=,∴478p =. (4分) (2)2()3(2)3f x a b x p x =⋅=+++是偶函数,∴206p +-=,∴2p =-, (2分) ∴()f x 在[1,3]-上的值域是[3,30]. (4分) (3)由α:函数()f x 在区间1[,)2-+∞上是增函数,知2162p +-≤-, ∴1p ≥,记[1,)A =+∞, (3分) 由β,即方程23(2)30x p x p +++-=有小于2-的实根,∴23231x x p x++=-,且2x <-,232383(1)811x x p x x x ++==-+---(2x <-)的值域为11,3⎛⎫+∞ ⎪⎝⎭,∴113p >,记11(,)3B =+∞, (6分)B ⊂≠A ,∴α是β的必要不充分条件. (8分)21.(本题满分18分)(1)()sin f x x =,∴(2)()sin(2)sin f x f x x x ππ+-=+-sin sin 0x x =-=,∴2π不是函数()sin f x x =的准周期. (3分)(2) ∴(2)()[2(2)sin(2)](2sin )f x f x x x x x πππ+-=+++-+24sin 2sin 4x x x x ππ=++--=(非零常数), (3分)∴函数()sin f x x =是准周期函数,2T π=是它的一个准周期,相应的4M π=. (5分)(3)①写出一个不同于题设和(2)中函数,如3sin ,2(1),23sin x y x x y x y x x =+=+-=+,[]y x =等 得1分(0)y kx b k =+≠, ()sin()y kx b A x ωϕ=+++, ()cos()y kx b A x ωϕ=+++,,或其它一次函数(正比例函数)与周期函数的线性组合的具体形式,得3分②指出所写出函数的一个准周期,得2分③指出它的一些性质,如定义域、值域、奇偶性、单调性、最值、,。
闵行区2009学年第二学期高三年级质量调研考试. 英语试卷
闵行区2009学年第二学期高三年级质量调研考试英语试卷考生注意:1. 答卷前,考生务必在答题纸上将学校、姓名及准考证号填写清楚,并在规定的区域贴上条形码。
答题时客观题用2B铅笔按要求涂写,主观题用黑色水笔填写。
2. 本试卷分为第I卷和第II卷,共16页。
满分150分,考试时间120分钟。
3. 考试后只交答题纸,试卷由考生自己保留。
第I卷(共105分)I. Listening ComprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A. At the bank. B. At the airport. C. In the library. D. At the hospital.2. A. Teacher and pupil. B. Painter and buyer.C. Doctor and patient.D. Mechanic and driver.3. A. 7:15. B. 7: 45. C. 8:15. D. 8:00.4. A. Tim’s excellent performance. B. Tim’s homework.C. Tim’s graduation day.D. Tim’s study habits.5. A. She used to work at a newspaper.B. She meets with her supervisor regularly.C. She wishes she had a different kind of work.D. She’d like her supervis or’s opinion of her work.6. A. Stop bothering the woman. B. Ask someone else to go to the library.C. Take the woman’s book with him.D. Show the woman how to get to the library.7. A. Sh e isn’t very hungry right now. B. She regularly eats at this restaurant.C. She is satisfied with the menu.D. Sh e doesn’t want salad with h er lunch.8. A. Pay for some of the food. B. Insist on choosing their own food.C. Treat Gary to dinner some other time.D. Thank Gary for his generous offer.9. A. I t’s a beautiful place. B. No one lives there now.C. You can see it after your vacation.D. You had better make an appointment.10. A. Waiting until later to decide. B. Finding a summer job.C. Working and studying.D. Taking summer classes.Section BDirections: In Section B, you will hear two short passages, and you will be asked three questions on each of the passages. The passages will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions 11 through 13 are based on the following passage.11. A. At 9: 20 a.m. B. At 8: 54 a.m. C. At 8: 40 a.m. D. At 9: 40 a.m.12. A. He missed his flight. B. He lost his luggage.C. He was hungry on the train.D. He had to wait at Preston for 30 minutes.13. A. To ask the company to give him the reason for the delay.B. To ask the company to dismiss the train crew.C. To ask the company to make up for his loss.D. To ask the company to improve the air conditioning.Questions 14 through 16 are based on the following pa ssage.14. A. At a supermarket. B. At an airport.C. In a theatre.D. In a restaurant.15. A. Because actors and actresses refused to play the last act.B. Because a fire broke out in the building.C. Because a robbery would happen soon.D. Because something explosive was discovered there.16. A. To take away all their belongings with them.B. To follow the directions of the police.C. To go anywhere as quickly as possible.D. To throw away the doubtful objects.Section CDirections:In Section C, you will hear two longer conversations. The conversations will be read twice. After you hear each conversation, you are required to fill in the numbered blanks with the information you have heard. Write your answers on your answer sheet.Blanks 17 through 20 are based on the following conversation.Complete the form. Write ONE WORD for each answer.Blanks 21 through 24 are based on the following conversation.Complete the f orm. Write no more than THREE WORDS for each answer.II. Grammar and VocabularySection ADirections:Beneath each of the following sentences there are four choices marked A, B. C and D. Choose the one answer that best completes the sentence.25. This new computer is obviously superior ______the old one because it has many newfunctions.A. withB. onC. atD. to26. I bought three DVD copies of the film Avatar and now _ is left. Somebody justborrows something and never returns.A. noneB. nothingC. eitherD. neither27. It is dangerous to play with the knife. You ______ hurt yourself.A. canB. mayC. mustD. should28. Compared with the nervousness of driving in the rain or snow, it is ______ to sit in a trainwithout any worry of bad weather.A. more tiredB. less tiringC. less tiredD. even more tiring29. The prices of houses ______ because the demand of them become more and more great.A. are risingB. riseC. had risenD. have been risen30. ______ your plans look good, you still need to do some revision work on it.A. IfB. OnceC. AlthoughD. Since31. People ______ long distances frequently have to decide whether they would prefer to go byland, sea or air.A. to travelB. travelledC. travelD. travelling32. True friendship is like sound health, whose value is seldom known it is lost.A. whenB. thoughC. untilD. unless33. The judge made the final decision after listening to the opinions of each party ______.A. having involvedB. to be involvedC. involvingD. involved34. The film brought the hours back to me ______ I was taken good care of in that far-awayvillage.A. untilB. thatC. whenD. where35. More and more people are looking forward to ______ the Expo in Shanghai.A. visitB. visitingC. visitedD. be visited36. ----Do you have any problems if you ______ this job?----Well, I’m thinking about the salary…A. offerB. will offerC. are offeredD. will be offered37. Many people firmly believed ______ a healthy lifestyle can improve the quality of life.A. thatB. ifC. howD. why38. Only in recent years ______ to realize the importance of wildlife conservation.A. do people beginB. have people begunC. people have begunD. people begin39. Her husband and she are now at work on a new dictionary ______ next year.A. to publishB. being publishedC. publishedD. to be published40. The question came up at the meeting ______ we had enough money for our research.A. whetherB. thatC. whichD. whatSection BDirections:Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.So long as teachers fail to distinguish between teaching and learning, they will continue to undertake to d o for children that which only children can do for themselves. Teaching children to read is not passing reading on to them. It is certainly not 41 hours spent in activities about reading. Douglas insists that “reading cannot be taught 42 and schools should stop trying to do the impossible”.Teaching and learning are two entirely different processes. They 43 in kind and function. The function of teaching is to 44 the conditions and the climate that will make it possible for children to devise the most efficient system for teaching themselves to read. Teaching is also a public activity. It can be seen and observed.Learning to read involves all that each individual does to make sense of the world of printed language. Almost all of it is private, for learning is an occupation of the mind, and that45 is not open to public examination.If teacher and learner roles are not 46 , what then can be done through teaching that will aid the child in the exploring for knowledge? Smith has one principal rule for all teaching47 . “Make learning to read easy, which means making rea ding a meaningful, enjoyable and frequent experience for children.”When the roles of teacher and learner are seen for what they are, and when both teacher and learner fulfill them 48 , then much of the pressure and feeling of failure for both is49 . Learning to read is made easier when teachers create an environment where children are given the opportunity to solve the problem of learning to read by reading.III. Reading ComprehensionSection ADirections:For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.To advertise effectively today, you must abandon the old-school idea of “reaching the masses”. All advertising is local and personal. The key to effective advertising today is to focus on the 50 .Some are the 51 ways every advertiser could work out. You can print a specific offer of your goods or service on door-hangers and place them on doorknobs in your area. Door-hangers on doorknobs will produce results in direct 52 about the strength of your offer. If you need to reach the drivers, flyer (宣传单) under windshield (挡风玻璃) wipers may have better effect than door-hangers. Imagine, how 53 if you hire someone to be a walking ad or launch a T-shirt advertising, 54 , you can print your products on T-shirts of your 55 . In the early 1970s “Hamp Baker says Drive with Care” was spray-painted on cars, which was a public service ad. Ever since, spray-painted sign has become more and more 56 .More grand ways are as follows: virtual showroom. Build a website to 57 a virtual showroom. Use it when people call to ask 58 about your company, your products or your services. Also you can even use an old slide projector to put on a nighttime show. They’re 59 effective, and in the long run, cheap. Nothing is quite as powerful as a public 60 that seizes the public’s attention. You can invite a band to give a performance.61 , you can hire famous models to show it vividly.Nothing screams “expert” quite as loudly as a book written about a subject. You simply can’t 62 the power of your name on the cover of a book. You might only sell a few copies online, but the copies you give away in your town will make you a fortune. You won’t make money on the book. You’ll make it because of the book.Of course, word-of-mouth is the best way to promote your 63 . Friends and past customers recommend your products to their family, friends and colleagues. Word-of-mouth works because the 64 is based on previous positive experiences.50. A. content B. product C. individual D. style51. A. strange B. common C. amusing D. perfect52. A. description B. decision C. discussion D. permission53. A. stupid B. funn y C. impressive D. ridiculous54. A. that is B. first of all C. as a result D. generally speaking55. A. customers B. employers C. consumers D. employees56. A. expensive B. valueless C. popular D. meaningless57. A. refer to B. serve as C. stand for D. keep off58. A. location B. business-hours C. salary D. details59. A. unbelievably B. consequently C. accidentally D. occasionally60. A. speech B. sport C. debate D. performance61. A. For example B. Moreover C. However D. To be exact62. A. create B. change C. imagine D. overuse63. A. production B. friendship C. management D. business64. A. information B. relationship C. pronunciation D. achievementSection BDirections:Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)(You may read the questions first.)at65. We can learn from the passage that exchanges of tickets purchased ________.A. are free of chargeB. are not available until the last business dayC. will not be given a big cash discountD. need to contact the box office directly66. Which of the following statements is TRUE according to the passage?A. Latecomers will not be permitted to enter the theatre.B. There is a special area for children in the theatre.C. The audience is not allowed to take photos in the theatre.D. Children can talk in a low voice during the performance.67. According to the passage, the audience ________.A. can receive their tickets by mailB. can see the performance onlineC. can’t take cell phones to the theatreD. can’t return tickets in any case(B)Throughout time, people have loved music for its ability to transport them into a world of rhythm and melody. Recently more and more hospitals and clinics have been tapping into the power of music - not only to comfort patients, but to help them heal as well. Welcome to the world of music therapy.After each of the two world wars, musicians visited hospitals and played instruments for injured soldiers suffering from emo tional and physical pain. Today’s music therapists continue this practice, playing instruments such as guitars and harps to bring comfort to their audiences.Therapist Eric Mammen encour ages his patients at a children’s hospital to participate with him as he plays. During visits with 13-year-old cancer patient Lawrence Garcia, Mammen encourages Garcia to beat on electric drums while he plays the guitar. The therapy won’t cure his cancer, b ut it does, according to Garcia’s mom, take away much of the boy’s depression.Music therapy can elevate patients’ moods and ease the symptoms of depression according to the American Music Therapy Association. Other benefits include relieving pain, calming tension, aiding sleep, counteracting worry or fear, and easing muscle tension.Jose Haro personally experienced the benefits of music therapy when he was recovering from heart surgery. During his recovery, he played a piano whose keys lit up, indicating which keys to touch to play along with the background music. Soon, he was playing tunes and noticing som ething strange. “I was searching for my pain.” He says of his experience, “but it was gone.”While Haro’s experience provides an evidence of the power of music to relieve pain, scientific research has proven music als o helps patients with Alzheimer’s disease and arthritis.In addition, music therapy helps premature (早产的) babies. Doctors are tapping into a powerful way to te ach premature babies that haven’t yet learned how to suck. Doctors use a device that comforts the babies by playing music when they suck on a pacifier (奶嘴). Soon, the babies learn to suck in return for music, gaining weight faster and going home earlier than those whodon’t use the device.Even perfectly healthy people are discovering the power of music to calm and heal. Drum circles attract people who find stress relief in pounding out rhythms. While music isn’t a cure-all, it does make life a little easier.68. In the first paragraph, the underlined phrase “tapping into” ca n be replaced by “________”.A. discussing onB. looking forC. showing interest inD. making use of69. According to the passage, Jose Haro ________.A. went through an obvious effect of music on his recoveryB. recovered from heart disease completelyC. felt no pain in his surgeryD. was asked to play the piano by his doctors70. From the passage, we know ________.A. musicians cured many soldiers after each of the two world warsB. Garcia found much comfort in music according to his momC. music can prevent people from suffering from arthritisD. the more music they listen to, the faster premature babies gain weight71. What is the best title for this passage?A. Music Is Becoming Popular in Most HospitalsB. Music Helps Patients RecoverC. Musicians Work with DoctorsD. People’s Life Benefits from Music(C)Whenever human populations have lived in forest areas, they have always cut down trees which they used for a number of purposes, for housing and ships and served as a source of heating fuel and timber. Growth of cities often meant expansion into forest areas, while even more trees were removed to provide space for agriculture. With the growing demand for paper, vast quantities of trees have also been cut down for paper production. These factors, along with many others, have been contributing to a dangerous phenomenon known as deforestation.In the last 5,000 years, humans have reduced forest from roughly 50 percent of the earth’s land surface to less than 20 percent. Most of this original, or old growth, forest cover is concentrated in three large areas: the Canadian and Alaskan boreal forest, the boreal forest of Russia, and the tropical forest of the northwestern Amazon Basin and the Guyana Shield. These areas comprise almost 70 percent of the world’s remaining original forest cover. In most places, the rate of deforestation is increasing, with the alarming result of 16 million hectares disappearing worldwide every year.Loss of forest does not just mean the decline of natural resources. There are several other factors that make deforestation seriously harmful to both the human and natural worlds. One of them is changes in the global climate. For example, forest clearance is releasing substantial volumes of carbon dioxide (CO2) into the atmosphere as vegetation is burnt or decays. It has been suggested that this is a significant factor in global warming. Moreover, about 10 percent of the world’s tree species are in danger of extinction as a result of deforestation. Deforestation also threatens biological diversity through the destruction of wildlife habitats, which endangers a number of animal species and leads to their potential disappearance. Species are particularly easy to extinction in tropical rainforests because many species have few individuals per unit area, which makes reproduction more difficult. Finally, since forests play an important role in storing water and stabilizing soil, deforestation and the resulting change in land use cause soil erosion (腐蚀) and other forms of land degradation.72. The passage discusses all of the following EXCEPT the ________.A. causes of deforestationB. consequences of deforestationC. management of deforestationD. rate of deforestation73. The word “diversity” in the last paragraph probably means “________”.A. varietyB. expansionC. developmentD. advantage74. Why does the author mention fuel and timber in Paragraph 1?A. To explain the rate of deforestation.B. To compare them with housing and ships.C. To show the dangers of deforestation.D. To illustrate the causes of deforestation.75. Which of the following sentences summarizes Paragraph 3 best?A. Deforestation threatens biological diversity.B. Deforestation has many harmful consequences.C. Deforestation causes changes in global climate.D. Deforestation should be stopped.Section CDirections:Read the following passage and choose the most suitable heading from A-F for each paragraph. There is one extra heading which you do not need.Ways to Deal with Conflict76.which aggravates (使恶化) the conflict. Instead, pause before you speak, think about what the person has said to you, and respond appropriately. By giving yourself this time to think, you cool down, and you are less likely to speak with anger. A lot of the time, the other people may want to argue for the sake of arguing.77.be human nature to fight acceptance of those mistakes. Conflicts often arise from mistakes, so it’s best to be upfront and honest about them. Identify the mistake that led to the conflict.78.In away, allow him to do that. Don’t follow the person you’re in conflict with into another room because you haven’t said all you want to say. You wouldn’t want him following you if you felt the need to leave the situation. Also, don’t hover too close to the person you’re in conflict with. Allow him room to breathe. Don’t make him feel as if you’re backing him into a corner.79.not useful or productive. The main concern is to find a solution to the problem, not to determine who was wrong. If the problem is related to the work itself, keep the conversation focused on exactly what is wrong, and what can be done to fix it.80.conversation, be confident in your stance and know what you are willing to negotiate on and what you feel strongly should not be compromised. Do your best to be flexible. Look for a way to come to a conclusion that satisfies both parties.Section DDirections:Read the passage carefully. Then answer the questions or complete the statements in the fewest possible words.A new study suggests that the round-the-clock availability that cell phone have brought to people’s lives may be taking a toll on family life, a new study suggests. The study, which followed more than 1,300 adults over 2 years, found that those who consistently used a mobilephone throughout the study period were more likely to report negative “spillover’’ between work and home life — and, in turn, less satisfaction with their family life.Spillover essentially means that the line between work and home begins to become unclear. Work life may invade home life when a parent is taking job-related calls at home, for instance, or family issues may start to take up work time. For example, a child may call mom at work, telling her “microwave exploded”, explained Noelle Chesley, an assistant professor of sociology at the University of Wisconsin—Milwaukee and the author of the study. The problem with cell phones seems to be that they are allowing for ever more spillover between work and home.This may be especially true for working w omen, the study found. Among men, consistent use of mobile phones seemed to allow more work issues to creep (潜入) into family time. But for women, the spillover tended to go in both directions. B eing “connected” meant that work cut into home time,and family issues came into work life.Cell phones seem to be opening more lines for stressful exchanges among family members. But there may be ways to control the spillover, according to Chesley. Employers, she said, could look at their policies on contacting employees after working hours to make sure their expectations are “reasonable”. For th eir part, employees could decide that cell phones go off during family time, Chesley said.(Note: Write NO MORE THAN TEN WORDS for each question or statement.)81. By saying “may be taking a toll on family life”, the writer probably means that cell phone____________.82. As a result of negative “spillover”, people will feel ______________.83. The writer gave the example of “microwave exploded” to indicate that ______________.84. According to Chesley, what could employees do to avoid spillover when they are not atwork?第II 卷(共45分)I. TranslationDirections: Translate the following sentences into English, using the words given in the brackets.1. 他太年轻,无法胜任这份工作。
2023届上海市闵行区高三二模数学试卷及答案
1闵行区2022 学年第二学期高三年级学业质量调研数 学 试 卷考生注意:1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,考生在答题纸正面填写学校、姓名、考生号,粘贴考生本人条形码.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在草稿纸、试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色笔迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设全集{}2,1,0,1,2U =--,集合{}2,0,2A =-,则A =__________.2.若实数x 、y 满足lg x m =、110m y -=,则xy =__________.3.已知复数z 满足(1i)i z -=(i 为虚数单位),则z 的虚部为_________.4.已知圆柱的底面积为9π,侧面积为12π,则该圆柱的体积为_________.5.已知常数0m >,6()m x x+的二项展开式中2x 项的系数是60,则m 的值为__________.6.已知事件A 与事件B 互斥,如果()0.3P A =,()0.5P B =,那么()P A B = __________.7.今年春季流感爆发期间,某医院准备将2名医生和4名护士分配到两所学校,给学校老师和学生接种流感疫苗.若每所学校分配1名医生和2名护士,则不同的分配方法数为__________.8.0ln(4)2ln 2lim h h h →+-=__________.9.若关于x的方程12x m ⎛⎫+= ⎪⎝⎭在实数范围内有解,则实数m 的取值范围是____.10.已知在等比数列{}n a 中,3a 、7a 分别是函数32661y x x x =-+-的两个驻点,则5=a __________.11.已知抛物线21:8C y x =,圆222:(2)1C x y -+=,点M 的坐标为(4,0),P 、Q 分别为1C 、2C 上的动点,且满足||=||PM PQ ,则点P 的横坐标的取值范围是__________.212.平面上有一组互不相等的单位向量12,,,n OA OA OA ,若存在单位向量OP 满足120n OP OA OP OA OP OA ⋅+⋅++⋅= ,则称OP 是向量组12,,,n OA OA OA 的平衡向量.已知12,3OA OA π〈〉= ,向量OP 是向量组123,,OA OA OA 的平衡向量,当3OP OA ⋅ 取得最大值时,13OA OA ⋅ 的值为__________.二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.下列函数中,既不是奇函数,也不是偶函数的为()(A )0y =(B )1y x =(C )2y x =(D )2xy =14.在某区高三年级举行的一次质量检测中,某学科共有3000人参加考试.为了解本次考试学生的成绩情况,从中抽取了部分学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,样本容量为n .按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图(如图所示).已知成绩落在[50,60)内的人数为16,则下列结论正确的是()(A )样本容量1000n =(B )图中0.025x =(C )估计全体学生该学科成绩的平均分为70.6分(D )若将该学科成绩由高到低排序,前15%的学生该学科成绩为A 等,则成绩为78分的学生该学科成绩肯定不是A 等15.已知()cos 2sin f x x a x =-,若存在正整数n ,使函数()y f x =在区间(0,)n π内有2023个零点,则实数a 所有可能的值为()(A )1(B )1-(C )0(D )1或1-16.若数列{}n b 、{}n c 均为严格增数列,且对任意正整数n ,都存在正整数m ,使得1[,]m n n b c c +∈,则称数列{}n b 为数列{}n c 的“M 数列”.已知数列{}n a 的前n 项和为n S ,则下列选项中为假命题的是()(A )存在等差数列{}n a ,使得{}n a 是{}n S 的“M 数列”(B )存在等比数列{}n a ,使得{}n a 是{}n S 的“M 数列”(C )存在等差数列{}n a ,使得{}n S 是{}n a 的“M 数列”(D )存在等比数列{}n a ,使得{}n S 是{}n a 的“M数列”3三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)在ABC △中,角A 、B 、C 所对的边分别为a b c 、、,已知sin sin 2A B =,4a =,6b =.(1)求cos B 的值;(2)求ABC △的面积.18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥平面ABCD ,2PD AD ==,4AB =,点E 在线段AB 上,且14BE AB =.(1)求证:CE ⊥平面PBD ;(2)求二面角P CE A --的余弦值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)在临床检测试验中,某地用某种抗原来诊断试验者是否患有某种疾病.设事件A 表示试验者的检测结果为阳性,事件B 表示试验者患有此疾病.据临床统计显示,()P A B 0.99=,()0.98P A B =.已知该地人群中患有此种疾病的概率为0.001.(下列两小题计算结果中的概率值精确到0.00001)(1)对该地某人进行抗原检测,求事件A 与B 同时发生的概率;(2)对该地3个患有此疾病的患者进行抗原检测,用随机变量X 表示检测结果为阳性的人数,求X的分布和期望.420.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知O 为坐标原点,曲线2212:1(0)x C y a a -=>和曲线222:142x y C +=有公共点,直线111:l y k x b =+与曲线1C 的左支相交于A 、B 两点,线段AB 的中点为M .(1)若曲线1C 和2C 有且仅有两个公共点,求曲线1C 的离心率和渐近线方程;(2)若直线OM 经过曲线2C上的点)1T -,且2a 为正整数,求a 的值;(3)若直线222:l y k x b =+与曲线2C 相交于C 、D 两点,且直线OM 经过线段CD 中点N ,求证:22121k k +>.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)如果曲线()y f x =存在相互垂直的两条切线,称函数()y f x =是“正交函数”.已知2()2ln f x x ax x =++,设曲线()y f x =在点()()00,M x f x 处的切线为1l .(1)当(1)0f '=时,求实数a 的值;(2)当8a =-,08x =时,是否存在直线2l 满足12l l ⊥,且2l 与曲线()y f x =相切?请说明理由;(3)当5a ≥-时,如果函数()y f x =是“正交函数”,求满足要求的实数a 的集合D ;若对任意a D ∈,曲线()y f x =都不存在与1l 垂直的切线2l ,求0x的取值范围.5参考答案一.填空题1.{}1,1-;2.10.;3.12;4.18π;5.2;6.0.2;7.12;8.14;9.[)2,-+∞;11.715,62⎡⎤⎢⎥⎣⎦;12.366-±.二.选择题13.D;14.C;15.B;16.C.三.解答题17.[解](1)在ABC △中,由已知得sin 2sin cos A B B =,………………………2分由正弦定理得2cos a b B =,………………………………………4分而4a =,6b =,所以1cos 3B =;……………………………………6分(2)在ABC △中,由余弦定理得2221cos 23a c b B ac +-==,………………………8分即238600c c --=,而c >6c =,………………………10分因为1cos 3B=,则sin 3B =, (12)分1=sin 2ABC S ac B △=,所以ABC △的面积为.……………………………………………14分18.[解](1)设BD 与CE 相交于点H ,因为PD ⊥平面ABCD ,CE ⊂平面ABCD ,所以PD CE ⊥,………………………………………2分由4AB =,14BE AB =,得1BE =,因此1tan 2ECB ∠=,1tan 2ABD ∠=,可得ECB ABD ∠=∠,………………………………4分因为DBC ADB ∠=∠,所以0=90BHC BAD ∠=∠,即BD CE ⊥,又因为PD CE ⊥,PD BD D = ,所以CE ⊥平面PBD ;………………………………………6分(2)如图,建立空间直角坐标系D xyz -,则(0,4,0)C ,(0,0,2)P ,(2,3,0)E ,所以(0,4,2)PC =- ,(2,1,0)CE =- ,……………8分设平面PCE 的一个法向量(,,)n x y z = ,6则0,0,n CE n PC ⎧⋅=⎪⎨⋅=⎪⎩ 即20,420.x y y z -=⎧⎨-=⎩令1x =,则2y =,4z =,于是(1,2,4)n = ,……10分平面ACE 的一个法向量为(0,0,1)m = ,则421cos ,21||||m n m n m n ⋅〈〉=== ,…………12分由图形可知二面角P CE A --为锐角,所以二面角P CE A --……………………14分19.[解](1)由题意可得,(()()0.020.9990.01998P A B P A B P B ==⨯= ;……6分(2)设()P A B p =,则()1P A B p =-,033(0)(1)0.00000P X C p ==-=,023(1)(1)0.00030P X C p p ==-=,………………………8分023(2)(1)0.02940P X C p p ==-=,333(3)0.97030P X C p ===.………………………10分X 的分布为012300.000300.029400.97030⎛⎫ ⎪⎝⎭,…………………12分()()3()30.99 2.97E X P A B A B ==⨯=.…………………………14分20.[解](1)由条件知2a =,曲线1C的半焦距c =,所以曲线1C的离心率2c e a ==,…………2分渐近线方程为12y x =±;……………………4分(2)联立方程组222111x y a y k x b ⎧-=⎪⎨⎪=+⎩,得()()22222211111210a k x a k b x a b ---+=,所以2112211M a k b x a k =-,21111122221111M a k b b y k b a k a k =+=--,7故直线OM 的方程为211y x a k =,依题意直线OM经过点)1T -,代入得21a k =,…………………………6分因为直线1l 与曲线1C 的左支相交于两点,故()()221221101a b a k -+>-,得2211a k >………………………………………………8分又曲线1C 和2C 有公共点,所以204a <≤,且2a 为正整数,根据()22212a a k =,得21a =,所以1a =;………………………………………10分【供参考:因为直线111:l y k x b =+与曲线1C 的左支相交于A 、B 两点,所以11||k a >,又42421212a k a a a =>⋅=,2a 为正整数,所以21a =】(3)由(2)可得121M M y k x a=(02)a <≤,……………………………12分同理,联立直线222:l y k x b =+与曲线222:142x y C +=,可得212N Ny k x =-,……………………………………………14分因为N M M Ny y x x =,所以2212a k k =-,…………………………………16分又因为2211a k >,所以42222221121114a k k k k a k +=+≥=>,即22121k k +>.……………………………………………18分21.[解](1)由题设,函数定义域为()0,+∞,且2()2f a x x x '=++,………………2分由(1)40f a '=+=,则4a =-;……………………………………………4分(2)当8a =-时,2()28f x x x '=+-,则33(8)4f '=,………………………6分即1l 的斜率1334k =,假设2l 存在,则2l 的斜率2433k =-,则2()f x k '=有解,即242833x x +-=-在()0,+∞上有解,………………………8分该方程化简为233130330x x -+=,解得311x =或113,符合要求,因此该函数存在另外一条与1l 垂直的切线2l ;……………………………………10分8(3)21()22f x a x x a x x ⎛⎫'=++=++ ⎪⎝⎭,当()0,1x ∈时,()'f x 严格减;当()1,x ∈+∞时,()f x '严格增;………………10分【供参考:令()()h x f x '=,则21()21h x x ⎛⎫'=- ⎪⎝⎭,当()0,1x ∈时()0h x '<,()'f x 严格减;当()1,x ∈+∞时()0h x '>,()f x '严格增.】设曲线()y f x =的另一条切线的斜率为0()f t '.1°当4a ≥-时,2()20x f x a x'=++≥,显然不存在00()()1f x f t ''=-,即不存在两条相互垂直的切线;……………………………………12分2°当54a -≤<-时,()(1)4f x f a ''≥=+,且(1)40f a '=+<,x 趋近于0或x 趋向于正无穷大时,()f x '都趋向于正无穷大,所以()f x '在()()0,11,+∞、上各有一个零点12x x 、,故当()10,x x ∈或()2,x x ∈+∞时,都有()(0,)f x '∈+∞,当12(,)x x x ∈时[)()4,0f x a '∈+,故必存在00()()1f x f t ''=-,即曲线()y f x =存在相互垂直的两条切线,所以[)=5,4D --.…………………14分因为[)5,4a ∈--,由2°知,曲线()y f x =存在相互垂直的两条切线,不妨设()()()012012,,0,,x x x t x x ∈∈+∞ ,满足00()()1f x f t ''=-,001()()f t f x '⇒=-',04()0a f x '+≤<0011()()4f t f x a -'⇒=-≥'+,所以00011()24f t t a t a ⎛⎫-'=++≥ ⎪+⎝⎭,故()()()00111446442t a a t a a +≥-+=-+++≥-⎛⎫ ⎪⎝⎭+-+(当且仅当5a =-时等号成立),由0013t t +≥,解得0330,22t ⎛⎡⎫+∈+∞ ⎪⎢ ⎪⎝⎦⎣⎭,…………………16分000022()20220f x x a x ax x '=++<⇒++<0x ⇒<<,因为1124a -≤<,12<≤,所以01,22x ⎛⎫∈ ⎪⎝⎭.综上可知,对任意满足54a -≤<-的所有函数不存在与1l 垂直的切线2l 的0x 的取值范围是35135,2,222⎛⎤⎡⎫ ⎪⎥⎢ ⎪⎝⎦⎣⎭ .……………………………………18分9【供参考:对任意54a -≤<-,曲线()y f x =都不存在与1l 垂直的切线2l ,有0002()20f x x a x '=++≥恒成立0000222025520x x x x ⇒+≥⇒-+≥-,解得[)010,2,2x ⎛⎤∈+∞ ⎥⎝⎦,综上可知,对任意满足54a -≤<-的所有函数不存在与1l 垂直的切线2l 的0x 的取值范围是35135,2,222⎛⎤⎡⎫ ⎪⎥⎢ ⎪⎝⎦⎣⎭ .】。
闵行区2009学年第二学期高一质量调研考试数学试卷(附答案)
a
2a b
(16 分)
18.(本题满分 12 分)本题共 2 个小题,每小题满分各 6 分.
在 ABC 中,角 A、B、C 所对的边依次为 a、b、c , bc 2lg 2 2lg 5 3 , 且 sin A 5 .
25 (1)求 ABC 的面积; (2)若 b c 6,求 a 的值.
19.(本题满分 14 分)本题共 3 个小题,第 1 小题满分 8 分,第 2、3 小题满分各 3 分.
考生注意: 1.答卷前,考生务必在答题纸上将学校、班级、考试号、姓名等填写清楚. 2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿
纸、试题卷上答题无效. 3.本试卷满分 100 分,考试时间 90 分钟.
一.填空题(本大题满分 36 分)本大题共有 12 题,考生必须在答题纸的相应编号的空
(4 分)
又 0<9-x2≤9, ∴lg(9-x2)≤2lg3,
∴f(x)的值域是(-∞,2lg3]
(7 分)
f(x)单调递增区间是(-3,0](或(-3,0))
18.(1)由 bc 2lg2 2lg5 3 ,得 bc 5 ,
(10 分) (2 分)
又因为 sin A
5
, cos
A
1 2sin 2
f
(x)
2 sin( 1 2
x
5 6
)
图像在 0,
4 3
下降,故将
5 6
舍去也可)
(7 分)
此时 f (x) 2sin(1 x ) 26
(2)由 2k 1 x 2k 得函数 f (x) 的单调递增区间是
22 6
2
(8 分)
4k
上海市闵行区高三下学期质量调研考试数学(理)试题
闵行区2014学年第二学期高三年级质量调研考试数 学 试 卷(理科)(满分150分,时间120分钟)考生注意:1.答卷前,考生务必在答题纸上将学校、班级、准考证号、姓名等填写清楚.2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.本试卷共有23道试题.一.填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸的相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知集合,,则 .2.若复数满足(为虚数单位),则 .3.函数,若,则 .4.计算 .5.设)0(24)(1≥-=+x x f x x ,则 .6.已知,,则 .7. 若圆锥的侧面积为,底面面积为,则该圆锥的体积为 .8.已知集合,在中可重复的依次取出三个数,则“以为边长恰好构成三角形”的概率是 .9.已知等边的边长为3,是的外接圆上的动点,则的最大值为 .10.函数1122log log y =+取最小值时的取值范围是 .11.已知函数, ,记函数(),()()()(),()()g x f x g x h x f x f x g x ≤⎧=⎨>⎩,则函数所有零点的和为 .12.已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则的最大值为 .13.在中,记角、、所对边的边长分别为、、,设是的面积,若2sin ()sin S A BA BC B <⋅,则下列结论中:①; ②;③cos cos sin sin B C B C >; ④是钝角三角形.其中正确..结论的序号是 . 14.已知数列满足:对任意均有(为常数,且),若{}2345,,,19,7,3,5,10,29a a a a ∈---,则所有可能值的集合为 .二.选择题(本大题满分20分)本大题共有4小题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,选对得5分,否则一律得0分.15.已知圆和直线,则是圆与直线相切的( )(A)充要条件. (B)充分不必要条件.(C)必要不充分条件. (D)既不充分也不必要条件.16.展开式中各项系数的和为 ( )(A). (B). (C). (D).17.已知是定义在上的函数,下列命题正确的是 ( )(A)若在上的图像是一条连续不断的曲线,且在内有零点,则有.(B)若在上的图像是一条连续不断的曲线,且有,则其在内没有零点.(C)若在上的图像是一条连续不断的曲线,且有,则其在内有零点.(D)若在上的图像是一条连续不断的曲线且单调,又成立,则其在内有且只有一个零点.18.数列是公差不为零的等差数列,其前项和为,若记数据的方差为,数据的方差为,.则 ( )(A). (B). (C). (D)的值与公差的大小有关.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,在直三棱柱中,90,2ACB AC BC ∠===,直线与平面所成角的大小为.求三棱锥的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本.设该公司一年内共生产电饭煲万件并全部销售完,每一万件的销售收入为万元,且2440040000()10100R x x x x=-<<,,该公司在电饭煲的生产中所获年利润为 (万元). (注:利润销售收入成本)(1)写出年利润 (万元)关于年产量 (万件)的函数解析式;(2)为了让年利润不低于2760万元,求年产量的取值范围.21.(本题满分14分)本题共有2个小题,每小题满分各7分. 椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点分别为,上顶点为,已知椭圆过点,且. (1)求椭圆的方程;(2)若椭圆上两点关于点对称,求.22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3) 小题满分6分.已知函数22π()cos 2sin cos 3f x x x x ⎛⎫=-+- ⎪⎝⎭. (1)求函数的最小正周期;(2)若存在满足2[()]()0f t t m -->,求实数的取值范围; (3)对任意的,是否存在唯一的,使成立,请说明理由.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知数列为等差数列,,其前和为,数列为等比数列,且2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+对任意的恒成立.(1)求数列、的通项公式;(2)是否存在,使得成立,若存在,求出所有满足条件的;若不存在,说明理由.(3)是否存在非零整数,使不等式112111(1)(1)(1)cos 2n n a a a a πλ+--⋅⋅⋅⋅⋅⋅-< 对一切都成立?若存在,求出的值;若不存在,说明理由.闵行区2014学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.; 2.; 3.; 4.; 5.; 6.; 7.;8.;9.,; 10.,; 11.;12.; 13. ④;14.二. 选择题 15. B ; 16. B ; 17.D ; 18. A .三. 解答题19. [解]法一: 1111111AC B C AC CC ⊥⊥,,平面,是直线与平面所成的角.…………………4分设1BC ==11111tan 4AC A BC y BC ∴∠===⇒=, ……………8分 所以111111111111183323C A BC A C BC C BC V V S A C BC CC A C --==⋅=⋅⋅⋅⋅=△.…12分 法二:如图,建立空间直角坐标系,设. 得点,,. 则,平面的法向量为. …………………4分设直线与平面所成的角为, 则11sin 48A B ny A B n θ⋅===⇒=⋅,……………8分 所以111111111111183323C A BC A C BC C BC V V V S A C BC CC A C --===⋅=⋅⋅⋅⋅=△.…12分 20.[解] (1) 40000()(1640)164360W xR x x x x=-+=--+ ……6分 (2) 解400001643602760W x x =--+≥ ………………12分 得时, 所以.答:为了让年利润不低于2760万元,年产量. …………………14分21.[解] (1)因为椭圆过点,所以,解得……3分又以为直径的圆恰好过右焦点,所以又24(,),(,0),(0,)33b P Fc A b得,,所以而,所以得 ………………6分故椭圆的方程是. ………………………………7分(2)法一:设点的坐标分别为,则2222112222,22x y x y +=+=,且12122,1x x y y +=+= ………9分由2222112222,22x y x y +=+=得:12121212()()2()()0x x x x y y y y +-++-= 121212122()2()01y y xx y y x x--+-=⇒=-- 所以所在直线的方程为………………11分将代入得12|||3CD x x =-=== ………14分 法二:设点的坐标分别为,………9分则2222111122,(2)2(1)2x y xy +=-+-= 两等式相减得………………11分将代入得12|||CD x x =-===14分 22.[解](1)221()cos 22sin cos 22f x x x x x =++-1πcos 22cos 2sin 2226x x x x ⎛⎫=+-=- ⎪⎝⎭,……………2分 函数的最小正周期 ………………………………4分(2)当时,,π()sin 216f t t ⎛⎫⎤=- ⎪⎦⎝⎭6分[]22()[()]()[()22,1F t f t t f t ⇒=-=--∈-- …………………8分存在满足的实数的取值范围为.……10分(3)存在唯一的,使成立. ………………12分当时,,11π()sin 216f x x ⎛⎫⎤=-- ⎪⎦⎝⎭2211π()sin 21()6f x x f x ⎛⎫⎤==--+ ⎪⎦⎝⎭[]21π1sin 2=1,16()x f x ⎛⎫⇒--- ⎪⎝⎭ ………………14分 设,则,由 得22ππ22arcsin 2=2arcsin ,66x k a x k a k πππ-=+-+-∈Z 或 所以的集合为2221π17π|arcsin +arcsin +,212212x x k a x k a k ππ⎧⎫=+⋅=-⋅∈⎨⎬⎩⎭Z 或 ∵1π17π5arcsin +,arcsin +6212332126a a ππππ-≤⋅≤≤-⋅≤ ∴在上存在唯一的值使成立. 16分23. [解] (1)法1:设数列的公差为,数列的公比为。
上海闵行区2009—2010学年第二学期高三质量调研考试英语
上海市闵行区2009—2010学年第二学期高三质量调研考试英语试题(时间120 分钟满分150 分)第一卷(105分)I.Listening comprehension : (30分)Part A Short conversations:Directions : In Part A , you will hear ten short conversations between two speakers .At the end of each conversations, a question will be asked about what was said.The conversation and the question will be spoken only once.After you hear a conversation and the question about it , read the four possible answers in your paper ,and decide which one is the best answer to the question you have heard.1.A.He can’t hear well.B.He’s at the party.C.He doesn’t like the party.D.No one will tell him.2.A.$80 B.$60 C.$20 D.$183.A.She’s watched the match.B.She will have a rest tonight.C.She won’t go to watch the match and she will prepare for her chemistry test.D.She doesn’t like the match.4.A.The lesson is as difficult as that one.B.The lesson is more difficult than that one.C.The lesson is not as difficult as that one.D.The lesson is no more difficult than that one.5.A.An accident happened to the driver and he could do nothing but stay in the street.B.In time of danger some persons came to help the driver out.C.None of the persons came to help the driver when the accident happened.D.Not all the persons came to prevent the accident from taking place.6.A.23 minutes.B.54 minutes C.31 minutes D.32 minutes 7.A.9:00 B.9:30 C.9:13 D.8:308.A.In the drugstore.B.In the hospital.C.In the clinic.D.In the clothes shop.9.A.An expensive bike.B.A heavy bike.C.A racing bike.D.A fast bike.10.A.Politics B.EconomicsC.Maths D.EnglishPart B PassagesDirections: In part B, you will hear two short conversations , and you will be asked three questions on each of the passages.The passage will be read twice ,but the question will be spoken only once.When you hear a question, read the four possible answers in your paper and decide which one would be the best answer to the question you have heard.Questions11 through 13 are based on the following passage.11.A.Captain Singleton.B.Robinson Crusoe.C.Moll Flanders.D.Colonel Jack.12.A.People’s life.B.Sports.C.Politics D.Music13.A.Daniel was the youngest son of his family.B.Daniel finished his most famous novel at the age of 59.C.Daniel was a famous novelist but not a journalist.D.Daniel was once fined about and put in prison several times because he failed in business.Questions 14 through 16 are based on the following news.14.A.Crabs.B.Crocodiles C.Kangaroos.D.Rabbits15.A.10 days B.1 month C.5 days D.1 year.16.A.Between June and August.B.Between May and June.C.Between November and February.D.Between May and July.Part C.Longer ConverseationsDirections: In Part C, you will hear two longer conversations.The conversations will be read twice.After you hear each conversation, you are asked to fulfill the task by filling in the numbered blanks with the information you hear.Complete the form .Write no more than ONE WORD for each answer.Complete the form.Write NO MORE THAN THREE WORDS for each answer.Ⅱ.Grammar (16分)Beneath each of the following sentences there are four choices marked A, B, C and D.Choose the one answer that best completes the sentence.25.The real solution to the fuel shortage will have to be a new kind of car, _____ that does not use so much oil.A.the one B.what C./ D.one26.A survey of the opinions of experts _____that three hours of outdoor exercise a week ______ good for one’s health.A.show;are B.shows;is C.show;is D.shows;are27.It was 2005_____ he finished his study abroad and returned to his motherland.A.when B.since C.that D.before28.--How’s your tour around the North Lake? Is it beautiful?--It ________ be, but it is now heavily polluted.A.will B.would C.should D.must29.To test which foods are better for a long space journey, the astronauts in Shenzhou VI had as many as 50 dishes________.A.to choose B.to be chosen C.to choose from D.to be chosen from 30.In the past three years, the Southeast Asian nation also witnessed its islands ____ by tsunami and typhoons.A.being destroyed B.destroying C.destroyed D.to be destroyed 31.So difficult _____ it to adjust to an English-speaking environment that he determined to learn English hard.A.he has felt B.has he felt C.he did feel D.did he feel32._____ better in 2010 World Expo is the duty of every citizen in Shanghai.A.Being served B.Serving C.Serve D.Having served 33.Look out ! Don' t get too close to the house __________ roof is under repair.A.whose B.which C.of which D.that34._____ left before the deadline, it doesn’t seem likely that John will complete the job.A.Although such a short time B.It is a shortC.With so short times D.With such short time35.Advertising is distinguished from other forms of communication ______ the advertiser pays for the message to be delivered.A.in that B.in order that C.in which D.that36.In which play of Shakespeare's is it ___ Viola appears?A.where B.which C.who D.that 37.Nowadays business ______ on the Internet is growing rapidly, and this is a strong temptation for hackers, who are looking for ways to break into computer system.A.having been done B.to have been doneC.to do D.done38.AIDS is said ______ the biggest health threat to both men and women in that area over the past few years.A.being B.to be C.to have been D.to being39.We were disappointed to find that he was not _______ we had expected before. A.as good a singer as B.as better a singer asC.as a singer good as D.as a good singer as40.Getting out of the crowed bus, ________ .A.her cell phone was found missingB.her cell phone was nowhere to be foundC.she found her cell phone missingD.Her cell phone couldn’t be foundIII.V ocabulary(9分):Complete the passage by choosing the proper words or phrases in the box.(请把题号填写在答题I grew up in a tiny Baltimore row house in a faraway mountain area.My parents ___41___ the necessities of life but they couldn’t give much more.If I asked my father for a pair of jeans, he would say, “If you want them, make the money and buy them yourself .”He wasn’t being mean; he just couldn’t ___42___ them.From age 12 on, I did part-time jobs after school.When I graduated from high school, I joined the navy.Soon I was in a boot camp at Parris Island, S.C., where I learned that life in the navy centered around completing daily __43__.These could be anything from cleaning the camp to conducting mock(模拟的)battles.Completing these tasks __44____ required discipline, team-work and responsibility.It didn’t matter whether you were black, white or Asian; everyone worked together for the __45__ of the company.I went on to graduate from the U.S.Naval Academy and later became an officer in the navy.The part of my job I enjoyed most was the consoling meetings I __46__ with the family members of the men and women in my charge , trying to help them deal with the long periods of separation .These proved popular and before long I was being asked to give encouraging ___47___ to business groups, educators and kids across the country.But I consider the boot camp my first real job , and my life is still guided by the __48__ lessons I learned there.It taught me discipline, friendship and the pride related to setting a task every day and working hard to __49_ it.IV.Cloze(15分):Directions: For each blank in the following passages there are four words or phrases marked A, B, C and D.Fill in each blank with the word or phrase that best fits the context.(请在答题卡上从50题起正确涂点)Life is filled with challenges.As we get older we come to realize that those challenges to the very things can __50___us and make us who we are ,it is the same with the challenges that come with __51__.When we are faced with a challenge, we usually have two ___52__ .we can try to beat it off,or we can decide that the thing __53__ the challenge isn’t worth the __54__ and call it quits.Although there are certainly times when calling it quits is the right thing to do, in most __55__, all that is needed is commitment and communication.When we are communed to something, it means that no matter how____56__ or how uncomfortable something is, we will always choose to ___57___ it instead of running away from it.Communication is making space for discussion and talking about how you feel as opposed to just saying what the other person did wrong.___58___ you can say to a friend,“I got my feelings hurt”____59___“You hurt my feelings,”you are going to be able solve the problem much faster.In dealing with many challenges that friendship will bring to you, try to see them for ___60___ they are: small hurdles you need to jump or get through on your way through life.Nothing is so big that it is ___61___ to get over, and hurt only ___62__ to make us stronger.It is all part of growing up, it ___63___to everyone, and some day you will ___64___ all of this and say, “Hard as it was, it makes me who I am today.And that is a good thing.”50.A.design B.promote C.direct D.shape 51.A.confidence B.pressure C.friendship D.difficulty 52.A.opportunities B.expectations C.choices D.aspects 53.A.demanding B.deserving C.predicting D.presenting 54.A.comment B.loss C.trouble D.expense 55.A.cases B.fields C.parts D.occasions 56.A.doubtful B.shameful C.harmful D.painful 57.A.keep B.control C.face D.catch58.A.If B.As C.While D.Unless 59.A.other than B.rather than C.or rather D.or else 60.A.what B.who C.where D.which 61.A.unnecessary B.necessary C.impossible D.possible 62.A.serves B.means C.aims D.attempts 63.A.opens B.appeals C.goes D.happens 64.A.lock down on B.look back to C.look forward to D.look up to V.Reading Comprehension (35 分)Directions: Read the following passages.Each passage is followed by several questions or unfin-ished statements.For each of them there are four choices marked A, B, C, and D.Choose the one that fits best according to the information given in the passage you have read.King's College Summer SchoolKing's College Summer School is an annual training program for high school students at all levels who want to improve their English.Courses are given by the teachers of King's College and other colleges in New York.Trips to museums and culture centers are also organized.This year's summer school will be from July 25 to August 15.More information is as follows:65.You can most probably read the text in ________.A.a newspaper B.a travel guideC.a textbook D.a telephone book66.Which of the following is true about King' s College Summer School?A.Only top students can take part in the program.B.King' s College Summer School is run every other year.C.Visits to museums and culture centers are part of the program.D.Only the teachers of King' s College give courses.67.What information can you get from the text?A.The program will last two months.B.You can write to Thompson only in English.C.As a Chinese student, you can send your application on July 14, 2007.D.You can get in touch with the school by e-mail or by telephone.BOdiand remembers like it was yesterday working in an expensive French restaurant in Denver.The ice cream he was serving fell onto the white dress of a rich and important woman..Thirty years have passed, but Odiand can' t get the memory out of his mind, nor the woman' s kind reaction.She was shocked, regained calmness and, in a kind voice, told the young Odiand, “It' s OK.It wasn' t your fault." When she left the restaurant, she also left the future Fortune 500 CEO with a life lesson: You can tell a lot about a person by the way he or she treats the waiter.Watch out for anyone who pulls out the power card to say something like, " I could buy this place and fire you," or "I know the owner and I could have you fired." Those who say such things have shown more about their character than about their wealth and power.The CEO who came up with it, or at least first wrote it down, is Raytheon CEO Bill Swanson.He wrote a best-selling book called Swanson' s Unwritten Rules of Management."A person who is nice to you but rude to the waiter, or to others, is not a nice person," Swan-son says." I will never offer a job to the person who is sweet to the boss but turns rude to someone cleaning the tables."68.What happened after Odiand dropped the ice cream onto the woman' s dress?A.He was fired.B.He was blamed.C.The woman comforted him.D.The woman left the restaurant at once.69.Odiand learned one of his life lessons from ______.A.his experience as a waiter B.the advice given by the CEOsC.an article in Fortune D.an interesting best-selling book 70.According to the text, most CEOs have the same opinion about _______.A.Fortune 500 companies B.the Management RulesC.Swanson' s book D.the Waiter Rule71.From the text we can learn that _______.A.one should be nicer to important peopleB.CEOs often show their power before othersC.one should respect others no matter who they areD.CEOs often have meals in expensive restaurantsCIt may help you to know that there is no such thing as a perfect speech.At some point in every speech, every speaker says something that is not understood exactly as he has planned.Fortunately, the moments are usually not obvious to the listeners.Why? Because the listeners do not know what the speaker plans to say.They hear only what the speaker does say.If you lose your place for a moment, wrongly change the order of a couple of sentences, or forget to pause at a certain point, no_one_will_be_any_the_wiser.When such moments occur, don’t worry about them.Just continue as if nothing happened.Even if you do make an obvious mistake during a speech, that don’t really matter.If you have ever listen to Martin Luther King’s famous speech —“I Have a dream ”, you may notice that he stumbles(结巴)his words twice during the speech.Most likely, however, you don’t remember.Why? Because you were fixing your attention on his message rather than on his way of speech-making.People care a lot about making mistakes in a speech because they regard speechmaking as a kind of performance rather than as an act of communication.They feel the listeners are like judges in an ice-skating competition.But, in fact, the listeners are not looking for a period performance.They are looking for a well-thought-out speech that expresses the speaker’s ideas clearly and directly.Sometimes a mistake can actually increase a speaker’s attractiveness by making him more human.As you work on your speech, don’t worry about being perfect.Once you free your mind ofthis, you will find it much easier to give your speech freely.72.The underlined part an the first paragraph means that no one will ______A.be smarter than you B.notice your mistakesC.do better than you D.know what you arc talking about73.You don’t remember obvious mistakes in a speech because ______.A.you miss the main points of the speechB.you don’t fully understand the speechC.you do n’t know what the speaker plans to sayD.you find the way of speech-making more important74.It can be inferred from the passage that_____A.giving a speech is like giving a performanceB.one or two mistakes in a speech may not be badC.the listeners should pay more attention to how a speech is madeD.the more mistakes a speaker makes, the more attractive he will be75.What would be the best title for the passage?A.How to Be a Perfect Speaker B.How to Make a Perfect SpeechC.Don’t Expect a Perfect Speech D.Don’t Expect Mistakes in a SpeechDCommunications technologies are far from equal when it comes to conveying the truth.A recent research shows people tend to tell more lies in phone conversations than they are in emails.The fact that emails are automatically recorded and can come back to haunt you appears to be the key to the finding.Jeff Hancock of Cornell University in Ithaca, New York, asked 30 students to keep a communications diary for a week.In it they noted the number of conversations or email exchanges they had lasting more than 10 minutes, and confessed to how many lies they told.Hancock then worked out the number of lies per conversation for each medium.He found that lies made up 14 percent of emails, 21 percent of instant messages, 27 percent of face-to-face interactions and an astonishing 37 of phone calls.His results to be presented at the conference on human-computer interaction in Vienna, Austria, in April, have surprised psychologists.Some expected emailers to be the biggest liars, reasoning that because deception makes people uncomfortable, the detachment(非直接接触)of emailing would make it easier to lie.Others expected people to be more in face-to-face exchanges because we are most practiced at that form of communication.But Hancock says it is also crucial whether a conversation is being recorded and could be reread, and whether it occurs in real time.“P eople appear to be afraid to lie when they know the communication could later be used to hold them to account,” he says.This is why fewer lies appear in email than on the phone.“P eople are also more likely to lie in real time in an instant message or phone call than if they have time to think of a response,” say Hancock.He found many lies are spontaneous responses toan unexpected demand, such as, “Do you like my dress?”Hancock hopes his research will help companies work out the best ways for their employees to communicate.For instance, the phone might be the best medium for sales where employees are encouraged to stretch the truth.But, given his result, work assessment where honesty is a priority, might be best done using email.76.Hancock’s study focuses on _____.A.the consequences of lying in various communications mediaB.the success of communications technologies in conveying ideasC.people are less likely to lie in instant messagesD.people’s honesty levels across a range of communications media.77.Hancock’s research finding surprised those who believed that_______.A.people are less likely to lie in instant messages.B.people are unlikely to lie in face-to-face interactions.C.people are most likely to lie in email communication.D.people are twice as likely to lie in phone conversations.78.According to the passage, why are people more likely to tell the truth through certain media of communication?A.They are afraid of leaving behind traces of their lies.B.They believe that honesty is the best policy.C.They tend to be relaxed when using those media.D.They are most practiced at those forms of communication.79.It can be inferred from the passage that ______.A.honesty should be encouraged in interpersonal communicationsB.more employers will use emails to communicate with their employeesC.suitable media should be chosen for different communication purposesD.email is now the dominant medium of communication within a companyHumanity uses a little less than half the water available worldwide.Yet occurrences of shortages and droughts are causing famine and distress in some areas, and industrial and agricultural by-products are polluting water supplies.Since the world’s population is expected to double in the next 50 years, many experts think we are on the edge of a widespread water crisis.81._______But that doesn’t have to be the outcome.Water shortages do not have to trouble the world----ifwe start valuing water more than we have in the past.Just as we began to appreciate petroleum more after the 1970s oil crisis, today we must start looking at water from a fresh economic perspective.We can no longer afford to consider water a virtually free resource of which we can use as much as we like in any way we want.82._______Instead, for all uses except the domestic demand of the poor, governments should price water to reflect its actual value.This means charging a fee for the water itself as well as for the supply costs.83._______Governments should also protect this resource by providing water in more economically and environmentally sound ways.For example, often the cheapest way to provide irrigation water in the dry tropics is through small-scale projects, such as gathering rainfall in depressions(凹地)and pumping it to nearby cropland.84.________No matter what steps governments take to provide water more efficiently, they must change their institutional and legal approaches to water use.Rather than spread control among hundreds of even thousands of local, regional, and national agencies that watch various aspects of water use, countries should set up central authorities to coordinate water policy.第Ⅱ卷(共45分)I.Translation (20分)Directions: Translate the following sentences into English, using the words given in the brackets.1.学会与他人和睦相处对每个人都很重要。
09学年度第…学期高三质量调研数学试卷参考答案.docx
09学年度第…学期高三质量调研数学试卷参考答案一、填空题(每题4满分56分):2兀1.—;32. 2; 3. (—2,0) ; 4. x = 7 ; 5.1一arccos 一;36 ?•4,7. 2;& A/2 +1 ;9. —;10. 90°;311. 2 + lgn;312.(1)2—;(2) A^A*(1-1/2V A2);(错一个即不得分)413.。
>0且6/ +方=0;(该结论的等价形式都对);14.(4-2^2,4 + 272).二、选择题(每题4分,满分16分):题号151617理18;文:18答案C B C A三、解答题:19・(满分14分)解:依题意,得A={X|X2-X-2>0}=(-OO,-1)U(2,+OO),S = Jx|-l>oU(O,3],于是可解得AAB = (2,3].设集合C ={曲2无+ "<()},则兀w由于Q是0的充分条件,所以ApBcC.则须满足3<-^p<-6.所以,实数〃的収值范围是(—,-6).20.(本题满分14分,其中第1小题7分,第2小题7分)解:(1)(文)因为0B = 4sin30° = 2,OA=4COS30°=2A/3,所以丫=、兀0“= 兀.3 3(1)(理)解法一:设0B屮点为E,联结CE、DE ,则设异面直线A0与CD所成角即为ZCDE.由DE//A0 ,所以DE丄底面C03,于是DE丄CE.乂DE = -AO = 43 , CE = ^JCO2 + EO2 =^5,2因此,tan ZCDE即异面直线A。
与CD所成角的大小为毗3半1。
当Vo > 时,r = /(v)>9-2V680T = 36^170^;当且仅当V 二时'/取得最小值;解法二:以0C为兀轴,0B为y轴,0A为Z轴,建立空间直角坐标系, 则0(0,0,0), A(0,0,2^3), C(2,0,0), D(0,l,V3),OA = (0,0,273), CD = (-2,1,V3),设异面直线AO与CD所成角为&,则cos 0 =OACDOA • CD6 _y/6 2V3-2V2 - 4・•・异面直线AO与CD所成角的人小为arccos(2)文科同理科(1),评分标准见理科解法一.(2)(理科)由条件,底面圆周长为2兀・0B = 4兀,母线长AB = 4.故该圆锥体侧面展开图的扇形圆心角人小为0 =——=——=兀、I 4即展开图恰好为一个半圆(如图).7T 7T由条件ZBOC =-,故展开图屮,ZCAB =—,此时CD的长即为所求.2 4由余弦定理,CD2 = CA2 + AD2一2CA・ AD ・cos45° = 20-8^2 , 故从点C岀发在圆锥体表面运动到点D的最短距离为2V5-2V2 .21.(本題满分16分,其中第1小题6分,第2小题10分.)解:(1)依题意得,车队通过隧道的吋间f关于车队行述速度卩的函数解析式为:宀、6000+120 + 9R, 6120+ 9加2t = fM =----------------- = ----------- ,其屮,定义域为VG(0,V0];⑵t = f(v)胆0 +曲=9如㈣V=9.^ +680\,VG(0,vJ;令Jtv = —=> v =V型,于是吋间有最小值r min =6l2O+9ho (秒).vo22.(本题满分16分,其屮第1小题7分,第2小题9分.) [1O1 (1)证明:因为 ------- =— ------- =二^=_1+ ---------------°“+1 一 1 —1__ | a n _ 1 a n - 12一山所以 --------- =-1,//GN*;故」一是等差数列.%厂1 勺 j U_iJ由廿匕可得, -- — ------- (M — 1) X (― 1) — —Z?,% — 1 a x -1所以色=1——= ------- ,ne N .n n77 — |9(2)(文科)证明:由——X (—)",则有 "n 109 X [ 9n n -1 .loj [10(/2 + 1) 7" 所以,当一 n 2 + 10>0=>/?2<V10,即 n<3 时,仇+|〉仇; 同理,当一n 2 + 10<0=>n 2 > VTo ,即时,仇+|V 仇. 由此可知,仿是数列{化}中的最大项;乂因为/?| =(),且当”上2时,b n >0,所以数列曲}屮的最小项为/?!=(). 因此,对于任意的正整数m. n,都有2。
闵行区2009学年第二学期高三年级质量调研考试 物理试卷
5. 宇 宙 空 间 站 中 的 物 体 处 于 失 重 状 态 , 是 指 这 个 物 体 ----------------------
F
得 分
评卷人
单项选择题Ⅱ(24分) 。 ( 本大题共8小题,每小题3分. 每小题给 出的四个答案中,只有一个是正确的。把正确答案前面的字母按 要求填写在答题纸上.填写在试卷上的字母,不能作为评分的依 据。)
b d L a F B
a 图9
b
二、多项选择题(16分). (本大题共4小题,每小题4分。每小题给出的四个答案中,至少 有二个是正确的。把正确答案前面的字母按要求填写在答题纸 上。每一小题全选对的得4分;选对但不全,得部分分;有选错或 不答的,得O分,填写在试卷上的字母,不能作为评分的依据。) 得 分 评卷人 17. 如图 11 所示,由天然放射性元素钋(Po)放出的射线 χ1,轰击铍(49Be) 时会产生粒子 流 χ2,用粒子流 χ2 轰击石蜡时会打出粒子流 χ3,经研究知道-----------------
A R2 R1 B C
A B C
D 图 15
据彩灯工作特性,R1 应该________R2(大于、等于、小于) ,当其中一个 或几个灯的 灯丝断了,其余的灯将__________(变亮、变暗、完全熄灭) 。 23. 一定质量的理想气体状态变化如图 17 所示, 其中 AB 段与 t 轴平行, 已知在状态 A 时气体的压强为 2atm, 那么变到状态 B 时气体的压强为_____ atm, 变到状态 C 时气体的温度为_____K。 24. 某商场安装了一台倾角为 30°的自动扶梯, 该扶 梯在电压为 380V 的电动机带动下以 0.4m/s 的恒定 速率向斜上方移动,电动机的最大输出功率为 4.9kW。不载人时测得电动机中的电流 为 5A,若载人时扶梯的移动速率与不载人时相同,忽略电动机内阻的热损耗,则空 载时维持扶梯运行的电功率是 ______kW;这台自动扶梯可同时乘载的最多人数是 ______人。(设人的平均质量为 60kg) 25.高血压已成为危害人类健康的一种常见病,现已查明,血管变细是其诱因之一。为 研究这一问题,我们可做一些简化和假设 : 设血液通过一定长度血管时受到的阻力f与 血液流速v成正比,即f=kv (其中k与血管粗细无关),为维持血液匀速流动,在这血管 两 端需要有一定的压强差。 设血管内径为d1时所需的压强差为△p, 若血管内径减为d2时, 为了维持在相同时间内流过同样多的血液, 此时血液的流速是原来的__________倍; 血管两端的压强差必须变为__________△p。
2023-2024学年上海闵行区高三三模数学试卷及答案(2024.05)
1闵行区2023学年第二学期高三年级数学三模2024.05一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知i 为虚数单位,复数()13z i i =+,则z = .2.若抛物线22y px =−过点()1,2−,则该抛物线的焦点为 . 3.二项式611(1)x x −+展开式中3x 的系数为 .4.已知两个正数a ,b 的几何平均值为1,则22a +b 的最小值为 . 5.已知随机变量()50,X B p ∼,且[]20E X =,则[]D X = .6.4名志愿者全部分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有 种.7.现有一个底面半径为2cm 、高为9cm 的圆柱形铁料,若将其熔铸成一个球形实心工件,则该工件的表面积为 2cm (损耗忽略不计). 8.已知随机变量X 服从正态分布()0,1N ,若()1.960.03P X <−=,则(|| 1.96)P X <=. 9.方程()2lg(2)lg 3x x −−的解集为 .10.对24小时内降水在平地上的积水厚度()mm 进行如下定义:0~1010~25 25~5050~100①小雨 ②中雨 ③大雨④暴雨小明用了一个圆锥形容器接了24小时的雨水,则这一天的雨水属于等级 .(只填入雨水等级所对应的序号)211.已知(2,1),(4,),a b m =−−=− 若向量b 在向量a,则实数m = .12.若1F 、2F 是双曲线22221(0,0)x y a b a b−=>>的左右焦点,过1F 的直线l 与双曲线的左右两支分别交于A ,B 两点.若2ABF △为等边三角形,则双曲线的离心率为 . 二、选择题(本大题满分18分,第13-14题每题4分,第15-16题每题5分) 13.已知α:1x >,β:11x<,则α是β的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件14.某社区通过公益讲座宣传交通法规.为了解讲座效果,随机抽取10位居民,分别在讲座前、后各回答一份交通法规知识问卷,满分为100分.他们得分的茎叶图如图所示(“叶”是个位数字),则下列选项叙述错误的是( ) A .讲座后的答卷得分整体上高于讲座前的得分 B .讲座前的答卷得分分布较讲座后分散 C .讲座后答卷得分的第80百分位数为95 D .讲座前答卷得分的极差大于讲座后得分的极差 15.对于函数()212f x sin x =+−,给出下列结论: (1)函数()y f x =的图像关于点5,012π对称; (2)函数()y f x =在区间2,63ππ 上的值域为1,12 −; (3)将函数()y f x =的图像向左平移3π个单位长度得到函数2y cos x =−的图像;(4)曲线()y f x =在4πx =处的切线的斜率为1.则所有正确的结论是( ) A .(1)(2)B .(2)(3)C .(2)(4)D .(1)(3)316.设P 为曲线C :24y x =上的任意一点,记P 到C 的准线的距离为d .若关于点集{}AM MP d ==和{}222(,)(1)(1)B x y x y r =−+−=,给出如下结论:①任意,()0r ∈+∞,A B ∩中总有2个元素;②存在,()0r ∈+∞,使得A B ∩=∅. 其中正确的是( ) A .①成立,②成立 B .①不成立,②成立 C .①成立,②不成立D .①不成立,②不成立三、解答题(本大题满分78分,第17-19题每题14分,第20-21题每题18分) 17.(第1小题满分6分,第2小题满分8分)在ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c,已知a =,45C =°. (1)若sinA =,求c ; (2)若15B A −=°,求ABC 的面积.18.(第1小题满分6分,第2小题满分8分)如图,已知顶点为S 的圆锥其底面圆O 的半径为8,点Q 为圆锥底面半圆弧AC 的中点,点P 为母线SA 的中点.(1)若母线长为10,求圆锥的体积; (2)若异面直线PQ 与SO 所成角大小为4π,求P 、Q 两点间的距离.19.(第1小题满分6分,第2小题满分8分)去年,某县书画协会在县宣传部门的领导下组织了庆国庆书画展,参展的200幅书画作品反映了该县人民在党的领导下进行国家建设中的艰苦卓绝,这些书画作品的作者的年龄都在[25,85]之间,根据统计结果,作出如图所示的频率分布直方图:(1)求这200位作者年龄的平均数x和方差2s(同一组数据用该区间的中点值作代表);(2)县委宣传部从年龄在[35,45)和[65,75)的作者中,按照分层抽样的方法,抽出6人参加县委组织的表彰大会,现要从6人中选出3人作为代表发言,设这3位发言者的年龄落在区间[35,45)的人数是X,求变量X的分布列和数学期望.4520.(第1小题满分4分,第2小题满分6分,第3小题满分8分)设椭圆222:1(1)x y a a Γ+=>,Γ倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点.(1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB = ,0CF AB ⋅=,求CBF S 的值;(3)设直线l 的方程为(,)y kx m k m R =+∈,且OA OB CO+= ,求||AB 的取值范围.21.(第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知函数()()211ln 2f x x a x a x =−++.(其中a 为常数) (1)若2a =−,求曲线()y f x =在点(2,(2))f 处的切线方程; (2)当0a <时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.参考答案一、填空题; 2.()1,0−; 3.5; 4.2; 5.12; 6.36; 7.36π; 8.0;9.0.94; 10.②; 11.311.已知(2,1),(4,),a b m=−−=−若向量b在向量a,则实数m=.【答案】3【解析】由条件可知,a ba⋅=, 解得:3m=.12.若1F、2F是双曲线22221(0,0)x y a ba b−=>>的左右焦点,过1F的直线l与双曲线的左右两支分别交于A,B两点.若2ABF△为等边三角形,则双曲线的离心率为 .【解析】因为2ABF∆为等边三角形, 可知22AB BF AF==,A为双曲线上一点, 212AF AF a∴−=,B为双曲线上一点, 则122BF BF a−=, 即112BF AB AF a−==, 2124AF AF a a∴=+=,由260ABF∠=, 则12120F AF∠=, 已知123F F C=,在12F AF∆中应用余弦定理得:3224416224120c a a a a cos=+−⋅⋅⋅ ,得227c a=,则27e e=⇒=二、选择题13. A 14.C 15. C 16.B15.对于函数()212f x sin x=+−,给出下列结论:(1)函数()y f x=的图像关于点5,012π对称;(2)函数()y f x=在区间2,63ππ上的值域为1,12−;67(3)将函数()y f x =的图像向左平移3π个单位长度得到函数2y cos x =−的图像; (4)曲线()y f x =在4πx =处的切线的斜率为1.则所有正确的结论是( ) A .(1)(2) B .(2)(3) C .(2)(4) D .(1)(3)【答案】C【解析】 因为()212f x sin x =+−, 所以()121122222226cos x f x x x cos x sin x −π=+−=−=−,当512x π=时,5226663x ππππ−−,所以5012,π不是函数()y f x =的对称中心, (1) 错误; 由263x ππ≤≤可得4233x ππ≤≤, 所以72666x πππ≤−≤,所以12126sin x π−≤−≤, 当3x π=时,216sin x π −= ,当0x =时,1262sin x π −=−,所以函数()y f x =在区间263,ππ 上的值域为112, −,(2) 正确; 函数()26f x sin x π =−的图像向左平移3π个单位长度得到函数2222362y sin x sin x cos x πππ=+−=+= 的图像, (3)错误; 由()26f x sin x π=− 可得()'226f x cos x π=−,所以'221446f cos πππ =×−=,曲线()y f x =在4x π=处的切线的斜率为 1 ,(4) 正确; 所以正确的命题有 (2) (4), 故选:C.16.设P 为曲线C :24y x =上的任意一点,记P 到C 的准线的距离为d .若关于点集{}AM MP d ==和{}222(,)(1)(1)B x y x y r =−+−=,给出如下结论:①任意,()0r ∈+∞,A B ∩中总有2个元素;②存在,()0r ∈+∞,使得A B ∩=∅. 其中正确的是( ). A .①成立,②成立B .①不成立,②成立8C .①成立,②不成立D .①不成立,②不成立【答案】B【解析】曲线2:4C y x =的焦点()10F ,, 则PF d =,由MP d =得, 点M 的轨迹是以P 为圆心,d 为半径的圆,()()22211x y r −+−=的圆心为()11N ,,当点P 在原点处时,()00P ,, 此时1d =,此时点M 的轨迹方程为221x y +=,因为1121+=>,所以点()11N ,在圆221x y +=外,则存在()0r ,∈+∞, 使得两圆相离, 即A B ∩=∅, 故(1)错误, (2)正确, 故选B. 三.解答题17.(1)2 (218.(1)128π(2)19.(1)260,180x s == (2)分布列如下:()1E X =20.(第1小题满分4分,第2小题满分6分,第3小题满分8分)设椭圆222:1(1)x y a a Γ+=>,Γ倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点.(1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB = ,0CF AB ⋅=,求CBF S 的值;(3)设直线l 的方程为(,)y kx m k m R =+∈,且OA OB CO+= ,求||AB 的取值范围.9【答案】(1)2212x y += (2)1CBF S ∆=(3) 【解析】(1)由Γ的离心率是短轴的长的倍,=, a =, 又1a >, 则a =故椭圆Γ的方程为2212x y +=.(2) 设Γ的左焦点为1F , 连接1CF ,因为CO OB =, 所以点,B C 关于点O 对称,又0CF AB ⋅=, 则CF AB ⊥,由椭圆Γ的对称山可得,1CF CF ⊥, 且三角形1OCF 与三角形OBF 全等, 则111,2CBF CF FS S CF CF ∆∆==⋅又12221124CF CF CF CF F F +=−+==整理得12,1CBF CF CF S ∆==则 (3) 设()()1100,A x ,y C x ,y ,又OA OB CO +=, 则()()012012,x x x y y y =−+=−+, 由2212x y y kx m+= =+ 得,()222124220k x mkx m +++−=, ()()()222222168121821,m k k m k m ∆−+−=−+由韦达定理得,2121222422,1212mk m x x x x k k−−+==++, 又()121222212m y y k x x mk +=++=+,则002242,1212mk mx y k k −==++, 因为点C 在椭圆Γ二, 所以222242221212mk m k k −+=++,化简整理得,22412m k =+, 此时,()()222222182182162104k Δk m k k+=−+=+−=+>,则AB ===10==,令212t k =+, 即1t ≥, 则(]226633333612k t ,t t k++==+∈+,则AB的取值范围是.21.(第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知函数()()211ln 2f x x a x a x =−++.(其中a 为常数) (1)若2a =−,求曲线()y f x =在点(2,(2))f 处的切线方程; (2)当0a <时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.【答案】(1)220x y lnx −−= (2)12a −−(3)当01a <<时,()f x 在()0,+∞上有一个零点. 【解析】(1)当2a =−时, 可得()2122f x x x lnx =+−可得()()()212'1x x f x x xx+−=+−=, 所以()'22f =且()2422f ln =−,所以切线方程为()()42222y ln x −−=−即2220x y ln −−=,即曲线所以曲线()y f x =在点()()22,f 处的切线方程为220x y lnx −−=. (2) 由函数()()2112f x x a x alnx =−++, 可得函数()f x 的定义域为()0,+∞, 又由()()()1'x a x f x x−−=, 令()'0f x =, 解得11,1x a x ==,当0a <时,()f x 与()'f x 在区间()0,+∞的情况如下表:x()01,1 ()1,+∞()'f x -0 +()f x极小值11 所以函数的极小值为()112f a =−−, 也是函数()f x 的最小值, 所以当0a <时, 函数()f x 的最小值为12a −− (3)当0a =时,()212f x x x =−, 令()0f x =, 解得122,0x x ==(舍去) 所以函数()y f x =在()0,+∞上有一个零点;当01a <<时,()f x 与()'f x 在区间()0,+∞的情况如下表: x ()0,aa ()1a, 1 ()1,+∞ ()'f x + 0 - 0 + ()f x 极大值 极小值所以函数()f x 在()0,a 单调递增, 在()1a,上单调递减,此时函数()f x 的极大值为()2102f a a a alna =−−+<,所以函数()y f x =在()01,上没有零点;又由()1102f a =−−<且函数()f x 在()1,+∞上单调递增,且当(),x f x →+∞→+∞, 所以函数()f x 在()1,+∞上只有一个零点,综上可得, 当01a <<时,()f x 在()0,+∞上有一个零点.。
2009年上海高三数学四校质量调研试卷文理有答案
2009年上海市四校高三质量调研数学(理科)试题考生注意:1.答卷前,考生务必在答题纸上将姓名、准考证号填写清楚. 2得5分,否则一律得零分。
1.已知a R ∈,若(1)(32)ai i -+为纯虚数,则a 的值为________________。
2.已知集合{}2|0A x x x a =-+>,且1A ∈,则实数a 的取值范围是____________。
3.已知函数22()log (1)(0)f x x x =+≤,1(2)___________f -=则。
4.球面上有A 、B 、C 三点,AB =AC =2,90BAC ∠=,球心到平面ABC 的距离为1,则球的表面积为_______________。
5.已知数列{}n a 满足:113a =,且对任意的正整数n ,都有113n n a a +=,若数列{}n a 的前n 项和为n S ,则____________n n lim S →∞=。
6.若()3211nn x x ax bx +=+++++,且3a b =,则n =_________。
7.已知双曲线2221(0)x y a a-=>的左焦点在抛物线216y x =的准线上,则_____a =。
8.已知对于任意实数x ,函数)(x f 满足(1)(1)f x f x -=+,若方程0)(=x f 有且仅有2009个实数解,则这2009个实数解之和为 。
9.袋中有3个白球,2个红球和若干个黑球(球的大小均相同),从中任取2个球,设每取得一个黑球得0分,每取得一个白球得1分,每取得一个红球得2分,已知得0分的概率为61,则袋中黑球的个数为____________。
10.ABC ∆中,c b a ,,分别是角C B A ,,的对边,已知060=A ,7=a ,现有以下判断: ① c b +不.可能..等于15;② 若12=⋅AC AB ,则36=∆ABC S ;③若3=b ,则B 有两解。
上海市闵行区2009届高三上学期期末质量调研(数学)
上海市闵行区2008学年高三第一学期期末质量监控数学试卷(理)2009.1一.填空题(本大题满分60分)1.设集合U {1,2,3,4,5},=集合A={1,23}B={2,34},,,,则U (A B)=ð____________.2.在等比数列{}n a 中,218,64,a a ==则公比q 为=___________ . 3.不等式|32|1x -<的解是____________. 4.已知点Z 是复数21iz i-=+在复平面内对应的点,则点Z 在第_______象限. 5.函数2()log (1)f x x =-的反函数是1()f x -=_________.6.在6(1)x -的二项展开式中,中间项的系数是__________.7.已知圆锥的底面积为π,母线长为2,则该圆锥的母线与底面所成的角的大小是__________.8.根据右面的框图,打印的最后一个数据是__________.9.已知数列{}n a 是以13为首项,以2-为公差的等差数列,n S 是其前n 和,则n S 的最大值是____.10.四位同学各自制作了一张贺卡,分别装入空白信封内,这四位同学每人 随机地抽取一封,则恰好有一人抽取到的贺卡是其本人制作的概率是______11.已知x 是1245x 、、、、这五个数据的中位数,又知115y x--、、、这四个 数据的平均数为3,这x y +的最小值为_________ .12.若关于x 的不等式211()022n x x +-≥对任意*n N ∈在(,]x λ∈-∞恒成立,则实常数λ的取值范围是__________.二.选择题(本大题满分16分)13.某人在超市一次性购买了20斤大米和10斤食用油,大米的价格是1.9元/斤,食用油的价格是15元/斤,则购买这两种商品的总花费可以用下列各式计算得到的是 ( )A .20 1510 1.9 B .20 1.910 15 C .() 1.920 1015⎛⎫ ⎪⎝⎭ D .()1.920 1015⎛⎫⎪⎝⎭14.如图为函数log n y m x =+的图像,其中m、( )A .0,1m n <>B .0,1m n >>C .0,01m n ><<D .0,01m n <<<15.给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l与平面α垂直”的 ( )A .充分非必要条件B .必要非充分条件 C. 充要条件 D. 既非充分也非必要条件 16.一质点A 从原点O 出发沿向量1(2,0)OA =到达点1A ,再沿y 轴正方向从点1A 前进11||2OA 到达点2A ,再沿1OA 的方向从点2A 前进121||2OA 到达点3A ,再沿y 轴正方向从点3A 前进131||2OA 到达点4A ,┅,这样无限前进下去,则质点A 最终到达的点坐标是 ( ) A .42(4,2)22n n -- B .(4,2)C .8844(,)338338n n --D .84(,)33三.解答题(满分74分)17.(本题满分12分)如图,直四棱柱1111A B C DA B C D-中,底面ABCD 是直角梯形,//AB DC ,,A D A B⊥ 且2,3,AD DC AB ===求异面直线11D C 与DB 所成角的大小.(结果用反三角函数值表示)ABCD A 1B 1C 1D 118.(本题满分14分)某医药研究所开发一种新药,据监测:服药后每毫升血液中的含药量()f x 与时间x 之间满足如图所示曲线.当[0,4]x ∈时,所示的曲线是二次函数图像的一部分,满足21()(4)44f x x =--+,当(4,19]x ∈时,所示的曲线是函数12log (3)4y x =-+的图像的一部分.据测定:每毫升血液中的含药量不少于1微克时治疗疾病有效.请你算一下,服用这种药一次大概能维持多长时间的有效时间?(精确到0.1小时)19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点(P -.(1)求行列式sin tan 1 cos ααα的值;(2)若函数()cos()cos sin()sin ()f x x x x R αααα=+++∈,求函数2(2)2()2y x f x π=-+的最大值,并指出取到最大值时x 的值.20.(本题满分16分)本题共有3个小题,第1、2小题满分各4分,第3小题满分8分.已知向量2(1,2),(3,),(),a x p b x f x a b p =++==是实数.(1)若存在唯一实数x ,使a b +与(1,2)c =平行,试求p 的值; (2)若函数()y f x =是偶函数,试求函数()f x 在区间[1,3]-上的值域;(3)已知α:函数()f x 在区间1[,)2-+∞上是增函数,β:方程()f x p =有小于2-的实根.试问:α是β的什么条件(指出充分性和必要性)?请说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分3分,2小题满分5分,第3小题满分10分.第3小题根据不同的思维层次予以不同评分.对于函数()y f x =,定义:若存在非零常数M T 、,使函数()f x 对定义域内的任意x 实数,都满足()(),f x T f x M +-=则称函数()y f x =是准周期函数,常数T 称为函数()y f x =的一个准周期.如函数()(1)()xf x x x Z =+-∈是以2T =为一个准周期且2M =的准周期函数.(1) 试判断2π是否是函数()sin f x x =的准周期,说明理由;(2)证明函数()2sin f x x x =+是准周期函数,并求出它的一个准周期和相应的M 的值;(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像.参考答案一、1.{1,4,5} 2.18 3.1(,1)34.四5.1()21x f x -=+6.20-7.O60 8.63 9.49 10.13 11.110212.(,1]-∞- 二、13.C 14.D 15.B 16.D 三、17.2arctan )3或 18. 由204,1(4)414x x ≤≤⎧⎪⎨--+≥⎪⎩解得:44x -≤ ① 由12419,l o g (3)41x x <≤⎧⎪⎨-+≥⎪⎩解得:411x <≤ ②由①、②知:411x -≤≤11(43)10.5--≈ 所以,服用这种药一次大概能维持的有效时间为10.5小时. 19. (1)因为角α终边经过点(P -,所以1sin ,cos ,tan 223ααα==-=-s i n t a ns i n c o s t a n 1 c o s12αααααα∴=-=; (2)()cos()cos sin()sin cos ()f x x x x x R αααα=+++=∈2c o s (2)2c o s221cos 2 2sin(2)16y x x x xx ππ∴=-+=++=++函数m a x 3,y ∴=此时()6x k k Z ππ=+∈20. (1)22(1,2),(3,),(4,2),a x p b x a b x x p =++=∴+=+++2(1,2)2(4)2a b c x x p +=∴+=++又与平行, 即2260x x p --+=,依题意可知,方程2260x x p --+=有两个相等的实根, ∴△=4718(6)0,8p p --=∴=(2)2()3(2)3f x a b x P x ==+++是偶函数,(2)0,2p p ∴+==-即()[1,3][3,3f x ∴-在上的值域是 (3)由:α函数()f x 在区间1[,)2-+∞上是增函数,知2162p +-≤-, 1,A =[1,+p ∴≥∞记由:β方程23(2)30x p x p +++-=有小于-2的实根,2323,21x x p x x ++∴=<--且 232383(1)8(2)11x x p x x x x++==-+-<---又的值域为11(,)3+∞ 111,(,)33p B ∴>=+∞记 A B Ø,所以α是β的必要不充分条件. 21. (1)()sin ,f x x =(2)()s i n (2)s i n f x f x x x ππ∴+-=+-=2π∴不是函数()f x 的准周期(2)(2)()[2(2)s i n (2)](2=24sin 2sin 4f x f x x x x x x x x xπππππ+-=+++-+++--=∴()2s i n f x x x =+是准周期函数,2T π=是它的一个准周期,相应的4M π=(3)①写出一个不同于题设和(2)中函数,如3sin ,2(1),23sin ,[]xy x x y x y x x y x =+=+-=+=等得1分(0),()sin(),()cos()y kx b k y kx b A x y kx b a x ωϕωϕ=+≠=+++=+++,或其它一一次函数(正比例函数)与周期函数的线性组合的具体形式得3分 ②指出所写函数的一个准周期,得2分③指出它的一些性质,如定义域、值域、奇偶性、单调性、最值、┅,(写出一条得1分,写出两条以上得2分,可以不证明)④画出其大致图像,得3分.参考图像:212s i n (2)3y x x π=+++的图像如下:。
高三数学教学质量调研
更多资料请访问.(.....)上海市闵行区2009学年第二学期高三年级质量调研考试数 学 试 卷(理科)考生注意: 编辑:刘彦利 1.答卷前,考生务必在答题纸上将学校、班级、考号、姓名等填写清楚. 2.本试卷共有23道题,满分150分,考试时间120分钟.一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内 直接填写结果,每个空格填对得4分,否则一律得零分. 1.若2ia bi i+=+(i 为虚数单位,a b ∈R 、),则a b += . 2.A 、B 是两个随机事件,()0.34P A =,()0.32P B =,()0.31P AB =,则()P A B = .3.方程1111900193xx=-的解为 . 4.6(21)x +展开式中2x 的系数为 .5.某区有200名学生参加数学竞赛,随机抽取10名学生成绩如下:成 绩 人 数40 1150 60 221370 80 90则总体标准差的点估计值是 (精确到0.01). 6.已知球O 的半径为R ,一平面截球所得的截面面积为4π,球心到该截面的距离为O 的体积等于 . 7.根据右面的程序框图,写出它所执行的内容: . 8.已知函数()200.618xf x x =⨯-的零点()0,1,x k k k ∈+∈Z ,则k = .9.设等差数列{}n a 的前n 项之和n S 满足40510=-S S ,那么 =8a .10.已知直线l 的参数方程是⎩⎨⎧+==t y tx 2(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为)4πρθ=+,则圆C 的圆心到直线l 的距离是 .11.定义:关于x 的两个不等式()0<x f 和()0<x g 的解集分别为()b a ,和⎪⎭⎫ ⎝⎛a b 11,,则称这两个不等式为对偶不等式.如果不等式022cos 342<+-θx x 与不等式012sin 422<++θx x 为对偶不等式,且,2πθπ⎛⎫∈ ⎪⎝⎭,则=θ .12.已知5是方程()f x x k +=(k 是实常数)的一个根,1()fx -是()f x 的反函数,则方程1()f x x k -+=必有一根是 .13.函数()x bf x x a+=-在()2,-+∞上是增函数的一个充分非必要条件是 . 14.对于自然数n (2)n ≥的正整数次幂,可以如下分解为n 个自然数的和的形式:23423417251372,2,2,,33,39,327,35951129⎧⎧⎧⎧⎧⎧⎪⎪⎪⎨⎨⎨⎨⎨⎨⎩⎩⎩⎪⎪⎪⎩⎩⎩231355,579⎧⎪⎪⎪⎨⎪⎪⎪⎩,⎧⎪⎪⎪⎨⎪⎪⎪⎩仿此,3k *(,2)k k ∈≥N 的分解中的最大数为 .BCDEF二. 选择题(本大题满分16分)本大题共有4题,每题只有一个正确答案,选对得4分,答案代号必须填在答题纸上.注意试题题号与答题纸上相应编号一一对应,不能错位. 15.如图,已知正六边形ABCDEF ,下列向量的数量积中最大的是 [答]( )(A) AB AC ⋅.(B) AB AD ⋅. (C) AB AE ⋅. (D) AB AF ⋅.16.已知ABC △中,AC =2BC =,则角A 的取值范围是 [答]( )(A),63ππ⎛⎫⎪⎝⎭. (B) 0,6π⎛⎫ ⎪⎝⎭. (C) ,42ππ⎡⎫⎪⎢⎣⎭. (D) 0,4π⎛⎤ ⎥⎝⎦. 17.数列{}n a 中,已知12a =-,21a =-,31a =,若对任意正整数n ,有321321+++++++++=n n n n n n n n a a a a a a a a ,且1321≠+++n n n a a a ,则该数列的前2010 项和2010S = [答]( )(A) 2010. (B) 2011-. (C) 2010-. (D) 2008-.18.设点()y x P ,是曲线11692522=+y x 上的点,又点)12,0(),12,0(21F F -,下列结论正确的是 [答]( ) (A) 2621=+PF PF . (B) 2621<+PF PF . (C)2621≤+PF PF . (D) 2621>+PF PF .三. 解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸上与题号对应的区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知函数()2sin 2cos 6f x x x π⎛⎫=+- ⎪⎝⎭, ,2x ππ⎡⎤∈⎢⎥⎣⎦. (1)若54sin =x ,求函数)(x f 的值; (2)求函数)(x f 的值域.20.(本题满分14分)本题共有2个小题,每小题满分各7分.如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,22PA AD AB BC ====,M N 、分别为PC PB 、的中点.(1)求证:AM PB ⊥;(2)求BD 与平面ADMN 所成的角.21.(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.某火山喷发停止后,为测量的需要,设距离喷口中心50米内的圆环面为第1区、50米至100米的圆环面为第2区、……、第50(1)n -米至50n 米的圆环面为第n 区,…,现测得第1区火山灰平均每平方米为1000千克、第2区每平方米的平均重量较第1区减少2%、第3区较第2区又减少2%,以此类推,求:(1)离火山口1225米处的圆环面平均每平方米火山灰重量(结果精确到1千克)? (2)第几区内的火山灰总重量最大?22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.设12x x ∈R 、,常数0a >,定义运算“⊕”:21212()x x x x ⊕=+,定义运算“⊗”:21212()x x x x ⊗=- ;对于两点11(,)A x y 、22(,)B x y,定义()d AB =A BCDN MP(1)若0x ≥,求动点(,P x 的轨迹C ;(2)已知直线11:12l y x =+与(1)中轨迹C 交于11(,)A x y 、22(,)B x y两点,若,试求a 的值;(3)在(2)中条件下,若直线2l 不过原点且与y 轴交于点S ,与x 轴交于点T ,并且与(1)中轨迹C 交于不同两点P 、Q , 试求|()||()||()||()|d ST d ST d SP d SQ +的取值范围.23.(本题满分18分)(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()31122log (,),(,)f x M x y N x y =是()x f 图像上的两点,横坐标为21的点P 满足2OP OM ON =+(O 为坐标原点).(1)求证:12y y +为定值; (2)若121n n S f f f n n n -⎛⎫⎛⎫⎛⎫=+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭*(2)n n ∈≥N ,,求1149lim49n n n n S S S S n ++→∞-+的值; (3)在(2)的条件下,若()()111612411n n n n a n S S +⎧=⎪⎪=⎨⎪≥++⎪⎩,,,,*()n ∈N ,n T 为数列{}n a 的前n 项和,若()11nn T m S +<+对一切*n ∈N 都成立,试求实数m 的取值范围.闵行区2009学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一、填空题:(每题4分) 1.-1; 2.0.35; 3.2; 4. 60; 5.17.64;6.36π;7.2221352009++++; 8.3; 9.8; 10.理22;文(0,2)11.56π; 12. 理5k -;文(-2,4); 13.理符合0a b +<且2a ≤-的一个特例均可;文符合4a ≥-的一个特例均可; 14.理21k k +-;文29.二、选择题:(每题4分)15. A ; 16. D ; 17. B ; 18. C 三、解答题:19.(本题满分14分)理:(1)43sin ,,,cos 525x x x ππ⎡⎤=∈∴=-⎢⎥⎣⎦(2分) x x x x f cos 2cos 21sin 232)(-⎪⎪⎭⎫ ⎝⎛+=(4分)3cos 5x x =-= (8分) (2)⎪⎭⎫⎝⎛-=6sin 2)(πx x f (10分)ππ≤≤x 2,6563πππ≤-≤∴x (12分)16sin 21≤⎪⎭⎫ ⎝⎛-≤πx , ∴ 函数)(x f 的值域为]2,1[. (14分) 文:设z a bi =+(,)a b ∈R (2分)因为(2)(2)(2)i z a b a b i +=-++为纯虚数 (5分)所以⎪⎩⎪⎨⎧=+-≠+=-4)2(020222b a b a b a (9分)解得⎪⎪⎩⎪⎪⎨⎧==5854b a (12分) 故复数i z 5854+= (14分)20.(本题满分14分)理:解法一:(1)以A 点为坐标原点建立空间直角坐标系A xyz -(图略),由22====BC AB AD PA 得:数学驿站 (0,0,0)A ,(0,0,2)P ,(2,0,0)B ,1(1,,1)2M (0,2,0)D (2分)因为1(2,0,2)(1,,1)02PB AM⋅=-⋅= (5分) 所以AM PB ⊥. (7分)(2)因为 (2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥,又AM PB ⊥,故PB ⊥平面ADMN ,即(2,0,2)PB =-是平面ADMN 的法向量.(9分) 设BD 与平面ADMN 所成的角为θ,又(2,2,0)BD =-,设BD 与PB 夹角为α, 则1sin cos 28BD PB BD PBθα⋅-====⋅, (12分) 又[0,]2πθ∈,故6πθ=,故BD 与平面ADMN 所成的角是6π. (14分) 解法二:(1)证明:因为N 是PB 的中点,AB PA =, 所以PB AN ⊥ (2分)由PA ⊥底面ABCD ,得PA AD ⊥,又90BAD ︒∠=,即BA AD ⊥,∴⊥AD 平面PAB ,AD PB ∴⊥ (4分) PB ∴⊥面ADMN ,PB AM ∴⊥ (7分)(2)联结DN ,BP ⊥平面ADMN ,故BDN ∠为BD 与面ADMN 所成角(9分)在Rt ABD ∆中,BD ==, 在Rt PAB ∆中,PB ==12BN PB ==, 在Rt BDN ∆中, 21sin ==∠BD BN BDN,又π≤∠≤BDN 0, (12分) 故BD 与平面ADMN 所成的角是6π(14分)文(同理19题)21.(本题满分16分)(1)设第n 区每平方米的重量为n a 千克,则111000(12%)10000.98n n n a --=-=⨯ (2分) 第1225米位于第25区, (4分) 242510000.98616a ∴=⨯=(千克)故第1225米处每平方米火山灰约重616千克(6分)(2)设第n 区内的面积为n b 平方米,则22225050(1)2500(21)n b n n n πππ=--=-则第n 区内火山灰的总重量为512510(21)0.98n n n n C a b n π-==⨯-⨯(千克)(9分)设第n 区火山灰总重量最大,数学驿站 则51525152510(21)0.982510(23)0.982510(21)0.982510(21)0.98n n n nn n n n ππππ---⎧⨯-⨯≥⨯-⨯⎪⎨⨯-⨯≥⨯+⨯⎪⎩, (13分)解得49.550.5n ≤≤,即得第50区火山灰的总重量最大. (16分) 22.(本题满分16分)(理)(1)设y =,则2()()y x a x a =⊕-⊗22()()4x a x a ax =+--= (2分)又由y ≥0可得P (x的轨迹方程为24(0)y ax y =≥,轨迹C 为顶点在原点,焦点为(,0)a 的抛物线在x 轴上及第一象限的内的部分 (4分)(2) 由已知可得24112y axy x ⎧=⎪⎨=+⎪⎩ , 整理得2(416)40x a x +-+=, 由2(416)160a ∆=--≥ ,得102a a ≥≤或.∵0a >,∴12a ≥ (6分)=====(8分)解得2a=或32a=-(舍) ;2a∴=(10分)(3)∵12()||d AB y y==-∴|()||()||||||()||()|||||d ST d ST ST STd SP d SQ SP SQ+=+(12分)设直线2:l x my c=+,依题意0m≠,0c≠,则(,0)T c,分别过P、Q作PP1⊥y轴,QQ1⊥y轴,垂足分别为P1、Q1,则=+||||||||SQSTSPST11||||||||||||||||P QOT OT c cPP QQ x x+=+.由28y xx my c⎧=⎨=+⎩消去y得222(28)0x c m x c-++=∴||||11||()||||||||P QST STcSP SQ x x+=+≥2||c2||2c==.(14分)∵Px、Qx取不相等的正数,∴取等的条件不成立∴|()||()||()||()|d ST d STd SP d SQ+的取值范围是(2,+∞).(16分)(文)解:(1)设AB所在直线的方程为y x m=+由2234x yy x m⎧+=⎨=+⎩得2246340x mx m++-=.(2分)因为A B、在椭圆上,所以212640m∆=-+>.334334<<-m设A B、两点坐标分别为1122()()x y x y,、,,中点为),(yxP则1232mx x+=-,34xm-=,03134xxxy-=-=所以中点轨迹方程为13(32y x x x=-<≠-)(4分)(2)AB l //,且AB 边通过点(00),,故AB 所在直线的方程为y x =. 此时0m =,由(1)可得1x =±,所以12AB x =-= (6分)又因为AB 边上的高h 等于原点到直线l的距离,所以h =(8分)122ABC S AB h =⋅=△. (10分) (3)由(1)得1232mx x +=-,212344m x x -=,所以12AB x =-=. (12分)又因为BC 的长等于点(0)m ,到直线l的距离,即BC = (14分)所以22222210(1)11AC AB BC m m m =+=--+=-++.所以当1m =-时,AC 边最长,(这时12640∆=-+>)此时AB 所在直线的方程为1y x =-. (16分)23.(本题满分18分)(理)(1)证明:由已知可得,1()2OP OM ON =+,所以P 是MN 的中点,有 121x x +=,12123312log log 11y y x x ∴+=+--12312123log 11()x x x x x x ==-++(4分) (2)由(1)知当121x x +=时,1212()() 1.y y f x f x +=+= 121()()()nn S f f f n n n -=++① 121()()()n n S f f f n n n-=+++ ②①+②得12nn S -=(6分) 111149231lim lim 49233n n n n S S n n SS n n n n ++--→∞→∞--==-++ (10分)(3)当2n ≥时, 111.1212422na n n n n ==-++++⨯⋅又当1n =时,11,6a =所以1112n a n n =-++ (12分) 故111111()()()2334122(2)n nT n n n =-+-++-=+++ (14分) 1(1)n n T m S +<+对一切*n ∈N 都成立,即211(2)n n T nm S n +>=++恒成立(16分)又2114(2)84n n n n=≤+++,所以m 的取值范围是1(,)8+∞ (18分) (文)(1)122nn n a a +=+,11122n nn n a a +-=+, (2分) 11n n b b +=+, 故{}n b 为等差数列,11b =,n b n =. (4分)(2)由(1)可得12n n a n -=(6分) 12102232221-⋅+⋅+⋅+⋅=n n n Sn n n n n S 22)1(23222121321⋅+⋅-+⋅+⋅+⋅=-两式相减,得n n n n n n n S 21222222121⋅--=⋅-+++=-- ,即12)1(+-=nn n S (8分) 11(1)211lim lim 222n n n n n n S n n n ++→∞→∞-+∴==⋅⋅ (10分) (3)由(1)可得2n T n =,(12分) ∴21441n n nn n T d a T ==--, 1231123111()()041n n n n n d d d d d d d d d d ++++++++-++++==>-∴123{}n d d d d ++++单调递增,即123113n d d d d d ++++≥=, (14分)要使1238log (2)n d d d d m t ++++≥+对任意正整数n 成立,必须且只需81log (2)3m t ≥+,即022m t <+≤对任意[1 2]m ∈,恒成立. (16分) ∴[2 4](0 2]t t ++⊆,,,即 202242t t t +>⎧⇒-<≤-⎨+≤⎩矛盾.∴满足条件的实数t 不存在. (18分)。
闵行区-第二学期高三年级质量调研考试.docx
闵行区2015-2016学年第二学期高三年级质量调研考试数 学 理试 卷考生注意:1.本试卷共4页,23道试题,满分150分。
考试时间120分钟。
2.本考试分设试卷和答题纸。
试卷包括三大题,第一大题为填空题,第二大题为选择题,第三大题为解答题。
3.答卷前,务必在答题纸上填写学校、姓名、准考证号。
4.作答必须涂或写在答题纸上,在试卷上作答一律不得分。
第二大题的作答必须涂在答题纸上相应的区域,第一、第三大题的作答必须写在答题纸上与试卷题号对应的位置。
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数3log (1)y x =-的定义域是 .2.集合{}2|30A x x x =-<,{}2B x x =<,则U A B 等于 .3.若复数1i 11i 2b ++-(i 为虚数单位)的实部与虚部相等,则实数b 的值为 . 4.已知函数3log 1()21x f x =,则1(0)f -= .5.若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的 倍.6.平面向量a r 与b r 的夹角为60︒,1a =r ,(3,0)b =r ,则2a b +=r r .7.已知ABC △的周长为4,且sin sin 3sin A B C +=,则AB 边的长为 .8.若6x ⎛+ ⎝的展开式中的3x 项大于15,且x 为等比数列{}n a 的公比, 则1234lim n n na a a a a a →∞+++=+++L L . 9.若0m >,0n >,1m n +=,且1t m n+(0t >)的最小值为9,则t = . 10.若以x 轴正方向为始边,曲线上的点与圆心的连线为终边的角θ为参数,则圆2220x y x +-=的参数方程为 .1cos sin x y θθ=+⎧⎨=⎩(02θ≤<π) 11.若AB 是圆22(3)1x y +-=的任意一条直径,O 为坐标原点,则OA OB ⋅u u u r u u u r 的值为 .12.在极坐标系中,从四条曲线1:1C ρ=,2:C θπ=3(0ρ≥),3:cos C ρθ=,4:sin 1C ρθ=中随机选择两条,记它们的交点个数为随机变量ξ,则随机变量ξ的数学期望E ξ= .13.设数列{}n a 的前n 项和为n S ,22|2016|n S n a n =+-(0a >),则使得1n n a a +≤(n ∈*N )恒成立的a 的最大值为 .14. (理科)若两函数y x a =+与212y x =-的图像有两个交点A 、B ,O 是坐标原点,OAB △是锐角三角形,则实数a 的取值范围是 .二. 选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.如果a b >,那么下列不等式中正确的是( ).(A) 11a b> (B) 22a b > (C) ()()lg 1lg 1a b +>+ (D) 22a b > 16.若l m 、是两条直线,m ⊥平面α,则“l m ⊥”是“//l α”的( ).(A) 充要条件 (B) 充分不必要条件(C) 必要不充分条件 (D) 既非充分又非必要条件17.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线18.将函数()2sin 2f x x =的图像向右平移ϕ(0ϕ<<π)个单位后得到函数()g x 的图像 .若对满足12()()4f x g x -=的12x x 、,有12x x -的最小值为π6.则ϕ=( ). (A )π3 (B) π6 (C )π3或2π3 (D) π6或5π6三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)复数21sin i cos2z x x =+⋅,22sin i cos z x x =+⋅(其中x ∈R ,i 为虚数单位). 在复平面上,复数1z 、2z 能否表示同一个点,若能,指出该点表示的复数;若不能,说明理由.20.(本题满分14分)本题共有2个小题,每小题满分各7分.如图,在直角梯形PBCD 中,//PB DC ,DC BC ⊥,22PB BC CD ===,点A 是PB 的中点,A B C DP PAB C D P A B C D 现沿AD 将平面PAD 折起,设PAB θ∠=.(1)当θ为直角时,求异面直线PC 与BD 所成角的大小;(2)当θ为多少时,三棱锥P ABD -. 21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型()n ∈*N : 以8122002000,(18)()36033000,(932)32400720,(3345)n n n f n n n n -⋅+≤≤⎧⎪⎪=⋅+≤≤⎨⎪-⋅≤≤⎪⎩表示第n 个时刻进入园区的人数;以0,(118)()5009000,(1932)8800,(3345)n g n n n n ≤≤⎧⎪=⋅-≤≤⎨⎪≤≤⎩表示第n 个时刻离开园区的人数.设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即1=n ;9点30分作为第2个计算单位,即2=n ;依次类推,把一天内从上午9点到晚上8点15分分成45个计算单位(最后结果四舍五入,精确到整数).(1)试计算当天14点至15点这一小时内,进入园区的游客人数(21)(22)(23)(24)f f f f +++、离开园区的游客人数(21)(22)(23)(24)g g g g +++各为多少?(2)从13点45分(即19n =)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.22.(本题满分16分)本题共有3个小题,第(1)(2)小题满分各5分,第(3)小题满分6分.已知椭圆Γ:22221x y a b+=(0)a b >>的右焦点与短轴两端点构成一个面积 为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线2y =上,且OA OB ⊥,求证:2211OA OB +为定值; (3)设点C 在椭圆Γ上运动,OC OD ⊥,且点O 到直线CD 的距离为常数d ()02d <<,求动点D 的轨迹方程. 23.(本题满分18分)本题共有3个小题,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分7分.已知n ∈*N ,数列{}n a 、{}n b 满足:11n n a a +=+,112n n n b b a +=+,记24n n n c a b =-. (1)若11a =,10b =,求数列{}n a 、{}n b 的通项公式;(2)证明:数列{}n c 是等差数列;(3)定义2()n n n f x x a x b =++,证明:若存在k ∈*N ,使得k a 、k b 为整数,且()k f x 有两个整数零点,则必有无穷多个()n f x 有两个整数零点.参考答案与评分标准一、填空题(第1题至第14题)每题正确得4分,否则一律得0分.1.()1,+∞; 2.()2,3-; 3.2;4.9; 5.3; 67.1; 8.1; 9.4;10.1cos sin x y θθ=+⎧⎨=⎩(02θ≤<π)、 11.8; 12.113.12016 14.⎝⎭、 二. 选择题(第15题至18题)每题正确得5分,否则一律得0分.15.D ; 16.C ; 17.B ; 18. C三、解答题(第19题至23题)19.(本题满分12分)解:设复数1z ,2z 能表示同一个点,则cos2cos x x = ……………………3分解得cos 1x =或1cos 2x =-, ………………………………7分 当cos 1x =时,得2sin 0x =,此时12i z z ==; ……………9分当1cos 2x =-时,得23sin 4x =,此时1231i 42z z ==-; ……………11分PAB C D 综上,复平面上该点表示的复数为i 或31i 42-. ……………12分 20.(本题满分14分)本题共有2个小题,每小题满分各7分.解:理:(1)当θ为直角时,即,,AB AD AP 两两互相垂直,以点A 为坐标原点,,,AB AD AP 为坐标轴建立空间直角坐标系, ………………1分则(1,0,0)(1,2,0)(0,2,0)(0,0,1)B C D P ,(1,2,1)PC =-u u u r ,(1,2,0)BD =-u u u r ……3分设异面直线PC 与BD 所成角为α,则cos PC BD PC BDα⋅=⋅u u u r u u u ru u u r u u u r 10= ………………5分故异面直线PC 与BD 所成角为.…7分 (2)Θ沿AD 将平面PAD 折起的过程中,始终 有PA AD ⊥,AB AD ⊥,AD PAB ∴⊥面,由 PAB D ABD P V V --=得 ……………………9分163PAB S DA ∴=⋅⋅△11211sin 32θ=⋅⋅⋅⋅⋅,sin 2θ∴= ……………………12分 4πθ∴=或34π. ……………………………14分 21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分. 解:(1)当天14点至15点这一小时内进入园区人数为(21)(22)(23)(24)f f f f +++1314151612121212360[3333]30004=⨯++++⨯17460≈(人) …………………3分离开园区的人数(21)(22)(23)(24)=9000g g g g +++(人) ………………6分(2)(理)当0)()(≥-n g n f 时,园内游客人数递增;当0)()(<-n g n f 时,园内游客人数递减. ………………7分①当1932n ≤≤时,由812()()3603500120000n f n g n n --=⋅-+≥,可得:当1928n ≤≤时,进入园区游客人数多于离开园区游客人数,总人数越来越多;…9分当3229≤≤n 时,进入园区游客人数少于离开游客人数,总人数将变少; ……11分(049.246)28()28(>=-g f ;013.38)29()29(<-=-g f )②当4533≤≤n 时,由()()72023600f n g n n -=-+递减,且其值恒为负数.进入园区游客人数少于离开游客人数,总人数将变少. ………………13分 综上,当天下午16点时(28n =)园区内的游客人数最多,此时计算可知园区大约共有77264人. ………………14分22.(本题满分16分)本题共有3个小题,第(1)(2)小题满分各5分,第(3)小题满分6分. 解:(1)由条件可得b c ==2a =, …………………………3分椭圆Γ的方程为22142x y +=.………………………………………………………5分 (2)设00(,)A x y ,则OB 的方程为000x x y y +=,由2y =得002(,2)y B x -…7分 ∴22222000201111=44y OA OB x y x ++++22002222000044=4()4(2)2x x x x y x ++=++-12=.…10分 (3)设00(,),(,)C x y D x y ,由OC OD ⊥得000x x y y += ①又C 点在椭圆上得:2200142x y += ② 联立①②可得222200222244,22y x x y x y x y ==++ ③ …………………………12分 由OC OD ⊥得=OC OD CD d ⋅⋅,即22222=(+)OC OD OC OD d ⋅⋅ 可得222111d OC OD =+, ………………………………………………………14分 将③代入得:22222220011111d OC OD x y x y =+=+++2222222222*********()22x y x y x y x y x y x y ++=+=+++++, 化简得D 点轨迹方程为:22221111()()124x y d d -+-=.…………………………16分 23.(本题满分18分)本题共有3个小题,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分7分.解: (1)n a n =, ………………………………………………………………2分Θ1122n n n n n b b a b +=+=+, ∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- …………………4分1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.……………………………………6分 (2)221114(4)n n n n n n c c a b a b +++-=---……………………………………………8分221(1)4()(4)12n n n n n a a b a b =+-+--= ∴{}n c 是公差为1的等差数列.……………………………………………………11分(3)由解方程得:x =,由条件,()0k f x =两根x = 为整数,则k c ∆=必为完全平方数,不妨设2()k c m m =∈N , …………12分此时2k a m x -±==为整数,∴k a 和m 具有相同的奇偶性,………13分 由(2)知{}n c 是公差为1的等差数列,取21n k m =++∴()222121211k m k c c m m m m ++=++=++=+ ………………………………15分此时(21)(1)2k a m m x -++±+== Θk a 和m 具有相同的奇偶性,∴21k a m ++和1m +具有相同的奇偶性, …17分所以函数21()k m f x ++有两个整数零点.由递推性可知存在无穷多个()n f x 有两个整数零点.………………………………18分2016年闵行区高考数学二模卷一、填空题1.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/函数及其基本性质/函数的有关概念.【参考答案】(1,)+∞【试题分析】依题意可知,10x ->,即1x >,所以函数3log (1)y x =-的定义域为(1,)+∞,故答案为[1,)+∞.2.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/集合与命题/交集,并集,补集;方程与代数/不等式/一元二次不等式(组)的解法、含有绝对值的不等式的解法.【参考答案】(2,3)-【试题分析】集合2{|30}{|03}A x x x x x =-<=<<,{|||2}{|22}B x x x x =<=-<<, 所以{|23}A B x x =-<<U ,故答案为(2,3)-.3.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数与运算的基本知识.【知识内容】数与运算/复数初步/复数的概念、复数的四则运算.【参考答案】2 【试题分析】复数21i 1(1i)11i 1i 2(1i)(1i)22b b b +++=+=+--+,因为复数的实部与虚部相等,则有112b =,解得2b =,故答案为2. 4.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/指数函数与对数函数/反函数;方程与代数/矩阵与行列式初步/二阶、三阶行列式.【参考答案】9 【试题分析】函数33log 1()log 221x f x x ==-,令()0f x =,解得9x =.根据互为反函数的两个函数之间的关系可知1(0)9f -=,故答案为9.5.【测量目标】空间想象能力/能根据图形想象出直观形象.【知识内容】图形与几何/简单几何体的研究/锥体.【参考答案】3【试题分析】设圆锥的母线长为l ,底面半径为r ,依题意有,3l r =,则圆锥的底面积为2πS r =底,圆锥的侧面积为212π3π2S l r r =⋅⋅=侧,所以圆锥的侧面积与底面积的比为223π3πS r S r==侧底,故答案为3.6.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/平面向量的坐标表示/向量的度量计算.【试题分析】因为(3,0)b =r ,所以||3b =r ,又因为||1a =r ,||a r 与||b r 的夹角为60°,所以3||||cos602a b a b ⋅=⋅=o r r r r .因为222|2|4419a b a a b b +=+⋅+=r r r r r r ,所以|2|a b +=r r7.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/三角比/正弦定理和余弦定理.【参考答案】1【试题分析】因为sin sin 3sin A B C +=,所以3a b c +=,又ABC △的周长为4,即4a b c ++=,所以43,1c AB c -===.8.【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理.【知识内容】整理与概率统计/排列、组合、二项式定理/二项式定理:方程与代数/数列与数学归纳法/数列的极限.【参考答案】1【试题分析】6x ⎛+ ⎝的展开式中第r项为3662166C C rr r r r r T x x --+⎛=⋅=,令3632r -=得2r =,所以展开式的第2项为2336C 1515x x =>,1x >,因为x 为等比数列{}n a 的公比,所以121222341+(1)11lim lim =lim +1(1)n nn n n n n n n a a a a x x x a a a xa x x x x -→∞→∞→∞⎛⎫++---=⋅ ⎪ ++---⎭⎝…… =221lim 11n n x x x →∞⎛⎫--= ⎪-⎭⎝. 9.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/不等式/基本不等式.【参考答案】4【试题分析】因为1m n +=,所以11()()11t t nt m m n t t m n m n m n+=++=+++++≥=211)t ++=,当22m nt =时,取等号,又因为1t m n+的最小值为9,即21)9=,所以4t =,故答案为4.10.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/曲线与方程/圆的标准方程和几何性质;图形与几何/参数方程和极坐标/参数方程.【参考答案】1cos sin x y θθ=+⎧⎨=⎩(02π)θ≤≤ 【试题分析】圆2220x y x +-=化为标准方程为22(1)1x y -+=,所以圆心(1,0),半径为1,所以圆上的点的坐标为(1cos ,sin )θθ+,(02π)θ≤≤,所以圆的参数方程为1cos ,sin x y θθ=+⎧⎨=⎩(θ为参数),故答案为1cos sin x y θθ=+⎧⎨=⎩(02π)θ≤≤. 11.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/平面向量的坐标表示/平面向量的数量积.【参考答案】8【试题分析】由圆的标准方程知,圆的圆心在y 轴上且圆心坐标为(0,3),半径为1,因为AB 是圆的任意一条直径,不妨假设AB 是位于y 轴上的一条直径,则1(0,)A y ,2(0,)B y ,所以1212(0,)(0,)OA OB y y y y ==u u u r u u u r g g ,又因为当0x =时,122,4y y ==,所以128OA OB y y ==u u u r u u u r g ,故答案为8.12.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/参数方程和极坐标/极坐标:数据整理与概率统计/概率与统计/随机变量的分布及数字特征.【参考答案】1【试题分析】曲线1234,,,C C C C 的极坐标方程化为普通方程分别为221x y +=,y =(0)x ≥,2211()24x y -+=,1y =,从四条曲线中随机选取两条,可能的结果及它们的交点个数为:12(,)C C ,1;13(,)C C ,1;14(,)C C ,1;23(,)C C ,1;24(,)C C ,1; 34(,)C C ,1;所以1111116E ξ+++++==. 13.【测量目标】运算能力/能通过运算,对问题进行推理和探求.【知识内容】方程与代数/数列和数学归纳法/简单的递推数列. 【参考答案】12016【试题分析】因为22224032,120162|2016|24032,2017n n an a n S n a n n an a n ⎧-+⎪=+-=⎨+-⎪⎩≤≤≥,所以212(1)2(1)4032,22017(1)2(1)4032,2018n n a n a n S n a n a n -⎧---+⎪=⎨-+--⎪⎩≤≤≥,所以1n n n a S S -=-= 212,22016,4033+2,2017,212,2018n a n a n n a n --⎧⎪=⎨⎪-+⎩≤≤≤,1140301a S a ==+,因为+1n n a a ≤恒成立,所以122016201720172018,,,a a a a a a ⎧⎪⎨⎪⎩≤≤≤即4030132,403124033+2,4033+240352a a a a a a +-⎧⎪-⎨⎪+⎩≤≤≤解得1,20161,2a a ⎧⎪⎪⎨⎪⎪⎩≤≥-,又0a >,所以102016a <≤,故答案为12016. 14.【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】图形与几何/曲线与方程/曲线与方程的概念.【参考答案】【试题分析】函数y =[22-,值域为[0,)+∞,联立两函数的方程,y x a y =+⎧⎪⎨=⎪⎩消去x 得2234210y ay a -+-=,23a y ±=,因为两函数的图像有两个交点,所以222(4)43(21)0,210,4023a a a a ⎧⎪∆=-⨯->⎪-⎨⎪-⎪->⨯⎩≥,解得[22),设1122(,),(,)A x y B x y ,则124=3a y y +,212213a y y -=,22121212121()()()=3a x x y a y a y y a y y a -=--=-++,因为OAB △是锐角三角形,所以1212221121120,0,0,0x x y y OA OB x x x y y y OA BA ⎧+>⎧⋅>⎪⇒⎨⎨-+->⋅>⎪⎩⎩u u u r u u u r u u u r u u u r 即2222320,32332133a a a a ⎧->⎪⎪⎨⎛⎫-±-⎪ +>⎪⎪⎪ ⎭⎝⎩,解得62333a <<,所以a 的取值范围为623(,)33,故答案为623(,)33. 二、填空题15.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/不等式/不等式的性质及其证明.【正确选项】D【试题分析】选项A 中,若a b >>1,则有11a b<,所以A 不正确;选项B 中,若0a b >>,且||||a b <,则22a b <,所以B 不正确;同理选项C 也不正确,选项D 中,函数是R 上的增函数,所以有22a b >,所以D 正确,故答案为D.16.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/空间图形/空间直线与平面的位置关系;方程与代数/集合与命题/充分条件,必要条件,充分必要条件.【正确选项】C【试题分析】因为m ⊥平面α,若l m ⊥,则l α∥或l α⊂,所以充分性不成立,若l α∥,则有l m ⊥,必要性成立,所以“l m ⊥”是“l α∥”的必要不充分条件,故答案为C.17. 【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理.【知识内容】图形与几何/空间图形/空间直线与平面的位置关系;图形与几何/曲线与方程/曲线与方程的概念.【正确选项】B【试题分析】在正方体1111ABCD A B C D -中,1D D ⊥平面ABCD ,11D D A A ∥,所以112,DPD EPD θθ=∠=∠,因为12θθ=,所以1tan tan DPD EPD ∠=∠,即1D D AE AP DP =,因为E 为1A A 的中点,所以2DP AP=,设正方体边长为2,以DA 方向为x 轴,线段DA 的垂直平分线为y 轴建立如图所示的坐标系,则(1,0),(1,0)D A -,因为2DP AP=,所以2222(1)2(1)x y x y ++=-+,化简得22525()39x y -+=,所以动点P 的轨迹为圆的一部分.第17题图 apnn218.【测量目标】逻辑思维能力/具有对数学问题进行观察、分析、综合、比较、抽象、概括、判断和论述的能力.【知识内容】函数与分析/三角函数/正弦函数和余弦函数的性质.【正确选项】C【试题分析】函数()2sin 2f x x =的图像向右平移ϕ个单位得到函数()2sin 2()g x x ϕ=-的图像,则1212|()()|2sin 22sin 2()f x g x x x ϕ-=--1212=4cos()sin())=4x x x x ϕϕ+--++,所以12sin()=1x x ϕ-++,因为12π||6x x -=,所以12π6x x -=±,当12π6x x -=时,πsin()16ϕ-=,22ππ()3k k ϕ=+∈Z ,又因为0πϕ<<,所以2π=3ϕ,同理,可得12π6x x -=-时,π=3ϕ,所以2π3ϕ=或π3,故答案为C. 三、解答题19.(本题满分12分)【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数与运算的基本知识.【知识内容】数与运算/复数初步/复平面;函数与分析/三角比/二倍角及半角的正弦、余弦、正切.【参考答案】设复数1z ,2z 能表示同一个点,则cos2cos x x =, ……………………3分解得cos 1x =或1cos 2x =-. ………………………………7分 当cos 1x =时,得2sin 0x =,此时12i z z ==. ……………9分 当1cos 2x =-时,得23sin 4x =,此时1231i 42z z ==-. ……………11分 综上,复平面上该点表示的复数为i 或31i 42-. ……………12分 20.(本题满分14分)本题共有2个小题,每小题满分各7分.【测量目标】(1)空间想象能力/能正确地分析图形中的基本元素和相互关系.(2)空间想象能力/能正确地分析图形中的基本元素和相互关系.【知识内容】(1)图形与几何/空间向量及其应用/距离和角.(2)图形与几何/简单几何体的研究/锥体.【参考答案】(1)当θ为直角时,即,,AB AD AP 两两互相垂直,以点A 为坐标原点,,,AB AD AP 为坐标轴建立空间直角坐标系, ………………1分则(1,0,0)(1,2,0)(0,2,0)(0,0,1)B C D P ,(1,2,1)PC =-u u u r ,(1,2,0)BD =-u u u r ……3分设异面直线PC 与BD 所成角为α,则cos PC BD PC BDα⋅=⋅u u u r u u u r u u u r u u ur = ………………5分 故异面直线PC 与BD所成角为.…7分MHLD1第19题图(1)(2)Θ沿AD 将平面PAD 折起的过程中,始终有PA AD ⊥,AB AD ⊥,AD PAB ∴⊥面,由 PAB D ABD P V V --=得 ……………………9分 213PAB S DA ∴=⋅⋅△11211sin 32θ=⨯⨯⨯⨯⨯,2sin θ∴= ……………………12分 π4θ∴=或3π4. ……………………………14分 MHLD2第19题图(2)21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.【测量目标】(1)分析问题与解决问题的能力/能通过建立数学模型,解决有关社会生活、生产实际或其他学科的问题,并能解释其实际意义.(2)分析问题与解决问题的能力/能通过建立数学模型,解决有关社会生活、生产实际或其他学科的问题,并能解释其实际意义.【知识内容】(1)函数与分析/指数函数与对数函数/函数的应用.(2)函数与分析/指数函数与对数函数/函数的应用.【参考答案】(1)当天14点至15点这一小时内进入园区人数为(21)(22)(23)(24)f f f f +++1314151612121212360[3333]30004=⨯++++⨯17460≈(人)…………………3分离开园区的人数(21)(22)(23)(24)=9000g g g g +++(人) ………………6分(2)当()()0f n g n -≥时,园内游客人数递增;当0)()(<-n g n f 时,园内游客人数递减. ………………7分①当1932n ≤≤时,由812()()3603500120000n f n g n n --=⨯-+≥,可得:当1928n ≤≤时,进入园区游客人数多于离开园区游客人数,总人数越来越多;…9分当2932n ≤≤时,进入园区游客人数少于离开游客人数,总人数将变少; ……11分(049.246)28()28(>=-g f ;013.38)29()29(<-=-g f )②当3345n ≤≤时,由()()72023600f n g n n -=-+递减,且其值恒为负数.进入园区游客人数少于离开游客人数,总人数将变少. ………………13分综上,当天下午16点时(28n =)园区内的游客人数最多,此时计算可知园区大约共有77264人. ………………14分22.(本题满分16分)本题共有3个小题,第(1)(2)小题满分各5分,第(3)小题满分6分.【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题.【知识内容】(1)图形与几何/曲线与方程/椭圆的标准方程和几何性质.(2)图形与几何/曲线与方程/椭圆的标准方程和几何性质.(3)图形与几何/曲线与方程/曲线与方程的概念.【参考答案】(1)由条件可得b c ==2a =, …………………………3分椭圆Γ的方程为22142x y +=.………………………………………………………5分 (2)设00(,)A x y ,则OB 的方程为000x x y y +=,由2y =得002(,2)y B x -………7分 ∴22222000201111=44y OA OB x y x ++++22002222000044=4()4(2)2x x x x y x ++=++-12=.…10分 (3)设00(,),(,)C x y D x y ,由OC OD ⊥得000x x y y += ①又C 点在椭圆上得:2200142x y += ② 联立①②可得222200222244,22y x x y x y x y ==++ ③ …………………………12分 由OC OD ⊥得=OC OD CD d ⋅⋅,即22222=(+)OC OD OC OD d ⋅⋅ 可得222111d OC OD=+, ………………………………………………………14分 将③代入得:22222220011111d OC OD x y x y =+=+++2222222222221124444()22x y x y x y x y x y x y ++=+=+++++, 化简得D 点轨迹方程为:22221111()()124x y d d -+-=.…………………………16分 23.(本题满分18分)本题共有3个小题,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分7分.【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)数学探究与创新能力/能运用有关的数学思想方法和科学研究方法,对问题进行探究,寻求数学对象的规律和联系;能正确地表述探究过程和结果,并予以证明.【知识内容】(1)方程与代数/数列与数学归纳法/简单的递推数列.(2)方程与代数/数列与数学归纳法/等差数列.(3)方程与代数/数列与数学归纳法/简单的递推数列;函数与分析/函数及其基本性质/函数的基本性质.【参考答案】(1)n a n =, ………………………………………………………………2分Θ1122n n n n n b b a b +=+=+, ∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- …………………4分1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.……………………………………6分 (2)221114(4)n n n n n n c c a b a b +++-=---……………………………………………8分221(1)4()(4)12n n n n n a a b a b =+-+--= ∴{}n c是公差为1的等差数列.……………………………………………………11分(3)由解方程得:x =()0k f x =两根x =为整数,则k c ∆=必为完全平方数,不妨设2()k c m m =∈N , …………12分此时2k a m x -±==为整数,∴k a 和m 具有相同的奇偶性,………13分 由(2)知{}n c 是公差为1的等差数列,取21n k m =++∴()222121211k m k c c m m m m ++=++=++=+ ………………………………15分此时(21)(1)2k a m m x -++±+== Θk a 和m 具有相同的奇偶性,∴21k a m ++和1m +具有相同的奇偶性, …17分 所以函数21()k m f x ++有两个整数零点.由递推性可知存在无穷多个()n f x 有两个整数零点.………………………18分。
上海市闵行区2024届高三下学期学业质量调研(二模)数学试卷(解析版)
2023学年第二学期高三年级学业质量调研数学试卷(考试时间120分钟,满分150分)考生注意:1.本试卷共21题,答题纸共2页.作答前,考生在答题纸正面填写学校、姓名、考生号,粘贴考生本人条形码.2.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在草稿纸、试卷上作答一律不得分.3.用2B 铅笔作答选择题,用黑色笔迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸相应位置直接填写结果.1. 集合,,则________.【答案】【解析】【分析】根据交集的定义求解即可.【详解】,所以.故答案为:.2. 已知复数满足(为虚数单位),则______.【解析】【分析】根据复数的除法运算和模的定义求解.【详解】由得,所以故答案为:{|210}A x x =+≤{2,1,0}B =--A B = {}2,1--{}12102A x x x x ⎧⎫=+≤=≤-⎨⎬⎩⎭{}2,1A B =-- {}2,1--z (2i)34i z +=+i z =(2i)34i z +=+()()()()34i 2i 34i 105i2i 2i 2i 2i 5z +-++====+++-z ==3. 始边与轴的正半轴重合的角的终边过点,则=_________.【答案】##【解析】【分析】结合三角函数的诱导公式,以及任意角的三角函数的定义,即可求解.【详解】始边与轴的正半轴重合的角的终边过点,则,故.故答案为:.4. 在的二项展开式中,项的系数为_________.【答案】【解析】【分析】写出二项展开式的通项,由的指数为3求得值,则答案可求.【详解】的二项展开式的通项为:.由,得.的二项展开式中,项的系数是.故答案为:.5. 已知正实数、满足,则的最大值为______.【答案】##【解析】【分析】利用基本不等式可求得的最小值.【详解】因为正实数、满足,则,x α(3,4)-sin(π)α+450.8x α(3,4)-4sin 5α==-4sin(π)sin 5αα+=-=456(21)x -3x 160-x r 6(21)x -()()()()666166C 2112C 0,1,,6rrrrr rr r T x x r ---+=-=-⋅⋅⋅= 6r 3-=3r =∴6(21)x -3x 3362C 160-⨯=-160-a b 21a b +=ab 180.125ab a b 21a b +=2112122228a b ab a b +⎛⎫=⋅≤⨯= ⎪⎝⎭当且仅当时,即当时,等号成立,故的最大值为.故答案为:.6. 已知等比数列的前n 项和为,且,,则______.【答案】121【解析】【分析】求出公比和首项,利用等比数列求和公式求出答案.【详解】设公比为,故,解得,所以,故.故答案为:1217. 五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案有_____种.【答案】【解析】【分析】完成承建任务可分五步,由分步乘法计数原理可得结果.【详解】完成承建任务可分五步:第一步,安排1号有4种;第二步,安排2号有4种;第三步,安排3号有3种;第四步,安排4号有2种;第五步,安排5号有1种.由分步乘法计数原理知,共有4×4×3×2×1=96种.故答案为96【点睛】本题考查分步乘法计数原理,正确分步是解题的关键,属于基础题.221a b a b =⎧⎨+=⎩1214a b ⎧=⎪⎪⎨⎪=⎪⎩ab 1818{}n a n S 23a =581a =5S =q 35281273a q a ===3q =211a a q==()5515113121113a q S q--===--968. 函数在处的切线方程为_________.【答案】【解析】【分析】切线的斜率是在处的导数,切线过,由直线的点斜式方程可以求出切线方程.【详解】,,所以,所以在处的切线方程为,即,故答案为:.9. 已知、是空间中两个互相垂直的单位向量,向量满足,且,当取任意实数时,的最小值为_________.【解析】【分析】由向量的模长和数量积的运算结合二次函数求出最值即可.【详解】因为,,,,所以,所以当时,的最小值为,.10. 双曲线的左右焦点分别为,过坐标原点的直线与相交于两点,若,则_________.【答案】4【解析】【分析】由双曲线的对称性可得四边形为平行四边形,根据双曲线的定义和,得,,中,由余弦定理得,,代入求值即可.2=-y x x1x =340x y +-=1x =()()1,1f ()2f x x x =-()'221f x x=--()()'11,13f f ==-1x =()131y x -=--340x y +-=340x y +-=a bc 3c = 1c a c b ⋅=⋅= λ()c a b λ-+1a b == 0a b ⋅= 3c = 1c a c b ⋅=⋅=222222()222c a b c a b a c b c a bλλλλλλ-+=++-⋅-⋅+⋅ ()22249217λλλ=-+=-+1λ=()c a b λ-+ 22:16y x Γ-=12F F 、ΓA B 、112F B F A =22F A F B ⋅=12AF BF 112F B F A =122F A F B ==124F B F A ==12BF F △211cos 2F BF ∠=-()222222221cos cos πF A F B F A F B AF B F A F B F BF ⋅=⋅∠=⋅-∠【详解】双曲线,实半轴长为1,焦距,由双曲线的对称性可得,有四边形为平行四边形,令,则,由双曲线定义可知,故有,即,即,,中,由余弦定理,,即,得,.故答案为:4.11. 对于任意的,且,不等式恒成立,则实数的取值范围为_________.【答案】【解析】【分析】通过构造函数,利用导数分别求和的最小值即可.【详解】设函数,定义域为R ,则,当时,;当时,,则在上单调递减,在上单调递增,最小值为,所以当时,有最小值1;22:16y x Γ-=12F F =1212,F B F A F A F B ==12AF BF 12F A F B m ==122F B F A m ==212F A F A -=22m m -=2m =122F A F B m ===124F B F A ==12BF F △222121212212cos F F F B F B F B F B F BF =+-⋅∠212816416cos F BF =+-∠211cos 2F BF ∠=-()2222222211cos cos π2442F A F B F A F B AF B F A F B F BF ⋅=⋅∠=⋅-∠=⨯⨯= 12x x ∈R 、20x >1122e ln xx x x a -+->a (),2-∞11e xx -22ln x x -()e xf x x =-()e 1xf x '=-0x <()0f x '<0x >()0f x ¢>()f x (),0∞-()0,∞+()f x ()01f =10x =11e xx -设函数,定义域为,则, 当时,;当时,,则在上单调递减,在上单调递增,最小值为,所以当时,有最小值1,不等式恒成立,则有,所以实数取值范围为.故答案为:.12. 已知空间中有2个相异的点,现每增加一个点使得其与原有的点连接成尽可能多的等边三角形.例如,空间中3个点最多可连接成1个等边三角形,空间中4个点最多可连接成4个等边三角形.当增加到8个点时,空间中这8个点最多可连接成________个等边三角形.【答案】20.【解析】【分析】结合正四面体的结构特征,判断求解空间中这8个点最多可连接成等边三角形的个数.【详解】空间中4个点最多可连接成4个等边三角形,构成正四面体,正四面体的每一个面向外作一个正四面体,此时是增加一个点,增加正三角形3个,新增加的4个点,又构成1个正四面体,所以当增加到8个点时,空间中这8个点最多可连接成个等边三角形.故答案为:20.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 设,则“”是“”的( )A. 充分非必要条件 B. 必要非充分条件C. 充要条件 D. 既非充分又非必要条件【答案】B 【解析】【分析】判断“”和“”之间的逻辑推理关系,即可得答案.的()ln g x x x =-()0,∞+()111x g x x x-'=-=01x <<()0g x '<1x >()0g x '>()g x ()0,1()1,+∞()g x ()11g =21x =22ln x x -1122e ln xx x x a -+->2a >a (),2-∞(),2-∞434420+⨯+=R a ∈21a >31a >21a >31a >【详解】当时,或,不能推出有成立;当时,则,必有成立,故“”是“”的必要非充分条件,故选:B14. 已知,为奇函数,当时,,则集合可表示为( )A. B. C. D. 【答案】D 【解析】【分析】利用函数奇偶性可得不等式等价于,再求出函数解析式,利用对数函数单调性解不等式可得结果.【详解】因为为奇函数,所以等价于,即;当时,,即,解得;当时,,可得,所以,解不等式,可得,综上可得集合可表示为.故选:D15. 某疾病预防中心随机调查了339名50岁以上的公民,研究吸烟习惯与慢性气管炎患病的关系,调查数据如下表:不吸烟者吸烟者总计不患慢性气管炎者121162283患慢性气管炎者134356总计134205339假设:患慢性气管炎与吸烟没有关系,即它们相互独立.通过计算统计量,得,根据21a >1a >1a <-31a >31a >1a >21a >21a >31a >()y f x =x ∈R 0x >2()log 1f x x =-{|()()0}x f x f x --<(2,)+∞(,2)-∞-(,2)(2,)-∞-+∞ (2,0)(2,)-+∞ ()()0f x f x --<()0f x >()y f x =()()0f x f x --<2()0f x -<()0f x >0x >2()log 1f x x =-20()log 1f x x =->2x >0x <0x ->()()2()log 1f x f x x -=-=--()()21log f x x =--()()21log 0f x x =-->20x -<<{|()()0}x f x f x --<(2,0)(2,)-+∞ 0H 2χ27.468χ≈分布概率表:,,,.给出下列3个命题,其中正确的个数是( )①“患慢性气管炎与吸烟没有关系”成立的可能性小于;②有的把握认为患慢性气管炎与吸烟有关;③分布概率表中的、等小概率值在统计上称为显著性水平,小概率事件一般认为不太可能发生.A. 个 B. 个C. 个D. 个【答案】D 【解析】【分析】根据,与临界值表对照判断.【详解】解:因为,且,所以有的把握认为患慢性气管炎与吸烟有关,即“患慢性气管炎与吸烟没有关系”成立的可能性小于,故①②正确;分布概率表中的、等小概率值在统计上称为显著性水平,小概率事件一般认为不太可能发生.故③正确;故选:D 16.已知,集合,,. 关于下列两个命题的判断,说法正确的是( )命题①:集合表示的平面图形是中心对称图形;命题②:集合表示的平面图形的面积不大于.A ①真命题;②假命题B. ①假命题;②真命题C. ①真命题;②真命题D. ①假命题;②假命题【答案】A 【解析】【分析】根据是奇函数,可以分析出当时,所以集合表示的平面图.2χ2( 6.635)0.01P χ≥≈2( 5.024)0.025P χ≥≈2( 3.841)0.05P χ≥≈2( 2.706)0.1P χ≥≈5%99%2χ0.050.01012327.468χ≈27.468χ≈2 6.635χ≥99%5%2χ0.050.01()sin f x x =[,22D ππ=-()()()Γ{,|20,,}x y f x f y x y D =+=∈()()()Ω{,|20,,}x y f x f y x y D =+≥∈ΓΩ2512π()sin f x x =(),Γx y ∈(),Γx y --∈Γ形是中心对称图形;结合集合代表的曲线及不等式的范围可以确定集合表示的平面图形,从而求得面积,与进行比较.【详解】对于,集合关于原点中心对称,且函数是奇函数,若则则,即若则,即集合表示的平面图形是关于原点中心对称图形,故①是真命题;对于,由即知,设,则与一一对应且随的增大而增大,,又由知,结合知在范围内,与一一对应且随的增大而减小,所以在范围内,与一一对应且是关于的减函数,由①可知图象关于原点中心对称,所以可得到在的图象,如图代入点可得,所以的区域是右半部分,ΓΩ2512π()()()Γ{,|20,,}x y f x f y x y D =+=∈[,22D ππ=-()sin f x x =(),Γx y ∈()()20f x f y +=()()()()()()2220f x f y f x f y f x f y ⎡⎤-+-=--=-+=⎣⎦(),Γx y ∈(),Γx y --∈Γ()()()Ω{,|20,,}x y f x f y x y D =+≥∈()()20f x f y +=2sin sin 0x y +=sin 2sin y x =-sin ,,22t y y ππ⎡⎤=∈-⎢⎥⎣⎦t y t y []11t ,∈-2sin t x =-[]112sin 1,1,sin ,22x x ⎡⎤-∈-∈-⎢⎥⎣⎦,22x ππ⎡⎤∈-⎢⎥⎣⎦,66x ππ⎡⎤∈-⎢⎥⎣⎦t x t x ,,,6622x y ππππ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦y y x 2sin sin 0x y +=2sin sin 0x y +=,,,6622x y ππππ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦,22ππ⎛⎫⎪⎝⎭2sin sin 3022ππ+=>2sin sin 0x y +≥面积为正方形面积的一半,即集合表示的平面图形的面积,故②是假命题.故选:A .【点睛】方法点睛:确定不等式表示的区域范围第一步:得到等式对应的曲线;第二步:任选一个不在曲线上的点,若原点不在曲线上,一般选择原点,检验它的坐标是否符合不等式;第三步:如果符合,则该点所在的一侧区域即为不等式所表示的区域;若不符合,则另一侧区域为不等式所表示的区域.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. 在锐角中,角所对边的边长分别为,且.(1)求角;(2)求的取值范围.【答案】(1) (2)【解析】【分析】(1)由已知结合正弦定理可得结果;(2)根据为锐角三角形求出,利用两角差的正弦公式及辅助角公式化简,根据正弦函数性质可得结果.【小问1详解】,,又,,.【小问2详解】由(1)可知,,且为锐角三角形,.Ω221152212S =⨯π⨯π=π>πABC 、、A B C a b c 、、2sin 0b A -=B sin sin A C +π33(2ABC ππ(,62A ∈2πsin sin sin sin()3A C A A +=+-2sin 0b A -= 2sin sin 0AB A ∴-= π0,,sin 02A A ⎛⎫∈∴≠ ⎪⎝⎭πsin 0,2B B ⎛⎫∴=∈ ⎪⎝⎭∴π3B =π3B =ABC所以,,则,因为,.18. 如图,已知为等腰梯形, ,,平面,.(1)求证:;(2)求二面角的大小.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接,利用等腰梯形的性质证得,再利用线面垂直的性质判定推理即得.(2)取的中点,作出二面角的平面角,在中求解即得.【小问1详解】连接,在等腰梯形中,,,,则,于是,即,由平面,平面,得,而平面,因此平面,又平面,所以.π022ππ032A C A ⎧<<⎪⎪⎨⎪<=-<⎪⎩A ∴ππ(,)62∈2πsin sin sin sin()3A C A A +=+-3sin 2A A =+π)6A =+ππ2π363A <+<sin sin A C ∴+3(2∈ABCD //AD BC 120BAD ∠=︒PA ⊥ABCD 2AB AD AP ===PC AB ⊥C BP A --AC AB AC ⊥BP H C BP A --Rt AHC AC ABCD //AD BC 120BAD ∠=︒2AB AD ==2,120CD AD ADC ==∠=︒30,90DAC BAC ∠=︒∠=︒AB AC ⊥PA ⊥ABCD AB ⊂ABCD AB PA ⊥,,PA AC A PA AC ⋂=⊂PAC AB ⊥PAC PC ⊂PAC PC AB ⊥【小问2详解】取的中点,连接,由,得,在中,由平面,平面,得,则,于是,因此为二面角的平面角,因,平面,则平面,又平面,则,在中,所以二面角的大小为.19. ChatGPT 是OpenAI 研发的一款聊天机器人程序,是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律来生成回答,但它的回答可能会受到训练数据信息的影响,不一定完全正确.某科技公司在使用ChatGPT 对某一类问题进行测试时发现,如果输入的问题没有语法错误,它回答正确的概率为0.98;如果出现语法错误,它回答正确的概率为0.18. 假设每次输入的问题出现语法错误的概率为0.1,且每次输入问题,ChatGPT 的回答是否正确相互独立.该公司科技人员小张想挑战一下ChatGPT ,小张和ChatGPT 各自从给定的10个问题中随机抽取9个作答,已知在这10个问题中,小张能正确作答其中的9个.(1)求小张能全部回答正确的概率;(2)求一个问题能被ChatGPT 回答正确的概率;(3)在这轮挑战中,分别求出小张和ChatGPT 答对题数的期望与方差.【答案】(1); (2)0.9; (3)小张答对题数的的期望为8.1,方差为0.09,ChatGPT 答对题数的期望为8.1,方差为0.81.【解析】为BP H ,CH AH AB AP =AH PB ⊥ADC △2cos AC AD DAC =∠=PA ⊥ABCD AC ⊂ABCD AC PA ⊥PC BC ===CH BP ⊥CHA ∠C BP A --,PA AC AC AB ⊥⊥,,PA AB A PA AB ⋂=⊂ABP AC ⊥ABP AH ⊂ABP AC ⊥AH Rt AHC CA =AH =tan CA CHA AH∠==C BP A --110【分析】(1)根据古典概型的概率公式,即可求得答案;(2)设事件表示“输入的问题没有语法错误”, 事件表示“一个问题能被ChatGPT 正确回答”,确定相应概率,根据全概率公式,即可求得答案;(3)根据期望以及方差的计算公式,即可求得答案;【小问1详解】设小张答对的题数为,则.【小问2详解】设事件表示“输入的问题没有语法错误”, 事件表示“一个问题能被ChatGPT 正确回答”,由题意知,,,则,;【小问3详解】设小张答对的题数为,则的可能取值是,且,,设ChatGPT 答对的题数为,则服从二项分布,则,,,.20. 如图,已知椭圆和抛物线,的焦点是的上顶点,过的直线交于、两点,连接、并延长之,分别交于、两点,连接,设、的面积分别为、.A B X 99910C 1(9)C 10P X ===A B ()0.1P A =()0.98P B A =()0.18P B A =()1()0.9P A P A =-=()()()()()()()P B P B A P B A P B A P A P B A P A =⋂+⋂=+0.980.90.180.10.9=⨯+⨯=X X 8,98191910C C 9(8)C 10P X ===99910C 1(9)C 10P X ===Y Y 9(9,)10B 91()898.11010E X =⨯+⨯=()90.98.1E Y np ==⨯=22819811()(8)(9)0.0910101001D X =-⨯+-⨯=()90.90.10.81D Y npq ==⨯⨯=221:14x C y +=()22:20C x py p =>2C F 1C F 2C M N NO MO 1C A B AB OMN OAB OMN S △OAB S(1)求的值;(2)求的值;(3)求的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)由抛物线的焦点坐标求的值;(2)设直线的方程,与抛物线联立方程组,利用韦达定理求的值;(3)设直线、的方程,与椭圆联立方程组表示出,由,化简并结合基本不等式求取值范围.【小问1详解】椭圆的上顶点坐标为,则抛物线的焦点为,故.【小问2详解】若直线与轴重合,则该直线与抛物线只有一个公共点,不符合题意,所以直线的斜率存在,设直线的方程为,点、,联立可得,恒成立,则,p OM ON ⋅OMN OABS S 2p =3-[)2,+∞2C p MN OM ON ⋅NO MO ,A B x x OMN OAB OM ON S S OB OA⋅=⋅ 221:14x C y +=()0,12C ()0,1F 2p =MN y 2C MN MN 1y kx =+()11,M x y ()22,N x y 214y kx x y=+⎧⎨=⎩2440x kx --=216160k ∆=+>124x x =-.【小问3详解】设直线、的斜率分别为、,其中,,联立可得,解得点在第三象限,则,点在第四象限,同理可得,且,当且仅当时,等号成立.的取值范围为.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知定义在上的函数的表达式为,其所有的零点按从小到大的顺序组成数列().(1)求函数在区间上的值域;(2)求证:函数在区间()上有且仅有一个零点;221212121241344x x OM ON x x y y x x ⋅=+=+=-+=- NO MO 1k 2k 10k >20k <12244y k x x y =⎧⎨+=⎩()221414k x +=x =±AA x =B B x =121212121164y y x x kk x x ===-121222OMN OAB B A OM ON x x x x S S OB OA x x ⋅⋅⋅===⋅⋅⋅ ==2≥=112k =OMN OABS S [)2,+∞0+∞(,)()y f x =()sin cos f x x x x =-{}n x 1,N n n ≥∈()y f x =()0,π()y f x =()()π,1πn n +1,N n n ≥∈(3)求证:.【答案】(1)(2)证明见解析(3)证明见解析【解析】【分析】(1)求得导数,判断的单调性,可得所求值域;(2)讨论为奇数,或偶数时,的单调性,结合函数零点存在定理,可得证明;(3)由(2)可知函数在()上且仅有一个零点,再由零点存在定理、以及正切函数的性质和不等式的性质,可得证明.【小问1详解】由,当时,,即函数在区间上是严格增函数,且,,所以在区间上的值域为.【小问2详解】当时,①当是偶数时,,函数在区间上是严格增函数;②当是奇数时,,函数在区间上是严格减函数;且,故,所以由零点存在定理可知,函数在区间上有且仅有一个零点.【小问3详解】由(2)可知函数在上有且仅有一个零点,的()11ππn n n x x n ++<-<()0,π()f x ()f x n ()f x ()f x ()()π,1πn n +1,N n n ≥∈n x ()()cos cos sin sin f x x x x x x x '=--=()0,πx ∈()0f x ¢>()y f x =()0,π()00f =()ππf =()f x ()0,π()0,π()()π,1πx n n ∈+n ()0f x ¢>()y f x =()()π,1πn n +n ()0f x '<()y f x =()()π,1πn n +()()1π1πn f n n -=-()()()()2π1π1π0f n f n n n ⋅+=-+<()y f x =()()π,1πn n +()f x ()()π,1πn n +n x且满足,即(几何意义:是与交点的横坐标)又因为,故, 所以由零点存在性定理可知,函数在上有且仅有一个零点, 于是,①因为,得所以,即;(或者)② 因为由(1)可知,当时,有故,所以;由①②可知.【点睛】关键点点睛:本题第三问,借助在()上且仅有一个零点,利用正切函数的性质和不等式的性质求解.()sin cos 0n n n n f x x x x =-=tan n n x x =n x tan y x =y x =()ππ12n f n ⎛⎫+=- ⎪⎝⎭()ππππ02f n f n n ⎛⎫⋅+=-< ⎪⎝⎭()y f x =ππ,π2n n ⎛⎫+ ⎪⎝⎭n x ()()1ππ,1π,1π2n n x x n n +⎛⎫+∈+++ ⎪⎝⎭()1πππ,22n n x x +⎛⎫-+∈- ⎪⎝⎭()()()111111tan tan tan πtan 1tan tan 1n n n nn n n n n n n n x x x x x x x x x x x x ++++++---+=-==+⋅+⋅10n n x x +->()()1tan π0n n x x +-+>()1π0n n x x +-+>1πn n x x +<-()111tan tan πtan tan 0n n n n n n x x x x x x +++-+=-=->()1tan tan πn n x x +⇒>+1πn n x x +⇒->()()112222133ππ3π22tan π1π2πn n n n n n nx x x x x x x n n n +++--+=<<=<+⋅π0,2x ⎛⎫∈ ⎪⎝⎭tan x x <()()()11ππtan πn n n n x x x x n ++-+<-+<1ππn n x x n +-<+()11ππn n n x x n++<-<()f x ()()π,1πn n +1,N n n ≥∈n x。
上海闵行三中2009届高三9月月考数学卷
2009届闵行三中高三9月月考数学卷一、填空题:1、若(x +1)n =x n +…+ax 3+bx 2+cx +1(n ∈N *),且a ∶b =3∶1,那么n =_____.2、从编号为1,2,3,4,5,6,7,8,9,10的十个球中,任取5个球,则这5个球编号之和为奇数的概率是________.3、一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为________.4、记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻的概率 为 (用分数表示)5、若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为__________。
6、棱锥的高为16cm,底面积为512cm 2,平行于底面的截面积为50cm 2,则截面与底面的距离为7、如果球的内接正方体的表面积为24,那么球的体积等于8、正三棱锥的一个侧面的面积与底面面积之比为2:3,则这个三棱锥的侧面和底面所成二面角的度数为 。
9、在棱长为1的正方体ABCD ——A 1B 1C 1D 1中,若G 、E 分别为BB 1,C 1D 1的中点,点F 是正方形ADD 1A 1的中心,则四边形BGEF 在正方体六个面上的射影图形面积的最大值为________。
10、给出下列命题:①底面是正多边形的棱锥是正棱锥; ②侧棱都相等的棱锥是正棱锥;③侧棱和底面成等角的棱锥是正棱锥;④侧面和底面所成二面角都相等的棱锥是正棱锥,其中正确命题的是11、如图,点A 在锐二面角α -MN -β 的棱MN 上,在面α 内引射线AP ,使AP 与MN 所成的∠PAM 为45°,与面β 所成的角为30°,求二面角α -MN -β 的大小 . 12、如图,正四面体S ABC -的边长为a ,D 是SA 的中点,E 是BC 的中点,则SDE 绕SE 旋转一周所得旋转体的体积为 .11题图 12题图 二、选择题:13、已知(1-3x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于( )A.29B.49C.39D.1 14、(2x +x )4的展开式中x 3的系数是( )A.6B.12C.24D.4815、如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为( )2009密 封 线 内 不 要 答 题 班级 学号 姓名A BC DESA.321 B.21 C.21 D.421 16、平行六面体的棱长都是a ,从一个顶点出发的三条棱两两都成60°角,则该平行六面体的体积为( )A .3aB .321a C .322a D .323a 17、如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=, 则球O 的表面积是 ( )A 、4πB 、8πC 、12πD 、16π 17题图18、已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A.28B.38C.1或38D.1或2819、将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( )A .561B .701 C .3361 D .4201 20、先后抛掷3次骰子,至少出现一次6点向上的概率是( )A.2165 B.21625 C.21631 D.21691 三、解答题:21、{}R x x x x A ∈≥-+=,0232,⎭⎬⎫⎩⎨⎧∈>--=R x x x x B ,0334(1)用区间表示集合B A 、; (2)求B A ⋂.22、已知一个圆锥的底面半径为R ,高为H ,在其中有一个高为x 的内接圆柱, (1)求此圆柱的侧面积表达式;(2)x 为何值时,圆柱的侧面积最大?RrxH23、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.24、如图,在底面是直角梯形的四棱锥P ABCD -中,AD ∥BC ,∠ABC =90°,且∠ADC =arcsin55,又PA ⊥平面ABCD ,AD =3AB =3PA =3a 。
2009年上海市闵行区中考模拟数学试卷及答案一模考
闵行区2008学年第二学期九年级质量调研考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1(A(B; (C; (D2.下列函数的图像中,与轴没有公共点的是(A )1y x =-; (B )21y x =+; (C )x y -=; (D )21y x =-+.3.已知点P (-1,3),那么与点P 关于原点O 对称的点的坐标是 (A )(-1,-3); (B )(1,-3); (C )(1,3); (D )(3,-1).4.如图,已知向量a 、b 、c,那么下列结论正确的是(A )a b c += ; (B )b c a += ; (C )a b c -=-; (D )a c b +=- . 5.下列命题中错误的是(A )矩形的两条对角线相等; (B )等腰梯形的两条对角线互相垂直; (C )平行四边形的两条对角线互相平分; (D )正方形的两条对角线互相垂直且相等. 6.小杰调查了本班同学体重情况,画出了频数分布直方图,那么下列结论不正确的是(A )全班总人数为45人;(B )体重在50千克~55千克的人数最多; (C )学生体重的众数是14;(D )体重在60千克~65千克的人数占全班总人数的91.abc (第4题图)(第5题图)二、填空题:(每题4分,满分48分) 7.计算:2(3)x =____________.8.在实数范围内分解因式:32x x -=__________________. 9.函数32+=x y 的定义域是_______________. 10.方程x x =+2的解是_________________.11.已知正比例函数y k x =(k ≠ 0)的图像经过点(-4,2),那么函数值y 随自变量x的值的增大而____________.(填“增大”或“减小”)12.四张大小、质地都相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下放在桌子上,从中随机抽取两张卡片,那么两张卡片上的数字的乘积为偶数的概率是_________.13.某校随机抽取50名同学进行“世博知识知多少”的调查问卷,通过调查发现其中45人对于“世博”知识了解的比较全面,由此可以估计全校的1500名同学中,对于“世博”知识了解的比较全面的约为_____________人.14.如图,在长方体ABCD -EFGH 中,与平面ADHE 垂直的棱 共有___________条.15.化简:3(24)5()a b a b --+=_____________.16.在梯形ABCD 中,AD // BC , E 、F 分别是边AB 、CD 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闵行区2009学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一、填空题:(每题4分) 1.-1; 2.0.35; 3.2; 4. 60; 5.17.64; 6.36π; 7.2221352009++++ ; 8.3; 9.8; 10.理22;文(0,2)11.56π; 12. 理5k -;文(-2,4); 13.理符合0a b +<且2a ≤-的一个特例均可;文符合4a ≥-的一个特例均可; 14.理21k k +-;文29. 二、选择题:(每题4分)15. A ; 16. D ; 17. B ; 18. C三、解答题:19.(本题满分14分)理:(1)43sin ,,,cos 525x x x ππ⎡⎤=∈∴=-⎢⎥⎣⎦(2分)x x x x f cos 2cos 21sin 232)(-⎪⎪⎭⎫ ⎝⎛+=(4分)3cos 5x x =-= (8分) (2)⎪⎭⎫ ⎝⎛-=6sin 2)(πx x f (10分)ππ≤≤x 2 ,6563πππ≤-≤∴x (12分)16sin 21≤⎪⎭⎫ ⎝⎛-≤πx , ∴ 函数)(x f 的值域为]2,1[. (14分)文:设z a bi =+(,)a b ∈R (2分)因为(2)(2)(2)i z a b a b i +=-++为纯虚数 (5分) 所以⎪⎩⎪⎨⎧=+-≠+=-4)2(020222b a b a b a (9分)解得⎪⎪⎩⎪⎪⎨⎧==5854b a (12分) 故复数i z 5854+= (14分)20.(本题满分14分)理:解法一:(1)以A 点为坐标原点建立空间直角坐标系A xyz -(图略),由22====BC AB AD PA 得(0,0,0)A ,(0,0,2)P ,(2,0,0)B ,1(1,,1)2M (0,2,0)D (2分)因为1(2,0,2)(1,,1)02PB AM ⋅=-⋅= (5分) 所以AM PB ⊥. (7分)(2)因为 (2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥,又AM PB ⊥,故PB ⊥平面ADMN ,即(2,0,2)PB =-是平面ADMN 的法向量.(9分)设BD 与平面ADMN 所成的角为θ,又(2,2,0)BD =-,设BD 与PB 夹角为α,则1sin cos 2BD PB BD PBθα⋅====⋅ , (12分) 又[0,]2πθ∈,故6πθ=,故BD 与平面ADMN 所成的角是6π. (14分) 解法二:(1)证明:因为N 是PB 的中点,AB PA =, 所以PB AN ⊥ (2分)由PA ⊥底面ABCD ,得PA AD ⊥,又90BAD ︒∠=,即BA AD ⊥,∴⊥AD 平面PAB ,AD PB ∴⊥ (4分) PB ∴⊥面ADMN ,PB AM ∴⊥ (7分)(2)联结DN ,BP ⊥ 平面ADMN ,故BDN ∠为BD 与面ADMN 所成角(9分) 在Rt ABD ∆中,BD ==, 在Rt PAB ∆中,PB =,故12BN PB ==, 在Rt BDN ∆中, 21sin ==∠BD BN BDN ,又π≤∠≤BDN 0, (12分) 故BD 与平面ADMN 所成的角是6π(14分)文(同理19题)21.(本题满分16分)(1)设第n 区每平方米的重量为n a 千克,则111000(12%)10000.98n n n a --=-=⨯ (2分) 第1225米位于第25区, (4分) 242510000.98616a ∴=⨯=(千克)故第1225米处每平方米火山灰约重616千克(6分)(2)设第n 区内的面积为n b 平方米,则22225050(1)2500(21)n b n n n πππ=--=-则第n 区内火山灰的总重量为512510(21)0.98n n n n C a b n π-==⨯-⨯(千克)(9分)设第n 区火山灰总重量最大,则51525152510(21)0.982510(23)0.982510(21)0.982510(21)0.98n n n nn n n n ππππ---⎧⨯-⨯≥⨯-⨯⎪⎨⨯-⨯≥⨯+⨯⎪⎩, (13分) 解得49.550.5n ≤≤,即得第50区火山灰的总重量最大. (16分) 22.(本题满分16分)(理)(1)设y ,则2()()y x a x a =⊕-⊗22()()4x a x a ax =+--= (2分)又由y =0可得P (x)的轨迹方程为24(0)y ax y =≥,轨迹C 为顶点在原点,焦点为(,0)a 的抛物线在x 轴上及第一象限的内的部分 (4分)(2) 由已知可得24112y axy x ⎧=⎪⎨=+⎪⎩ , 整理得2(416)40x a x +-+=, 由2(416)160a ∆=--≥ ,得102a a ≥≤或.∵0a >,∴12a ≥ (6分)=====(8分) 解得2a =或32a =-(舍) ;2a ∴= (10分)(3)∵12()||d AB y y =-∴|()||()||||||()||()|||||d ST d ST ST ST d SP d SQ SP SQ +=+(12分)设直线2:l x my c =+,依题意0m ≠,0c ≠,则(,0)T c ,分别过P 、Q 作PP 1⊥y 轴,QQ 1⊥y 轴,垂足分别为P 1、Q 1,则=+||||||||SQ ST SP ST 11||||||||||||||||P QOT OT c c PP QQ x x +=+.由28y x x my c⎧=⎨=+⎩消去y 得222(28)0x c m x c -++= ∴||||11||()||||||||P Q ST ST c SP SQ x x +=+≥2||c2||2c ==. (14分) ∵P x 、Q x 取不相等的正数,∴取等的条件不成立 ∴|()||()||()||()|d ST d ST d SP d SQ +的取值范围是(2,+∞). (16分) (文)解:(1)设AB 所在直线的方程为y x m =+由2234x y y x m⎧+=⎨=+⎩得2246340x mx m ++-=. (2分) 因为A B 、在椭圆上,所以212640m ∆=-+>.334334<<-m 设A B 、两点坐标分别为1122()()x y x y ,、,,中点为),(00y x P则1232m x x +=-, 034x m -=,00003134x x x y -=-=所以中点轨迹方程为13(32y x x x =-<<≠-) (4分)(2)AB l //,且AB 边通过点(00),,故AB 所在直线的方程为y x =. 此时0m =,由(1)可得1x =±,所以12AB x =-=(6分)又因为AB 边上的高h 等于原点到直线l的距离,所以h =(8分)122ABC S AB h =⋅=△. (10分) (3)由(1)得1232m x x +=-,212344m x x -=,所以12AB x =-=. (12分)又因为BC 的长等于点(0)m ,到直线l的距离,即BC = (14分)所以22222210(1)11AC AB BC m m m =+=--+=-++.所以当1m =-时,AC 边最长,(这时12640∆=-+>)此时AB 所在直线的方程为1y x =-. (16分) 23.(本题满分18分)(理)(1)证明:由已知可得,1()2OP OM ON =+,所以P 是MN 的中点,有121x x +=,123312log log y y ∴+=+12312123log 11()x x x x x x ==-++(4分) (2)由(1)知当121x x +=时,1212()() 1.y y f x f x +=+=121()()()n n S f f f n n n -=++ ① 121()()()n n S f f f n n n -=+++ ② ①+②得12n n S -= (6分) 111149231lim lim 49233n n n n S S n n SS n n n n ++--→∞→∞--==-++ (10分)(3)当2n ≥时, 111.1212422n a n n n n ==-++++⨯⋅又当1n =时,11,6a =所以1112n a n n =-++ (12分)故111111()()()2334122(2)n nT n n n =-+-++-=+++ (14分) 1(1)n n T m S +<+ 对一切*n ∈N 都成立,即211(2)n n T nm S n +>=++恒成立(16分) 又2114(2)84n n n n=≤+++,所以m的取值范围是1(,)8+∞ (18分) (文)(1)122n n n a a +=+,11122n n n n a a+-=+, (2分) 11n n b b +=+, 故{}n b 为等差数列,11b =,n b n =. (4分)(2)由(1)可得12n n a n -=(6分) 12102232221-⋅+⋅+⋅+⋅=n n n Sn n n n n S 22)1(23222121321⋅+⋅-+⋅+⋅+⋅=-两式相减,得n n n n n n n S 212222221210⋅--=⋅-+++=-- ,即12)1(+-=nn n S (8分) 11(1)211lim lim 222n n n n n n S n n n ++→∞→∞-+∴==⋅⋅ (10分) (3)由(1)可得2n T n =,(12分) ∴21441n n nn n T d a T ==--, 1231123111()()041n n n n n d d d d d d d d d d ++++++++-++++==>-∴123{}n d d d d ++++ 单调递增,即123113n d d d d d ++++≥= , (14分)要使1238log (2)n d d d d m t ++++≥+ 对任意正整数n 成立,必须且只需81log (2)3m t ≥+,即022m t <+≤对任意[12]m ∈,恒成立. (16分) ∴[2 4](0 2]t t ++⊆,,,即 202242t t t +>⎧⇒-<≤-⎨+≤⎩矛盾.∴满足条件的实数t 不存在. (18分)。